251
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
252
|
Möller A, Lobb RJ. The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer 2020; 20:697-709. [PMID: 32958932 DOI: 10.1038/s41568-020-00299-w] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Cancer-derived extracellular vesicles (EVs) are regarded as having promising potential to be used as therapeutics and disease biomarkers. Mechanistically, EVs have been shown to function in most, if not all, steps of cancer progression. Cancer EVs, including small EVs (sEVs), contain unique biomolecular cargo, consisting of protein, nucleic acid and lipids. Through progress in the identification of this specific cargo, cancer biomarkers have been identified and developed, opening up novel and interesting opportunities for cancer diagnosis and prognosis. Intriguingly, we still lack a comprehensive understanding of the cancer-specific pathways that govern EV biogenesis in cancer cells. Filling this knowledge gap will rapidly improve cancer EV biomarkers, as it will also allow discrimination of the procancer and anticancer actions of those EVs. Even more promising is uncovering therapeutically targetable, tumour-specific EV pathways and content, which will generate novel classes of cancer therapies. This Review highlights the progress the cancer sEV field has made in the areas of biomarker discovery and validation as well as sEV-based therapeutics, highlights the challenges we are facing and identifies gaps in our knowledge, which currently prevent us from developing the full potential of sEVs in cancer diagnostic and therapy.
Collapse
Affiliation(s)
- Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| | - Richard J Lobb
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| |
Collapse
|
253
|
He X, Zhong X, Hu Z, Zhao S, Wei P, Li D. An insight into small extracellular vesicles: Their roles in colorectal cancer progression and potential clinical applications. Clin Transl Med 2020; 10:e249. [PMID: 33377655 PMCID: PMC7733319 DOI: 10.1002/ctm2.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a leading cause of mortality worldwide. Small extracellular vesicles (sEVs) are nano-sized extracellular vesicles containing a variety of bioactive molecules, such as nucleic acids, proteins, lipids, and metabolites. Recent evidence from CRC has revealed that sEVs contribute to tumorigenesis, progression, and drug resistance, and serve as a tool for "liquid biopsy" and a drug delivery system for therapy. In this review, we summarize information about the roles of sEVs in the proliferation, invasion, migration, epithelial-mesenchymal transition, formation of the premetastatic niche, and drug resistance to elucidate the mechanisms governing sEVs in CRC and to identify novel targets for therapy and prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xinyang Zhong
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zijuan Hu
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Senlin Zhao
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ping Wei
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Dawei Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
254
|
Chen C, Liu JM, Luo YP. MicroRNAs in tumor immunity: functional regulation in tumor-associated macrophages. J Zhejiang Univ Sci B 2020; 21:12-28. [PMID: 31898439 DOI: 10.1631/jzus.b1900452] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and are critical for cancer initiation and progression. MicroRNAs (miRNAs) could notably influence the phenotype of TAMs through various targets and signal pathways during cancer progression due to their post-transcriptional regulation. In this review, we discuss mainly the regulatory function of miRNAs on macrophage differentiation, functional polarization, and cellular crosstalk. Firstly, during the generation process, miRNAs take part in the differentiation from myeloid cells to mature macrophages, and this maturation process directly influences their recruitment into the TME, attracted by tumor cells. Secondly, macrophages in the TME can be either tumor-promoting or tumor-suppressing, depending on their functional polarization. Large numbers of miRNAs can influence the polarization of macrophages, which is crucial for tumor progression, including tumor cell invasion, intravasation, extravasation, and premetastatic site formation. Thirdly, crosstalk between tumor cells and macrophages is essential for TME formation and tumor progression, and miRNAs can be the mediator of communication in different forms, especially when encapsulated in microvesicles or exosomes. We also assess the potential value of certain macrophage-related miRNAs (MRMs) as diagnostic and prognostic markers, and discuss the possible development of MRM-based therapies.
Collapse
Affiliation(s)
- Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jia-Ming Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yun-Ping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
255
|
Lim YJ, Lee J, Choi JA, Cho SN, Son SH, Kwon SJ, Son JW, Song CH. M1 macrophage dependent-p53 regulates the intracellular survival of mycobacteria. Apoptosis 2020; 25:42-55. [PMID: 31691131 PMCID: PMC6965052 DOI: 10.1007/s10495-019-01578-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor suppressor p53 is not only affects immune responses but also contributes to antibacterial activity. However, its bactericidal function during mycobacterial infection remains unclear. In this study, we found that the p53-deficient macrophages failed to control Mycobacterium tuberculosis (Mtb), manifested as a lower apoptotic cell death rate and enhanced intracellular survival. The expression levels of p53 during Mtb infection were stronger in M1 macrophages than in M2 macrophages. The TLR2/JNK signaling pathway plays an essential role in the modulation of M1 macrophage polarization upon Mtb infection. It facilitates p53-mediated apoptosis through the production of reactive oxygen species, nitric oxide and inflammatory cytokines in Mtb-infected M1 macrophages. In addition, nutlin-3 effectively abrogated the intracellular survival of mycobacteria in both TB patients and healthy controls after H37Ra infection for 24 h, indicating that the enhancement of p53 production effectively suppressed the intracellular survival of Mtb in hosts. These results suggest that p53 can be a new therapeutic target for TB therapy.
Collapse
Affiliation(s)
- Yun-Ji Lim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University, Daejeon, South Korea.,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Junghwan Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University, Daejeon, South Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University, Daejeon, South Korea.,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Soo-Na Cho
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University, Daejeon, South Korea
| | - Sang-Hun Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University, Daejeon, South Korea
| | - Sun-Jung Kwon
- Department of Internal Medicine, Konyang University Hospital, Daejeon, South Korea
| | - Ji-Woong Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon, South Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea. .,Department of Medical Science, Chungnam National University, Daejeon, South Korea. .,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
256
|
Ludwig S, Sharma P, Wise P, Sposto R, Hollingshead D, Lamb J, Lang S, Fabbri M, Whiteside TL. mRNA and miRNA Profiles of Exosomes from Cultured Tumor Cells Reveal Biomarkers Specific for HPV16-Positive and HPV16-Negative Head and Neck Cancer. Int J Mol Sci 2020; 21:E8570. [PMID: 33202950 PMCID: PMC7698015 DOI: 10.3390/ijms21228570] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
Human papillomavirus (HPV)(+) and HPV(-) head and neck cancer (HNC) cells' interactions with the host immune system are poorly understood. Recently, we identified molecular and functional differences in exosomes produced by HPV(+) vs. HPV(-) cells, suggesting that genetic cargos of exosomes might identify novel biomarkers in HPV-related HNCs. Exosomes were isolated by size exclusion chromatography from supernatants of three HPV(+) and two HPV(-) HNC cell lines. Paired cell lysates and exosomes were analyzed for messenger RNA (mRNA) by qRT-PCR and microRNA (miR) contents by nanostring analysis. The mRNA profiles of HPV(+) vs. HPV(-) cells were distinct, with EGFR, TP53 and HSPA1A/B overexpressed in HPV(+) cells and IL6, FAS and DPP4 in HPV(-) cells. The mRNA profiles of HPV(+) or HPV(-) exosomes resembled the cargo of their parent cells. miR expression profiles in cell lysates identified 8 miRs expressed in HPV(-) cells vs. 14 miRs in HPV(+) cells. miR-205-5p was exclusively expressed in HPV(+) exosomes, and miR-1972 was only detected in HPV(-) exosomes. We showed that HPV(+) and HPV(-) exosomes recapitulated the mRNA expression profiles of their parent cells. Expression of miRs was dependent on the HPV status, and miR-205-5p in HPV(+) and miR-1972 in HPV(-) exosomes emerge as potential discriminating HPV-associated biomarkers.
Collapse
Affiliation(s)
- Sonja Ludwig
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA;
| | - Priyanka Sharma
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA;
| | - Petra Wise
- Department of Pediatrics, Children′s Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; (P.W.); (R.S.)
| | - Richard Sposto
- Department of Pediatrics, Children′s Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; (P.W.); (R.S.)
| | - Deborah Hollingshead
- Genomics Research Core, University of Pittsburgh School of the Health Sciences, Pittsburgh, PA 15213, USA; (D.H.); (J.L.)
| | - Janette Lamb
- Genomics Research Core, University of Pittsburgh School of the Health Sciences, Pittsburgh, PA 15213, USA; (D.H.); (J.L.)
| | - Stephan Lang
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany;
| | - Muller Fabbri
- Cancer Biology Program, University of Hawai’i Cancer Center, University of Hawai’i at Manoa, Honolulu, HI 96813, USA;
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA;
| |
Collapse
|
257
|
Noh GT, Kwon J, Kim J, Park M, Choi DW, Cho KA, Woo SY, Oh BY, Lee KY, Lee RA. Verification of the role of exosomal microRNA in colorectal tumorigenesis using human colorectal cancer cell lines. PLoS One 2020; 15:e0242057. [PMID: 33175885 PMCID: PMC7657557 DOI: 10.1371/journal.pone.0242057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a group of small membranous vesicles that are shed into the extracellular environment by tumoral or non-tumoral cells and contribute to cellular communication by delivering micro RNAs (miRNAs). In this study, we aimed to evaluate the role of exosomal miRNAs from colorectal cancer cell lines in tumorigenesis, by affecting cancer-associated fibroblasts (CAFs), which are vital constituents of the tumor microenvironment. To analyze the effect of exosomal miRNA on the tumor microenvironment, migration of the monocytic cell line THP-1 was evaluated via Transwell migration assay using CAFs isolated from colon cancer patients. The migration assay was performed with CAFs ± CCL7-blocking antibody and CAFs that were treated with exosomes isolated from colon cancer cell lines. To identify the associated exosomal miRNAs, miRNA sequencing and quantitative reverse transcription polymerase chain reaction were performed. The migration assay revealed that THP-1 migration was decreased in CCL7-blocking antibody-expressing and exosome-treated CAFs. Colon cancer cell lines contained miRNA let-7d in secreted exosomes targeting the chemokine CCL7. Exosomes from colorectal cancer cell lines affected CCL7 secretion from CAFs, possibly via the miRNA let-7d, and interfered with the migration of CCR2+ monocytic THP-1 cells in vitro.
