251
|
Laprairie RB, Kulkarni PM, Deschamps JR, Kelly MEM, Janero DR, Cascio MG, Stevenson LA, Pertwee RG, Kenakin TP, Denovan-Wright EM, Thakur GA. Enantiospecific Allosteric Modulation of Cannabinoid 1 Receptor. ACS Chem Neurosci 2017; 8:1188-1203. [PMID: 28103441 DOI: 10.1021/acschemneuro.6b00310] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cannabinoid 1 receptor (CB1R) is one of the most widely expressed metabotropic G protein-coupled receptors in brain, and its participation in various (patho)physiological processes has made CB1R activation a viable therapeutic modality. Adverse psychotropic effects limit the clinical utility of CB1R orthosteric agonists and have promoted the search for CB1R positive allosteric modulators (PAMs) with the promise of improved drug-like pharmacology and enhanced safety over typical CB1R agonists. In this study, we describe the synthesis and in vitro and ex vivo pharmacology of the novel allosteric CB1R modulator GAT211 (racemic) and its resolved enantiomers, GAT228 (R) and GAT229 (S). GAT211 engages CB1R allosteric site(s), enhances the binding of the orthosteric full agonist [3H]CP55,490, and reduces the binding of the orthosteric antagonist/inverse agonist [3H]SR141716A. GAT211 displayed both PAM and agonist activity in HEK293A and Neuro2a cells expressing human recombinant CB1R (hCB1R) and in mouse-brain membranes rich in native CB1R. GAT211 also exhibited a strong PAM effect in isolated vas deferens endogenously expressing CB1R. Each resolved and crystallized GAT211 enantiomer showed a markedly distinctive pharmacology as a CB1R allosteric modulator. In all biological systems examined, GAT211's allosteric agonist activity resided with the R-(+)-enantiomer (GAT228), whereas its PAM activity resided with the S-(-)-enantiomer (GAT229), which lacked intrinsic activity. These results constitute the first demonstration of enantiomer-selective CB1R positive allosteric modulation and set a precedent whereby enantiomeric resolution can decisively define the molecular pharmacology of a CB1R allosteric ligand.
Collapse
Affiliation(s)
| | - Pushkar M. Kulkarni
- Department
of Pharmaceutical Sciences, School of Pharmacy, Bouvé College
of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jeffrey R. Deschamps
- Naval Research Laboratory, Code 6930, 4555 Overlook Avenue, Washington, D.C. 20375, United States
| | | | - David R. Janero
- Center
for Drug Discovery; Department of Pharmaceutical Sciences, School
of Pharmacy, Bouvé College of Health Sciences, Department of Chemistry and Chemical Biology, College of Science, and Health Sciences Entrepreneurs; Northeastern University, Boston, Massachusetts 02115, United States
| | - Maria G. Cascio
- School
of Medicine, Medical Sciences and Nutrition, Institute of Medical
Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Lesley A. Stevenson
- School
of Medicine, Medical Sciences and Nutrition, Institute of Medical
Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Roger G. Pertwee
- School
of Medicine, Medical Sciences and Nutrition, Institute of Medical
Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Terrence P. Kenakin
- Department
of Pharmacology, University of North Carolina School of Medicine, Chapel
Hill, North Carolina 27599, United States
| | | | - Ganesh A. Thakur
- Department
of Pharmaceutical Sciences, School of Pharmacy, Bouvé College
of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
252
|
Starowicz K, Finn DP. Cannabinoids and Pain: Sites and Mechanisms of Action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:437-475. [PMID: 28826543 DOI: 10.1016/bs.apha.2017.05.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB1R and CB2R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB1R/non-CB2R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Pain Pathophysiology, Krakow, Poland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
253
|
Thomas BF. Interactions of Cannabinoids With Biochemical Substrates. SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2017; 11:1178221817711418. [PMID: 28607542 PMCID: PMC5457144 DOI: 10.1177/1178221817711418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 01/02/2023]
Abstract
Recent decades have seen much progress in the identification and characterization of cannabinoid receptors and the elucidation of the mechanisms by which derivatives of the Cannabis sativa plant bind to receptors and produce their physiological and psychological effects. The information generated in this process has enabled better understanding of the fundamental physiological and psychological processes controlled by the central and peripheral nervous systems and has fostered the development of natural and synthetic cannabinoids as therapeutic agents. A negative aspect of this decades-long effort is the proliferation of clandestinely synthesized analogs as recreational street drugs with dangerous effects. Currently, the interactions of cannabinoids with their biochemical substrates are extensively but inadequately understood, and the clinical application of derived and synthetic receptor ligands remains quite limited. The wide anatomical distribution and functional complexity of the cannabinoid system continue to indicate potential for both therapeutic and side effects, which offers challenges and opportunities for medicinal chemists involved in drug discovery and development.
Collapse
Affiliation(s)
- Brian F Thomas
- Analytical Chemistry and Pharmaceutics, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
254
|
Miller S, Leishman E, Hu SS, Elghouche A, Daily L, Murataeva N, Bradshaw H, Straiker A. Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model. Invest Ophthalmol Vis Sci 2017; 57:3287-96. [PMID: 27333182 PMCID: PMC4961057 DOI: 10.1167/iovs.16-19356] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose Cannabinoids, such as Δ9-THC, act through an endogenous signaling system in the vertebrate eye that reduces IOP via CB1 receptors. Endogenous cannabinoid (eCB) ligand, 2-arachidonoyl glycerol (2-AG), likewise activates CB1 and is metabolized by monoacylglycerol lipase (MAGL). We investigated ocular 2-AG and its regulation by MAGL and the therapeutic potential of harnessing eCBs to lower IOP. Methods We tested the effect of topical application of 2-AG and MAGL blockers in normotensive mice and examined changes in eCB-related lipid species in the eyes and spinal cord of MAGL knockout (MAGL−/−) mice using high performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). We also examined the protein distribution of MAGL in the mouse anterior chamber. Results 2-Arachidonoyl glycerol reliably lowered IOP in a CB1- and concentration-dependent manner. Monoacylglycerol lipase is expressed prominently in nonpigmented ciliary epithelium. The MAGL blocker KML29, but not JZL184, lowered IOP. The ability of CB1 to lower IOP is not desensitized in MAGL−/− mice. Ocular monoacylglycerols, including 2-AG, are elevated in MAGL−/− mice but, in contrast to the spinal cord, arachidonic acid and prostaglandins are not changed. Conclusions Our data confirm a central role for MAGL in metabolism of ocular 2-AG and related lipid species, and that endogenous 2-AG can be harnessed to reduce IOP. The MAGL blocker KML29 has promise as a therapeutic agent, while JZL184 may have difficulty crossing the cornea. These data, combined with the relative specificity of MAGL for ocular monoacylglycerols and the lack of desensitization in MAGL−/− mice, suggest that the development of an optimized MAGL blocker offers therapeutic potential for treatment of elevated IOP.
Collapse
Affiliation(s)
- Sally Miller
- Department of Psychological and Brain Sciences Indiana University, Bloomington, Indiana, United States
| | - Emma Leishman
- Department of Psychological and Brain Sciences Indiana University, Bloomington, Indiana, United States
| | - Sherry Shujung Hu
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Alhasan Elghouche
- Department of Psychological and Brain Sciences Indiana University, Bloomington, Indiana, United States
| | - Laura Daily
- Department of Psychological and Brain Sciences Indiana University, Bloomington, Indiana, United States
| | - Natalia Murataeva
- Department of Psychological and Brain Sciences Indiana University, Bloomington, Indiana, United States
| | - Heather Bradshaw
- Department of Psychological and Brain Sciences Indiana University, Bloomington, Indiana, United States
| | - Alex Straiker
- Department of Psychological and Brain Sciences Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
255
|
Abstract
Acute and chronic pain complaints, although common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Collapse
|
256
|
Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. Proc Natl Acad Sci U S A 2017; 114:E5006-E5015. [PMID: 28584105 DOI: 10.1073/pnas.1704065114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extracellular effects of the endocannabinoids anandamide and 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after crossing cellular membranes by facilitated diffusion. The lack of potent and selective inhibitors for endocannabinoid transport has prevented the molecular characterization of this process, thus hindering its biochemical investigation and pharmacological exploitation. Here, we report the design, chemical synthesis, and biological profiling of natural product-derived N-substituted 2,4-dodecadienamides as a selective endocannabinoid uptake inhibitor. The highly potent (IC50 = 10 nM) inhibitor N-(3,4-dimethoxyphenyl)ethyl amide (WOBE437) exerted pronounced cannabinoid receptor-dependent anxiolytic, antiinflammatory, and analgesic effects in mice by increasing endocannabinoid levels. A tailored WOBE437-derived diazirine-containing photoaffinity probe (RX-055) irreversibly blocked membrane transport of both endocannabinoids, providing mechanistic insights into this complex process. Moreover, RX-055 exerted site-specific anxiolytic effects on in situ photoactivation in the brain. This study describes suitable inhibitors to target endocannabinoid membrane trafficking and uncovers an alternative endocannabinoid pharmacology.
