251
|
Scheepstra M, Hekking KF, van Hijfte L, Folmer RH. Bivalent Ligands for Protein Degradation in Drug Discovery. Comput Struct Biotechnol J 2019; 17:160-176. [PMID: 30788082 PMCID: PMC6369262 DOI: 10.1016/j.csbj.2019.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023] Open
Abstract
Targeting the "undruggable" proteome remains one of the big challenges in drug discovery. Recent innovations in the field of targeted protein degradation and manipulation of the ubiquitin-proteasome system open up new therapeutic approaches for disorders that cannot be targeted with conventional inhibitor paradigms. Proteolysis targeting chimeras (PROTACs) are bivalent ligands in which a compound that binds to the protein target of interest is connected to a second molecule that binds an E3 ligase via a linker. The E3 protein is usually either Cereblon or Von Hippel-Lindau. Several examples of selective PROTAC molecules with potent effect in cells and in vivo models have been reported. The degradation of specific proteins via these bivalent molecules is already allowing for the study of biochemical pathways and cell biology with more specificity than was possible with inhibitor compounds. In this review, we provide a comprehensive overview of recent developments in the field of small molecule mediated protein degradation, including transcription factors, kinases and nuclear receptors. We discuss the potential benefits of protein degradation over inhibition as well as the challenges that need to be overcome.
Collapse
Key Words
- ABCB1, ATP-binding cassette sub-family B member 1
- AD, Alzheimer's disease
- AHR, aryl hydrogen receptor
- ALK, anaplastic lymphoma kinase
- Aβ, amyloid-β
- BET, bromodomain and extra-terminal
- BTK, Bruton's tyrosine kinase
- Bcl6, B-cell lymphoma 6
- Bivalent ligand
- Brd4, bromodomain 4
- CDK9, cyclin dependent kinase 9
- CK2, Casein kinase 2
- CLIPTAC, click-formed proteolysis targeting chimera
- CRBN, Cereblon
- Chimera
- DC50, the compound concentration that results in 50% target protein degradation
- DHODH, Dihydroorotate dehydrogenase
- Degrader
- ERK1, extracellular signal-regulated kinase 1
- ERRα, estrogen-related receptor alpha
- ERα, estrogen receptor alpha
- EZH2, enhancer of zeste homolog 2
- FLT3, FMS-like tyrosine kinase-3
- FRS2, fibroblast growth factor receptor substrate 2
- GCN5, general control nonderepressible 5
- GPCR, G-protein coupled receptor
- GST, glutathione S-transferase
- HDAC, histone deacetylase
- HTS, high-throughput screening
- MDM2, mouse double-minute 2 homolog
- MetAP-2, methionine aminopeptidase-2
- PCAF, P300/CBP-associated factor
- PEG, polyethylene glycol
- PI3K, phosphatidylinositol-3-kinase
- PLK-1, polo-like kinase 1
- POI, protein of interest
- PROTAC
- PROTAC, proteolysis targeting chimeras
- Proteasome
- Protein degradation
- RAR, retinoic acid receptor
- RIPK2, receptor-interacting serine/threonine-protein kinase 2
- RTK, receptor tyrosine kinase
- SARM, selective androgen receptor modulator
- SNIPER, specific and non-genetic IAP-dependent protein eraser
- TBK1, TANK-Binding kinase 1
- TRIM24, tripartite motif-containing 24 (also known as TIF1α)
- VHL, Von Hippel-Lindau
- cIAP1, cellular inhibitor of apoptosis protein
Collapse
|
252
|
Han X, Wang C, Qin C, Xiang W, Fernandez-Salas E, Yang CY, Wang M, Zhao L, Xu T, Chinnaswamy K, Delproposto J, Stuckey J, Wang S. Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. J Med Chem 2019; 62:941-964. [PMID: 30629437 DOI: 10.1021/acs.jmedchem.8b01631] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report herein the discovery of highly potent PROTAC degraders of androgen receptor (AR), as exemplified by compound 34 (ARD-69). ARD-69 induces degradation of AR protein in AR-positive prostate cancer cell lines in a dose- and time-dependent manner. ARD-69 achieves DC50 values of 0.86, 0.76, and 10.4 nM in LNCaP, VCaP, and 22Rv1 AR+ prostate cancer cell lines, respectively. ARD-69 is capable of reducing the AR protein level by >95% in these prostate cancer cell lines and effectively suppressing AR-regulated gene expression. ARD-69 potently inhibits cell growth in these AR-positive prostate cancer cell lines and is >100 times more potent than AR antagonists. A single dose of ARD-69 effectively reduces the level of AR protein in xenograft tumor tissue in mice. Further optimization of ARD-69 may ultimately lead to a new therapy for AR+, castration-resistant prostate cancer.
