251
|
Wettersten HI, Aboud OA, Lara PN, Weiss RH. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol 2017; 13:410-419. [PMID: 28480903 DOI: 10.1038/nrneph.2017.59] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Research in many cancers has uncovered changes in metabolic pathways that control tumour energetics and biosynthesis, so-called metabolic reprogramming. Studies in clear cell renal cell carcinoma (ccRCC) have been particularly revealing, leading to the concept that ccRCC is a metabolic disease. ccRCC is generally accompanied by reprogramming of glucose and fatty acid metabolism and of the tricarboxylic acid cycle. Metabolism of tryptophan, arginine and glutamine is also reprogrammed in many ccRCCs, and these changes provide opportunities for new therapeutic strategies, biomarkers and imaging modalities. In particular, metabolic reprogramming facilitates the identification of novel and repurposed drugs that could potentially be used to treat ccRCC, which when metastatic has currently limited long-term treatment options. Further research and dissemination of these concepts to nephrologists and oncologists will lead to clinical trials of therapeutics specifically targeted to tumour metabolism, rather than generally toxic to all proliferating cells. Such novel agents are highly likely to be more effective and to have far fewer adverse effects than existing drugs.
Collapse
Affiliation(s)
- Hiromi I Wettersten
- University of California, San Diego, Sanford Consortium for Regenerative Medicine, Room 4810, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037-0695, USA
| | - Omran Abu Aboud
- Division of Nephrology, University of California Davis, Genome and Biomedical Sciences Facility, Room 6311, 451 Health Sciences Drive, Davis, California 95616, USA
| | - Primo N Lara
- University of California Davis Comprehensive Cancer Center, 4501 X Street, Suite 3003, Sacramento, California 95817, USA
| | - Robert H Weiss
- Division of Nephrology, University of California Davis, Genome and Biomedical Sciences Facility, Room 6311, 451 Health Sciences Drive, Davis, California 95616, USA
| |
Collapse
|
252
|
Bateman LA, Ku WM, Heslin MJ, Contreras CM, Skibola CF, Nomura DK. Argininosuccinate Synthase 1 is a Metabolic Regulator of Colorectal Cancer Pathogenicity. ACS Chem Biol 2017; 12:905-911. [PMID: 28229591 DOI: 10.1021/acschembio.6b01158] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like many cancer types, colorectal cancers have dysregulated metabolism that promotes their pathogenic features. In this study, we used the activity-based protein profiling chemoproteomic platform to profile cysteine-reactive metabolic enzymes that are upregulated in primary human colorectal tumors. We identified argininosuccinate synthase 1 (ASS1) as an upregulated target in primary human colorectal tumors and show that pharmacological inhibition or genetic ablation of ASS1 impairs colorectal cancer pathogenicity. Using metabolomic profiling, we show that ASS1 inhibition leads to reductions in the levels of oncogenic metabolite fumarate, leading to impairments in glycolytic metabolism that supports colorectal cancer cell pathogenicity. We show here that ASS1 inhibitors may represent a novel therapeutic approach for attenuating colorectal cancer through compromising critical metabolic and metabolite signaling pathways and demonstrate the utility of coupling chemoproteomic and metabolomic strategies to map novel metabolic regulators of cancer.
Collapse
Affiliation(s)
- Leslie A. Bateman
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | | | - Martin J. Heslin
- The University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Carlo M. Contreras
- The University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Christine F. Skibola
- The University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Daniel K. Nomura
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
253
|
Abstract
Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.
Collapse
Affiliation(s)
- Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden; .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark.,Science for Life Laboratory, Royal Institute of Technology, SE17121 Stockholm, Sweden
| |
Collapse
|
254
|
Nielsen J. Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metab 2017; 25:572-579. [PMID: 28273479 DOI: 10.1016/j.cmet.2017.02.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/21/2023]
Abstract
Systems biology uses mathematical models to analyze large datasets and simulate system behavior. It enables integrative analysis of different types of data and can thereby provide new insight into complex biological systems. Here will be discussed the challenges of using systems medicine for advancing the development of personalized and precision medicine to treat metabolic diseases like insulin resistance, obesity, NAFLD, NASH, and cancer. It will be illustrated how the concept of genome-scale metabolic models can be used for integrative analysis of big data with the objective of identifying novel biomarkers that are foundational for personalized and precision medicine.
