251
|
Vincent M, Uversky VN, Schnell S. On the Need to Develop Guidelines for Characterizing and Reporting Intrinsic Disorder in Proteins. Proteomics 2019; 19:e1800415. [PMID: 30793871 PMCID: PMC6571172 DOI: 10.1002/pmic.201800415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Since the early 2000s, numerous computational tools have been created and used to predict intrinsic disorder in proteins. At present, the output from these algorithms is difficult to interpret in the absence of standards or references for comparison. There are many reasons to establish a set of standard-based guidelines to evaluate computational protein disorder predictions. This viewpoint explores a handful of these reasons, including standardizing nomenclature to improve communication, rigor and reproducibility, and making it easier for newcomers to enter the field. An approach for reporting predicted disorder in single proteins with respect to whole proteomes is discussed. The suggestions are not intended to be formulaic; they should be viewed as a starting point to establish guidelines for interpreting and reporting computational protein disorder predictions.
Collapse
Affiliation(s)
- Michael Vincent
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290, Moscow region, Russia
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Michigan 48109, USA
| |
Collapse
|
252
|
Ensembles from Ordered and Disordered Proteins Reveal Similar Structural Constraints during Evolution. J Mol Biol 2019; 431:1298-1307. [DOI: 10.1016/j.jmb.2019.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
|
253
|
Redwan EM, AlJaddawi AA, Uversky VN. Structural disorder in the proteome and interactome of Alkhurma virus (ALKV). Cell Mol Life Sci 2019; 76:577-608. [PMID: 30443749 PMCID: PMC7079808 DOI: 10.1007/s00018-018-2968-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Infection by the Alkhurma virus (ALKV) leading to the Alkhurma hemorrhagic fever is a common thread in Saudi Arabia, with no efficient treatment or prevention available as of yet. Although the rational drug design traditionally uses information on known 3D structures of viral proteins, intrinsically disordered proteins (i.e., functional proteins that do not possess unique 3D structures), with their multitude of disorder-dependent functions, are crucial for the biology of viruses. Here, viruses utilize disordered regions in their invasion of the host organisms and in hijacking and repurposing of different host systems. Furthermore, the ability of viruses to efficiently adjust and accommodate to their hostile habitats is also intrinsic disorder-dependent. However, little is currently known on the level of penetrance and functional utilization of intrinsic disorder in the ALKV proteome. To fill this gap, we used here multiple computational tools to evaluate the abundance of intrinsic disorder in the ALKV genome polyprotein. We also analyzed the peculiarities of intrinsic disorder predisposition of the individual viral proteins, as well as human proteins known to be engaged in interaction with the ALKV proteins. Special attention was paid to finding a correlation between protein functionality and structural disorder. To the best of our knowledge, this work represents the first systematic study of the intrinsic disorder status of ALKV proteome and interactome.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Abdullah A AlJaddawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.
| |
Collapse
|
254
|
Hakeem S, Singh I, Sharma P, Uppal A, Khajuria Y, Verma V, Uversky VN, Chandra R. Molecular dynamics analysis of the effects of GTP, GDP and benzimidazole derivative on structural dynamics of a cell division protein FtsZ from Mycobacterium tuberculosis. J Biomol Struct Dyn 2019; 37:4361-4373. [PMID: 30466358 DOI: 10.1080/07391102.2018.1548979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The prevailing multi-drug resistance in Mycobacterium tuberculosis continues to remain one of the main challenges to combat tuberculosis. Hence, it becomes imperative to focus on novel drug targets. Filamenting temperature-sensitive mutant Z (FtsZ) is an essential cell division protein, a eukaryotic tubulin homologue and a promising drug target. During cytokinesis, FtsZ polymerises in the presence of GTP to form Z-ring and recruits other proteins at this site that eventually lead to the formation of daughter cells. Benzimidazoles were experimentally shown to inhibit Mtb-FtsZ, with one of the benzimidazole derivatives, M1, being reported to have the minimum inhibitory concentration (MIC) value of 3.13 µg/mL. In the present study, mechanism of destabilisation of FtsZ in the presence of M1 was computationally investigated in the presence of its substrate GTP/GDP employing molecular dynamics (MD) simulation analysis, principal component analysis (PCA), molecular mechanics combined with the generalised Born and surface area continuum salvation (MM-GBSA) and density functional theory (DFT). From the analyses, it is proposed that binding of M1 in the inter-domain cleft induces structural changes in the GTP-binding region that affect GTP binding, thus switching the preference of this protein towards depolymerised state and eventually inhibiting the cell division. Hence, this study provides mechanistic insights into the design of novel benzimidazole inhibitors against Mtb-FtsZ. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Supriya Hakeem
- School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India.,Bioinformatics Infrastructure Facility, School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Inderpal Singh
- School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India.,Bioinformatics Infrastructure Facility, School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Preeti Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Anshul Uppal
- School of Physics, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Yugal Khajuria
- School of Physics, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Vijeshwar Verma