Collapse
|
257
|
Vujic N, Korbelius M, Leopold C, Duta-Mare M, Rainer S, Schlager S, Goeritzer M, Kolb D, Eichmann TO, Diwoky C, Zimmer A, Zimmermann R, Lass A, Radovic B, Kratky D. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice. Oncotarget 2017; 8:33122-33136. [PMID: 28380440 PMCID: PMC5464855 DOI: 10.18632/oncotarget.16529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/14/2017] [Indexed: 11/25/2022] Open
Abstract
Monoglyceride lipase (MGL) hydrolyzes monoglycerides (MGs) to glycerol and fatty acids. Among various MG species MGL also degrades 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid and potent activator of cannabinoid receptors (CBR) 1 and 2. MGL-knockout (-/-) mice exhibit pronounced 2-AG accumulation, but lack central cannabimimetic effects due to CB1R desensitization. We have previously shown that MGL affects plaque stability in apolipoprotein E (ApoE)-/- mice, an established animal model for dyslipidemia and atherosclerosis. In the current study, we investigated functional consequences of MGL deficiency on lipid and energy metabolism in ApoE/MGL double knockout (DKO) mice. MGL deficiency affected hepatic cholesterol metabolism by causing increased cholesterol elimination via the biliary pathway. Moreover, DKO mice exhibit lipid-triggered delay in gastric emptying without major effects on overall triglyceride and cholesterol absorption. The observed phenotype of DKO mice is likely not a consequence of potentiated CB1R signaling but rather dependent on the activation of alternative signaling pathways. We conclude that MGL deficiency causes complex metabolic changes including cholesterol metabolism and regulation of gut transit independent of the endocannabinoid system.
Collapse
Affiliation(s)
- Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melanie Korbelius
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Christina Leopold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Madalina Duta-Mare
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | | | - Clemens Diwoky
- Institute of Biomedical Engineering, Graz University of Technology, Graz, Austria
- Current address: Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
258
|
Rosenberg EC, Patra PH, Whalley BJ. Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. Epilepsy Behav 2017; 70:319-327. [PMID: 28190698 PMCID: PMC5651410 DOI: 10.1016/j.yebeh.2016.11.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022]
Abstract
The isolation and identification of the discrete plant cannabinoids in marijuana revived interest in analyzing historical therapeutic claims made for cannabis in clinical case studies and anecdotes. In particular, sources as old as the 11th and 15th centuries claimed efficacy for crude marijuana extracts in the treatment of convulsive disorders, prompting a particularly active area of preclinical research into the therapeutic potential of plant cannabinoids in epilepsy. Since that time, a large body of literature has accumulated describing the effects of several of the >100 individual plant cannabinoids in preclinical models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. We surveyed the literature for relevant reports of such plant cannabinoid effects and critically reviewed their findings. We found that acute CB1R agonism in simple models of acute seizures in rodents typically produces anti-convulsant effects whereas CB1R antagonists exert converse effects in the same models. However, when the effects of such ligands are examined in more complex models of epilepsy, epileptogenesis and neuroprotection, a less simplistic narrative emerges. Here, the complex interactions between (i) brain regions involved in a given model, (ii) relative contributions of endocannabinoid signaling to modulation of synaptic transmission in such areas, (iii) multi-target effects, (iv) cannabinoid type 1 and type 2 receptor signaling interactions and, (v) timing, (vi) duration and (vii) localization of ligand administration suggest that there is both anti-epileptic therapeutic potential and a pro-epileptic risk in up- and down-regulation of endocannabinoid signaling in the central nervous system. Factors such receptor desensitization and specific pharmacology of ligands used (e.g. full vs partial agonists and neutral antagonists vs inverse agonists) also appear to play an important role in the effects reported. Furthermore, the effects of several plant cannabinoids, most notably cannabidiol (CBD) and cannabidavarin (CBDV), in models of seizures, epilepsy, epileptogenesis, and neuroprotection are less ambiguous, and consistent with reports of therapeutically beneficial effects of these compounds in clinical studies. However, continued paucity of firm information regarding the therapeutic molecular mechanism of CBD/CBDV highlights the continued need for research in this area in order to identify as yet under-exploited targets for drug development and raise our understanding of treatment-resistant epilepsies. The recent reporting of positive results for cannabidiol treatment in two Phase III clinical trials in treatment-resistant epilepsies provides pivotal evidence of clinical efficacy for one plant cannabinoid in epilepsy. Moreover, risks and/or benefits associated with the use of unlicensed Δ9-THC containing marijuana extracts in pediatric epilepsies remain poorly understood. Therefore, in light of these paradigm-changing clinical events, the present review's findings aim to drive future drug development for newly-identified targets and indications, identify important limitations of animal models in the investigation of plant cannabinoid effects in the epilepsies, and focuses future research in this area on specific, unanswered questions regarding the complexities of endocannabinoid signaling in epilepsy. This article is part of a Special Issue titled Cannabinoids and Epilepsy.
Collapse
Affiliation(s)
- Evan C. Rosenberg
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Pabitra H. Patra
- Department of Pharmacy, School of Chemistry, Food & Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire RG6 6AP, UK
| | - Benjamin J. Whalley
- Department of Pharmacy, School of Chemistry, Food & Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire RG6 6AP, UK,Corresponding author: (B.J. Whalley)
| |
Collapse
|
259
|
Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017; 76:336-362. [DOI: 10.1016/j.neubiorev.2016.06.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
|
260
|
Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 2017; 76:56-66. [PMID: 28434588 PMCID: PMC5407316 DOI: 10.1016/j.neubiorev.2016.12.033] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
Abstract
The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA; Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, USA
| | - Mathew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology & Neurogenetics, Munich, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
261
|
Baggelaar MP, van Esbroeck ACM, van Rooden EJ, Florea BI, Overkleeft HS, Marsicano G, Chaouloff F, van der Stelt M. Chemical Proteomics Maps Brain Region Specific Activity of Endocannabinoid Hydrolases. ACS Chem Biol 2017; 12:852-861. [PMID: 28106377 DOI: 10.1021/acschembio.6b01052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The biosynthetic and catabolic enzymes of the endocannabinoids tightly regulate endocannabinoid-mediated activation of the cannabinoid CB1 receptor. Monitoring the activities of these endocannabinoid hydrolases in different brain regions is, therefore, key to gaining insight into spatiotemporal control of CB1 receptor-mediated physiology. We have employed a comparative chemical proteomics approach to quantitatively map the activity profile of endocannabinoid hydrolases in various mouse brain regions at the same time. To this end, we used two different activity-based probes: fluorophosphonate-biotin (FP-biotin), which quantifies FAAH, ABHD6, and MAG-lipase activity, and MB108, which detects DAGL-α, ABHD4, ABHD6, and ABHD12. In total, 32 serine hydrolases were evaluated in the frontal cortex, hippocampus, striatum, and cerebellum. Comparison of endocannabinoid hydrolase activity in the four brain regions revealed that FAAH activity was highest in the hippocampus, and MAGL activity was most pronounced in the frontal cortex, whereas DAGL-α was most active in the cerebellum. Comparison of the activity profiles with a global proteomics data set revealed pronounced differences. This could indicate that post-translational modification of the endocannabinoid hydrolases is important to regulate their activity. Next, the effect of genetic deletion of the CB1 receptor was studied. No difference in the enzymatic activity was found in the cerebellum, striatum, frontal cortex, and hippocampus of CB1 receptor knockout animals compared to wild type mice. Our results are in line with previous reports and indicate that the CB1 receptor exerts no regulatory control over the basal production and degradation of endocannabinoids and that genetic deletion of the CB1 receptor does not induce compensatory mechanisms in endocannabinoid hydrolase activity.
Collapse
Affiliation(s)
- Marc P. Baggelaar
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Annelot C. M. van Esbroeck
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Eva J. van Rooden
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Giovanni Marsicano
- Plateforme
de Chimie Analytique, NeuroCentre INSERM U862, Bordeaux, France
| | - Francis Chaouloff
- Plateforme
de Chimie Analytique, NeuroCentre INSERM U862, Bordeaux, France
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
262
|
Grabner GF, Zimmermann R, Schicho R, Taschler U. Monoglyceride lipase as a drug target: At the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol Ther 2017; 175:35-46. [PMID: 28213089 DOI: 10.1016/j.pharmthera.2017.02.033] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoglyerides (MGs) are short-lived, intermediary lipids deriving from the degradation of phospho- and neutral lipids, and monoglyceride lipase (MGL), also designated as monoacylglycerol lipase (MAGL), is the major enzyme catalyzing the hydrolysis of MGs into glycerol and fatty acids. This distinct function enables MGL to regulate a number of physiological and pathophysiological processes since both MGs and fatty acids can act as signaling lipids or precursors thereof. The most prominent MG species acting as signaling lipid is 2-arachidonoyl glycerol (2-AG) which is the most abundant endogenous agonist of cannabinoid receptors in the body. Importantly, recent observations demonstrate that 2-AG represents a quantitatively important source for arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. Accordingly, MGL-mediated 2-AG degradation affects lipid signaling by cannabinoid receptor-dependent and independent mechanisms. Recent genetic and pharmacological studies gave important insights into MGL's role in (patho-)physiological processes, and the enzyme is now considered as a promising drug target for a number of disorders including cancer, neurodegenerative and inflammatory diseases. This review summarizes the basics of MG (2-AG) metabolism and provides an overview on the therapeutic potential of MGL.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
263
|
Wang Y, Zhang X. FAAH inhibition produces antidepressant-like efforts of mice to acute stress via synaptic long-term depression. Behav Brain Res 2017; 324:138-145. [PMID: 28193523 DOI: 10.1016/j.bbr.2017.01.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 11/25/2022]
Abstract
Recent studies have shown that inhibition of fatty acid amide hydrolase (FAAH), the major degradative enzyme of the endocannabinoid N-arachidonoylethanolamine (AEA), produced antidepressant behavioral responses, but its underlying mechanism is not clear. Here we find that a systemic administration of the FAAH inhibitor PF3845 or an intra-CA1 application of AEA elicits an in vivo long-term depression (LTD) at excitatory glutamatergic CA3-CA1 synapses of the hippocampus. The PF3845- and/or AEA-elicited LTD are abolished by the LTD-blocking peptide Tat-GluR2. PF3845 significantly decreases passive behavioral coping of naïve mice to acute inescapable stress, which is also abolished by Tat-GluR2 peptide. However, PF3845 does not significantly affect sucrose assumption ratio of mice receiving chronic administration of corticosterone. These results suggest that FAAH inhibitors are able to produce antidepressant effects in naïve animals in response to acute stress through LTD at hippocampal glutamatergic CA3-CA1 synapses.
