251
|
Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N. Generation of different fates from multipotent muscle stem cells. Development 2002; 129:2987-95. [PMID: 12050145 DOI: 10.1242/dev.129.12.2987] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although neuronal and mesenchymal stem cells exhibit multipotentiality, this property has not previously been demonstrated for muscle stem cells. We now show that muscle satellite cells of adult mice are able to differentiate into osteoblasts, adipocytes and myotubes. Undifferentiated muscle progenitor cells derived from a single satellite cell co-expressed multiple determination genes including those for MyoD and Runx2, which are specific for myogenic and osteogenic differentiation, respectively. Determination genes not relevant to the induced differentiation pathway were specifically downregulated in these cells. Similar multipotent progenitor cells were isolated from adult human muscle. Based on these observations, we propose a ‘stock options’ model for the generation of different fates from multipotent stem cells.
Collapse
Affiliation(s)
- Michiko R Wada
- Stem Cell Research Unit, Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | | | |
Collapse
|
252
|
Zaidi SK, Sullivan AJ, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc Natl Acad Sci U S A 2002; 99:8048-53. [PMID: 12060751 PMCID: PMC123018 DOI: 10.1073/pnas.112664499] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Runx factors control lineage commitment and are transcriptional effectors of Smad signaling. Genetic defects in these pathways interfere with normal development. The in situ localization of Runx and Smad proteins must impact the mechanisms by which these proteins function together in gene regulation. We show that the integration of Runx and Smad signals is mediated by in situ interactions at specific foci within the nucleus. Activated Smads are directed to these subnuclear foci only in the presence of Runx proteins. Smad-Runx complexes are associated in situ with the nuclear matrix, and this association requires the intranuclear targeting signal of Runx factors. The convergence of Smad and Runx proteins at these sites supports transcription as reflected by BrUTP labeling and functional cooperativity between the proteins. Thus, Runx-mediated intranuclear targeting of Smads is critical for the integration of two distinct pathways essential for fetal development.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0106, USA
| | | | | | | | | | | |
Collapse
|
253
|
Abstract
Bone is continuously destroyed and reformed to maintain constant bone volume and calcium homeostasis in vertebrates throughout their lives. Osteoblasts and osteoclasts are specialized cells responsible for bone formation and resorption, respectively. Recent developments in bone cell biology have greatly changed our conceptions of the regulatory mechanisms of the differentiation of osteoblasts and osteoclasts. Bone morphogenetic proteins (BMPs) play critical roles in osteoblast differentiation. The discovery of Smad-mediated signals revealed the precise functions of BMPs in osteoblast differentiation. Transcription factors, Runx2 and Osterix, are found to be essential molecules for inducing osteoblast differentiation, as indicated by the fact that both Runx2-null mice and Osterix-null mice have neither bone tissue nor osteoblasts. Smad transcriptional factors are shown to interact with other transcription regulators, including Runx2. Also, the recent discovery of receptor activator of NF-kappaB ligand (RANKL)-RANK interaction confirms the well-known hypothesis that osteoblasts play an essential role in osteoclast differentiation. Osteoblasts express RANKL as a membrane-associated factor. Osteoclast precursors that express RANK, a receptor for RANKL, recognize RANKL through the cell-cell interaction and differentiate into osteoclasts. Recent studies have shown that lipopolysaccharide and inflammatory cytokines such as tumor necrosis factor receptor-alpha and interleukin I directly regulate osteoclast differentiation and function through a mechanism independent of the RANKL-RANK interaction. Transforming growth factor-beta super family members and interferon-gamma are also shown to be important regulators in osteoclastogenesis. These findings have opened new areas for exploring the molecular mechanisms of osteoblast and osteoclast differentiation.