Collapse
Affiliation(s)
- Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark; Science for Life Laboratory, Royal Institute of Technology, SE17121 Stockholm, Sweden.
| |
Collapse
|
255
|
Diez-Fernandez C, Rüfenacht V, Häberle J. Mutations in the Human Argininosuccinate Synthetase (ASS1) Gene, Impact on Patients, Common Changes, and Structural Considerations. Hum Mutat 2017; 38:471-484. [DOI: 10.1002/humu.23184] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/14/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Carmen Diez-Fernandez
- Division of Metabolism; University Children´s Hospital and Children's Research Center; Zurich Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism; University Children´s Hospital and Children's Research Center; Zurich Switzerland
| | - Johannes Häberle
- Division of Metabolism; University Children´s Hospital and Children's Research Center; Zurich Switzerland
| |
Collapse
|
256
|
Kremer JC, Prudner BC, Lange SES, Bean GR, Schultze MB, Brashears CB, Radyk MD, Redlich N, Tzeng SC, Kami K, Shelton L, Li A, Morgan Z, Bomalaski JS, Tsukamoto T, McConathy J, Michel LS, Held JM, Van Tine BA. Arginine Deprivation Inhibits the Warburg Effect and Upregulates Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers. Cell Rep 2017; 18:991-1004. [PMID: 28122247 PMCID: PMC5840045 DOI: 10.1016/j.celrep.2016.12.077] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Targeting defects in metabolism is an underutilized strategy for the treatment of cancer. Arginine auxotrophy resulting from the silencing of argininosuccinate synthetase 1 (ASS1) is a common metabolic alteration reported in a broad range of aggressive cancers. To assess the metabolic effects that arise from acute and chronic arginine starvation in ASS1-deficient cell lines, we performed metabolite profiling. We found that pharmacologically induced arginine depletion causes increased serine biosynthesis, glutamine anaplerosis, oxidative phosphorylation, and decreased aerobic glycolysis, effectively inhibiting the Warburg effect. The reduction of glycolysis in cells otherwise dependent on aerobic glycolysis is correlated with reduced PKM2 expression and phosphorylation and upregulation of PHGDH. Concurrent arginine deprivation and glutaminase inhibition was found to be synthetic lethal across a spectrum of ASS1-deficient tumor cell lines and is sufficient to cause in vivo tumor regression in mice. These results identify two synthetic lethal therapeutic strategies exploiting metabolic vulnerabilities of ASS1-negative cancers.
Collapse
Affiliation(s)
- Jeff Charles Kremer
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bethany Cheree Prudner
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara Elaine Stubbs Lange
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory Richard Bean
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew Bailey Schultze
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Caitlyn Brook Brashears
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Megan DeAnna Radyk
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Redlich
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin-Cheng Tzeng
- Division of Molecular Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenjiro Kami
- Human Metabolome Technologies, 246-2 Mizukami Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Laura Shelton
- Human Metabolome Technologies America, Boston, MA 02134, USA
| | - Aixiao Li
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zack Morgan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Takashi Tsukamoto
- Department of Neurology and Johns Hopkins Drug Discovery Program, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jon McConathy
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, University of Alabama, Birmingham, AL 35249, USA
| | - Loren Scott Michel
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Matthew Held
- Division of Molecular Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Andrew Van Tine
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
257
|
Schoenenberger B, Wszolek A, Meier R, Brundiek H, Obkircher M, Wohlgemuth R. Biocatalytic asymmetric Michael addition reaction ofl-arginine to fumarate for the green synthesis of N-(([(4S)-4-amino-4-carboxy-butyl]amino)iminomethyl)-l-aspartic acid lithium salt (l-argininosuccinic acid lithium salt). RSC Adv 2017. [DOI: 10.1039/c7ra10236d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biocatalytic asymmetric Michael addition ofl-arginine to fumarate using argininosuccinate lyase (ASL) has enabled the synthesis of the key metabolitel-argininosuccinic acid lithium salt1for the first time, with excellent yield and purity.