Collapse
|
253
|
Zou Y, Ma D, Wang Y. The PROTAC technology in drug development. Cell Biochem Funct 2019; 37:21-30. [PMID: 30604499 PMCID: PMC6590639 DOI: 10.1002/cbf.3369] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022]
Abstract
Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. SIGNIFICANCE OF THE STUDY: This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy.
Collapse
Affiliation(s)
- Yutian Zou
- The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China.,Department of Science, Brookwood High School, Snellville, Georgia
| | - Danhui Ma
- The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Yinyin Wang
- The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
254
|
Hines J, Lartigue S, Dong H, Qian Y, Crews CM. MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53. Cancer Res 2019; 79:251-262. [PMID: 30385614 PMCID: PMC6318015 DOI: 10.1158/0008-5472.can-18-2918] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Although the number of proteins effectively targeted for posttranslational degradation by PROTAC has grown steadily, the number of E3 ligases successfully exploited to accomplish this has been limited to the few for which small-molecule ligands have been discovered. Although the E3 ligase MDM2 is bound by the nutlin class of small-molecule ligands, there are few nutlin-based PROTAC. Because a nutlin-based PROTAC should both knockdown its target protein and upregulate the tumor suppressor p53, we examined the ability of such a PROTAC to decrease cancer cell viability. A nutlin-based, BRD4-degrading PROTAC, A1874, was able to degrade its target protein by 98% with nanomolar potency. Given the complementary ability of A1874 to stabilize p53, we discovered that the nutlin-based PROTAC was more effective in inhibiting proliferation of many cancer cell lines with wild-type p53 than was a corresponding VHL-utilizing PROTAC with similar potency and efficacy to degrade BRD4. This is the first report of a PROTAC in which the E3 ligase ligand and targeting warhead combine to exert a synergistic antiproliferative effect. Our study highlights the untapped potential that may be unlocked by expanding the repertoire of E3 ligases that can be recruited by PROTAC. SIGNIFICANCE: These findings present the first BRD4-targeting MDM2-based PROTAC that possesses potent, distinct, and synergistic biological activities associated with both ends of this heterobifunctional molecule.
Collapse
Affiliation(s)
- John Hines
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Schan Lartigue
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | | | | | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut.
- Department of Chemistry, Yale University, New Haven, Connecticut
- Department of Pharmacology, Yale University, New Haven, Connecticut
| |
Collapse
|
255
|
Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, Koegl M, Riching KM, Daniels DL, Spallarossa A, Ciulli A. Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective von Hippel-Lindau (VHL) Based Dual Degrader Probe of BRD9 and BRD7. J Med Chem 2018; 62:699-726. [PMID: 30540463 PMCID: PMC6348446 DOI: 10.1021/acs.jmedchem.8b01413] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Developing
PROTACs to redirect the ubiquitination activity of E3
ligases and potently degrade a target protein within cells can be
a lengthy and unpredictable process, and it remains unclear whether
any combination of E3 and target might be productive for degradation.