Collapse
Affiliation(s)
- Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; University of Ottawa Institute of Mental Health Research at the Royal, Departments of Psychiatry and Cellular & Molecular Medicine, Ottawa K1Z 7K4 Canada.
| | - Xia Zhang
- University of Ottawa Institute of Mental Health Research at the Royal, Departments of Psychiatry and Cellular & Molecular Medicine, Ottawa K1Z 7K4 Canada
| |
Collapse
|
264
|
Zugaib J, Leão RM. Inhibitors of oxidative and hydrolytic endocannabinoid degradation do not enhance depolarization-induced suppression of excitation on dorsal cochlear nucleus glycinergic neurons. Synapse 2017; 71. [DOI: 10.1002/syn.21954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/27/2022]
Affiliation(s)
- João Zugaib
- Department of Physiology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto, São Paulo Brazil
- Research Group on the Dynamics of the Neuromusculoskeletal System, Bahiana School of Medicine and Public Health; Salvador Bahia Brazil
| | - Ricardo M. Leão
- Department of Physiology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto, São Paulo Brazil
| |
Collapse
|
265
|
Chronic stress leads to epigenetic dysregulation in the neuropeptide-Y and cannabinoid CB1 receptor genes in the mouse cingulate cortex. Neuropharmacology 2017; 113:301-313. [DOI: 10.1016/j.neuropharm.2016.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
|
266
|
Monoacylglycerol lipase inhibitors produce pro- or antidepressant responses via hippocampal CA1 GABAergic synapses. Mol Psychiatry 2017; 22:215-226. [PMID: 27001616 PMCID: PMC5285470 DOI: 10.1038/mp.2016.22] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/22/2022]
Abstract
The probability of suffering the mood disorder depression is up to 30% in women and 15% in men during their life span. Pharmacological options for depression are limited: conventional antidepressants have low efficacy and a delayed onset of action (several weeks). Here we investigate the antidepressant actions of inhibitors of monoacylglycerol lipase (MAGL), the major degradative enzyme of the endocannabinoid 2-arachidonoylglycerol. A low-dose of MAGL inhibitors produces antidepressant effects on acute stress-exposed mice, through glutamatergic synaptic long-term depression (LTD), without significant effects on chronic corticosterone-exposed mice. In contrast, a high-dose of MAGL inhibitors produces pro- or antidepressant effects on acute stress- or chronic corticosterone-exposed mice, respectively, through GABAergic synaptic disinhibition. In the hippocampus, in vivo inhibition of MAGL induces a CB1 cannabinoid receptor (CB1R)-dependent suppression of inhibitory GABAergic synapses and an in vivo LTD of excitatory glutamatergic synapses. LTD induction requires CB1R in astroglial cells (but not in GABAergic or glutamatergic neurons) and postsynaptic glutamate receptors. The conventional antidepressant fluoxetine produces rapid or delayed antidepressant effects in acute stress- or chronic corticosterone-exposed mice, respectively. We propose that depression-like behavior of animals in response to acute stress is the normal behavioral response, and thus, MAGL inhibitors, which produce antidepressant effects in chronic corticosterone-exposed animals through GABAergic synaptic disinhibition, represent a new class of rapidly-acting and long-lasting antidepressants.
Collapse
|
267
|
Riccardi L, Arencibia JM, Bono L, Armirotti A, Girotto S, De Vivo M. Lid domain plasticity and lipid flexibility modulate enzyme specificity in human monoacylglycerol lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:441-451. [PMID: 28088576 DOI: 10.1016/j.bbalip.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
Human monoacylglycerol lipase (MAGL) is a membrane-interacting enzyme that generates pro-inflammatory signaling molecules. For this reason, MAGL inhibition is a promising strategy to treat pain, cancer, and neuroinflammatory diseases. MAGL can hydrolyze monoacylglycerols bearing an acyl chain of different lengths and degrees of unsaturation, cleaving primarily the endocannabinoid 2-arachidonoylglycerol. Importantly, the enzymatic binding site of MAGL is confined by a 75-amino-acid-long, flexible cap domain, named 'lid domain', which is structurally similar to that found in several other lipases. However, it is unclear how lid domain plasticity affects catalysis in MAGL. By integrating extensive molecular dynamics simulations and free-energy calculations with mutagenesis and kinetic experiments, we here define a lid-domain-mediated mechanism for substrate selection and binding in MAGL catalysis. In particular, we clarify the key role of Phe159 and Ile179, two conserved residues within the lid domain, in regulating substrate specificity in MAGL. We conclude by proposing that other structurally related lipases may share this lid-domain-mediated mechanism for substrate specificity.
Collapse
Affiliation(s)
- Laura Riccardi
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Jose M Arencibia
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Luca Bono
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Andrea Armirotti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Stefania Girotto
- CompuNet, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; IAS-5/INM-9 Computational Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
| |
Collapse
|
268
|
Wilkerson JL, Ghosh S, Mustafa M, Abdullah RA, Niphakis MJ, Cabrera R, Maldonado RL, Cravatt BF, Lichtman AH. The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. Neuropharmacology 2016; 114:156-167. [PMID: 27890602 DOI: 10.1016/j.neuropharm.2016.11.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/11/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
Abstract
Although opioids are highly efficacious analgesics, their abuse potential and other untoward side effects diminish their therapeutic utility. The addition of non-opioid analgesics offers a promising strategy to reduce required antinociceptive opioid doses that concomitantly reduce opioid-related side effects. Inhibitors of the primary endocannabinoid catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) show opioid-sparing effects in preclinical models of pain. As simultaneous inhibition of these enzymes elicits enhanced antinociceptive effects compared with single enzyme inhibition, the present study tested whether the dual FAAH-MAGL inhibitor SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] produces morphine-sparing antinociceptive effects, without major side effects associated with either drug class. SA-57 dose-dependently reversed mechanical allodynia in the constriction injury (CCI) of the sciatic nerve model of neuropathic pain and carrageenan inflammatory pain model. As previously reported, SA-57 was considerably more potent in elevating anandamide (AEA) than 2-arachidonyl glycerol (2-AG) in brain. Its anti-allodynic effects required cannabinoid (CB)1 and CB2 receptors; however, only CB2 receptors were necessary for the anti-edematous effects in the carrageenan assay. Although high doses of SA-57 alone were required to produce antinociception, low doses of this compound, which elevated AEA and did not affect 2-AG brain levels, augmented the antinociceptive effects of morphine, but lacked cannabimimetic side effects. Because of the high abuse liability of opioids and implication of the endocannabinoid system in the reinforcing effects of opioids, the final experiment tested whether SA-57 would alter heroin seeking behavior. Strikingly, SA-57 reduced heroin-reinforced nose poke behavior and the progressive ratio break point for heroin. In conclusion, the results of the present study suggest that inhibition of endocannabinoid degradative enzymes represents a promising therapeutic approach to decrease effective doses of opioids needed for clinical pain control, and may also possess therapeutic potential to reduce opioid abuse.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Sudeshna Ghosh
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammed Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Rehab A Abdullah
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Micah J Niphakis
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Cabrera
- Laboratory of Neuropharmacology. Department de Ciencies Experimentals i de la Salut, Pompeu Fabra University, PRBB, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rafael L Maldonado
- Laboratory of Neuropharmacology. Department de Ciencies Experimentals i de la Salut, Pompeu Fabra University, PRBB, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
269
|
Granchi C, Rizzolio F, Palazzolo S, Carmignani S, Macchia M, Saccomanni G, Manera C, Martinelli A, Minutolo F, Tuccinardi T. Structural Optimization of 4-Chlorobenzoylpiperidine Derivatives for the Development of Potent, Reversible, and Selective Monoacylglycerol Lipase (MAGL) Inhibitors. J Med Chem 2016; 59:10299-10314. [PMID: 27809504 DOI: 10.1021/acs.jmedchem.6b01459] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Monoacylglycerol lipase (MAGL) inhibitors are considered potential therapeutic agents for a variety of pathological conditions, including several types of cancer. Many MAGL inhibitors are reported in literature; however, most of them showed an irreversible mechanism of action, which caused important side effects. The use of reversible MAGL inhibitors has been only partially investigated so far, mainly because of the lack of compounds with good MAGL reversible inhibition properties. In this study, starting from the (4-(4-chlorobenzoyl)piperidin-1-yl)(4-methoxyphenyl)methanone (CL6a) lead compound that showed a reversible mechanism of MAGL inhibition (Ki = 8.6 μM), we started its structural optimization and we developed a new potent and selective MAGL inhibitor (17b, Ki = 0.65 μM). Furthermore, modeling studies suggested that the binding interactions of this compound replace a structural water molecule reproducing its H-bonds in the MAGL binding site, thus identifying a new key anchoring point for the development of new MAGL inhibitors.