Collapse
Affiliation(s)
| | | | - R. Meier
- Sigma-Aldrich
- Member of Merck Group
- CH-9470 Buchs
- Switzerland
| | | | - M. Obkircher
- Sigma-Aldrich
- Member of Merck Group
- CH-9470 Buchs
- Switzerland
| | - R. Wohlgemuth
- Sigma-Aldrich
- Member of Merck Group
- CH-9470 Buchs
- Switzerland
| |
Collapse
|
258
|
Targeting amino acid metabolism for cancer therapy. Drug Discov Today 2016; 22:796-804. [PMID: 27988359 DOI: 10.1016/j.drudis.2016.12.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/22/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022]
Abstract
To support sustained biomass accumulation, tumor cells undergo metabolic reprogramming. Nutrient transporters and metabolic enzymes are regulated by the same oncogenic signals that drive cell-cycle progression. Some of the earliest cancer therapies used antimetabolites to disrupt tumor metabolism, and there is now renewed interest in developing drugs that target metabolic dependencies. Many cancers exhibit increased demand for specific amino acids, and become dependent on either an exogenous supply or upregulated de novo synthesis. Strategies to exploit such 'metabolic addictions' include depleting amino acids in blood serum, blocking uptake by transporters and inhibiting biosynthetic or catabolic enzymes. Recent findings highlight the importance of using appropriate model systems and identifying target patient groups as potential therapies advance into the clinic.
Collapse
|
259
|
Vernieri C, Casola S, Foiani M, Pietrantonio F, de Braud F, Longo V. Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions. Cancer Discov 2016; 6:1315-1333. [PMID: 27872127 DOI: 10.1158/2159-8290.cd-16-0615] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022]
Abstract
Most tumors display oncogene-driven reprogramming of several metabolic pathways, which are crucial to sustain their growth and proliferation. In recent years, both dietary and pharmacologic approaches that target deregulated tumor metabolism are beginning to be considered for clinical applications. Dietary interventions exploit the ability of nutrient-restricted conditions to exert broad biological effects, protecting normal cells, organs, and systems, while sensitizing a wide variety of cancer cells to cytotoxic therapies. On the other hand, drugs targeting enzymes or metabolites of crucial metabolic pathways can be highly specific and effective, but must be matched with a responsive tumor, which might rapidly adapt. In this review, we illustrate how dietary and pharmacologic therapies differ in their effect on tumor growth, proliferation, and metabolism and discuss the available preclinical and clinical evidence in favor of or against each of them. We also indicate, when appropriate, how to optimize future investigations on metabolic therapies on the basis of tumor- and patient-related characteristics. SIGNIFICANCE To our knowledge, this is the first review article that comprehensively analyzes the preclinical and preliminary clinical experimental foundations of both dietary and pharmacologic metabolic interventions in cancer therapy. Among several promising therapies, we propose treatment personalization on the basis of tumor genetics, tumor metabolism, and patient systemic metabolism.Cancer Discov; 6(12); 1315-33. ©2016 AACR.
Collapse
Affiliation(s)
- Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy. .,Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Stefano Casola
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy.,Universita' degli Studi di Milano, Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.,Universita' degli Studi di Milano, Milan, Italy
| | - Valter Longo
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy. .,Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, California
| |
Collapse
|
260
|
Sullivan LB, Gui DY, Vander Heiden MG. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 2016; 16:680-693. [PMID: 27658530 DOI: 10.1038/nrc.2016.85] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered cell metabolism is a characteristic feature of many cancers. Aside from well-described changes in nutrient consumption and waste excretion, altered cancer cell metabolism also results in changes to intracellular metabolite concentrations. Increased levels of metabolites that result directly from genetic mutations and cancer-associated modifications in protein expression can promote cancer initiation and progression. Changes in the levels of specific metabolites, such as 2-hydroxyglutarate, fumarate, succinate, aspartate and reactive oxygen species, can result in altered cell signalling, enzyme activity and/or metabolic flux. In this Review, we discuss the mechanisms that lead to changes in metabolite concentrations in cancer cells, the consequences of these changes for the cells and how they might be exploited to improve cancer therapy.
Collapse
Affiliation(s)
- Lucas B Sullivan
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dan Y Gui
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew G Vander Heiden
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
261
|
Sciacovelli M, Frezza C. Oncometabolites: Unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med 2016; 100:175-181. [PMID: 27117029 PMCID: PMC5145802 DOI: 10.1016/j.freeradbiomed.2016.04.025] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 01/27/2023]
Abstract
Cancer is a complex and heterogeneous disease thought to be caused by multiple genetic lesions. The recent finding that enzymes of the tricarboxylic acid (TCA) cycle are mutated in cancer rekindled the hypothesis that altered metabolism might also have a role in cellular transformation. Attempts to link mitochondrial dysfunction to cancer uncovered the unexpected role of small molecule metabolites, now known as oncometabolites, in tumorigenesis. In this review, we describe how oncometabolites can contribute to tumorigenesis. We propose that lesions of oncogenes and tumour suppressors are only one of the possible routes to tumorigenesis, which include accumulation of oncometabolites triggered by environmental cues.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom.