Collapse
Affiliation(s)
- Gyoung Tae Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiyun Kwon
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Jungwoo Kim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Minhwa Park
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Da-Won Choi
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Kyung-Ah Cho
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - So-Youn Woo
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Bo-Young Oh
- Department of Surgery, Hallym University College of Medicine, Seoul, South Korea
| | - Kang Young Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Ryung-Ah Lee
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
258
|
Mignot S, Cagnard N, Albaud B, Bally C, Siavellis J, Hermine O, Frenzel L. Unique inflammatory signature in haemophilic arthropathy: miRNA changes due to interaction between blood and fibroblast-like synoviocytes. J Cell Mol Med 2020; 24:14453-14466. [PMID: 33159500 PMCID: PMC7753994 DOI: 10.1111/jcmm.16068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
In haemophilia, the recurrence of hemarthrosis leads to irreversible arthropathy termed haemophilic arthropathy (HA). However, HA is a unique form of arthropathy in which resident cells, such as fibroblast‐like synoviocytes (FLS), come into direct contact with blood. Therefore, we hypothesized that FLS in HA could have a unique inflammatory signature as a consequence of their contact with blood. We demonstrated with ELISA and ELISPOT analyses that HA‐FLS expressed a unique profile of cytokine secretion, which differed from that of non‐HA‐FLS, mainly consisting of cytokines involved in innate immunity. We showed that unstable cytokine mRNAs were involved in this process, especially through miRNA complexes as confirmed by DICER silencing. A miRNOME analysis revealed that 30 miRNAs were expressed differently between HA and non‐HA‐FLS, with most miRNAs involved in inflammatory control pathways or described in certain inflammatory diseases, such as rheumatoid arthritis or lupus. Analysis of transcriptomic networks, impacted by these miRNAs, revealed that protein processes and inflammatory pathways were particularly targeted in LPS‐induced FLS, and in particular vascularization and osteoarticular modulation pathways in steady‐state FLS. Our study demonstrates that the presence of blood in contact with FLS may induce durable miRNA changes that likely participate in HA pathophysiology.
Collapse
Affiliation(s)
- Sandra Mignot
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes - Sorbonne Paris Cité University, Labex GR-Ex, Imagine Institute, Inserm U1163, Paris, France
| | | | | | - Cécile Bally
- Hematology unit care - hemophilia Center - Necker Hospital, Paris, France
| | - Justine Siavellis
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes - Sorbonne Paris Cité University, Labex GR-Ex, Imagine Institute, Inserm U1163, Paris, France
| | - Olivier Hermine
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes - Sorbonne Paris Cité University, Labex GR-Ex, Imagine Institute, Inserm U1163, Paris, France.,Hematology unit care - hemophilia Center - Necker Hospital, Paris, France.,Faculté de médecine Paris-Descartes, Paris, France
| | - Laurent Frenzel
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris Descartes - Sorbonne Paris Cité University, Labex GR-Ex, Imagine Institute, Inserm U1163, Paris, France.,Hematology unit care - hemophilia Center - Necker Hospital, Paris, France.,Faculté de médecine Paris-Descartes, Paris, France
| |
Collapse
|
259
|
Vu LT, Gong J, Pham TT, Kim Y, Le MTN. microRNA exchange via extracellular vesicles in cancer. Cell Prolif 2020; 53:e12877. [PMID: 33169503 PMCID: PMC7653238 DOI: 10.1111/cpr.12877] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Cells utilize different means of inter-cellular communication to function properly. Here, we review the crosstalk between cancer cells and their surrounding environment through microRNA (miRNA)-containing extracellular vesicles (EVs). The current findings suggest that the export of miRNAs and uptake of miRNA-containing EVs might be an active process. As post-transcriptional regulators of gene expression, cancer-derived miRNAs that are taken up by normal cells can change the translational profile of the recipient cell towards a transformed proteome. Stromal cells can also deliver miRNAs via EVs to cancer cells to support tumour growth and cancer progression. Therefore, gaining a better understanding of EV-mediated inter-cellular communication in the tumour microenvironment might lead to the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Luyen Tien Vu
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | - Jinhua Gong
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Thach Tuan Pham
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | - Yeokyeong Kim
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
| | - Minh T. N. Le
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of Biomedical SciencesCollege of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
260
|
Dragomir MP, Moisoiu V, Manaila R, Pardini B, Knutsen E, Anfossi S, Amit M, Calin GA. A Holistic Perspective: Exosomes Shuttle between Nerves and Immune Cells in the Tumor Microenvironment. J Clin Med 2020; 9:jcm9113529. [PMID: 33142779 PMCID: PMC7693842 DOI: 10.3390/jcm9113529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
One of the limitations of cancer research has been the restricted focus on tumor cells and the omission of other non-malignant cells that are constitutive elements of this systemic disease. Current research is focused on the bidirectional communication between tumor cells and other components of the tumor microenvironment (TME), such as immune and endothelial cells, and nerves. A major success of this bidirectional approach has been the development of immunotherapy. Recently, a more complex landscape involving a multi-lateral communication between the non-malignant components of the TME started to emerge. A prime example is the interplay between immune and endothelial cells, which led to the approval of anti-vascular endothelial growth factor-therapy combined with immune checkpoint inhibitors and classical chemotherapy in non-small cell lung cancer. Hence, a paradigm shift approach is to characterize the crosstalk between different non-malignant components of the TME and understand their role in tumorigenesis. In this perspective, we discuss the interplay between nerves and immune cells within the TME. In particular, we focus on exosomes and microRNAs as a systemic, rapid and dynamic communication channel between tumor cells, nerves and immune cells contributing to cancer progression. Finally, we discuss how combinatorial therapies blocking this tumorigenic cross-talk could lead to improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
- Institute of Pathology, Charité University Hospital, 10117 Berlin, Germany
- Correspondence: (M.P.D.); (G.A.C.)
| | - Vlad Moisoiu
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Roxana Manaila
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania;
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Simone Anfossi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (M.P.D.); (G.A.C.)
| |
Collapse
|
261
|
Cancer Extracellular Vesicles: Next-Generation Diagnostic and Drug Delivery Nanotools. Cancers (Basel) 2020; 12:cancers12113165. [PMID: 33126572 PMCID: PMC7692229 DOI: 10.3390/cancers12113165] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are secreted continuously from different cell types. The composition of EVs, like proteins, nucleic acids and lipids is linked with the cells of origin and they are involved in cell-cell communication. The presence of EVs in the majority of the body fluids makes them attractive to investigate and define their role in physiological and in pathological processes. This review is focused on EVs with dimensions between 30 and 150 nm like exosomes (EEVs). We described the biogenesis of EEVs, methods for isolation and their role in cancer as innovative diagnostic tools and new drug delivery systems. Abstract Nanosized extracellular vesicles (EVs) with dimensions ranging from 100 to 1000 nm are continuously secreted from different cells in their extracellular environment. They are able to encapsulate and transfer various biomolecules, such as nucleic acids, proteins, and lipids, that play an essential role in cell‒cell communication, reflecting a novel method of extracellular cross-talk. Since EVs are present in large amounts in most bodily fluids, challengeable hypotheses are analyzed to unlock their potential roles. Here, we review EVs by discussing their specific characteristics (structure, formation, composition, and isolation methods), focusing on their key role in cell biology. Furthermore, this review will summarize the biomedical applications of EVs, in particular those between 30 and 150 nm (like exosomes), as next-generation diagnostic tools in liquid biopsy for cancer and as novel drug delivery vehicles.
Collapse
|
262
|
Yang E, Wang X, Gong Z, Yu M, Wu H, Zhang D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther 2020; 5:242. [PMID: 33077737 PMCID: PMC7572387 DOI: 10.1038/s41392-020-00359-5] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is reported to be one of the hallmarks of cancer, which is an adaptive mechanism by which fast-growing cancer cells adapt to their increasing energy demands. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Meanwhile, the TME is a highly heterogeneous ecosystem incorporating cancer cells, fibroblasts, adipocytes, endothelial cells, mesenchymal stem cells, and extracellular matrix. Accumulated evidence indicates that exosomes may transfer biologically functional molecules to the recipient cells, which facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells and their surrounding stromal cells. In this review, we present the role of exosomes in the TME and the underlying mechanism of how exosomes exacerbate tumor development through metabolic reprogramming. In addition, we will also discuss the potential role of exosomes targeting metabolic process as biomarkers for tumor diagnosis and prognosis, and exosomes-mediated metabolic reprogramming as potential targets for cancer therapy. Furthermore, a better understanding of the link between exosomes and metabolic reprogramming, and their impact on cancer progression, would provide novel insights for cancer prevention and treatment in the future.
Collapse
Affiliation(s)
- Enli Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Zhiyuan Gong
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Miao Yu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China. .,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China. .,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China.
| |
Collapse
|
263
|
Ambattu LA, Ramesan S, Dekiwadia C, Hanssen E, Li H, Yeo LY. High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Commun Biol 2020; 3:553. [PMID: 33020585 PMCID: PMC7536404 DOI: 10.1038/s42003-020-01277-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are promising disease diagnostic markers and drug delivery vehicles, although their use in practice is limited by insufficient homogeneous quantities that can be produced. We reveal that exposing cells to high frequency acoustic irradiation stimulates their generation without detriment to cell viability by exploiting their innate membrane repair mechanism, wherein the enhanced recruitment of calcium ions from the extracellular milieu into the cells triggers an ESCRT pathway known to orchestrate exosomal production. Given the high post-irradiation cell viabilities (≈95%), we are able to recycle the cells through iterative irradiation and post-excitation incubation steps, which facilitate high throughput production of a homogeneous population of exosomes-a particular challenge for translating exosome therapy into clinical practice. In particular, we show that approximately eight- to ten-fold enrichment in the number of exosomes produced can be achieved with just 7 cycles over 280 mins, equivalent to a yield of around 1.7-2.1-fold/h.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, 3000, Australia
| | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Haiyan Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
264
|
Kugeratski FG, Kalluri R. Exosomes as mediators of immune regulation and immunotherapy in cancer. FEBS J 2020; 288:10-35. [PMID: 32910536 DOI: 10.1111/febs.15558] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Exosomes are nanosized extracellular vesicles of endosomal origin that enclose a multitude of functional biomolecules. Exosomes have emerged as key players of intercellular communication in physiological and pathological conditions. In cancer, depending on the context, exosomes can oppose or potentiate the development of an aggressive tumor microenvironment, thereby impacting tumor progression and clinical outcome. Increasing evidence has established exosomes as important mediators of immune regulation in cancer, as they deliver a plethora of signals that can either support or restrain immunosuppression of lymphoid and myeloid cell populations in tumors. Here, we review the current knowledge related to exosome-mediated regulation of lymphoid (T lymphocytes, B lymphocytes, and NK cells) and myeloid (macrophages, dendritic cells, monocytes, myeloid-derived suppressor cells, and neutrophils) cell populations in cancer. We also discuss the translational potential of engineered exosomes as immunomodulatory agents for cancer therapy.