We describe a probe-quality degrader for a ligase–target pair
deemed unsuitable: the von Hippel–Lindau (VHL) and BRD9, a
bromodomain-containing subunit of the SWI/SNF chromatin remodeling
complex BAF. VHL-based degraders could be optimized from suboptimal
compounds in two rounds by systematically varying conjugation patterns
and linkers and monitoring cellular degradation activities, kinetic
profiles, and ubiquitination, as well as ternary complex formation
thermodynamics. The emerged structure–activity relationships
guided the discovery of VZ185, a potent, fast, and selective degrader
of BRD9 and of its close homolog BRD7. Our findings qualify a new
chemical tool for BRD7/9 knockdown and provide a roadmap for PROTAC
development against seemingly incompatible target–ligase combinations.
Collapse
Affiliation(s)
- Vittoria Zoppi
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom.,Dipartimento di Farmacia, Sezione di Chimica del Farmaco e del Prodotto Cosmetico , Università degli Studi di Genova , Viale Benedetto XV 3 , 16132 Genova , Italy
| | - Scott J Hughes
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom
| | - Chiara Maniaci
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom.,Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom
| | | | | | - Manfred Koegl
- Boehringer Ingelheim RCV GmbH & Co. KG , 1221 Vienna , Austria
| | - Kristin M Riching
- Promega Corporation , 2800 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| | - Danette L Daniels
- Promega Corporation , 2800 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| | - Andrea Spallarossa
- Dipartimento di Farmacia, Sezione di Chimica del Farmaco e del Prodotto Cosmetico , Università degli Studi di Genova , Viale Benedetto XV 3 , 16132 Genova , Italy
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom
| |
Collapse
|
256
|
Dellis AE, Papatsoris AG. Perspectives on the current and emerging chemical androgen receptor antagonists for the treatment of prostate cancer. Expert Opin Pharmacother 2018; 20:163-172. [PMID: 30462924 DOI: 10.1080/14656566.2018.1548611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Prostate cancer is the most common cancer in men. Regardless of the initial treatment of localized disease, almost all patients develop castration resistant prostate cancer (CRPC). A better understanding of the molecular mechanisms behind castration resistance has led to the approval of novel oral androgen receptor (AR) antagonists, such as enzalutamide and apalutamide. Indeed, research has accelerated with numerous agents being studied for the management of CRPC. Areas covered: Herein, the authors present currently used and emerging AR antagonists for the treatment of CRPC. Emerging agents include darolutamide, EZN-4176, AZD-3514, and AZD-5312, apatorsen, galeterone, ODM-2014, TRC-253, BMS-641988, and proxalutamide. Expert opinion: Further understanding of the mechanisms leading to castration resistance in prostate cancer can reveal potential targets for the development of novel AR antagonists. Current novel agents are associated with modest clinical and survival benefit, while acquired resistance and safety issues are under continuous evaluation. The combination of AR antagonists used and ideal sequencing strategies are key tasks ahead, along with the investigation of molecular biomarkers for future personalized targeted therapies. In the future, the challenge will be to determine an AR antagonist with the best combination of outcome and tolerability.
Collapse
Affiliation(s)
- Athanasios E Dellis
- a 2nd Department of Surgery, Aretaieion Academic Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece.,b 1st Department of Urology, Laikon General Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece
| | - Athanasios G Papatsoris
- c 2nd Department of Urology, Sismanogleion General Hospital, School of Medicine , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
257
|
Burslem GM, Song J, Chen X, Hines J, Crews CM. Enhancing Antiproliferative Activity and Selectivity of a FLT-3 Inhibitor by Proteolysis Targeting Chimera Conversion. J Am Chem Soc 2018; 140:16428-16432. [DOI: 10.1021/jacs.8b10320] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- George M. Burslem
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Jayoung Song
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Xin Chen
- Arvinas Inc., New Haven, Connecticut 06511, United States
| | - John Hines
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Departments of Chemistry and Pharmacology, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|