Collapse
Affiliation(s)
- T Katagiri
- Department of Biochemistry, School of Dentistry, Showa University, Japan
| | | |
Collapse
|
254
|
Yoshida K, Oida H, Kobayashi T, Maruyama T, Tanaka M, Katayama T, Yamaguchi K, Segi E, Tsuboyama T, Matsushita M, Ito K, Ito Y, Sugimoto Y, Ushikubi F, Ohuchida S, Kondo K, Nakamura T, Narumiya S. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci U S A 2002; 99:4580-5. [PMID: 11917107 PMCID: PMC123690 DOI: 10.1073/pnas.062053399] [Citation(s) in RCA: 262] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bone remodeling, comprising resorption of existing bone and de novo bone formation, is required for the maintenance of a constant bone mass. Prostaglandin (PG)E2 promotes both bone resorption and bone formation. By infusing PGE2 to mice lacking each of four PGE receptor (EP) subtypes, we have identified EP4 as the receptor that mediates bone formation in response to this agent. Consistently, bone formation was induced in wild-type mice by infusion of an EP4-selective agonist and not agonists specific for other EP subtypes. In culture of bone marrow cells from wild-type mice, PGE2 induced expression of core-binding factor alpha1 (Runx2/Cbfa1) and enhanced formation of mineralized nodules, both of which were absent in the culture of cells from EP4-deficient mice. Furthermore, administration of the EP4 agonist restored bone mass and strength normally lost in rats subjected to ovariectomy or immobilization. Histomorphometric analysis revealed that the EP4 agonist induced significant increases in the volume of cancellous bone, osteoid formation, and the number of osteoblasts in the affected bone of immobilized rats, indicating that activation of EP4 induces de novo bone formation. In addition, osteoclasts were found on the increased bone surface at a density comparable to that found in the bone of control animals. These results suggest that activation of EP4 induces bone remodeling in vivo and that EP4-selective drugs may be beneficial in humans with osteoporosis.
Collapse
Affiliation(s)
- Keiji Yoshida
- Department of Pharmacology, Faculty of Medicine, Institute for Virus Research, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Otto F, Kanegane H, Mundlos S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat 2002; 19:209-16. [PMID: 11857736 DOI: 10.1002/humu.10043] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cleidocranial dysplasia (CCD) is a autosomal dominant disorder characterized by skeletal anomalies such as patent fontanels, late closure of cranial sutures with Wormian bones, late erupting secondary dentition, rudimentary clavicles, and short stature. The locus for this disease was mapped to chromosome 6p21. RUNX2 is a member of the runt family of transcription factors and its expression is restricted to developing osteoblasts and a subset of chondrocytes. Mutations in the RUNX2 gene have been shown to cause CCD. Chromosomal translocations, deletions, insertions, nonsense and splice-site mutations, as well as missense mutations of the RUNX2 gene have been described in CCD patients. Although there is a wide spectrum in phenotypic variability ranging from primary dental anomalies to all CCD features plus osteoporosis, no clear phenotype-genotype correlation has been established. However analysis of the three-dimensional structure of the DNA binding runt domain of the RUNX proteins and its interaction with DNA, as well as the cofactor CBFB, start to provide an insight into how missense mutations affect RUNX2 function.
Collapse
Affiliation(s)
- Florian Otto
- Department of Hematology/Oncology, University of Freiburg Medical Center, Freiburg, Germany.
| | | | | |
Collapse
|
256
|
Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 2002; 277:4883-91. [PMID: 11729207 DOI: 10.1074/jbc.m111023200] [Citation(s) in RCA: 735] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) family members, which include bone morphogenetic proteins (BMPs) and TGF-betas, elicit their cellular effects by activating specific Smad proteins, which control the transcription of target genes. BMPs and TGF-betas have overlapping as well as specific effects on mesenchymal cell differentiation for which the mechanisms are incompletely understood. Here we report that Id1, a dominant negative inhibitor of basic helix-loop-helix proteins, is a direct target gene for BMP. BMP, but not TGF-beta, strongly activates the Id1 promoter in an Smad-dependent manner. We identified two BMP-responsive regions in the mouse Id1 promoter, which contain three distinct sequence elements; one region contains two Smad binding elements (SBEs), and the other region contains a GGCGCC palindromic sequence flanked by two CAGC and two CGCC motifs. Whereas SBEs and GGCGCC sequence are critically important, the CAGC and CGCC motifs are needed for efficient BMP-induced Id1 promoter activation. Smads are part of nuclear transcription factor complexes that specifically bind to SBEs and GGCGCC sequence in response to BMP but not TGF-beta. Multimerization of the all three distinct sequence motifs is needed to generate a highly sensitive and BMP/Smad-dependent specific enhancer. Our results provide important new insights into how the BMP/Smad pathway can specifically activate target genes.