Collapse
Affiliation(s)
- Fernanda G Kugeratski
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
265
|
Chatterjee B, Saha P, Bose S, Shukla D, Chatterjee N, Kumar S, Tripathi PP, Srivastava AK. MicroRNAs: As Critical Regulators of Tumor- Associated Macrophages. Int J Mol Sci 2020; 21:ijms21197117. [PMID: 32992449 PMCID: PMC7582892 DOI: 10.3390/ijms21197117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging shreds of evidence suggest that tumor-associated macrophages (TAMs) modulate various hallmarks of cancer during tumor progression. Tumor microenvironment (TME) prime TAMs to execute important roles in cancer development and progression, including angiogenesis, matrix metalloproteinases (MMPs) secretion, and extracellular matrix (ECM) disruption. MicroRNAs (miRNAs) are critical epigenetic regulators, which modulate various functions in diverse types of cells, including macrophages associated with TME. In this review article, we provide an update on miRNAs regulating differentiation, maturation, activation, polarization, and recruitment of macrophages in the TME. Furthermore, extracellular miRNAs are secreted from cancerous cells, which control macrophages phenotypic plasticity to support tumor growth. In return, TAMs also secrete various miRNAs that regulate tumor growth. Herein, we also describe the recent updates on the molecular connection between tumor cells and macrophages. A better understanding of the interaction between miRNAs and TAMs will provide new pharmacological targets to combat cancer.
Collapse
Affiliation(s)
- Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Devendra Shukla
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, WB 700026, India;
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education & Research, Tirupati, Andhra Pradesh 517507, India;
| | - Prem Prakash Tripathi
- Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India;
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB 700032, India; (B.C.); (P.S.); (S.B.); (D.S.)
- Correspondence:
| |
Collapse
|
266
|
Chen S, Thorne RF, Zhang XD, Wu M, Liu L. Non-coding RNAs, guardians of the p53 galaxy. Semin Cancer Biol 2020; 75:72-83. [PMID: 32927018 DOI: 10.1016/j.semcancer.2020.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
The TP53 gene is arguably the most important tumor suppressor gene known, contributing multifaceted roles to the process of tumor development. Its protein product p53, is a crucial sequence-specific transcription factor which regulates the expression of a large network of protein-coding genes, as well as thousands of noncoding RNAs (ncRNAs), notably microRNAs and long ncRNAs (lncRNAs). Through a variety of direct and indirect mechanisms, ncRNAs in turn modulate p53 levels and activity. Here the numbers of studies are steadily building which link the contributions of dysregulated ncRNAs to tumorigenesis via their participation throughout the p53 regulatory network. In this review, we will examine how the principal forms of ncRNAs, namely microRNAs, lncRNAs and circular RNAs (circRNAs) function as either effectors or regulators amongst the diversity of p53's cellular responses. We first discuss the more recently discovered connections between miRNAs and p53 signaling before focusing on the remarkable diversity of crosstalk evident between lncRNAs and p53, and subsequently, developing reports linking circRNAs to p53. Highlighted throughout the review are the mechanistic impacts of dysregulated ncRNAs on p53 functions as well as the possible prognostic implications of these interactions. We also describe the emerging connections between ncRNAs and the often-perplexing functions of mutant p53. Finally, in the context of p53 therapeutic approaches, we describe some of the challenges in ncRNA research and their potential for translation.
Collapse
Affiliation(s)
- Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China; Molecular Pathology Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, Jiangsu, 223300, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China; Molecular Pathology Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Environmental and Life Sciences, the University of Newcastle, NSW, 2258, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China; Molecular Pathology Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Biomedical Sciences and Pharmacy, the University of Newcastle, NSW, 2308, Australia
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China; Molecular Pathology Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China.
| | - Lianxin Liu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
267
|
Czystowska-Kuzmicz M, Whiteside TL. The potential role of tumor-derived exosomes in diagnosis, prognosis, and response to therapy in cancer. Expert Opin Biol Ther 2020; 21:241-258. [PMID: 32813990 DOI: 10.1080/14712598.2020.1813276] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Small extracellular vesicles (sEV) produced by tumors and called TEX mediate communication and regulate the tumor microenvironment. As a 'liquid tumor biopsy' and with the ability to induce pro-tumor reprogramming, TEX offer a promising approach to monitoring cancer progression or response to therapy. AREAS COVERED TEX isolation from body fluids and separation by immunoaffinity capture from other EVs enables TEX molecular and functional characterization in vitro and in vivo. TEX carry membrane-bound PD-L1 and a rich cargo of other proteins and nucleic acids that reflect the tumor content and activity. TEX transfer this cargo to recipient cells, activating various molecular pathways and inducing pro-tumor transcriptional changes. TEX may interfere with immune therapies, and TEX plasma levels correlate with patients' responses to therapy. TEX induce local and systemic alterations in immune cells which may have a prognostic value. EXPERT OPINION TEX have a special advantage as potential cancer biomarkers. Their cargo emerges as a correlate of developing or progressing malignant disease; their phenotype mimics that of the tumor; and their functional reprogramming of immune cells provides a reading of the patients' immune status prior and post immunotherapy. Validation of TEX and T-cell-derived sEV as cancer biomarkers is an impending future task.
Collapse
Affiliation(s)
| | - Theresa L Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center , Pittsburgh, PA, USA
| |
Collapse
|
268
|
Wu Q, Liu W, Wang J, Zhu L, Wang Z, Peng Y. Exosomal noncoding RNAs in colorectal cancer. Cancer Lett 2020; 493:228-235. [PMID: 32898600 DOI: 10.1016/j.canlet.2020.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a commonly diagnosed malignancy with unsatisfactory survival outcomes. Recent studies indicate that noncoding RNAs (ncRNAs) can be selectively packaged into exosomes, the extracellular vesicles composed of a lipid bilayer, and delivered from donor to recipient cells, thus regulating the behavior of the recipient cells. Increasing evidence has demonstrated that exosomal ncRNAs in blood exhibit distinct expression patterns among CRC patients with or without metastasis, and healthy controls. Moreover, exosomal ncRNAs can participate in the regulation of tumor microenvironment, the establishment of pre-metastatic niches, and the induction of drug resistance via cell-to-cell communication. Intriguingly, exosomal ncRNAs have the potential to serve as biomarkers for diagnosis, prognostic prediction, and therapeutic response monitoring of patients with CRC. In this review, we summarize the emerging functions of exosomal ncRNAs during CRC development and also discuss their potential clinical application in patients with CRC.
Collapse
Affiliation(s)
- Qingbin Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Wang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
269
|
Yang H, Sun L, Guan A, Yin H, Liu M, Mao X, Xu H, Zhao H, Lu X, Sang X, Zhong S, Chen Q, Mao Y. Unique TP53 neoantigen and the immune microenvironment in long-term survivors of Hepatocellular carcinoma. Cancer Immunol Immunother 2020; 70:667-677. [PMID: 32876735 DOI: 10.1007/s00262-020-02711-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023]
Abstract
Neoantigens are T-cell antigens derived from protein-coding mutations in tumor cells. Although neoantigens have recently been linked to anti-tumor immunity in long-term survivors of cancers such as melanoma, their prognostic and immune-modulatory role in many cancer types remain unexplored. We investigate neoantigens in hepatocellular carcinoma (HCC) through a combination of whole exome sequencing (WES), RNA sequencing (RNA-seq), computational bioinformation, and immunohistochemistry. Our analysis reveals that patients carried with TP53 neoantigen have a longer overall survival than others (p = 0.0371) and they showed higher Immune score (p = 0.0441), higher cytotoxic lymphocytes infiltration (p = 0.0428), and higher CYT score (p = 0.0388). In contrast, the prognosis is not associated with TMB and neoantigen load. Our study draws a preliminary conclusion that it is not TMB or neoantigen load but the TP53 specific neoantigen is related to overall survival of HCC patients. We suggest that the TP53 neoantigen may affect prognosis by regulating anti-tumor immunity and that the TP53 neoantigen may be harnessed as potential targets for immunotherapies of HCC.