| |
Collapse
|
262
|
Abstract
A defining hallmark of cancer is uncontrolled cell proliferation. This is initiated once cells have accumulated alterations in signaling pathways that control metabolism and proliferation, wherein the metabolic alterations provide the energetic and anabolic demands of enhanced cell proliferation. How these metabolic requirements are satisfied depends, in part, on the tumor microenvironment, which determines the availability of nutrients and oxygen. In this Cell Science at a Glance paper and the accompanying poster, we summarize our current understanding of cancer metabolism, emphasizing pathways of nutrient utilization and metabolism that either appear or have been proven essential for cancer cells. We also review how this knowledge has contributed to the development of anticancer therapies that target cancer metabolism.
Collapse
Affiliation(s)
- Alexei Vazquez
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Jurre J Kamphorst
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Elke K Markert
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Zachary T Schug
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Saverio Tardito
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Eyal Gottlieb
- Cancer Metabolism Research Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
263
|
The metabolomic signature of hematologic malignancies. Leuk Res 2016; 49:22-35. [PMID: 27526405 DOI: 10.1016/j.leukres.2016.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
The ongoing accumulation of knowledge raises hopes that understanding tumor metabolism will provide new ways for predicting, diagnosing, and even treating cancers. Some metabolic biomarkers are at present routinely utilized to diagnose cancer and metabolic alterations of tumors are being confirmed as therapeutic targets. The growing utilization of metabolomics in clinical research may rapidly turn it into one of the most potent instruments used to detect and fight tumor. In fact, while the current state and trends of high throughput metabolomics profiling focus on the purpose of discovering biomarkers and hunting for metabolic mechanism, a prospective direction, namely reprogramming metabolomics, highlights the way to use metabolomics approach for the aim of treatment of disease by way of reconstruction of disturbed metabolic pathways. In this review, we present an ample summary of the current clinical appliances of metabolomics in hematological malignancies.
Collapse
|
264
|
Locke M, Ghazaly E, Freitas MO, Mitsinga M, Lattanzio L, Lo Nigro C, Nagano A, Wang J, Chelala C, Szlosarek P, Martin SA. Inhibition of the Polyamine Synthesis Pathway Is Synthetically Lethal with Loss of Argininosuccinate Synthase 1. Cell Rep 2016; 16:1604-1613. [PMID: 27452468 PMCID: PMC4978703 DOI: 10.1016/j.celrep.2016.06.097] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/09/2016] [Accepted: 06/29/2016] [Indexed: 12/29/2022] Open
Abstract
Argininosuccinate synthase 1 (ASS1) is the rate-limiting enzyme for arginine biosynthesis. ASS1 expression is lost in a range of tumor types, including 50% of malignant pleural mesotheliomas. Starving ASS1-deficient cells of arginine with arginine blockers such as ADI-PEG20 can induce selective lethality and has shown great promise in the clinical setting. We have generated a model of ADI-PEG20 resistance in mesothelioma cells. This resistance is mediated through re-expression of ASS1 via demethylation of the ASS1 promoter. Through coordinated transcriptomic and metabolomic profiling, we have shown that ASS1-deficient cells have decreased levels of acetylated polyamine metabolites, together with a compensatory increase in the expression of polyamine biosynthetic enzymes. Upon arginine deprivation, polyamine metabolites are decreased in the ASS1-deficient cells and in plasma isolated from ASS1-deficient mesothelioma patients. We identify a synthetic lethal dependence between ASS1 deficiency and polyamine metabolism, which could potentially be exploited for the treatment of ASS1-negative cancers.