Collapse
Affiliation(s)
- Olexander Korchynskyi
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
257
|
|
258
|
López-Rovira T, Chalaux E, Massagué J, Rosa JL, Ventura F. Direct binding of Smad1 and Smad4 to two distinct motifs mediates bone morphogenetic protein-specific transcriptional activation of Id1 gene. J Biol Chem 2002; 277:3176-85. [PMID: 11700304 DOI: 10.1074/jbc.m106826200] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are potent inhibitors of myoblast differentiation and inducers of bone formation both in vivo and in vitro. Expression of Id1, a negative regulator of basic helix-loop-helix transcription factors, is up-regulated by BMPs and contributes to the antimyogenic effects of this family of cytokines. In this report, we have identified a specific BMP-2 immediate early response enhancer in the human Id1 gene. Transcriptional activation of the enhancer was increased by overexpression of BMP-responsive Smads, and Smad4 and was completely abrogated in Smad4-deficient cells. Deletion analysis demonstrates that the responsive region is composed of two separate DNA binding elements, a set of overlapping GC boxes, which bind BMP-regulated Smads upon BMP stimulation, and three repeats of CAGAC boxes. Gel shift and oligonucleotide pull-down assays demonstrated that these two types of motifs were capable of binding their corresponding Smads. However, deletion or mutation of either DNA binding element was nonadditive, since disruption of either GC or CAGAC boxes resulted in complete or severe loss of BMP-2 responsiveness. These data suggest the simultaneous requirement of two independent DNA binding elements to allow functional cooperativity of BMP-regulated Smads and Smad4 in BMP-activated gene promoters.
Collapse
Affiliation(s)
- Teresa López-Rovira
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
259
|
Nam S, Jin YH, Li QL, Lee KY, Jeong GB, Ito Y, Lee J, Bae SC. Expression pattern, regulation, and biological role of runt domain transcription factor, run, in Caenorhabditis elegans. Mol Cell Biol 2002; 22:547-54. [PMID: 11756550 PMCID: PMC139740 DOI: 10.1128/mcb.22.2.547-554.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Caenorhabditis elegans run gene encodes a Runt domain factor. Runx1, Runx2, and Runx3 are the three known mammalian homologs of run. Runx1, which plays an essential role in hematopoiesis, has been identified at the breakpoint of chromosome translocations that are responsible for human leukemia. Runx2 plays an essential role in osteogenesis, and inactivation of one allele of Runx2 is responsible for the human disease cleidocranial dysplasia. To understand the role of run in C. elegans, we used transgenic run::GFP reporter constructs and a double-stranded RNA-mediated interference method. The expression of run was detected as early as the bean stage exclusively in the nuclei of seam hypodermal cells and lasted until the L3 stage. At the larval stage, expression of run was additionally detected in intestinal cells. The regulatory elements responsible for the postembryonic hypodermal seam cells and intestinal cells were separately located within a 7.2-kb-long intron region. This is the first report demonstrating that an intron region is essential for stage-specific and cell type-specific expression of a C. elegans gene. RNA interference analysis targeting the run gene resulted in an early larva-lethal phenotype, with apparent malformation of the hypodermis and intestine. These results suggest that run is involved in the development of a functional hypodermis and gut in C. elegans. The highly conserved role of the Runt domain transcription factor in gut development during evolution from nematodes to mammals is discussed.