Collapse
Affiliation(s)
- Carlotta Granchi
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, IRCCS , 33081 Aviano, Pordenone, Italy
| | - Stefano Palazzolo
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, IRCCS , 33081 Aviano, Pordenone, Italy.,Graduate School in Nanotechnology, University of Trieste , 34127 Trieste, Italy
| | - Sara Carmignani
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Giuseppe Saccomanni
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Clementina Manera
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Adriano Martinelli
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Filippo Minutolo
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
270
|
Tuo W, Leleu-Chavain N, Spencer J, Sansook S, Millet R, Chavatte P. Therapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N-Acylethanolamine Acid Amidase Inhibitors. J Med Chem 2016; 60:4-46. [DOI: 10.1021/acs.jmedchem.6b00538] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Tuo
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Supojjanee Sansook
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Régis Millet
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Philippe Chavatte
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| |
Collapse
|
271
|
Lipases and their inhibitors in health and disease. Chem Biol Interact 2016; 259:211-222. [DOI: 10.1016/j.cbi.2016.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/04/2016] [Accepted: 04/04/2016] [Indexed: 02/07/2023]
|
272
|
Liu X, Chen Y, Vickstrom CR, Li Y, Viader A, Cravatt BF, Liu QS. Coordinated regulation of endocannabinoid-mediated retrograde synaptic suppression in the cerebellum by neuronal and astrocytic monoacylglycerol lipase. Sci Rep 2016; 6:35829. [PMID: 27775008 PMCID: PMC5075776 DOI: 10.1038/srep35829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates retrograde synaptic depression including depolarization-induced suppression of excitation (DSE) and inhibition (DSI). 2-AG is degraded primarily by monoacylglycerol lipase (MAGL), which is expressed in neurons and astrocytes. Using knockout mice in which MAGL is deleted globally or selectively in neurons or astrocytes, we investigated the relative contribution of neuronal and astrocytic MAGL to the termination of DSE and DSI in Purkinje cells (PCs) in cerebellar slices. We report that neuronal MAGL plays a predominant role in terminating DSE at climbing fiber (CF) to PC synapses, while both neuronal and astrocytic MAGL significantly contributes to the termination of DSE at parallel fiber (PF) to PC synapses and DSI at putative Stellate cell to PC synapses. Thus, DSE and DSI at different synapses is not uniformly affected by global and cell type-specific knockout of MAGL. Additionally, MAGL global knockout, but not cell type-specific knockout, caused tonic activation and partial desensitization of the CB1 receptor at PF-PC synapses. This tonic CB1 activation is mediated by 2-AG since it was blocked by the diacylglycerol lipase inhibitor DO34. Together, these results suggest that both neuronal and astrocytic MAGL contribute to 2-AG clearance and prevent CB1 receptor over-stimulation in the cerebellum.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Yao Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Yan Li
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Andreu Viader
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
273
|
Aaltonen N, Kedzierska E, Orzelska-Górka J, Lehtonen M, Navia-Paldanius D, Jakupovic H, Savinainen JR, Nevalainen T, Laitinen JT, Parkkari T, Gynther M. In Vivo Characterization of the Ultrapotent Monoacylglycerol Lipase Inhibitor {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048). J Pharmacol Exp Ther 2016; 359:62-72. [PMID: 27451409 DOI: 10.1124/jpet.116.233114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/08/2016] [Indexed: 02/04/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) is a serine hydrolase that acts as a principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). In addition to terminating the signaling function of 2-AG, MAGL liberates arachidonic acid to be used as a primary source for neuroinflammatory prostaglandin synthesis in the brain. MAGL activity also contributes to cancer pathogenicity by producing precursors for tumor-promoting bioactive lipids. Pharmacological inhibitors of MAGL provide valuable tools for characterization of MAGL and 2-AG signaling pathways. They also hold great therapeutic potential to treat several pathophysiological conditions, such as pain, neurodegenerative disorders, and cancer. We have previously reported piperidine triazole urea, {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048), to be an ultrapotent and highly selective inhibitor of MAGL in vitro. Here, we characterize in vivo effects of JJKK-048. Acute in vivo administration of JJKK-048 induced a massive increase in mouse brain 2-AG levels without affecting brain anandamide levels. JJKK-048 appeared to be extremely potent in vivo. Activity-based protein profiling revealed that JJKK-048 maintains good selectivity toward MAGL over other serine hydrolases. Our results are also the first to show that JJKK-048 promoted significant analgesia in a writhing test with a low dose that did not cause cannabimimetic side effects. At a high dose, JJKK-048 induced analgesia both in the writhing test and in the tail-immersion test, as well as hypomotility and hyperthermia, but not catalepsy.
Collapse
Affiliation(s)
- Niina Aaltonen
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Ewa Kedzierska
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Jolanta Orzelska-Górka
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Marko Lehtonen
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Dina Navia-Paldanius
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Hermina Jakupovic
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Juha R Savinainen
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Tapio Nevalainen
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Jarmo T Laitinen
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Teija Parkkari
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Mikko Gynther
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| |
Collapse
|
274
|
Burston JJ, Mapp PI, Sarmad S, Barrett DA, Niphakis MJ, Cravatt BF, Walsh DA, Chapman V. Robust anti-nociceptive effects of monoacylglycerol lipase inhibition in a model of osteoarthritis pain. Br J Pharmacol 2016; 173:3134-3144. [PMID: 27501482 PMCID: PMC5056226 DOI: 10.1111/bph.13574] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 01/18/2023] Open
Abstract
Background and Purpose Chronic pain is often a symptom of knee osteoarthritis (OA) for which current analgesics are either inadequate or are associated with serious side effects. The endocannabinoid system may offer alternative targets for pain relief. We evaluated the effects of a potent and selective monoacylglycerol (MAG) lipase inhibitor (MJN110) on OA pain behaviour, spinal mechanisms of action and joint histopathology in the rat. Experimental Approach Intra‐articular injection of monosodium iodoacetate (MIA) models OA pain and mimics clinical joint pathology. Effects of MJN110 on MIA‐induced weight‐bearing asymmetry and lowered paw withdrawal thresholds (PWTs), changes in spinal gene expression and brain levels of relevant lipids were determined. Key Results Acute MJN110 (5 mg·kg−1) significantly reversed MIA‐induced weight‐bearing asymmetry (MIA/vehicle: 68 ± 6 g; MIA/MJN110: 35 ± 4 g) and lowered ipsilateral PWTs (MIA/vehicle: 7 ± 0.8 g; MIA/MJN110: 11 ± 0.6 g), via both CB1 and CB2 receptors. Repeated treatment with MJN110 (5 mg·kg−1) resulted in anti‐nociceptive tolerance. A lower dose of MJN110 (1 mg·kg−1) acutely inhibited pain behaviour, which was maintained for 1 week of repeated administration but had no effect on joint histology. MJN110 significantly inhibited expression of membrane‐associated PGE synthase‐1 in the ipsilateral dorsal horn of the spinal cord of MIA rats, compared with vehicle‐treated MIA rats. Both doses of MJN110 significantly elevated brain levels of the endocannabinoid 2‐arachidonoylglycerol. Conclusions and Implications Our data support further assessment of the therapeutic potential of MAG lipase inhibitors for the treatment of OA pain.
Collapse
Affiliation(s)
- James J Burston
- Arthritis Research UK Pain Centre, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK. .,School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK.
| | - Paul I Mapp
- Arthritis Research UK Pain Centre, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Sarir Sarmad
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Micah J Niphakis
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.,Committee of Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.,Committee of Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - David A Walsh
- Arthritis Research UK Pain Centre, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Victoria Chapman
- Arthritis Research UK Pain Centre, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK. .,School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK.
| |
Collapse
|
275
|
Martin GG, Chung S, Landrock D, Landrock KK, Dangott LJ, Peng X, Kaczocha M, Murphy EJ, Kier AB, Schroeder F. Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels. Lipids 2016; 51:1007-20. [PMID: 27450559 PMCID: PMC5418128 DOI: 10.1007/s11745-016-4175-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.e. arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: (1) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; (2) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or (3) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO).
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Protein Chemistry Laboratory, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Xiaoxue Peng
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX, 77843-4466, USA.
| |
Collapse
|
276
|
Janssen FJ, van der Stelt M. Inhibitors of diacylglycerol lipases in neurodegenerative and metabolic disorders. Bioorg Med Chem Lett 2016; 26:3831-7. [DOI: 10.1016/j.bmcl.2016.06.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 01/11/2023]
|
277
|
Martin GG, Chung S, Landrock D, Landrock KK, Huang H, Dangott LJ, Peng X, Kaczocha M, Seeger DR, Murphy EJ, Golovko MY, Kier AB, Schroeder F. FABP-1 gene ablation impacts brain endocannabinoid system in male mice. J Neurochem 2016; 138:407-22. [PMID: 27167970 PMCID: PMC4961623 DOI: 10.1111/jnc.13664] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
Liver fatty acid-binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid-binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as oleoyl ethanolamide (OEA), PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* as a result of compensatory up-regulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid-binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. Fatty acid-binding protein-1 (FABP-1) is not detectable in brain but instead is highly expressed in liver. The possibility that FABP1 outside the central nervous system may regulate brain endocannabinoids arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) was examined in wild-type (WT) and FABP-1 null (LKO) male mice. LKO increased brain levels of arachidonic acid-containing endocannabinoids (AEA, 2-AG), correlating with increased free and total arachidonic acid in brain and serum. Read the Editorial Highlight for this article on page 371.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Sarah Chung
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Kerstin K. Landrock
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| | - Lawrence J. Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128
| | - Xiaoxue Peng
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794
| | - Drew R. Seeger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Eric J. Murphy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037 USA
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466
| |
Collapse
|
278
|
Wills KL, Parker LA. Effect of Pharmacological Modulation of the Endocannabinoid System on Opiate Withdrawal: A Review of the Preclinical Animal Literature. Front Pharmacol 2016; 7:187. [PMID: 27445822 PMCID: PMC4923145 DOI: 10.3389/fphar.2016.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 01/20/2023] Open
Abstract
Over the years, animal studies have revealed a role for the endocannabinoid system in the regulation of multiple aspects of opiate addiction. The current review provides an overview of this literature in regards to opiate withdrawal. The opiate withdrawal syndrome, hypothesized to act as a negative reinforcer in mediating continued drug use, can be characterized by the emergence of spontaneous or precipitated aversive somatic and affective states following the termination of drug use. The behaviors measured to quantify somatic opiate withdrawal and the paradigms employed to assess affective opiate withdrawal (e.g., conditioned place aversion) in both acutely and chronically dependent animals are discussed in relation to the ability of the endocannabinoid system to modulate these behaviors. Additionally, the brain regions mediating somatic and affective opiate withdrawal are elucidated with respect to their modulation by the endocannabinoid system. Ultimately, a review of these findings reveals dissociations between the brain regions mediating somatic and affective opiate withdrawal, and the ability of cannabinoid type 1 (CB1) receptor agonism/antagonism to interfere with opiate withdrawal within different brain sub regions.