Collapse
Affiliation(s)
- Matthew Locke
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Essam Ghazaly
- Centre for Haemato-oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Marta O Freitas
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mikaella Mitsinga
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Laura Lattanzio
- Laboratorio di Genetica Oncologica ed Oncologia Translazionale and Dipartimento di Oncologia, Azienda Ospedaliera S. Croce e Carle, 12100 Cuneo, Italy
| | - Cristiana Lo Nigro
- Laboratorio di Genetica Oncologica ed Oncologia Translazionale and Dipartimento di Oncologia, Azienda Ospedaliera S. Croce e Carle, 12100 Cuneo, Italy
| | - Ai Nagano
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Peter Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sarah A Martin
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
265
|
van der Mijn JC, Panka DJ, Geissler AK, Verheul HM, Mier JW. Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer Metab 2016; 4:14. [PMID: 27418963 PMCID: PMC4944519 DOI: 10.1186/s40170-016-0154-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Molecular profiling studies of tumor tissue from patients with clear cell renal cell cancer (ccRCC) have revealed extensive metabolic reprogramming in this disease. Associations were found between metabolic reprogramming, histopathologic Fuhrman grade, and overall survival of patients. Large-scale genomics, proteomics, and metabolomic analyses have been performed to identify the molecular players in this process. Genes involved in glycolysis, the pentose phosphate pathway, glutamine metabolism, and lipogenesis were found to be upregulated in renal cell cancer (RCC) specimens as compared to normal tissue. Preclinical research indicates that mutations in VHL, FBP1, and the PI3K-AKT-mTOR pathway drives aerobic glycolysis through transcriptional activation of the hypoxia-inducible factors (HIF). Mechanistic studies revealed glutamine as an important source for de novo fatty acid synthesis through reductive carboxylation. Amplification of MYC drives reductive carboxylation. In this review, we present a detailed overview of the metabolic changes in RCC in conjunction with potential novel therapeutics. We discuss preclinical studies that have investigated targeted agents that interfere with various aspects of tumor cell metabolism and emphasize their impact specifically on glycolysis, lipogenesis, and tumor growth. Furthermore, we describe a number of phase 1 and 2 clinical trials that have been conducted with these agents.
Collapse
Affiliation(s)
- Johannes C van der Mijn
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA ; Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ; Department of Internal Medicine, OLVG; Jan van Tooropstraat 164, 1061 AE Amsterdam, The Netherlands
| | - David J Panka
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Andrew K Geissler
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - James W Mier
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| |
Collapse
|
266
|
Affiliation(s)
- Fabricio Loayza-Puch
- a Division of Biological Stress Response, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Reuven Agami
- a Division of Biological Stress Response, The Netherlands Cancer Institute , Amsterdam , The Netherlands.,b Erasmus MC, Rotterdam University , Rotterdam , The Netherlands
| |
Collapse
|
267
|
Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 2016; 35:4957-72. [PMID: 27109103 DOI: 10.1038/onc.2016.37] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.
Collapse
Affiliation(s)
- M D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - J Bhaumik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - S Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - U C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - D Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
268
|
Analysis of Gene Expression in 3D Spheroids Highlights a Survival Role for ASS1 in Mesothelioma. PLoS One 2016; 11:e0150044. [PMID: 26982031 PMCID: PMC4794185 DOI: 10.1371/journal.pone.0150044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022] Open
Abstract
To investigate the underlying causes of chemoresistance in malignant pleural mesothelioma, we have studied mesothelioma cell lines as 3D spheroids, which acquire increased chemoresistance compared to 2D monolayers. We asked whether the gene expression of 3D spheroids would reveal mechanisms of resistance. To address this, we measured gene expression of three mesothelioma cell lines, M28, REN and VAMT, grown as 2D monolayers and 3D spheroids. A total of 209 genes were differentially expressed in common by the three cell lines in 3D (138 upregulated and 71 downregulated), although a clear resistance pathway was not apparent. We then compared the list of 3D genes with two publicly available datasets of gene expression of 56 pleural mesotheliomas compared to normal tissues. Interestingly, only three genes were increased in both 3D spheroids and human tumors: argininosuccinate synthase 1 (ASS1), annexin A4 (ANXA4) and major vault protein (MVP); of these, ASS1 was the only consistently upregulated of the three genes by qRT-PCR. To measure ASS1 protein expression, we stained 2 sets of tissue microarrays (TMA): one with 88 pleural mesothelioma samples and the other with additional 88 pleural mesotheliomas paired with matched normal tissues. Of the 176 tumors represented on the two TMAs, ASS1 was expressed in 87 (50%; staining greater than 1 up to 3+). For the paired samples, ASS1 expression in mesothelioma was significantly greater than in the normal tissues. Reduction of ASS1 expression by siRNA significantly sensitized mesothelioma spheroids to the pro-apoptotic effects of bortezomib and of cisplatin plus pemetrexed. Although mesothelioma is considered by many to be an ASS1-deficient tumor, our results show that ASS1 is elevated at the mRNA and protein levels in mesothelioma 3D spheroids and in human pleural mesotheliomas. We also have uncovered a survival role for ASS1, which may be amenable to targeting to undermine mesothelioma multicellular resistance.