Collapse
Affiliation(s)
- Seunghee Nam
- Department of Biology, Yonsei University, Seoul 120-749, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res 2002; 17:101-10. [PMID: 11771655 DOI: 10.1359/jbmr.2002.17.1.101] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Osteoblasts secrete a complex extracellular matrix (ECM) containing collagenous and noncollagenous proteins, bone morphogenetic proteins (BMPs), and growth factors. Osteoblast-specific gene expression requires ascorbic acid (AA)-dependent assembly of a collagenous ECM. Matrix responsiveness requires an alpha2beta1 integrin-collagen interaction and mitogen-activated protein kinase (MAPK) activity, which phosphorylates and activates the osteoblast-specific transcription factor Cbfa1. This study examines interactions between this integrin/MAPK-mediated pathway and signals initiated by BMPs contained in the osteoblast matrix. MC3T3-E1 cells were shown to constitutively express BMP-2, BMP-4, and BMP-7. Noggin, a specific BMP inhibitor, reversibly blocked AA-induced gene expression, indicating that BMP production by MC3T3-E1 cells was necessary for differentiation. The ability of exogenously added BMP-2, BMP-4, or BMP-7 to stimulate osteocalcin (OCN) and bone sialoprotein (BSP) mRNAs or OCN promoter activity was synergistically increased in cells that were actively synthesizing an ECM (i.e., were grown in the presence of AA). A minimum of 4 days of ECM accumulation was required for this synergistic response to be observed. Neither BMP-7, AA, nor a combination of these two treatments had major effects on Cbfa1 messenger RNA (mRNA) or protein levels, as would be expected if regulation was mainly at the posttranscriptional level. U0126, a specific inhibitor of MAPK/extracellular signal-regulated kinase (MEK), blocked AA- or BMP-7/AA-dependent gene expression in a time- and dose-dependent manner that was closely correlated with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation. This work establishes that autocrine BMP production as well as integrin-mediated cell-collagen interactions are both required for osteoblast differentiation, and both these pathways require MAP kinase activity.
Collapse
Affiliation(s)
- Guozhi Xiao
- Department of Periodontics, Prevention, and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | | | | | | | |
Collapse
|
261
|
Thirunavukkarasu K, Miles RR, Halladay DL, Yang X, Galvin RJ, Chandrasekhar S, Martin TJ, Onyia JE. Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta (TGF-beta). Mapping of the OPG promoter region that mediates TGF-beta effects. J Biol Chem 2001; 276:36241-50. [PMID: 11451955 DOI: 10.1074/jbc.m104319200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) regulates osteoclastogenesis and osteoclast survival, in part through the induction of osteoprotegerin (OPG), a protein known to inhibit osteoclast formation and function. To explore the molecular basis of TGF-beta regulation of OPG expression, we evaluated the effects of TGF-beta on osteoclast formation, OPG protein secretion, mRNA expression, and gene transcription. The marked inhibitory effect of TGF-beta on osteoclast differentiation was confirmed in a co-culture model utilizing murine stromal/osteoblastic BALC cells and bone marrow hematopoietic precursors. This inhibition in osteoclast differentiation was preceded by a decrease in RANKL mRNA expression (5-fold) and a reciprocal increase in OPG mRNA (6.1-fold) and protein (7.1-fold) expression in BALC cells. At the promoter/transcriptional level, TGF-beta treatment resulted in a 3-10-fold increase in reporter gene activity directed by a 5.9-kilobase fragment of the human OPG promoter in transfection assays performed in UMR106 cells. The effect of TGF-beta was mimicked by TGF-beta2 and -beta3 but not by BMP-4, suggesting a TGF-beta signal-specific effect. Deletion analysis revealed that a 183-base pair region (-372 to -190) in the promoter was required for TGF-beta responsiveness, and this region was sufficient to confer TGF-beta inducibility to a heterologous (osteocalcin) minimal promoter. Substitution mutations that disrupted the Cbfa1- and/or Smad-binding elements present in the 183-base pair region resulted in a decrease in base-line expression and in the responsiveness to TGF-beta and Cbfa1. Collectively, these studies indicate the involvement and possible interaction of Cbfa1 and Smad proteins in mediating the effects of TGF-beta on OPG transcription.