Collapse
Affiliation(s)
- Kiri L Wills
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph ON, Canada
| |
Collapse
|
279
|
Heier C, Taschler U, Radulovic M, Aschauer P, Eichmann TO, Grond S, Wolinski H, Oberer M, Zechner R, Kohlwein SD, Zimmermann R. Monoacylglycerol Lipases Act as Evolutionarily Conserved Regulators of Non-oxidative Ethanol Metabolism. J Biol Chem 2016; 291:11865-75. [PMID: 27036938 PMCID: PMC4882453 DOI: 10.1074/jbc.m115.705541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/24/2016] [Indexed: 12/27/2022] Open
Abstract
Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative hydrolases involved in FAEE catabolism. We found that Yju3p, the functional orthologue of mammalian monoacylglycerol lipase (MGL), contributes >90% of cellular FAEE hydrolase activity, and its loss leads to the accumulation of FAEE. Heterologous expression of mammalian MGL in yju3Δ mutants restored cellular FAEE hydrolase activity and FAEE catabolism. Moreover, overexpression or pharmacological inhibition of MGL in mouse AML-12 hepatocytes decreased or increased FAEE levels, respectively. FAEEs were transiently incorporated into lipid droplets (LDs) and both Yju3p and MGL co-localized with these organelles. We conclude that the storage of FAEE in inert LDs and their mobilization by LD-resident FAEE hydrolases facilitate a controlled metabolism of these potentially toxic lipid metabolites.
Collapse
Affiliation(s)
- Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz and
| | - Ulrike Taschler
- From the Institute of Molecular Biosciences, University of Graz and
| | - Maja Radulovic
- From the Institute of Molecular Biosciences, University of Graz and
| | - Philip Aschauer
- From the Institute of Molecular Biosciences, University of Graz and
| | | | - Susanne Grond
- From the Institute of Molecular Biosciences, University of Graz and
| | - Heimo Wolinski
- From the Institute of Molecular Biosciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria
| | - Monika Oberer
- From the Institute of Molecular Biosciences, University of Graz and
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz and
| | - Sepp D Kohlwein
- From the Institute of Molecular Biosciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria
| | | |
Collapse
|
280
|
Anxiety, Stress, and Fear Response in Mice With Reduced Endocannabinoid Levels. Biol Psychiatry 2016; 79:858-868. [PMID: 25981172 DOI: 10.1016/j.biopsych.2015.03.033] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Disruption of the endocannabinoid system through pharmacological or genetic invalidation of cannabinoid CB1 receptors has been linked to depression in humans and depression-like behaviors in mice. The two main endogenous cannabinoids, anandamide and 2-arachidonoyl glycerol (2-AG), are produced on demand from phospholipids. The pathways and enzymes involved in endocannabinoid biosynthesis thus play a major role in regulating the activity of this system. This study investigates the role of the main 2-AG producing enzyme diacylglycerol lipase α (DAGL-α). METHODS We generated and used knockout mice lacking DAGL-α (Dagla(-/-)) to assess the behavioral consequences of reduced endocannabinoid levels in the brain. We performed different behavior tests to determine anxiety- and depression-related behavioral changes in Dagla(-/-) mice. We also analyzed expression of genes related to the endocannabinoid system via real-time polymerase chain reaction and used the mitotic marker 5-bromo-2'-deoxyuridine to analyze adult neurogenesis. RESULTS Dagla(-/-) animals show an 80% reduction of brain 2-AG levels but also a reduction in cortical and amygdalar anandamide. The behavioral changes induced by Dagla deletion include a reduced exploration of the central area of the open field, a maternal neglect behavior, a fear extinction deficit, increased behavioral despair, increased anxiety-related behaviors in the light/dark box, and reduced hippocampal neurogenesis. Some of these behavioral changes resemble those observed in animals lacking the CB1 receptor. CONCLUSIONS Our findings demonstrate that the deletion of Dagla adversely affects the emotional state of animals and results in enhanced anxiety, stress, and fear responses.
Collapse
|
281
|
Wei D, Lee D, Li D, Daglian J, Jung KM, Piomelli D. A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice. Psychopharmacology (Berl) 2016; 233:1911-9. [PMID: 26873082 PMCID: PMC5118226 DOI: 10.1007/s00213-016-4222-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE The endocannabinoid system is an important modulator of brain reward signaling. Investigations have focused on cannabinoid (CB1) receptors, because dissection of specific contributions of individual endocannabinoids has been limited by the available toolset. While we recently described an important role for the endocannabinoid anandamide in the regulation of social reward, it remains to be determined whether the other major endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), serves a similar or different function. OBJECTIVES To study the role of 2-AG in natural reward, we used a transgenic mouse model (MGL-Tg mice) in which forebrain 2-AG levels are selectively reduced. We complemented behavioral analysis with measurements of brain 2-AG levels. METHODS We tested male MGL-Tg mice in conditioned place preference (CPP) tasks for high-fat food, social contact, and cocaine. We measured 2-AG content in the brain regions of interest by liquid chromatography/mass spectrometry. RESULTS Male MGL-Tg mice are impaired in developing CPP for high-fat food and social interaction, but do develop CPP for cocaine. Furthermore, compared to isolated mice, levels of 2-AG in socially stimulated wild-type mice are higher in the nucleus accumbens and ventral hippocampus (183 and 140 % of controls, respectively), but unchanged in the medial prefrontal cortex. CONCLUSIONS The results suggest that reducing 2-AG-mediated endocannabinoid signaling impairs social and high-fat food reward in male mice, and that social stimulation mobilizes 2-AG in key brain regions implicated in the control of motivated behavior. The time course of this response differentiates 2-AG from anandamide, whose role in mediating social reward was previously documented.
Collapse
Affiliation(s)
- Don Wei
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
| | - DaYeon Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dandan Li
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jennifer Daglian
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697, USA.
- Unit of Drug Discovery and Development, Italian Institute of Technology, Genova, Italy.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
282
|
Aliczki M, Barna I, Till I, Baranyi M, Sperlagh B, Goldberg SR, Haller J. The effects anandamide signaling in the prelimbic cortex and basolateral amygdala on coping with environmental stimuli in rats. Psychopharmacology (Berl) 2016; 233:1889-99. [PMID: 26809457 DOI: 10.1007/s00213-016-4219-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/18/2016] [Indexed: 01/25/2023]
Abstract
RATIONALE Several lines of recent evidence suggest that endocannabinoids affect behavior by influencing the general patterns of challenge responding. OBJECTIVES Here, we investigated the brain mechanisms underlying this phenomenon in rats. METHODS The anandamide hydrolysis inhibitor URB597 was condensed into the tip of stainless steel cannulae, which were chronically implanted slightly above the prelimbic cortex (PRL) or the basolateral amygdala (BLA), two important regions of coping and endocannabinoid action. Thereafter, we investigated behavioral responsiveness to ambient light level in the elevated plus-maze and conditioned fear tests. RESULTS URB597 concentration was ~30 μg/mg protein in target areas; local brain anandamide levels increased threefold, without significant changes in 2-arachidonoylglycerol. High levels of illumination halved the time spent by controls in the open arms of the plus-maze. No similar decrease was observed in rats with URB597 implants in the PRL. High light decreased conditioned fear by 30 % in controls, but not in rats with prelimbic URB597 implants. Unresponsiveness to environmental challenges was not attributable to the anxiolytic effects of anandamide enhancement, as implants induced paradoxical anxiogenic-like effects under low light, which could be explained by effects on stimulus responsiveness rather than by effects on anxiety. URB597 implants targeting the BLA did not affect stimulus responsiveness. CONCLUSIONS Our findings show that elevated prelimbic anandamide signaling leads to less environment-dependent (more autonomous) behavioral responses to challenges, which is an attribute of active coping styles. These findings are discussed in light of two emerging concepts of endocannabinoid roles, particularly "emotional homeostasis" and "active coping."
Collapse
Affiliation(s)
- Mano Aliczki
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary
| | - Istvan Barna
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary
| | - Ibolya Till
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary
| | - Maria Baranyi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Jozsef Haller
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450, Budapest, P.O. Box 67, Hungary.
| |
Collapse
|
283
|
Inhibition of monoacylglycerol lipase (MAGL) enhances cue-induced reinstatement of nicotine-seeking behavior in mice. Psychopharmacology (Berl) 2016; 233:1815-22. [PMID: 26490035 DOI: 10.1007/s00213-015-4117-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/02/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Tobacco smoking is still a major population health issue. The endocannabinoid system has been shown to control drug-seeking behaviors. There are two main endocannabinoids: anandamide degraded by fatty acid amide hydrolase (FAAH) and 2-arachidonoylglycerol (2-AG) degraded by monoacylglycerol lipase (MAGL). OBJECTIVES The role of MAGL has only been explored recently, and so far, no study have been performed to evaluate the effects of MAGL inhibitor on nicotine reinforcing properties and cue-induced reinstatement of nicotine seeking. METHODS Here, we investigated the effects of the MAGL inhibitor JZL184 on nicotine self-administration under fixed and progressive-ratio schedules of reinforcement and on cue-induced reinstatement of nicotine seeking in mice. We also evaluated the effects of JZL184 on food self-administration for possible non-specific effects. RESULTS JZL184 (0, 8, and 16 mg/kg) did not affect food taking, nicotine taking, or motivation for nicotine. MAGL inhibition by JZL184 (16 mg/kg) increased reinstatement of previously extinguished nicotine seeking induced by presentation of nicotine-associated cues, but did not produce reinstatement on its own. CONCLUSIONS This study implicates involvement of 2-AG in nicotine-seeking behaviors.