Collapse
|
269
|
Patel D, Menon D, Bernfeld E, Mroz V, Kalan S, Loayza D, Foster DA. Aspartate Rescues S-phase Arrest Caused by Suppression of Glutamine Utilization in KRas-driven Cancer Cells. J Biol Chem 2016; 291:9322-9. [PMID: 26921316 DOI: 10.1074/jbc.m115.710145] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/27/2022] Open
Abstract
During G1-phase of the cell cycle, normal cells respond first to growth factors that indicate that it is appropriate to divide and then later in G1 to the presence of nutrients that indicate sufficient raw material to generate two daughter cells. Dividing cells rely on the "conditionally essential" amino acid glutamine (Q) as an anaplerotic carbon source for TCA cycle intermediates and as a nitrogen source for nucleotide biosynthesis. We previously reported that while non-transformed cells arrest in the latter portion of G1 upon Q deprivation, mutant KRas-driven cancer cells bypass the G1 checkpoint, and instead, arrest in S-phase. In this study, we report that the arrest of KRas-driven cancer cells in S-phase upon Q deprivation is due to the lack of deoxynucleotides needed for DNA synthesis. The lack of deoxynucleotides causes replicative stress leading to activation of the ataxia telangiectasia and Rad3-related protein (ATR)-mediated DNA damage pathway, which arrests cells in S-phase. The key metabolite generated from Q utilization was aspartate, which is generated from a transaminase reaction whereby Q-derived glutamate is converted to α-ketoglutarate with the concomitant conversion of oxaloacetate to aspartate. Aspartate is a critical metabolite for both purine and pyrimidine nucleotide biosynthesis. This study identifies the molecular basis for the S-phase arrest caused by Q deprivation in KRas-driven cancer cells that arrest in S-phase in response to Q deprivation. Given that arresting cells in S-phase sensitizes cells to apoptotic insult, this study suggests novel therapeutic approaches to KRas-driven cancers.
Collapse
Affiliation(s)
- Deven Patel
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biochemistry Program and
| | - Deepak Menon
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biochemistry Program and
| | - Elyssa Bernfeld
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biochemistry Program and
| | - Victoria Mroz
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Sampada Kalan
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biology Program, Graduate Center of the City University of New York, New York, New York 10016, and
| | - Diego Loayza
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biochemistry Program and Biology Program, Graduate Center of the City University of New York, New York, New York 10016, and
| | - David A Foster
- From the Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065, Biochemistry Program and Biology Program, Graduate Center of the City University of New York, New York, New York 10016, and Department of Pharmacology, Weill Cornell College of Medicine, New York, New York 10021
| |
Collapse
|
270
|
Nagamani SCS, Erez A. A metabolic link between the urea cycle and cancer cell proliferation. Mol Cell Oncol 2016; 3:e1127314. [PMID: 27308634 DOI: 10.1080/23723556.2015.1127314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Clinical observations in citrullinemia type I, an inborn error of metabolism, led us to explore the benefits of somatic ASS1 silencing in cancer. We found that downregulation of ASS1 results in preferential utilization of its substrate, aspartate, for pyrimidine synthesis to support cell proliferation. Reducing aspartate availability for pyrimidine synthesis restricted cancerous proliferation.
Collapse
Affiliation(s)
- Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science , Rehovot, Israel
| |
Collapse
|
271
|
Olivares O, Däbritz JHM, King A, Gottlieb E, Halsey C. Research into cancer metabolomics: Towards a clinical metamorphosis. Semin Cell Dev Biol 2015; 43:52-64. [PMID: 26365277 DOI: 10.1016/j.semcdb.2015.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/26/2022]
Abstract
The acknowledgement that metabolic reprogramming is a central feature of cancer has generated high expectations for major advances in both diagnosis and treatment of malignancies through addressing metabolism. These have so far only been partially fulfilled, with only a few clinical applications. However, numerous diagnostic and therapeutic compounds are currently being evaluated in either clinical trials or pre-clinical models and new discoveries of alterations in metabolic genes indicate future prognostic or other applicable relevance. Altogether, these metabolic approaches now stand alongside other available measures providing hopes for the prospects of metabolomics in the clinic. Here we present a comprehensive overview of both ongoing and emerging clinical, pre-clinical and technical strategies for exploiting unique tumour metabolic traits, highlighting the current promises and anticipations of research in the field.
Collapse
Affiliation(s)
- Orianne Olivares
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK
| | - J Henry M Däbritz
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK
| | - Ayala King
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK
| | - Eyal Gottlieb
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK.
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK.
| |
Collapse
|