Collapse
Affiliation(s)
- K Thirunavukkarasu
- Gene Regulation, Bone and Inflammation Research, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | |
Collapse
|
262
|
Banerjee C, Javed A, Choi JY, Green J, Rosen V, van Wijnen AJ, Stein JL, Lian JB, Stein GS. Differential regulation of the two principal Runx2/Cbfa1 n-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype. Endocrinology 2001; 142:4026-39. [PMID: 11517182 DOI: 10.1210/endo.142.9.8367] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cbfa1/Runx2 is a transcription factor essential for bone formation and osteoblast differentiation. Two major N-terminal isoforms of Cbfa1, designated type I/p56 (PEBP2aA1, starting with the sequence MRIPV) and type II/p57 (til-1, starting with the sequence MASNS), each regulated by distinct promoters, are known. Here, we show that the type I transcript is constitutively expressed in nonosseous mesenchymal tissues and in osteoblast progenitor cells. Cbfa1 type I isoform expression does not change with the differentiation status of the cells. In contrast, the type II transcript is increased during differentiation of primary osteoblasts and is induced in osteoprogenitors and in premyoblast C2C12 cells in response to bone morphogenetic protein-2. The functional equivalence of the two isoforms in activation and repression of bone-specific genes indicates overlapping functional roles. The presence of the ubiquitous type I isoform in nonosseous cells and before bone morphogenetic protein-2 induced expression of the type II isoform suggests a regulatory role for Cbfa1 type I in early stages of mesenchymal cell development, whereas type II is necessary for osteogenesis and maintenance of the osteoblast phenotype. Our data indicate that Cbfa1 function is regulated by transcription, cellular protein levels, and DNA binding activity during osteoblast differentiation. Taken together, our studies suggest that developmental timing and cell type- specific expression of type I and type II Cbfa isoforms, and not necessarily molecular properties or sequences that reside in the N-terminus of Cbfa1, are the principal determinants of the osteogenic activity of Cbfa1.
Collapse
Affiliation(s)
- C Banerjee
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Zaidi SK, Javed A, Choi JY, van Wijnen AJ, Stein JL, Lian JB, Stein GS. A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene. J Cell Sci 2001; 114:3093-102. [PMID: 11590236 DOI: 10.1242/jcs.114.17.3093] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key components of DNA replication and the basal transcriptional machinery as well as several tissue-specific transcription factors are compartmentalized in specialized nuclear domains. In the present study, we show that determinants of subnuclear targeting of the bone-related Runx2/Cbfa1 protein reside in the C-terminus. With a panel of C-terminal mutations, we further demonstrate that targeting of Runx2 to discrete subnuclear foci is mediated by a 38 amino acid sequence (aa 397-434). This nuclear matrix-targeting signal (NMTS) directs the heterologous Gal4 protein to nuclear-matrix-associated Runx2 foci and enhances transactivation of a luciferase gene controlled by Gal4 binding sites. Importantly, we show that targeting of Runx2 to the NM-associated foci contributes to transactivation of the osteoblast-specific osteocalcin gene in osseous cells. Taken together, these findings identify a critical component of the mechanisms mediating Runx2 targeting to subnuclear foci and provide functional linkage between subnuclear organization of Runx2 and bone-specific transcriptional control.