Collapse
Affiliation(s)
- Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lejia Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ai Guan
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huanhuan Yin
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Meixi Liu
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shouxian Zhong
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
270
|
Guo W, Li Y, Pang W, Shen H. Exosomes: A Potential Therapeutic Tool Targeting Communications between Tumor Cells and Macrophages. Mol Ther 2020; 28:1953-1964. [PMID: 32563274 PMCID: PMC7474264 DOI: 10.1016/j.ymthe.2020.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes comprise extracellular vesicles (EVs) with diameters between 30 and 150 nm. They transfer proteins, RNA, and other molecules from cell to cell, playing an important role in the interactions between cells. The tumor microenvironment (TME) has been found to contain various cells and molecules that have an important impact on tumor development. In the TME, macrophages have been found to have an important relationship with tumor cells, with tumors recruiting and inducing macrophages to become tumor-associated macrophages (TAMs), which promote tumor development. Recently, exosomes have been found to play a critical role in the interaction between tumor cells and macrophages. Thus, in this review, we summarize the roles and mechanisms of exosomes in the interaction between tumor cells and macrophages and the potential methods by which exosomes are used to target the communication between tumor cells and macrophages to treat cancer.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yashan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Pang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
271
|
El-Arabey AA, Abdalla M, Abd-Allah AR. SnapShot: TP53 status and macrophages infiltration in TCGA-analyzed tumors. Int Immunopharmacol 2020; 86:106758. [PMID: 32663767 DOI: 10.1016/j.intimp.2020.106758] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
The infiltration of immune cells is a hallmark of most forms of malignancy. It is well known that in Tumor Microenvironment (TME), monocytes undergo reprogramming process to differentiate into Tumor Associated Macrophages (TAMs) (M2 macrophages). Interestingly, this reprogramming process depends on signals provided by tumors. Hence, tumors from several tissues are infiltrated by functionally distinct TAMs populations. Tumor Protein p53(TP53) plays a role in the regulation or progression of DNA damage and repair through multiple mechanisms of the cell cycle, apoptosis, and genomic stability. Although, TP53 acts as a physiological break for M2 macrophages polarization; the potential regulatory function of TP53 in the infiltration of macrophages is still unknown. We used the Cancer Genomic Atlas (TCGA) clinical data from 10,009 samples across 30 types of cancer via the Tumor IMmune Estimation Tool (TIMER) (https://cistrome.shinyapps.io/timer/) to investigate whether TP53 status has an important clinical outcome on macrophages infiltration in different cancer types. Our analysis of TCGA showed that Ovarian Serous Cystadenocarcinoma (OV) patients with mutant TP53 had significantly higher macrophages infiltration than those with wild-type TP53 (P-value < 0.05) and poor prognosis associated. In contrast, Stomach Adenocarcinoma (STAD) patients with wild-type TP53 had considerably higher macrophages infiltration than those with mutant TP53 (P-value < 0.01) and poor clinical outcomes. Herein, our study sheds light on the novel clinical role of TP53 in macrophages infiltration in TME of OV and STAD patients. Furthermore, the modulation of TP53 and its co-regulators may serve as promising targets for OV and STAD patients.
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt.
| | - Mohnad Abdalla
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong Province 250012, China
| | - Adel Rashad Abd-Allah
- Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt.
| |
Collapse
|
272
|
Fiani ML, Barreca V, Sargiacomo M, Ferrantelli F, Manfredi F, Federico M. Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. Int J Mol Sci 2020; 21:ijms21176318. [PMID: 32878276 PMCID: PMC7503580 DOI: 10.3390/ijms21176318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal and tumor cells types, are emerging as key mediators of the cell to cell communication and have been shown to have a role in the modulation of immune responses in the TME. Recent studies demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype of EVs of endosomal origin of 30–150 nm in diameter. This characteristic renders sEVs an ideal tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review, we report the most recent literature data highlighting the critical role of TAMs in tumor development, as well as the experimental evidences that has emerged from the biochemical characterization of sEV membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME by endogenously engineered sEVs for a new therapeutic approach against solid tumors.
Collapse
Affiliation(s)
- Maria Luisa Fiani
- Correspondence: (M.L.F.); (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.)
| | | | | | | | | | - Maurizio Federico
- Correspondence: (M.L.F.); (M.F.); Tel.: +39-06-4990-2518 (M.L.F.); +39-06-4990-6016 (M.F.)
| |
Collapse
|
273
|
Zhang X, Li F, Tang Y, Ren Q, Xiao B, Wan Y, Jiang S. miR-21a in exosomes from Lewis lung carcinoma cells accelerates tumor growth through targeting PDCD4 to enhance expansion of myeloid-derived suppressor cells. Oncogene 2020; 39:6354-6369. [DOI: 10.1038/s41388-020-01406-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
|
274
|
Capaci V, Bascetta L, Fantuz M, Beznoussenko GV, Sommaggio R, Cancila V, Bisso A, Campaner E, Mironov AA, Wiśniewski JR, Ulloa Severino L, Scaini D, Bossi F, Lees J, Alon N, Brunga L, Malkin D, Piazza S, Collavin L, Rosato A, Bicciato S, Tripodo C, Mantovani F, Del Sal G. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun 2020; 11:3945. [PMID: 32770028 PMCID: PMC7414119 DOI: 10.1038/s41467-020-17596-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading to enhanced vesicular trafficking and secretion. The mut-p53/HIF1α/miR-30d axis potentiates the release of soluble factors and the deposition and remodeling of the ECM, affecting mechano-signaling and stromal cells activation within the tumor microenvironment, thereby enhancing tumor growth and metastatic colonization.
Collapse
Affiliation(s)
- Valeria Capaci
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
| | - Lorenzo Bascetta
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | - Marco Fantuz
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | | | | | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo, School of Medicine, 90133, Palermo, Italy
| | - Andrea Bisso
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Elena Campaner
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Alexander A Mironov
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139, Milan, Italy
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 85152, Martinsried, Germany
| | - Luisa Ulloa Severino
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Denis Scaini
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | - Fleur Bossi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Jodi Lees
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Noa Alon
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ledia Brunga
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Silvano Piazza
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
| | - Licio Collavin
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Antonio Rosato
- Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo, School of Medicine, 90133, Palermo, Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy.
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139, Milan, Italy.
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy.
| |
Collapse
|
275
|
Yang H, Chen Y, Jiang Y, Wang D, Yan J, Zhou Z. TP53 mutation influences the efficacy of treatment of colorectal cancer cell lines with a combination of sirtuin inhibitors and chemotherapeutic agents. Exp Ther Med 2020; 20:1415-1422. [PMID: 32742376 PMCID: PMC7388297 DOI: 10.3892/etm.2020.8818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Chemoresistance of colorectal cancer (CRC) leads to tumor recurrence and metastasis and new strategies are urgently needed to improve the outcomes of conventional chemotherapy. Sirtuin (SIRT) inhibitors prevent tumor cell growth by increasing the levels of acetylated histones and non-histones, as well as disrupting survival-related pathways. The aim of the present study was to determine the effect of SIRT inhibitors on CRC chemotherapy. The CompuSyn software program was used to evaluate the synergistic or antagonistic effects of various drugs, and the status of the protein deacetylation regulatory genes in microarray datasets were analyzed using bioinformatics. In HCT116 cells expressing wild-type (wt) TP53, SIRT inhibitors were found to act antagonistically with multiple chemotherapeutic agents (cisplatin, 5-fluorouracil, oxaliplatin, gefitinib, LY294002 and metformin), and decreased the anti-tumor effects of these agents. By contrast, SIRT inhibitors sensitized TP53-mutant (mut) SW620 cells to various chemotherapeutic drugs. Bioinformatics analysis indicated that SIRT1 and protein deacetylation related genes were highly expressed in TP53wt CRC cells when compared to TP53mut cells. Therefore, it was hypothesized that the likely mechanism underlying the antagonistic effect of SIRT inhibitors on TP53wt CRC cells was a reduction in the level of stable p53 protein. The present results indicated that divergent TP53 status may translate to a different chemosensitivity profile, and suggested that a combination therapy of SIRT inhibitors and first-line chemotherapeutic drugs may be beneficial for the treatment of patients with TP53mut CRC.
Collapse
Affiliation(s)
- Hao Yang
- Department of Oncology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Ya Chen
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Yuan Jiang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Dongliang Wang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Jun Yan
- Department of Oncology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| |
Collapse
|
276
|
Van Deun J, Roux Q, Deville S, Van Acker T, Rappu P, Miinalainen I, Heino J, Vanhaecke F, De Geest BG, De Wever O, Hendrix A. Feasibility of Mechanical Extrusion to Coat Nanoparticles with Extracellular Vesicle Membranes. Cells 2020; 9:cells9081797. [PMID: 32751082 PMCID: PMC7464356 DOI: 10.3390/cells9081797] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Biomimetic functionalization to confer stealth and targeting properties to nanoparticles is a field of intense study. Extracellular vesicles (EV), sub-micron delivery vehicles for intercellular communication, have unique characteristics for drug delivery. We investigated the top-down functionalization of gold nanoparticles with extracellular vesicle membranes, including both lipids and associated membrane proteins, through mechanical extrusion. EV surface-exposed membrane proteins were confirmed to help avoid unwanted elimination by macrophages, while improving autologous uptake. EV membrane morphology, protein composition and orientation were found to be unaffected by mechanical extrusion. We implemented complementary EV characterization methods, including transmission- and immune-electron microscopy, and nanoparticle tracking analysis, to verify membrane coating, size and zeta potential of the EV membrane-cloaked nanoparticles. While successful EV membrane coating of the gold nanoparticles resulted in lower macrophage uptake, low yield was found to be a significant downside of the extrusion approach. Our data incentivize more research to leverage EV membrane biomimicking as a unique drug delivery approach in the near future.
Collapse
Affiliation(s)
- Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Quentin Roux
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Sarah Deville
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Thibaut Van Acker
- Department of Analytical Chemistry, Ghent University, 9000 Ghent, Belgium; (T.V.A.); (F.V.)
| | - Pekka Rappu
- Department of Biochemistry, University of Turku, 20500 Turku, Finland; (P.R.); (J.H.)
| | - Ilkka Miinalainen
- Biocenter Oulu, Department of Pathology, Oulu University Hospital, University of Oulu, 90220 Oulu, Finland;
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, 20500 Turku, Finland; (P.R.); (J.H.)
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Ghent University, 9000 Ghent, Belgium; (T.V.A.); (F.V.)
| | | | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium; (J.V.D.); (Q.R.); (S.D.); (O.D.W.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
277
|
Stein Y, Aloni-Grinstein R, Rotter V. Mutant p53-a potential player in shaping the tumor-stroma crosstalk. J Mol Cell Biol 2020; 11:600-604. [PMID: 31318969 PMCID: PMC6736352 DOI: 10.1093/jmcb/mjz071] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/28/2022] Open
Abstract
A plethora of studies suggest that the non-transformed cellular and non-cellular components of the tumor, collectively known as the tumor microenvironment, have a significant impact on the tumorigenic process. It was suggested that the microenvironment, which initially restricts tumor development, is recruited by the tumor and maintains a crosstalk that further promotes cancer progression. Indeed, many of the molecules that participate in the tumor–stroma crosstalk have been characterized. However, the crucial factors that are responsible for the initiation of this crosstalk or the ‘recruitment’ process remain poorly understood. We propose that oncogenes themselves may influence the ‘recruitment’ of the stromal cells, while focusing on mutant p53. Apart from losing its tumor-suppressing properties, mutant p53 gains novel oncogenic functions, a phenomenon dubbed mutant p53 gain of function (GOF). Here, we discuss possible ways in which mutant p53 may modulate the microenvironment in order to promote tumorigenesis. We thus propose that mutant p53 may serve as a key player in the modulation of the tumor–stroma crosstalk in a way that benefits the tumor. Further elucidation of these ‘recruitment’ processes, dictated by mutant p53, may be utilized for tailoring personalized therapeutic approaches for patients with tumors that harbor p53 mutation.