Collapse
|
284
|
Ramesh D, Schlosburg JE, Wiebelhaus JM, Lichtman AH. Marijuana dependence: not just smoke and mirrors. ILAR J 2016; 52:295-308. [PMID: 23382144 DOI: 10.1093/ilar.52.3.295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marijuana (Cannabis sativa) is the most commonly used illicit drug worldwide as well as in the Unites States. Prolonged use of marijuana or repeated administration of its primary psychoactive constituent, Δ9-tetrahydrocannabinol (THC), can lead to physical dependence in humans and laboratory animals. The changes that occur with repeated cannabis use include alterations in behavioral, physiological, and biochemical responses. A variety of withdrawal responses occur in cannabis-dependent individuals: anger, aggression, irritability, anxiety and nervousness, decreased appetite or weight loss, restlessness, and sleep difficulties with strange dreams. But the long half-life and other pharmacokinetic properties of THC result in delayed expression of withdrawal symptoms, and because of the lack of contiguity between drug cessation and withdrawal responses the latter are not readily recognized as a clinically relevant syndrome. Over the past 30 years, a substantial body of clinical and laboratory animal research has emerged supporting the assertion that chronic exposure to cannabinoids produces physical dependence and may contribute to drug maintenance in cannabis-dependent individuals. However, no medications are approved to treat cannabis dependence and withdrawal. In this review, we describe preclinical and clinical research that supports the existence of a cannabinoid withdrawal syndrome. In addition, we review research evaluating potential pharmacotherapies (e.g., THC, a variety of antidepressant drugs, and lithium) to reduce cannabis withdrawal responses and examine how expanded knowledge about the regulatory mechanisms in the endocannabinoid system may lead to promising new therapeutic targets.
Collapse
|
285
|
Leishman E, Cornett B, Spork K, Straiker A, Mackie K, Bradshaw HB. Broad impact of deleting endogenous cannabinoid hydrolyzing enzymes and the CB1 cannabinoid receptor on the endogenous cannabinoid-related lipidome in eight regions of the mouse brain. Pharmacol Res 2016; 110:159-172. [PMID: 27109320 DOI: 10.1016/j.phrs.2016.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE The enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) hydrolyze endogenous cannabinoids (eCBs), N-arachidonoyl ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG), respectively. These enzymes also metabolize eCB analogs such as lipoamines and 2-acyl glycerols, most of which are not ligands at CB1. To test the hypothesis that deleting eCB hydrolyzing enzymes and CB1 shifts lipid metabolism more broadly and impacts more families of eCB structural analogs, targeted lipidomics analyses were performed on FAAH KO, MAGL KO, and CB1 KO mice and compared to WT controls in 8 brain regions. EXPERIMENTAL APPROACH Methanolic extracts of discrete brain regions (brainstem, cerebellum, cortex, hippocampus, hypothalamus, midbrain, striatum and thalamus) were partially purified on C-18 solid-phase extraction columns. Over 70 lipids per sample were then analyzed with HPLC/MS/MS. KEY RESULTS AEA and 2-AG were unaffected throughout the brain in CB1 KO mice; however, there was an increase in the arachidonic acid (AA) metabolite, PGE2 in the majority of brain areas. By contrast, PGE2 and AA levels were significantly reduced throughout the brain in the MAGL KO corresponding to significant increases in 2-AG. No changes in AA or PGE2 were seen throughout in the FAAH KO brain, despite significant increases in AEA, suggesting AA liberated by FAAH does not contribute to steady state levels of AA or PGE2. Changes in the lipidome were not confined to the AA derivatives and showed regional variation in each of the eCB KO models. CONCLUSIONS AND IMPLICATIONS AEA and 2-AG hydrolyzing enzymes and the CB1 receptor link the eCB system to broader lipid signaling networks in contrasting ways, potentially altering neurotransmission and behavior independently of cannabinoid receptor signaling.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA
| | - Ben Cornett
- Gill Center for Biomolecular Neuroscience, Indiana University, 702 N. Walnut Grove Avenue, Bloomington, IN, 47405, USA
| | - Karl Spork
- Gill Center for Biomolecular Neuroscience, Indiana University, 702 N. Walnut Grove Avenue, Bloomington, IN, 47405, USA
| | - Alex Straiker
- Gill Center for Biomolecular Neuroscience, Indiana University, 702 N. Walnut Grove Avenue, Bloomington, IN, 47405, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA; Gill Center for Biomolecular Neuroscience, Indiana University, 702 N. Walnut Grove Avenue, Bloomington, IN, 47405, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
| |
Collapse
|
286
|
Wang C, Placzek MS, Van de Bittner GC, Schroeder FA, Hooker JM. A Novel Radiotracer for Imaging Monoacylglycerol Lipase in the Brain Using Positron Emission Tomography. ACS Chem Neurosci 2016; 7:484-9. [PMID: 26694017 DOI: 10.1021/acschemneuro.5b00293] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) is a serine hydrolase that hydrolyzes monoacylglycerols to glycerol and fatty acid and plays an important role in neuroinflammation. MAGL inhibitors are a class of molecules with therapeutic potential for human diseases of the central nervous system (CNS), in areas such as pain and inflammation, immunological disorders, and neurological and psychiatric conditions. Development of a noninvasive imaging probe would elucidate the distribution and functional roles of MAGL in the brain and accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and pilot rodent imaging of a novel MAGL imaging agent, [(11)C]SAR127303. Our imaging results demonstrate the high specificity, good selectivity, and appropriate kinetics and distribution of [(11)C]SAR127303, validating its utility for imaging MAGL in the brain. Our findings support the translational potential for human CNS MAGL imaging.
Collapse
Affiliation(s)
- Changning Wang
- Athinoula
A. Martinos
Center for Biomedical Imaging, Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Michael S. Placzek
- Athinoula
A. Martinos
Center for Biomedical Imaging, Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Department of
Psychiatry, McLean Imaging Center, McLean Hospital, Harvard Medical
School, Belmont, Massachusetts 02478, United States
| | - Genevieve C. Van de Bittner
- Athinoula
A. Martinos
Center for Biomedical Imaging, Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Frederick A. Schroeder
- Athinoula
A. Martinos
Center for Biomedical Imaging, Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Athinoula
A. Martinos
Center for Biomedical Imaging, Department of Radiology, Massachusetts
General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
287
|
Wilkerson JL, Ghosh S, Bagdas D, Mason BL, Crowe MS, Hsu KL, Wise LE, Kinsey SG, Damaj MI, Cravatt BF, Lichtman AH. Diacylglycerol lipase β inhibition reverses nociceptive behaviour in mouse models of inflammatory and neuropathic pain. Br J Pharmacol 2016; 173:1678-92. [PMID: 26915789 DOI: 10.1111/bph.13469] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhibition of diacylglycerol lipase (DGL)β prevents LPS-induced pro-inflammatory responses in mouse peritoneal macrophages. Thus, the present study tested whether DGLβ inhibition reverses allodynic responses of mice in the LPS model of inflammatory pain, as well as in neuropathic pain models. EXPERIMENTAL APPROACH Initial experiments examined the cellular expression of DGLβ and inflammatory mediators within the LPS-injected paw pad. DAGL-β (-/-) mice or wild-type mice treated with the DGLβ inhibitor KT109 were assessed in the LPS model of inflammatory pain. Additional studies examined the locus of action for KT109-induced antinociception, its efficacy in chronic constrictive injury (CCI) of sciatic nerve and chemotherapy-induced neuropathic pain (CINP) models. KEY RESULTS Intraplantar LPS evoked mechanical allodynia that was associated with increased expression of DGLβ, which was co-localized with increased TNF-α and prostaglandins in paws. DAGL-β (-/-) mice or KT109-treated wild-type mice displayed reductions in LPS-induced allodynia. Repeated KT109 administration prevented the expression of LPS-induced allodynia, without evidence of tolerance. Intraplantar injection of KT109 into the LPS-treated paw, but not the contralateral paw, reversed the allodynic responses. However, i.c.v. or i.t. administration of KT109 did not alter LPS-induced allodynia. Finally, KT109 also reversed allodynia in the CCI and CINP models and lacked discernible side effects (e.g. gross motor deficits, anxiogenic behaviour or gastric ulcers). CONCLUSIONS AND IMPLICATIONS These findings suggest that local inhibition of DGLβ at the site of inflammation represents a novel avenue to treat pathological pain, with no apparent untoward side effects.