Collapse
Affiliation(s)
- S K Zaidi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655-0106, USA
| | | | | | | | | | | | | |
Collapse
|
264
|
Choi JY, Pratap J, Javed A, Zaidi SK, Xing L, Balint E, Dalamangas S, Boyce B, van Wijnen AJ, Lian JB, Stein JL, Jones SN, Stein GS. Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc Natl Acad Sci U S A 2001; 98:8650-5. [PMID: 11438701 PMCID: PMC37490 DOI: 10.1073/pnas.151236498] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Runx (Cbfa/AML) transcription factors are critical for tissue-specific gene expression. A unique targeting signal in the C terminus directs Runx factors to discrete foci within the nucleus. Using Runx2/CBFA1/AML3 and its essential role in osteogenesis as a model, we investigated the fundamental importance of fidelity of subnuclear localization for tissue differentiating activity by deleting the intranuclear targeting signal via homologous recombination. Mice homozygous for the deletion (Runx2 Delta C) do not form bone due to maturational arrest of osteoblasts. Heterozygotes do not develop clavicles, but are otherwise normal. These phenotypes are indistinguishable from those of the homozygous and heterozygous null mutants, indicating that the intranuclear targeting signal is a critical determinant for function. The expressed truncated Runx2 Delta C protein enters the nucleus and retains normal DNA binding activity, but shows complete loss of intranuclear targeting. These results demonstrate that the multifunctional N-terminal region of the Runx2 protein is not sufficient for biological activity. We conclude that subnuclear localization of Runx factors in specific foci together with associated regulatory functions is essential for control of Runx-dependent genes involved in tissue differentiation during embryonic development.
Collapse
Affiliation(s)
- J Y Choi
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue, North Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Attisano L, Silvestri C, Izzi L, Labbé E. The transcriptional role of Smads and FAST (FoxH1) in TGFbeta and activin signalling. Mol Cell Endocrinol 2001; 180:3-11. [PMID: 11451566 DOI: 10.1016/s0303-7207(01)00524-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Smad family of proteins are critical components of the TGFbeta superfamily signalling pathway. Ligand addition induces phosphorylation of specific receptor-regulated Smads, which then form heteromeric complexes with the common mediator Smad, Smad4. This complex then translocates from the cytoplasm into the nucleus. Once there, the R-Smad/Smad4 complex interacts with a variety of DNA binding proteins and is thereby targetted to a diverse array of gene promoters. The Smad-containing DNA binding complex can then positively or negatively regulate gene expression through the recruitment of co-activators and co-repressors. Xenopus FAST (now known as FoxH1) was the first Smad DNA binding partner identified and the FoxH1 family now includes related proteins from mouse, human and Zebrafish. In all organisms examined, FoxH1 is expressed primarily during the earliest stages of development and thus FoxH1 is thought to play a critical role in mediating TGFbeta superfamily signals during these early developmental stages. Other Smad partners range from those that are ubiquitously expressed to others that are present only in specific cell types or developmental stages. Thus, it is the interaction of Smads with a wide range of specific transcriptional partners that is important for the generation of diverse biological responses to TGFbeta superfamily members.
Collapse
Affiliation(s)
- L Attisano
- Department of Anatomy and Cell Biology, Medical Sciences Building, Rm. 6336, 1 King's College Circle, University of Toronto, ON, M5S 1A8, Toronto, Canada.
| | | | | | | |
Collapse
|
266
|
Abstract
The transforming growth factor-beta (TGF-beta) superfamily includes more than 30 members which have a broad array of biological activities. TGF-beta superfamily ligands bind to type II and type I serine/threonine kinase receptors and transduce signals via Smad proteins. Receptor-regulated Smads (R-Smads) can be classified into two subclasses, i.e. those activated by activin and TGF-beta signaling pathways (AR-Smads), and those activated by bone morphogenetic protein (BMP) pathways (BR-Smads). The numbers of type II and type I receptors and Smad proteins are limited. Thus, signaling of the TGF-beta superfamily converges at the receptor and Smad levels. In the intracellular signaling pathways, Smads interact with various partner proteins and thereby exhibit a wide variety of biological activities. Moreover, signaling by Smads is modulated by various other signaling pathways allowing TGF-beta superfamily ligands to elicit diverse effects on target cells. Perturbations of the TGF-beta/BMP signaling pathways result in various clinical disorders including cancers, vascular diseases, and bone disorders.