Collapse
Affiliation(s)
- Yan Stein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Box 19, Ness Ziona 7410001, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
278
|
Nakayama M, Oshima M. Mutant p53 in colon cancer. J Mol Cell Biol 2020; 11:267-276. [PMID: 30496442 PMCID: PMC6487790 DOI: 10.1093/jmcb/mjy075] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
The accumulation of genetic alterations in driver genes is responsible for the development and malignant progression of colorectal cancer. Comprehensive genome analyses have revealed the driver genes, including APC, KRAS, TGFBR2, and TP53, whose mutations are frequently found in human colorectal cancers. Among them, the p53 mutation is found in ~60% of colorectal cancers, and a majority of mutations are missense-type at ‘hot spots’, suggesting an oncogenic role of mutant p53 by ‘gain-of-function’ mechanisms. Mouse model studies have shown that one of these missense-type mutations, p53 R270H (corresponding to human R273H), causes submucosal invasion of intestinal tumors, while the loss of wild-type p53 has a limited effect on the invasion process. Furthermore, the same mutant p53 promotes metastasis when combined with Kras activation and TGF-β suppression. Importantly, either missense-type p53 mutation or loss of wild-type p53 induces NF-κB activation by a variety of mechanisms, such as increasing promoter accessibility by chromatin remodeling, which may contribute to progression to epithelial–mesenchymal transition. These results indicate that missense-type p53 mutations together with loss of wild-type p53 accelerate the late stage of colorectal cancer progression through the activation of both oncogenic and inflammatory pathways. Accordingly, the suppression of the mutant p53 function via the inhibition of nuclear accumulation is expected to be an effective strategy against malignant progression of colorectal cancer.
Collapse
Affiliation(s)
- Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,WPI-Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
279
|
Huang X, Wu B, Chen M, Hong L, Kong P, Wei Z, Teng X. Depletion of exosomal circLDLR in follicle fluid derepresses miR-1294 function and inhibits estradiol production via CYP19A1 in polycystic ovary syndrome. Aging (Albany NY) 2020; 12:15414-15435. [PMID: 32651991 PMCID: PMC7467373 DOI: 10.18632/aging.103602] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in reproductive women and is characterized by polycystic ovaries, hyperandrogenism and chronic anovulation. Abnormal folliculogenesis is considered as a common characteristic of PCOS. Our aim is to identify the altered circRNA expression profile in exosomes isolated from follicular fluid (FF) of PCOS patients to investigate the molecular function of exosomal circRNA, as a vital mediator in follicular microenvironment, in the aetiology and pathobiology of PCOS. In this study, the circRNA expression profile of FF exosomes were compared between PCOS and control patients by RNA sequencing (N=5 vs 5). Sixteen circRNAs showed significantly different expression. GO and KEGG pathway analyses indicated that their parental genes were enriched in PCOS-related pathways, including ovarian steroidogenesis, aldosterone synthesis and secretion, and Jak-STAT signaling. Among sixteen differentially expressed circRNAs, hsa_circ_0006877 (circLDLR) was processed from its parental LDLR (low density lipoprotein receptor) transcript, which participated in ovarian steroidogenesis. Its depletion in PCOS FF exosomes was further verified in an additional cohort (N=25 vs 25) by qRT-PCR. And a circLDLR-miR-1294-CYP19A1 competing endogenous RNA (ceRNA) network was predicted by cytoscape software, and confirmed by luciferase assay and correlative expression in the cumulus cells of PCOS patients. Mechanistically, the intercellular transfer of functional circLDLR assay and its withdrawal experiments in KGN cells showed that depleting circLDLR in exosomes increased miR-1294 expression and inhibited CYP19A1 expression in recipient cells, as well as reduced their estrogen (E2) secretion. Our findings revealed a ceRNA network of circLDLR and provided new information on abnormal follicle development in PCOS.
Collapse
Affiliation(s)
- Xin Huang
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bi Wu
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Miaoxin Chen
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ling Hong
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pengcheng Kong
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiyun Wei
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoming Teng
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
280
|
Takeda Y, Kobayashi S, Kitakaze M, Yamada D, Akita H, Asai A, Konno M, Arai T, Kitagawa T, Ofusa K, Yabumoto M, Hirotsu T, Vecchione A, Taniguchi M, Doki Y, Eguchi H, Ishii H. Immuno-Surgical Management of Pancreatic Cancer with Analysis of Cancer Exosomes. Cells 2020; 9:cells9071645. [PMID: 32659892 PMCID: PMC7408222 DOI: 10.3390/cells9071645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes (EXs), a type of extracellular vesicles secreted from various cells and especially cancer cells, mesenchymal cells, macrophages and other cells in the tumor microenvironment (TME), are involved in biologically malignant behaviors of cancers. Recent studies have revealed that EXs contain microRNAs on their inside and express proteins and glycolipids on their outsides, every component of which plays a role in the transmission of genetic and/or epigenetic information in cell-to-cell communications. It is also known that miRNAs are involved in the signal transduction. Thus, EXs may be useful for monitoring the TME of tumor tissues and the invasion and metastasis, processes that are associated with patient survival. Because several solid tumors secrete immune checkpoint proteins, including programmed cell death-ligand 1, the EX-mediated mechanisms are suggested to be potent targets for monitoring patients. Therefore, a companion therapeutic approach against cancer metastasis to distant organs is proposed when surgical removal of the primary tumor is performed. However, EXs and immune checkpoint mechanisms in pancreatic cancer are not fully understood, we provide an update on the recent advances in this field and evidence that EXs will be useful for maximizing patient benefit in precision medicine.
Collapse
Affiliation(s)
- Yu Takeda
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Masatoshi Kitakaze
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Ayumu Asai
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
| | - Masamitsu Konno
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Takahiro Arai
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Unitech Co., Ltd., Kashiwa 277-0005, Japan
| | - Toru Kitagawa
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
- Kyowa-kai Medical Corporation, Osaka 540-0008, Japan
| | - Ken Ofusa
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Prophoenix Division, Food and Life-Science Laboratory, Idea Consultants, Inc., Osaka-city, Osaka 559-8519, Japan
| | - Masami Yabumoto
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
- Kinshu-kai Medical Corporation, Osaka 558-0041, Japan
| | - Takaaki Hirotsu
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Hirotsu Bio Science Inc., Tokyo 107-0062, Japan
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, Santo Andrea Hospital, via di Grottarossa, 1035-00189 Rome, Italy;
| | - Masateru Taniguchi
- Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
| | - Yuichiro Doki
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Hidetoshi Eguchi
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
| | - Hideshi Ishii
- Center of Medical Innovation and Translational Research (CoMIT), Osaka University Graduate School of Medicine, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan; (Y.T.); (M.K.); (A.A.); (M.K.); (T.A.); (T.K.); (K.O.); (M.Y.); (T.H.); (Y.D.); (H.E.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; (S.K.); (D.Y.); (H.A.)
- Correspondence: ; Tel.: +81-(0)6-6210-8406 (ext. 8405); Fax: +81-(0)6-6210-8407
| |
Collapse
|
281
|
Popov TM, Giragosyan S, Petkova V, Stancheva G, Marinov T, Belitova M, Rangachev J, Popova D, Kaneva RP. Proangiogenic signature in advanced laryngeal carcinoma after microRNA expression profiling. Mol Biol Rep 2020; 47:5651-5655. [PMID: 32533400 DOI: 10.1007/s11033-020-05250-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/07/2020] [Indexed: 10/24/2022]
Abstract
The aim of this study is to evaluate which dysregulated angiomiRs compose the specific proangiogenic microRNA signature of advanced laryngeal cancer and review the literature. Thirty-six samples from twelve patients with advanced laryngeal carcinoma were collected. Total RNA was extracted and microRNA global profiling was performed using Agilent Technologies Microarray Kit. Fifty-nine microRNAs were found to have significantly different expression levels. Eleven microRNAs from the whole group were sorted as regulators of tumor angiogenesis (angiomiRs): seven were up-regulated-miR-1246, miR-181b 5p, miR-18a 5p, miR-21 3p, miR-210 3p, miR-503 5p, miR-93 5p and four were down-regulated-miR148a 5p, miR-145 5p, miR-204 5p, miR-125b 5p. For none of those microRNAs we found heterogeneity in tumor tissue. We are the first to report the specific proangiogenic microRNA signature in advanced laryngeal carcinoma and we confirm and amplify findings from previous studies that expand our perception of a specific "molecular state" of angiogenesis that is distinctive only for laryngeal cancer.
Collapse
Affiliation(s)
- T M Popov
- Department of ENT, Medical University-Sofia, Sofia, Bulgaria.
| | - S Giragosyan
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria
| | - V Petkova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria
| | - G Stancheva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria
| | - Ts Marinov
- Department of Anesthesiology and Intensive Care, Medical University-Sofia, Sofia, Bulgaria
| | - M Belitova
- Department of Anesthesiology and Intensive Care, Medical University-Sofia, Sofia, Bulgaria
| | - J Rangachev
- Department of ENT, Medical University-Sofia, Sofia, Bulgaria
| | - D Popova
- Department of ENT, Medical University-Sofia, Sofia, Bulgaria
| | - R P Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria
| |
Collapse
|
282
|
Extracellular vesicle-mediated nucleic acid transfer and reprogramming in the tumor microenvironment. Cancer Lett 2020; 482:33-43. [DOI: 10.1016/j.canlet.2020.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/19/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
|
283
|
Toumazi D, Constantinou C. A Fragile Balance: The Important Role of the Intestinal Microbiota in the Prevention and Management of Colorectal Cancer. Oncology 2020; 98:593-602. [PMID: 32604093 DOI: 10.1159/000507959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Colorectal cancer is the second leading cause of cancer-related death worldwide. In recent years, researchers have focussed on the role of the intestinal microbiota in both the prevention and the treatment of colorectal cancer. SUMMARY The evidence in the literature supports that there is a fragile balance between different species of bacteria in the human gut. A disturbance of this balance towards increased levels of the bacteria Fusobacterium nucleatum and Bacteroides fragilis is associated with an increased risk of colorectal cancer. The mechanisms involved include the release of toxins which activate inflammation and the regulation of specific miRNAs (with an increase in the expression of oncogenic miRNAs and a decrease in the expression of tumour suppressor miRNAs), thereby increasing cell proliferation and leading to tumorigenesis. On the other hand, Lactobacillus and Bifidobacterium have a protective effect against the development of colorectal cancer through mechanisms that involve an increase in the levels of anticarcinogenic metabolites such as butyrate and a decrease in the activity of proinflammatory pathways. Even though preliminary studies support that the use of probiotics in the prevention and management of colorectal cancer is promising, more research is needed in this field. Key Message: The association between the intestinal microbiota, diet and colorectal cancer remains an active area of research with expected future applications in the use of probiotics for the prevention and management of this significant disease.