Collapse
Affiliation(s)
- J L Wilkerson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - S Ghosh
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - D Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.,Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - B L Mason
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - M S Crowe
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - K L Hsu
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - L E Wise
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - S G Kinsey
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - B F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
288
|
An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry 2016; 79:516-25. [PMID: 26698193 PMCID: PMC4789136 DOI: 10.1016/j.biopsych.2015.07.028] [Citation(s) in RCA: 775] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 11/20/2022]
Abstract
The endocannabinoid system (ECS) is a widespread neuromodulatory system that plays important roles in central nervous system development, synaptic plasticity, and the response to endogenous and environmental insults. The ECS comprises cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes responsible for the synthesis and degradation of the endocannabinoids. The most abundant cannabinoid receptors are the CB1 cannabinoid receptors; however, CB2 cannabinoid receptors, transient receptor potential channels, and peroxisome proliferator activated receptors are also engaged by some cannabinoids. Exogenous cannabinoids, such as tetrahydrocannabinol, produce their biological effects through their interactions with cannabinoid receptors. The best-studied endogenous cannabinoids are 2-arachidonoyl glycerol and arachidonoyl ethanolamide (anandamide). Despite similarities in chemical structure, 2-arachidonoyl glycerol and anandamide are synthesized and degraded by distinct enzymatic pathways, which impart fundamentally different physiologic and pathophysiologic roles to these two endocannabinoids. As a result of the pervasive social use of cannabis and the involvement of endocannabinoids in a multitude of biological processes, much has been learned about the physiologic and pathophysiologic roles of the ECS. This review provides an introduction to the ECS with an emphasis on its role in synaptic plasticity and how the ECS is perturbed in schizophrenia.
Collapse
|
289
|
Wilkerson JL, Niphakis MJ, Grim TW, Mustafa MA, Abdullah RA, Poklis JL, Dewey WL, Akbarali H, Banks ML, Wise LE, Cravatt BF, Lichtman AH. The Selective Monoacylglycerol Lipase Inhibitor MJN110 Produces Opioid-Sparing Effects in a Mouse Neuropathic Pain Model. J Pharmacol Exp Ther 2016; 357:145-56. [PMID: 26791602 PMCID: PMC4809319 DOI: 10.1124/jpet.115.229971] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/19/2016] [Indexed: 12/28/2022] Open
Abstract
Serious clinical liabilities associated with the prescription of opiates for pain control include constipation, respiratory depression, pruritus, tolerance, abuse, and addiction. A recognized strategy to circumvent these side effects is to combine opioids with other antinociceptive agents. The combination of opiates with the primary active constituent of cannabis (Δ(9)-tetrahydrocannabinol) produces enhanced antinociceptive actions, suggesting that cannabinoid receptor agonists can be opioid sparing. Here, we tested whether elevating the endogenous cannabinoid 2-arachidonoylglycerol through the inhibition of its primary hydrolytic enzyme monoacylglycerol lipase (MAGL), will produce opioid-sparing effects in the mouse chronic constriction injury (CCI) of the sciatic nerve model of neuropathic pain. The dose-response relationships of i.p. administration of morphine and the selective MAGL inhibitor 2,5-dioxopyrrolidin-1-yl 4-(bis(4-chlorophenyl)methyl)piperazine-1-carboxylate (MJN110) were tested alone and in combination at equieffective doses for reversal of CCI-induced mechanical allodynia and thermal hyperalgesia. The respective ED50 doses (95% confidence interval) of morphine and MJN110 were 2.4 (1.9-3.0) mg/kg and 0.43 (0.23-0.79) mg/kg. Isobolographic analysis of these drugs in combination revealed synergistic antiallodynic effects. Acute antinociceptive effects of the combination of morphine and MJN110 required μ-opioid, CB1, and CB2 receptors. This combination did not reduce gastric motility or produce subjective cannabimimetic effects in the drug discrimination assay. Importantly, combinations of MJN110 and morphine given repeatedly (i.e., twice a day for 6 days) continued to produce antiallodynic effects with no evidence of tolerance. Taken together, these findings suggest that MAGL inhibition produces opiate-sparing events with diminished tolerance, constipation, and cannabimimetic side effects.
Collapse
MESH Headings
- Analgesics, Opioid/therapeutic use
- Animals
- Arachidonic Acids/metabolism
- Behavior, Animal/drug effects
- Carbamates/pharmacology
- Constriction, Pathologic/complications
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Synergism
- Endocannabinoids/metabolism
- Enzyme Inhibitors/pharmacology
- Glycerides/metabolism
- Hyperalgesia/chemically induced
- Hyperalgesia/drug therapy
- Male
- Mice
- Mice, Inbred C57BL
- Monoacylglycerol Lipases/antagonists & inhibitors
- Morphine/administration & dosage
- Morphine/therapeutic use
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/psychology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB2/drug effects
- Receptors, Opioid, mu/drug effects
- Succinimides/pharmacology
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - Micah J Niphakis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - Travis W Grim
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - Mohammed A Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - Rehab A Abdullah
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - Hamid Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - Laura E Wise
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - Benjamin F Cravatt
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.L.W., T.W.G., M.A.M., R.A.A., J.L.P., W.L.D., H.A., M.L.B., L.E.W., A.H.L.); and The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California (M.J.N., B.F.C.)
| |
Collapse
|
290
|
Lack of hippocampal CB1 receptor desensitization by Δ(9)-tetrahydrocannabinol in aged mice and by low doses of JZL 184. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:603-12. [PMID: 26984820 DOI: 10.1007/s00210-016-1226-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/01/2016] [Indexed: 12/30/2022]
Abstract
Activation of cannabinoid CB1 receptors may offer new therapeutic strategies, but the efficiency of CB1 receptor agonists may be impaired by tolerance development upon prolonged administration. We compared the influence of repeated administration of Δ(9)-tetrahydrocannabinol (THC) 10 mg/kg on the motility and on basal and CB1 receptor-stimulated (35)S-GTPγS binding of adolescent and aged mice. Moreover, we determined the influence of JZL 184 (which inhibits the 2-arachidonoylglycerol, 2-AG, degrading enzyme monoacylglycerol lipase, MAGL) on (35)S-GTPγS binding and 2-AG levels of young adult mice. Mouse motility was tested in the open field. (35)S-GTPγS binding was studied in hippocampal membranes. THC and CP 55,940 were used as cannabinoid agonists in the behavioural and biochemical studies, respectively. 2-AG levels were quantified by liquid chromatography-multiple reaction monitoring. The THC (10 mg/kg)-induced hypomotility was stronger in untreated than in THC-pretreated adolescent mice but similar in both treatment groups of aged mice. Basal and stimulated (35)S-GTPγS binding was decreased in membranes from THC-pretreated adolescent but not affected in membranes from aged mice. Treatment of young adult mice with JZL 184 (4, 10 and 40 mg/kg) for 14 days did not affect basal binding. Stimulated binding tended to be decreased by 25 % only in mice treated with JZL 184 (40 mg/kg). Hippocampal 2-AG level was increased by JZL 184 at 40 and 10 but not affected at 4 mg/kg. In conclusion, CB1 receptor tolerance does not occur in aged mice pretreated with THC and in young adult mice treated with a low dose of the MAGL inhibitor JZL 184.
Collapse
|
291
|
Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 2016; 16:705-18. [PMID: 26585799 DOI: 10.1038/nrn4036] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endocannabinoid (eCB) system has emerged as a central integrator linking the perception of external and internal stimuli to distinct neurophysiological and behavioural outcomes (such as fear reaction, anxiety and stress-coping), thus allowing an organism to adapt to its changing environment. eCB signalling seems to determine the value of fear-evoking stimuli and to tune appropriate behavioural responses, which are essential for the organism's long-term viability, homeostasis and stress resilience; and dysregulation of eCB signalling can lead to psychiatric disorders. An understanding of the underlying neural cell populations and cellular processes enables the development of therapeutic strategies to mitigate behavioural maladaptation.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Giovanni Marsicano
- Institut national de la santé et de la recherche médicale (INSERM), U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux 33077, France.,University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33077, France
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
292
|
Mukhopadhyay P, Baggelaar M, Erdelyi K, Cao Z, Cinar R, Fezza F, Ignatowska‐Janlowska B, Wilkerson J, van Gils N, Hansen T, Ruben M, Soethoudt M, Heitman L, Kunos G, Maccarrone M, Lichtman A, Pacher P, Van der Stelt M. The novel, orally available and peripherally restricted selective cannabinoid CB2 receptor agonist LEI-101 prevents cisplatin-induced nephrotoxicity. Br J Pharmacol 2016; 173:446-458. [PMID: 26398481 PMCID: PMC4728411 DOI: 10.1111/bph.13338] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/03/2015] [Accepted: 09/13/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Here, we have characterized 3-cyclopropyl-1-(4-(6-((1,1-dioxidothiomorpholino)methyl)-5-fluoropyridin-2-yl)benzyl)imidazolidine-2,4-dione hydrochloride (LEI-101) as a novel, peripherally restricted cannabinoid CB2 receptor agonist, using both in vitro and in vivo models. EXPERIMENTAL APPROACH We investigated the effects of LEI-101 on binding and functional activity. We assessed its in vitro and in vivo selectivity. Efficacy of LEI-101 was determined in a mouse model of cisplatin-induced nephrotoxicity. KEY RESULTS LEI-101 behaved as a partial agonist at CB2 receptors using β-arrestin and GTPγS assays and was ~100-fold selective in CB2 /CB1 receptor-binding assays. It did not display any activity on endocannabinoid hydrolases and nor did it react with serine hydrolases in an activity-based protein profiling assay. In mice, LEI-101 had excellent oral bioavailability reaching high concentrations in the kidney and liver with minimal penetration into the brain. LEI-101 up to a dose of 60 mg·kg(-1) (p.o.) did not exert any CNS-mediated effects in the tetrad assay, in mice. LEI-101 (p.o. or i.p.) at 3 or 10 mg·kg(-1) dose-dependently prevented kidney dysfunction and/or morphological damage induced by cisplatin in mice. These protective effects were associated with improved renal histopathology, attenuated oxidative stress and inflammation in the kidney. These effects were absent in CB2 receptor knockout mice. CONCLUSION AND IMPLICATIONS These results indicate that LEI-101 is a selective, largely peripherally restricted, orally available CB2 receptor agonist with therapeutic potential in diseases that are associated with inflammation and/or oxidative stress, including kidney disease.