Collapse
Affiliation(s)
- K Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo Japan.
| | | | | |
Collapse
|
267
|
Alliston T, Choy L, Ducy P, Karsenty G, Derynck R. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 2001; 20:2254-72. [PMID: 11331591 PMCID: PMC125448 DOI: 10.1093/emboj/20.9.2254] [Citation(s) in RCA: 421] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2000] [Revised: 02/26/2001] [Accepted: 03/16/2001] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta), a secreted factor present at high levels in bone, inhibits osteoblast differentiation in culture; yet, the mechanism of this inhibition remains unclear. We studied the effects of TGF-beta and its effectors, the Smads, on the expression and function of the osteoblast transcription factor CBFA1. TGF-beta inhibited the expression of the cbfa1 and osteocalcin genes, whose expression is controlled by CBFA1 in osteoblast-like cell lines. This inhibition was mediated by Smad3, which interacts physically with CBFA1 and represses its transcriptional activity at the CBFA1-binding OSE2 promoter sequence. The repression of CBFA1 function by Smad3 contrasts with previous observations that Smads function as transcription activators. This repression occurred in mesenchymal but not epithelial cells, and depended on the promoter sequence. Smad3-mediated repression of CBFA1 provides a central regulatory mechanism for the inhibition of osteoblast differentiation by TGF-beta, since it inhibits both cbfa1 transcription and transcriptional activation of osteoblast differentiation genes by CBFA1. Altering Smad3 signaling influenced osteoblast differentiation in the presence or absence of TGF-beta, implicating Smad3/TGF-beta-mediated repression in autocrine regulation of osteoblast differentiation.
Collapse
Affiliation(s)
| | | | - Patricia Ducy
- Departments of Growth and Development, and Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, CA 94143-0640 and
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Corresponding author e-mail:
| | - Gérard Karsenty
- Departments of Growth and Development, and Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, CA 94143-0640 and
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Corresponding author e-mail:
| | - Rik Derynck
- Departments of Growth and Development, and Anatomy, Programs in Cell Biology and Developmental Biology, University of California at San Francisco, San Francisco, CA 94143-0640 and
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Corresponding author e-mail:
| |
Collapse
|
268
|
Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y. Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 2001; 20:723-33. [PMID: 11179217 PMCID: PMC145428 DOI: 10.1093/emboj/20.4.723] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The RUNX family genes are the mammalian homologs of the Drosophila genes runt and lozenge, and members of this family function as master regulators of definitive hematopoiesis and osteogenesis. The RUNX genes encode the alpha subunit of the transcription factor PEBP2/CBF. The beta subunit consists of the non-RUNX protein PEBP2beta. We found that RUNX1/AML1, which is essential for hematopoiesis, is continuously subjected to proteolytic degradation mediated by the ubiquitin-proteasome pathway. When PEBP2beta is present, however, the ubiquitylation of RUNX1 is abrogated and this causes a dramatic inhibition of RUNX1 proteolysis. Heterodimerization between PEBP2beta and RUNX1 thus appears to be an essential step in the generation of transcriptionally competent RUNX1. Consistent with this notion, RUNX1 was barely detected in PEBP2beta(-/-) mouse. CBF(PEBP2)beta- SMMHC, the chimeric protein associated with inv(16) acute myeloid leukemia, was found to protect RUNX1 from proteolytic degradation more efficiently than PEBP2beta. These results reveal a hitherto unknown and major role of PEBP2beta, namely that it regulates RUNX1 by controlling its turnover. This has allowed us to gain new insights into the mechanism of leukemogenesis by CBFbeta-SMMHC.
Collapse
Affiliation(s)
| | - Katsuya Shigesada
- Laboratory of Cell Regulation, Department of Viral Oncology, and
Molecular Genetics, Institute for Virus Research, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan Corresponding author e-mail:
| | | | | | | | - Yoshiaki Ito
- Laboratory of Cell Regulation, Department of Viral Oncology, and
Molecular Genetics, Institute for Virus Research, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan Corresponding author e-mail:
| |
Collapse
|