Collapse
Affiliation(s)
- Daniela Toumazi
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Constantina Constantinou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus,
| |
Collapse
|
284
|
Battaglia R, Musumeci P, Ragusa M, Barbagallo D, Scalia M, Zimbone M, Lo Faro JM, Borzì P, Scollo P, Purrello M, Vento EM, Di Pietro C. Ovarian aging increases small extracellular vesicle CD81 + release in human follicular fluid and influences miRNA profiles. Aging (Albany NY) 2020; 12:12324-12341. [PMID: 32554857 PMCID: PMC7343446 DOI: 10.18632/aging.103441] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Ovarian aging affects female reproductive potential and is characterized by alterations in proteins, mRNAs and non-coding RNAs inside the ovarian follicle. Ovarian somatic cells and the oocyte communicate with each other secreting different molecules into the follicular fluid, by extracellular vesicles. The cargo of follicular fluid vesicles may influence female reproductive ability; accordingly, analysis of extracellular vesicle content could provide information about the quality of the female germ cell.In order to identify the most significant deregulated microRNAs in reproductive aging, we quantified the small extracellular vesicles in human follicular fluid from older and younger women and analyzed the expression of microRNAs enclosed inside the vesicles. We found twice as many small extracellular vesicles in the follicular fluid from older women and several differentially expressed microRNAs. Correlating microRNA expression profiles with vesicle number, we selected 46 deregulated microRNAs associated with aging. Bioinformatic analyses allowed us to identify six miRNAs involved in TP53 signaling pathways. Specifically, miR-16-5p, miR214-3p and miR-449a were downregulated and miR-125b, miR-155-5p and miR-372 were upregulated, influencing vesicle release, oocyte maturation and stress response. We believe that this approach allowed us to identify a battery of microRNAs strictly related to female reproductive aging.
Collapse
Affiliation(s)
- Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Paolo Musumeci
- Department of Physics and Astronomy, University of Catania, Catania 95123, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy.,Oasi Research Institue-IRCCS, Troina 94018, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Marina Scalia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | | | - Josè Maria Lo Faro
- Department of Physics and Astronomy, University of Catania, Catania 95123, Italy.,CNR-IMM, Catania 95123, Italy.,IPCF-CNR, viale F. Messina 98158, Italy
| | | | - Paolo Scollo
- IVF Unit, Cannizzaro Hospital, Catania 95126, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | | | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| |
Collapse
|
285
|
Role of Exosomal miRNAs and the Tumor Microenvironment in Drug Resistance. Cells 2020; 9:cells9061450. [PMID: 32545155 PMCID: PMC7349227 DOI: 10.3390/cells9061450] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironment (TME) is composed of different cellular populations, such as stromal, immune, endothelial, and cancer stem cells. TME represents a key factor for tumor heterogeneity maintenance, tumor progression, and drug resistance. The transport of molecules via extracellular vesicles emerged as a key messenger in intercellular communication in the TME. Exosomes are small double-layered lipid extracellular vesicles that can carry a variety of molecules, including proteins, lipids, and nucleic acids. Exosomal miRNA released by cancer cells can mediate phenotypical changes in the cells of TME to promote tumor growth and therapy resistance, for example, fibroblast- and macrophages-induced differentiation. Cancer stem cells can transfer and enhance drug resistance in neighboring sensitive cancer cells by releasing exosomal miRNAs that target antiapoptotic and immune-suppressive pathways. Exosomes induce drug resistance by carrying ABC transporters, which export chemotherapeutic agents out of the recipient cells, thereby reducing the drug concentration to suboptimal levels. Exosome biogenesis inhibitors represent a promising adjunct therapeutic approach in cancer therapy to avoid the acquisition of a resistant phenotype. In conclusion, exosomal miRNAs play a crucial role in the TME to confer drug resistance and survivability to tumor cells, and we also highlight the need for further investigations in this promising field.
Collapse
|
286
|
Freudenstein D, Litchfield C, Caramia F, Wright G, Solomon BJ, Ball D, Keam SP, Neeson P, Haupt Y, Haupt S. TP53 Status, Patient Sex, and the Immune Response as Determinants of Lung Cancer Patient Survival. Cancers (Basel) 2020; 12:cancers12061535. [PMID: 32545367 PMCID: PMC7352604 DOI: 10.3390/cancers12061535] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Lung cancer poses the greatest cancer-related death risk and males have poorer outcomes than females, for unknown reasons. Patient sex is not a biological variable considered in lung cancer standard of care. Correlating patient genetics with outcomes is predicted to open avenues for improved management. Using a bioinformatics approach across non-small cell lung cancer (NSCLC) subtypes, we identified where patient sex, mutation of the major tumor suppressor gene, Tumour protein P53 (TP53), and immune signatures stratified outcomes in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), among datasets of The Cancer Genome Atlas (TCGA). We exposed sex and TP53 gene mutations as prognostic for LUAD survival. Longest survival in LUAD occurred among females with wild-type (wt) TP53 genes, high levels of immune infiltration and enrichment for pathway signatures of Interferon Gamma (INF-γ), Tumour Necrosis Factor (TNF) and macrophages-monocytes. In contrast, poor survival in men with LUAD and wt TP53 genes corresponded with enrichment of Transforming Growth Factor Beta 1 (TGFB1, hereafter TGF-β) and wound healing signatures. In LUAD with wt TP53 genes, elevated gene expression of immune checkpoint CD274 (hereafter: PD-L1) and also protein 53 (p53) negative-regulators of the Mouse Double Minute (MDM)-family predict novel avenues for combined immunotherapies. LUSC is dominated by male smokers with TP53 gene mutations, while a minor population of TCGA LC patients with wt TP53 genes unexpectedly had the poorest survival, suggestive of a separate etiology. We conclude that advanced approaches to LUAD and LUSC therapy lie in the consideration of patient sex, TP53 gene mutation status and immune signatures.
Collapse
Affiliation(s)
- Donald Freudenstein
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia; (D.F.); (C.L.); (F.C.); (S.P.K.); (Y.H.)
| | - Cassandra Litchfield
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia; (D.F.); (C.L.); (F.C.); (S.P.K.); (Y.H.)
| | - Franco Caramia
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia; (D.F.); (C.L.); (F.C.); (S.P.K.); (Y.H.)
| | - Gavin Wright
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia;
| | - Benjamin J. Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; (D.B.); (P.N.)
| | - David Ball
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; (D.B.); (P.N.)
- Department of Radiation Oncology Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Simon P. Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia; (D.F.); (C.L.); (F.C.); (S.P.K.); (Y.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; (D.B.); (P.N.)
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; (D.B.); (P.N.)
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia; (D.F.); (C.L.); (F.C.); (S.P.K.); (Y.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; (D.B.); (P.N.)
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3004, Australia
| | - Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia; (D.F.); (C.L.); (F.C.); (S.P.K.); (Y.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; (D.B.); (P.N.)
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
287
|
Hu W, Liu C, Bi ZY, Zhou Q, Zhang H, Li LL, Zhang J, Zhu W, Song YYY, Zhang F, Yang HM, Bi YY, He QQ, Tan GJ, Sun CC, Li DJ. Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Mol Cancer 2020; 19:102. [PMID: 32503543 PMCID: PMC7273667 DOI: 10.1186/s12943-020-01199-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EVs), a class of heterogeneous membrane vesicles, are generally divided into exosomes and microvesicles on basis of their origination from the endosomal membrane or the plasma membrane, respectively. EV-mediated bidirectional communication among various cell types supports cancer cell growth and metastasis. EVs derived from different cell types and status have been shown to have distinct RNA profiles, comprising messenger RNAs and non-coding RNAs (ncRNAs). Recently, ncRNAs have attracted great interests in the field of EV-RNA research, and growing numbers of ncRNAs ranging from microRNAs to long ncRNAs have been investigated to reveal their specific functions and underlying mechanisms in the tumor microenvironment and premetastatic niches. Emerging evidence has indicated that EV-RNAs are essential functional cargoes in modulating hallmarks of cancers and in reciprocal crosstalk within tumor cells and between tumor and stromal cells over short and long distance, thereby regulating the initiation, development and progression of cancers. In this review, we discuss current findings regarding EV biogenesis, release and interaction with target cells as well as EV-RNA sorting, and highlight biological roles and molecular mechanisms of EV-ncRNAs in cancer biology.