Collapse
Affiliation(s)
| | - Marc Baggelaar
- Department of Bio‐organic SynthesisLeiden UniversityLeidenThe Netherlands
| | | | | | | | - Filomena Fezza
- Department Experimental Medicine & SurgeryTor Vergata University of RomeRomeItaly
- European Center for Brain Research/Santa Lucia FoundationRomeItaly
| | | | | | - Noortje van Gils
- Department of Medicinal ChemistryLeiden UniversityLeidenThe Netherlands
| | - Thomas Hansen
- Department of Bio‐organic SynthesisLeiden UniversityLeidenThe Netherlands
| | - Marc Ruben
- Department of Bio‐organic SynthesisLeiden UniversityLeidenThe Netherlands
- Present address: Mercachem Inc.NijmegenThe Netherlands
| | | | - Laura Heitman
- Department of Medicinal ChemistryLeiden UniversityLeidenThe Netherlands
| | | | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia FoundationRomeItaly
- Department of MedicineCampus Bio‐Medico University of RomeRomeItaly
| | - Aron Lichtman
- Department Experimental Medicine & SurgeryTor Vergata University of RomeRomeItaly
| | - Pál Pacher
- National Institutes of HealthBethesdaMDUSA
| | | |
Collapse
|
293
|
|
294
|
MA MUYUAN, BAI JIE, LING YE, CHANG WEILONG, XIE GENGCHEN, LI RUIDONG, WANG GUOBIN, TAO KAIXIONG. Monoacylglycerol lipase inhibitor JZL184 regulates apoptosis and migration of colorectal cancer cells. Mol Med Rep 2016; 13:2850-6. [DOI: 10.3892/mmr.2016.4829] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 12/11/2015] [Indexed: 11/06/2022] Open
|
295
|
Viader A, Ogasawara D, Joslyn CM, Sanchez-Alavez M, Mori S, Nguyen W, Conti B, Cravatt BF. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation. eLife 2016; 5:e12345. [PMID: 26779719 PMCID: PMC4737654 DOI: 10.7554/elife.12345] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/13/2015] [Indexed: 12/19/2022] Open
Abstract
Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI:http://dx.doi.org/10.7554/eLife.12345.001 The brain is made up of many types of cells. These include the neurons that transmit messages throughout the nervous system, and microglia, which act as the first line of the brain’s immune defense. The activity of both neurons and microglia can be influenced by molecules called endocannabinoids that bind to proteins on the cells’ surface. For example, endocannabinoids affect how a neuron responds to messages sent to it from a neighbouring neuron, and help microglia to regulate the inflammation of brain tissue. Enzymes called serine hydrolases play important roles in several different signaling processes in the brain, including those involving endocannabinoids. Viader et al. have now studied the activities of these enzymes – including two called DAGLα and DAGLβ – in the mouse brain using a technique called activity-based protein profiling. This revealed that DAGLα plays an important role in controlling how neurons respond to endocannabinoids, while DAGLβ performs the equivalent role in microglia. When Viader et al. shut down DAGLβ activity, this only affected endocannabinoid signaling in microglia. This also had the effect of reducing inflammation in the brain, without affecting how endocannabinoids signal in neurons. These results suggest that inhibitors of DAGLβ could offer a way to suppress inflammation in the brain, which may contribute to neuropsychiatric and neurodegenerative diseases, while preserving the normal pathways that neurons use to communicate with one another. DOI:http://dx.doi.org/10.7554/eLife.12345.002
Collapse
Affiliation(s)
- Andreu Viader
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Christopher M Joslyn
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Manuel Sanchez-Alavez
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Simone Mori
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - William Nguyen
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Bruno Conti
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States.,Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
296
|
Grabner GF, Eichmann TO, Wagner B, Gao Y, Farzi A, Taschler U, Radner FPW, Schweiger M, Lass A, Holzer P, Zinser E, Tschöp MH, Yi CX, Zimmermann R. Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation. J Biol Chem 2016; 291:913-23. [PMID: 26565024 PMCID: PMC4705409 DOI: 10.1074/jbc.m115.683615] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/11/2015] [Indexed: 12/18/2022] Open
Abstract
Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKO(GFAP)). MKO(GFAP) mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKO(GFAP) mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKO(GFAP) mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation.
Collapse
Affiliation(s)
- Gernot F Grabner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Thomas O Eichmann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Bernhard Wagner
- the Institute of Biomedical Science, FH Joanneum University of Applied Sciences, 8020 Graz, Austria
| | - Yuanqing Gao
- the Institute of Diabetes and Obesity, Helmholtz Center Munich, 85748 Garching, Germany
| | - Aitak Farzi
- the Institute of Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria, and
| | - Ulrike Taschler
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Franz P W Radner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Martina Schweiger
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Peter Holzer
- the Institute of Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria, and
| | - Erwin Zinser
- the Institute of Biomedical Science, FH Joanneum University of Applied Sciences, 8020 Graz, Austria
| | - Matthias H Tschöp
- the Institute of Diabetes and Obesity, Helmholtz Center Munich, 85748 Garching, Germany
| | - Chun-Xia Yi
- the Institute of Diabetes and Obesity, Helmholtz Center Munich, 85748 Garching, Germany, the Department of Endocrinology and Metabolism, Academic Medical Center Amsterdam, 1105 Amsterdam, The Netherlands
| | - Robert Zimmermann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria,
| |
Collapse
|
297
|
Komatsu T, Urano Y. Evaluation of enzymatic activities in living systems with small-molecular fluorescent substrate probes. ANAL SCI 2016; 31:257-65. [PMID: 25864668 DOI: 10.2116/analsci.31.257] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we aim to present an overview of how small-molecular fluorescent substrate probes for studying enzymatic functions are developed and how they are used in biological applications, under the following four headings: (1) History of Visual Detection of Enzymatic Activities, (2) Strategies to Design Fluorescent Substrate Probes to Measure Enzymatic Activities, (3) Development of Fluorescent Substrate Probes Suitable for Biological Studies, and (4) Biological Applications of Fluorescent Substrate Probes for Studying Enzymes.
Collapse
Affiliation(s)
- Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, 2) JST PRESTO, 4-1-9-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | |
Collapse
|
298
|
Schiavon AP, Bonato JM, Milani H, Guimarães FS, Weffort de Oliveira RM. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:27-34. [PMID: 26187374 DOI: 10.1016/j.pnpbp.2015.06.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
Therapeutic effects of antidepressants and atypical antipsychotics may arise partially from their ability to stimulate neurogenesis. Cannabidiol (CBD), a phytocannabinoid present in Cannabis sativa, presents anxiolytic- and antipsychotic-like effects in preclinical and clinical settings. Anxiolytic-like effects of repeated CBD were shown in chronically stressed animals and these effects were parallel with increased hippocampal neurogenesis. However, antidepressant-like effects of repeated CBD administration in non-stressed animals have been scarcely reported. Here we investigated the behavioral consequences of single or repeated CBD administration in non-stressed animals. We also determined the effects of CBD on cell proliferation and neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ). Single CBD 3mg/kg administration resulted in anxiolytic-like effect in mice submitted to the elevated plus maze (EPM). In the tail suspension test (TST), single or repeated CBD administration reduced immobility time, an effect that was comparable to those of imipramine (20 mg/kg). Moreover, repeated CBD administration at a lower dose (3 mg/kg) increased cell proliferation and neurogenesis, as seen by an increased number of Ki-67-, BrdU- and doublecortin (DCX)-positive cells in both in DG and SVZ. Despite its antidepressant-like effects in the TST, repeated CBD administration at a higher dose (30 mg/kg) decreased cell proliferation and neurogenesis in the hippocampal DG and SVZ. Our findings show a dissociation between behavioral and proliferative effects of repeated CBD and suggest that the antidepressant-like effects of CBD may occur independently of adult neurogenesis in non-stressed Swiss mice.
Collapse
Affiliation(s)
- Angélica Pupin Schiavon
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Jéssica Mendes Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, 14015-000 Ribeirão Preto, São Paulo, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
299
|
Morena M, Patel S, Bains JS, Hill MN. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 2016; 41:80-102. [PMID: 26068727 PMCID: PMC4677118 DOI: 10.1038/npp.2015.166] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes. A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response. In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling have with respect to many of the effects of stress. Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels. Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a downregulation or loss of cannabinoid type 1 (CB1) receptors. With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception, memory and synaptic plasticity. More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and posttraumatic stress disorder. Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress response.
Collapse
Affiliation(s)
- Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Sachin Patel
- Department of Molecular Physiology and Biophysics and Psychiatry, Vanderbilt Brain Institute, Vanderbilt-Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada,Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada,Departments of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N4N1, Canada, Tel: +1 403 220 8466, Fax: +1 403 283 2700, E-mail:
| |
Collapse
|
300
|
Abstract
The great 19th century French physiologist Claude Bernard reasoned “Man can learn nothing except by going from the known to the unknown”. This premise is particularly applicable to the progression of discoveries made in the field of fat metabolism since Bernard's time. Beginning with his groundbreaking discovery of fat digestion (later termed “lipolysis”) in 1848, research addressing the basic processes of cellular storage and mobilization of fat has steadily advanced. Even after 150 years of research dedicated to lipolysis, exciting new principles have continued to emerge in the last 10 years. This Perspective summarizes these recent landmark discoveries in the field and emphasizes their relevance for the pathogenesis of extremely prevalent diseases such as obesity, heart disease, and cancer.
Collapse
Affiliation(s)
- Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|