- School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India.,Bioinformatics Infrastructure Facility, School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences , Pushchino , Russia
| | - Ratna Chandra
- School of Biotechnology, Shri Mata Vaishno Devi University (SMVDU) , Katra , India
| |
Collapse
|
255
|
Oldfield CJ, Uversky VN, Dunker AK, Kurgan L. Introduction to intrinsically disordered proteins and regions. Proteins 2019. [DOI: 10.1016/b978-0-12-816348-1.00001-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
256
|
Hanson J, Paliwal K, Zhou Y. Accurate Single-Sequence Prediction of Protein Intrinsic Disorder by an Ensemble of Deep Recurrent and Convolutional Architectures. J Chem Inf Model 2018; 58:2369-2376. [DOI: 10.1021/acs.jcim.8b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jack Hanson
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Southport, Queensland 4222, Australia
| |
Collapse
|
257
|
Sharma R, Sharma A, Raicar G, Tsunoda T, Patil A. OPAL+: Length‐Specific MoRF Prediction in Intrinsically Disordered Protein Sequences. Proteomics 2018; 19:e1800058. [DOI: 10.1002/pmic.201800058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/10/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Ronesh Sharma
- School of Engineering and Physics The University of the South Pacific Suva Fiji
- School of Electrical and Electronics Engineering Fiji National University Suva Fiji
| | - Alok Sharma
- School of Engineering and Physics The University of the South Pacific Suva Fiji
- Laboratory for Medical Science Mathematics RIKEN Center for Integrative Medical Sciences Yokohama 230‐0045 Japan
- Department of Medical Science Mathematics Medical Research Institute Tokyo Medical and Dental University (TMDU) Tokyo 113–8510 Japan
- Institute for Integrated and Intelligent Systems Griffith University Nathan Brisbane QLD Australia
| | - Gaurav Raicar
- School of Engineering and Physics The University of the South Pacific Suva Fiji
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics RIKEN Center for Integrative Medical Sciences Yokohama 230‐0045 Japan
- Department of Medical Science Mathematics Medical Research Institute Tokyo Medical and Dental University (TMDU) Tokyo 113–8510 Japan
- CREST JST Tokyo 113–8510 Japan
| | - Ashwini Patil
- Human Genome Center The Institute of Medical Science The University of Tokyo Tokyo 108–8639 Japan
| |
Collapse
|
258
|
Magyar C, Mentes A, Fichó E, Cserző M, Simon I. Physical Background of the Disordered Nature of "Mutual Synergetic Folding" Proteins. Int J Mol Sci 2018; 19:ijms19113340. [PMID: 30373142 PMCID: PMC6274838 DOI: 10.3390/ijms19113340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/16/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined 3D structure. Their disordered nature enables them to interact with several other proteins and to fulfil their vital biological roles, in most cases after coupled folding and binding. In this paper, we analyze IDPs involved in a new mechanism, mutual synergistic folding (MSF). These proteins define a new subset of IDPs. Recently we collected information on these complexes and created the Mutual Folding Induced by Binding (MFIB) database. These protein complexes exhibit considerable structural variation, and almost half of them are homodimers, but there is a significant amount of heterodimers and various kinds of oligomers. In order to understand the basic background of the disordered character of the monomers found in MSF complexes, the simplest part of the MFIB database, the homodimers are analyzed here. We conclude that MFIB homodimeric proteins have a larger solvent-accessible main-chain surface area on the contact surface of the subunits, when compared to globular homodimeric proteins. The main driving force of the dimerization is the mutual shielding of the water-accessible backbones and the formation of extra intermolecular interactions.
Collapse
Affiliation(s)
- Csaba Magyar
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary.
| | - Anikó Mentes
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary.
| | - Erzsébet Fichó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary.
| | - Miklós Cserző
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary.
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary.
| | - István Simon
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
259
|
Hu G, Wang K, Song J, Uversky VN, Kurgan L. Taxonomic Landscape of the Dark Proteomes: Whole-Proteome Scale Interplay Between Structural Darkness, Intrinsic Disorder, and Crystallization Propensity. Proteomics 2018; 18:e1800243. [PMID: 30198635 DOI: 10.1002/pmic.201800243] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/30/2018] [Indexed: 12/14/2022]
Abstract
Growth rate of the protein sequence universe dramatically exceeds the speed of expansion for the protein structure universe, generating an immense dark proteome that includes proteins with unknown structure. A whole-proteome scale analysis of 5.4 million proteins from 987 proteomes in the three domains of life and viruses to systematically dissect an interplay between structural coverage, degree of putative intrinsic disorder, and predicted propensity for structure determination is performed. It has been found that Archaean and Bacterial proteomes have relatively high structural coverage and low amounts of disorder, whereas Eukaryotic and Viral proteomes are characterized by a broad spread of structural coverage and higher disorder levels. The analysis reveals that dark proteomes (i.e., proteomes containing high fractions of proteins with unknown structure) have significantly elevated amounts of intrinsic disorder and are predicted to be difficult to solve structurally. Although the majority of dark proteomes are of viral origin, many dark viral proteomes have at least modest crystallization propensity and only a handful of them are enriched in the intrinsic disorder. The disorder, structural coverage, and propensity are mapped for structural determination onto a novel proteome-level sequence similarity network to analyze the interplay of these characteristics in the taxonomic landscape.