Collapse
Affiliation(s)
- Wei Hu
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Cong Liu
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Zhuo-Yue Bi
- Hubei Provincial Key Laboratory for Applied Toxicology (Hubei Provincial Academy for Preventive Medicine), Wuhan, Hubei, 430079, People's Republic of China
| | - Qun Zhou
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Han Zhang
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Lin-Lin Li
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Jian Zhang
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Wei Zhu
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Yang-Yi-Yan Song
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Feng Zhang
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Hui-Min Yang
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Yong-Yi Bi
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Qi-Qiang He
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Gong-Jun Tan
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, 79 Kangning Road, Zhuhai, Guangdong, 519000, People's Republic of China. .,Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Cheng-Cao Sun
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - De-Jia Li
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China. .,Population and Health Research Center, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
288
|
Du F, Cao T, Xie H, Li T, Sun L, Liu H, Guo H, Wang X, Liu Q, Kim T, Franklin JL, Graves-Deal R, Han W, Tian Z, Ge M, Nie Y, Fan D, Coffey RJ, Lu Y, Zhao X. KRAS Mutation-Responsive miR-139-5p inhibits Colorectal Cancer Progression and is repressed by Wnt Signaling. Theranostics 2020; 10:7335-7350. [PMID: 32641995 PMCID: PMC7330859 DOI: 10.7150/thno.45971] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/16/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction: Colorectal cancer (CRC) frequently harbors KRAS mutations that result in chemoresistance and metastasis. MicroRNAs (miRNAs) are usually dysregulated and play important regulatory roles in tumor progression. However, the KRAS mutation-responsive miRNA profile in CRC remains uninvestigated. Methods: miR-139-5p was identified and evaluated by small RNA sequencing, qRT-PCR and in situ hybridization. The roles of miR-139-5p in CRC cells with and without KRAS mutation were determined by Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry and transwell assays in vitro and by tumorigenesis and metastasis assays in vivo. Microarrays followed by bioinformatic analyses, luciferase reporter assays and Western blotting were applied for mechanistic studies. Results: miR-139-5p was significantly downregulated in KRAS-mutated CRC cells and tissues compared with their wild-type counterparts. Low miR-139-5p expression was associated with aggressive phenotypes and poor prognosis in CRC patients. miR-139-5p overexpression inhibited CRC cell proliferation, migration and invasion in vitro, sensitized tumors to chemotherapy, and impaired tumor growth and metastasis in vivo. Transcriptomic profiling identified multiple modulators in the Ras (JUN and FOS) and Wnt (CTNNB1 and DVL1) signaling pathways and the epithelial-to-mesenchymal transition (EMT) process (ZEB1) as direct targets of miR-139-5p, and inverse correlations were confirmed in CRC clinical tissues. Aberrantly activated Wnt signaling in KRAS-mutant cells was demonstrated to transcriptionally repress miR-139-5p through TCF4, forming a miR-139-5p/Wnt signaling double-negative feedback loop. Conclusions: We identified miR-139-5p as a KRAS-responsive miRNA and demonstrated its involvement in CRC progression. KRAS mutation disrupted the miR-139-5p/Wnt signaling reciprocal negative feedback mechanism, which might cause miR-139-5p downregulation and derepression of oncogenic signaling pathways and EMT. These results reveal a transcriptional regulatory mode of KRAS-driven malignant transformation and highlight miR-139-5p as a novel regulator of crosstalk between the Ras and Wnt signaling pathways in CRC.
Collapse
Affiliation(s)
- Feng Du
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Internal Medicine, The Hospital of the People's Liberation Army 63650 Corps, Malan, Xinjiang Uygur Autonomous Region 841700, China
| | - Tianyu Cao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Huahong Xie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ting Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lina Sun
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Guo
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qi Liu
- Department of Biomedical Informatics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Taewan Kim
- International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Ramona Graves-Deal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Weili Han
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zuhong Tian
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Minghui Ge
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu 210042, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
289
|
Circulating cells and exosomes in acute myelogenous leukemia and their role in disease progression and survival. Clin Immunol 2020; 217:108489. [PMID: 32492479 DOI: 10.1016/j.clim.2020.108489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/12/2020] [Accepted: 05/29/2020] [Indexed: 11/20/2022]
Abstract
Acute myelogenous leukemia (AML) is an aggressive hematological malignancy associated with high rates of mortality. This incidence is due to the complexity in which the AML cells interact with other healthy human cells. These phenomena create an environment that favors the expansion of leukemic cells, which will affect the patient's prognosis. An important aspect is the ability of AML cells to evade immune responses via targeting and signaling immune cells to suppress anti-tumor responses. Many studies have reported that associations among components in the peripheral bloodstream might modulate leukemic progression because AML survival is a fundamental step for recolonizing bone marrow after allogeneic hematopoietic stem cell (HSC) transplantation or chemotherapy. Therefore, we collected the most important data about components that circulate with leukemic blasts and contribute to their survival and proliferation. We also discuss clinical approaches that could be conducted to more effectively treat the disease.
Collapse
|
290
|
Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel) 2020; 12:cancers12061411. [PMID: 32486098 PMCID: PMC7352439 DOI: 10.3390/cancers12061411] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages are key innate immune cells in the tumor microenvironment (TME) that regulate primary tumor growth, vascularization, metastatic spread and tumor response to various types of therapies. The present review highlights the mechanisms of macrophage programming in tumor microenvironments that act on the transcriptional, epigenetic and metabolic levels. We summarize the latest knowledge on the types of transcriptional factors and epigenetic enzymes that control the direction of macrophage functional polarization and their pro- and anti-tumor activities. We also focus on the major types of metabolic programs of macrophages (glycolysis and fatty acid oxidation), and their interaction with cancer cells and complex TME. We have discussed how the regulation of macrophage polarization on the transcriptional, epigenetic and metabolic levels can be used for the efficient therapeutic manipulation of macrophage functions in cancer.
Collapse
|
291
|
Guo L, Wang C, Qiu X, Pu X, Chang P. Colorectal Cancer Immune Infiltrates: Significance in Patient Prognosis and Immunotherapeutic Efficacy. Front Immunol 2020; 11:1052. [PMID: 32547556 PMCID: PMC7270196 DOI: 10.3389/fimmu.2020.01052] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer occurrence and progression involve multiple aspects of host immune deficiencies. In these events, immune cells vary their phenotypes and functions over time, thus enabling the immune microenvironment to be “tumor-inhibiting” as well as “tumor-promoting” as a whole. Because of the association of tumoricidal T cell infiltration with favorable survival in cancer patients, the Immunoscore system was established. Critically, the tumoral Immunoscore serves as an indicator of CRC patient prognosis independent of patient TNM stage and suggests that patients with high Immunoscores in their tumors have prolonged survival in general. Accordingly, stratifications according to tumoral Immunoscores provide new insights into CRC in terms of comparing disease severity, forecasting disease progression, and making treatment decisions. An important application of this system will be to shed light on candidate selection in immunotherapy for CRC, because the T cells responsible for determining the Immunoscore serve as responders to immune checkpoint inhibitors. However, the Immunoscore system merely provides a standard procedure for identifying the tumoral infiltration of cytotoxic and memory T cells, while information concerning the survival and function of these cells is still absent. Moreover, other infiltrates, such as dendritic cells, macrophages, and B cells, can still influence CRC prognosis, implying that those might also influence the therapeutic efficacy of immune checkpoint inhibitors. On these bases, this review is designed to introduce the Immunoscore system by presenting its clinical significance and application in CRC.
Collapse
Affiliation(s)
- Liang Guo
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Chuanlei Wang
- Department of Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiang Qiu
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Pu
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - Pengyu Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
292
|
Pritchard A, Tousif S, Wang Y, Hough K, Khan S, Strenkowski J, Chacko BK, Darley-Usmar VM, Deshane JS. Lung Tumor Cell-Derived Exosomes Promote M2 Macrophage Polarization. Cells 2020; 9:cells9051303. [PMID: 32456301 PMCID: PMC7290460 DOI: 10.3390/cells9051303] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular cross-talk within the tumor microenvironment (TME) by exosomes is known to promote tumor progression. Tumor promoting macrophages with an M2 phenotype are suppressors of anti-tumor immunity. However, the impact of tumor-derived exosomes in modulating macrophage polarization in the lung TME is largely unknown. Herein, we investigated if lung tumor-derived exosomes alter transcriptional and bioenergetic signatures of M0 macrophages and polarize them to an M2 phenotype. The concentration of exosomes produced by p53 null H358 lung tumor cells was significantly reduced compared to A549 (p53 wild-type) lung tumor cells, consistent with p53-mediated regulation of exosome production. In co-culture studies, M0 macrophages internalized tumor-derived exosomes, and differentiated into M2 phenotype. Importantly, we demonstrate that tumor-derived exosomes enhance the oxygen consumption rate of macrophages, altering their bioenergetic state consistent with that of M2 macrophages. In vitro co-cultures of M0 macrophages with H358 exosomes demonstrated that exosome-induced M2 polarization may be p53 independent. Murine bone marrow cells and bone marrow-derived myeloid-derived suppressor cells (MDSCs) co-cultured with lewis lung carcinoma (LLC)-derived exosomes differentiated to M2 macrophages. Collectively, these studies provide evidence for a novel role for lung tumor-exosomes in M2 macrophage polarization, which then offers new therapeutic targets for immunotherapy of lung cancer.
Collapse
Affiliation(s)
- Alexandra Pritchard
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Sultan Tousif
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Yong Wang
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Kenneth Hough
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Saad Khan
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - John Strenkowski
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
| | - Balu K. Chacko
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, USA; (B.K.C.); (V.M.D.-U.)
| | - Victor M. Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, USA; (B.K.C.); (V.M.D.-U.)
| | - Jessy S. Deshane
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA; (A.P.); (S.T.); (Y.W.); (K.H.); (S.K.); (J.S.)
- Correspondence: ; Tel.: +1-205-996-2041
| |
Collapse
|
293
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
294
|
The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance. Cells 2020; 9:cells9051141. [PMID: 32384712 PMCID: PMC7290603 DOI: 10.3390/cells9051141] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular signaling and communication, allowing the intercellular exchange of proteins, lipids, and genetic material. Their recognized role in the maintenance of the physiological balance and homeostasis seems to be severely disturbed throughout the carcinogenesis process. Indeed, the modus operandi of cancer implies the highjack of the EV signaling network to support tumor progression in many (if not all) human tumor malignancies. We have reviewed the current evidence for the role of EVs in affecting cancer hallmark traits by: (i) promoting cell proliferation and escape from apoptosis, (ii) sustaining angiogenesis, (iii) contributing to cancer cell invasion and metastasis, (iv) reprogramming energy metabolism, (v) transferring mutations, and (vi) modulating the tumor microenvironment (TME) by evading immune response and promoting inflammation. Special emphasis was given to the role of EVs in the transfer of drug resistant traits and to the EV cargo responsible for this transfer, both between cancer cells or between the microenvironment and tumor cells. Finally, we reviewed evidence for the increased release of EVs by drug resistant cells. A timely and comprehensive understanding of how tumor EVs facilitate tumor initiation, progression, metastasis and drug resistance is instrumental for the development of innovative EV-based therapeutic approaches for cancer.
Collapse
|
295
|
Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, Tian Y, Rao S, Oyang L, Liang J, Lin J, Su M, Shi Y, Cao D, Zhou Y, Liao Q. Exosomal miRNAs in tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:67. [PMID: 32299469 PMCID: PMC7164281 DOI: 10.1186/s13046-020-01570-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Tumor microenvironment (TME) is the internal environment in which tumor cells survive, consisting of tumor cells, fibroblasts, endothelial cells, and immune cells, as well as non-cellular components, such as exosomes and cytokines. Exosomes are tiny extracellular vesicles (40-160nm) containing active substances, such as proteins, lipids and nucleic acids. Exosomes carry biologically active miRNAs to shuttle between tumor cells and TME, thereby affecting tumor development. Tumor-derived exosomal miRNAs induce matrix reprogramming in TME, creating a microenvironment that is conducive to tumor growth, metastasis, immune escape and chemotherapy resistance. In this review, we updated the role of exosomal miRNAs in the process of TME reshaping.
Collapse
Affiliation(s)
- Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794,, USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
296
|
Dragomir MP, Kopetz S, Ajani JA, Calin GA. Non-coding RNAs in GI cancers: from cancer hallmarks to clinical utility. Gut 2020; 69:748-763. [PMID: 32034004 DOI: 10.1136/gutjnl-2019-318279] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
One of the most unexpected discoveries in molecular oncology, in the last decades, was the identification of a new layer of protein coding gene regulation by transcripts that do not codify for proteins, the non-coding RNAs. These represent a heterogeneous category of transcripts that interact with many types of genetic elements, including regulatory DNAs, coding and other non-coding transcripts and directly to proteins. The final outcome, in the malignant context, is the regulation of any of the cancer hallmarks. Non-coding RNAs represent the most abundant type of hormones that contribute significantly to cell-to cell communication, revealing a complex interplay between tumour cells, tumour microenvironment cells and immune cells. Consequently, profiling their abundance in bodily fluids became a mainstream of biomarker identification. Therapeutic targeting of non-coding RNAs represents a new option for clinicians that is currently under development. This review will present the biology and translational value of three of the most studied categories on non-coding RNAs, the microRNAs, the long non-coding RNAs and the circular RNAs. We will also focus on some aspirational concepts that can help in the development of clinical applications related to non-coding RNAs, including using pyknons to discover new non-coding RNAs, targeting human-specific transcripts which are expressed specifically in the tumour cell and using non-coding RNAs to increase the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Mihnea Paul Dragomir
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George Adrian Calin
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
297
|
El-Arabey AA, Denizli M, Kanlikilicer P, Bayraktar R, Ivan C, Rashed M, Kabil N, Ozpolat B, Calin GA, Salama SA, Abd-Allah AR, Sood AK, Lopez-Berestein G. GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cell Signal 2020; 68:109539. [PMID: 31935430 DOI: 10.1016/j.cellsig.2020.109539] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/03/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecologic cancer. Emerging evidence suggests that tumor-associated macrophages (TAMs) play an immunosuppressive role in the tumor microenvironment and promote tumor growth, angiogenesis, and metastasis in ovarian cancer. Therefore, targeting TAMs in patients with ovarian cancer is an appealing strategy; however, all trials to date have failed. To improve the efficacy of this approach, we sought to elucidate the underlying mechanisms of the role of TAMs in ovarian cancer. We found that the developmental transcription factor GATA3 was highly expressed in HGSOC cell lines but not in the fallopian tube, which is the main origin of HGSOC. GATA3 expression was associated with poor prognosis in HGSOC patients (P < .05) and was found to promote proliferation and migration in HGSOC cell lines. GATA3 was released abundantly from TAM cells via exosomes and contributed to tumor growth in the tumor microenvironment. Moreover, GATA3 acted as a regulator for macrophage polarization and interactions between TAMs and HGSOC to support proliferation, motility, and cisplatin chemoresistance in mutant TP53 HGSOC cell lines. Furthermore, GATA3 played a critical role in the interactions between TAMs and mutant TP53 HGSOC to promote angiogenesis and epithelial-mesenchymal transition with epigenetic regulation. Targeting GATA3 using GATA3siRNA in TAMs impeded GATA3-driven proliferation, migration, cisplatin chemoresistance, and angiogenesis in mutant TP53 HGSOC cell lines. Our findings indicate that GATA3 plays a novel role in immunoediting of HGSOC and demonstrate that GATA3 may serve as a prognostic marker for HGSOC and a promising target in the treatment of HGSOC.
Collapse
MESH Headings
- Apoptosis/genetics
- Cell Communication/genetics
- Cell Line, Tumor
- Cell Movement
- Cell Polarity/genetics
- Endometrial Neoplasms/pathology
- Endothelial Cells/pathology
- Epigenesis, Genetic
- Epithelial-Mesenchymal Transition/genetics
- Exosomes/metabolism
- Exosomes/ultrastructure
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- GATA3 Transcription Factor/metabolism
- Genome, Human
- Humans
- Matrix Metalloproteinase 9/metabolism
- Mutation/genetics
- Neoplasm Grading
- Neoplasm Proteins/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Neovascularization, Pathologic/genetics
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Phosphorylation
- RNA Splice Sites/genetics
- Tumor Microenvironment/genetics
- Tumor Suppressor Protein p53/genetics
- Tumor-Associated Macrophages/metabolism
- Tumor-Associated Macrophages/pathology
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Merve Denizli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinar Kanlikilicer
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohammed Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Nashwa Kabil
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Salama Abdou Salama
- Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Adel Rashad Abd-Allah
- Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
298
|
Yi M, Xu L, Jiao Y, Luo S, Li A, Wu K. The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol 2020; 13:25. [PMID: 32222150 PMCID: PMC7103070 DOI: 10.1186/s13045-020-00848-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
During malignant transformation, accumulated somatic mutations endow cancer cells with increased invasiveness and immunogenicity. Under selective pressure, these highly immunogenic cancer cells develop multiple strategies to evade immune attack. It has been well established that cancer cells could downregulate the expression of major histocompatibility complex, acquire alterations in interferon pathway, and upregulate the activities of immune checkpoint pathways. Besides, cancer cells secret numerous cytokines, exosomes, and microvesicles to regulate the functions and abundances of components in the tumor microenvironment including immune effector cells and professional antigen presentation cells. As the vital determinant of post-transcriptional regulation, microRNAs (miRNAs) not only participate in cancer initiation and progression but also regulate anti-cancer immune response. For instance, some miRNAs affect cancer immune surveillance and immune escape by interfering the expression of immune attack-associated molecules. A growing body of evidence indicated that cancer-derived immune modulatory miRNAs might be promising targets to counteract cancer immune escape. In this review, we summarized the role of some miRNAs in cancer immune escape and discussed their potential clinical application as treatment targets.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
299
|
Interactions between the MicroRNAs and Microbiota in Cancer Development: Roles and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12040805. [PMID: 32230762 PMCID: PMC7225936 DOI: 10.3390/cancers12040805] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The human microbiota is made up of the fungi, bacteria, protozoa and viruses cohabiting within the human body. An altered microbiota can provoke diseases such as cancer. The mechanisms by which a modified microbiota can intervene in the onset and progression of neoplastic diseases are manifold. For instance, these include the effects on the immune system and the onset of obesity. A different mechanism seems to be constituted by the continuous and bidirectional relationships existing between microbiota and miRNAs. MiRNAs emerged as a novel group of small endogenous non-coding RNAs from that control gene expression. Several works seem to confirm the presence of a close connection between microbiota and miRNAs. Although the main literature data concern the correlations between microbiota, miRNAs and colon cancer, several researches have revealed the presence of connections with other types of tumour, including the ovarian tumour, cervical carcinoma, hepatic carcinoma, neoplastic pathologies of the central nervous system and the possible implication of the microbiota-miRNAs system on the response to the treatment of neoplastic pathologies. In this review, we summarise the physiological and pathological functions of the microbiota on cancer onset by governing miRNA production. A better knowledge of the bidirectional relationships existing between microbiota and miRNAs could provide new markers for the diagnosis, staging and monitoring of cancer and seems to be a promising approach for antagomir-guided approaches as therapeutic agents.
Collapse
|
300
|
Huang Q, Hsueh CY, Guo Y, Wu XF, Li JY, Zhou L. Lack of miR-1246 in small extracellular vesicle blunts tumorigenesis of laryngeal carcinoma cells by regulating Cyclin G2. IUBMB Life 2020; 72:1491-1503. [PMID: 32196930 DOI: 10.1002/iub.2274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Small extracellular vesicle (sEV) has precise impacts on tumor microenvironment and play vital functions in intercellular interaction. However, the functional role of sEV miRNA on laryngeal squamous cell carcinoma (LSCC) is largely unresolved. Here, the expression of miR-1246 in LSCC tissues and plasma sEV was examined. The internalization ability of sEV was determined by uptake assay. Then, the source and purity of sEV were checked through RNase and/or pharmacological inhibitors application. The invasion, migration, proliferation, and cell cycle assays were used to determine the altered abilities of miR-1246 in sEV in LSCC. Finally, target gene of miR-1246, Cyclin G2 (CCNG2), was stained immunohistochemically. In addition, the relationship between CCNG2 and clinicopathological features of patients was analyzed. We found that miR-1246 was higher in LSCC tissues and plasma sEV. MiR-1246 was enriched in sEV rather than soluble form. SEV could be internalized into adjacent cells. Lack of miR-1246 in sEV abrogated the tumorigenesis of LSCC. Furthermore, CCNG2 knockdown arrested the cell cycle and correlated to clinicopathological features and prognosis of LSCC patients. Taken together, we found that the function of sEV miR-1246 by regulating CCNG2 is responsible for LSCC advancement with emphasis on the main source of miR-1246 mainly root in sEV rather than in soluble form.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yang Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Xiu-Fa Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Jiao-Yu Li
- Department of Pediatric, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liang Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|