Collapse
Affiliation(s)
- Gang Hu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, P. R. China
| | - Kui Wang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, P. R. China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, 33612, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
260
|
Zhao B, Xue B. Decision-Tree Based Meta-Strategy Improved Accuracy of Disorder Prediction and Identified Novel Disordered Residues Inside Binding Motifs. Int J Mol Sci 2018; 19:E3052. [PMID: 30301243 PMCID: PMC6213717 DOI: 10.3390/ijms19103052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/24/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Using computational techniques to identify intrinsically disordered residues is practical and effective in biological studies. Therefore, designing novel high-accuracy strategies is always preferable when existing strategies have a lot of room for improvement. Among many possibilities, a meta-strategy that integrates the results of multiple individual predictors has been broadly used to improve the overall performance of predictors. Nonetheless, a simple and direct integration of individual predictors may not effectively improve the performance. In this project, dual-threshold two-step significance voting and neural networks were used to integrate the predictive results of four individual predictors, including: DisEMBL, IUPred, VSL2, and ESpritz. The new meta-strategy has improved the prediction performance of intrinsically disordered residues significantly, compared to all four individual predictors and another four recently-designed predictors. The improvement was validated using five-fold cross-validation and in independent test datasets.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA.
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
261
|
Meng F, Kurgan L. High‐throughput prediction of disordered moonlighting regions in protein sequences. Proteins 2018; 86:1097-1110. [DOI: 10.1002/prot.25590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/25/2018] [Accepted: 08/05/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering University of Alberta Edmonton Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering University of Alberta Edmonton Canada
- Department of Computer Science Virginia Commonwealth University Richmond VA
| |
Collapse
|
262
|
Li C, Clark LVT, Zhang R, Porebski BT, McCoey JM, Borg NA, Webb GI, Kass I, Buckle M, Song J, Woolfson A, Buckle AM. Structural Capacitance in Protein Evolution and Human Diseases. J Mol Biol 2018; 430:3200-3217. [PMID: 30111491 DOI: 10.1016/j.jmb.2018.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/18/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Canonical mechanisms of protein evolution include the duplication and diversification of pre-existing folds through genetic alterations that include point mutations, insertions, deletions, and copy number amplifications, as well as post-translational modifications that modify processes such as folding efficiency and cellular localization. Following a survey of the human mutation database, we have identified an additional mechanism that we term "structural capacitance," which results in the de novo generation of microstructure in previously disordered regions. We suggest that the potential for structural capacitance confers select proteins with the capacity to evolve over rapid timescales, facilitating saltatory evolution as opposed to gradualistic canonical Darwinian mechanisms. Our results implicate the elements of protein microstructure generated by this distinct mechanism in the pathogenesis of a wide variety of human diseases. The benefits of rapidly furnishing the potential for evolutionary change conferred by structural capacitance are consequently counterbalanced by this accompanying risk. The phenomenon of structural capacitance has implications ranging from the ancestral diversification of protein folds to the engineering of synthetic proteins with enhanced evolvability.
Collapse
Affiliation(s)
- Chen Li
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Liah V T Clark
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Rory Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julia M McCoey
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Natalie A Borg
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Geoffrey I Webb
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - Itamar Kass
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Amai Proteins, Prof. A. D. Bergman 2B, Suite 212, Rehovot 7670504, Israel
| | - Malcolm Buckle
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, F-94235 Cachan, France
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
263
|
Sluimer J, Distel B. Regulating the human HECT E3 ligases. Cell Mol Life Sci 2018; 75:3121-3141. [PMID: 29858610 PMCID: PMC6063350 DOI: 10.1007/s00018-018-2848-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/09/2023]
Abstract
Ubiquitination, the covalent attachment of ubiquitin to proteins, by E3 ligases of the HECT (homologous to E6AP C terminus) family is critical in controlling diverse physiological pathways. Stringent control of HECT E3 ligase activity and substrate specificity is essential for cellular health, whereas deregulation of HECT E3s plays a prominent role in disease. The cell employs a wide variety of regulatory mechanisms to control HECT E3 activity and substrate specificity. Here, we summarize the current understanding of these regulatory mechanisms that control HECT E3 function. Substrate specificity is generally determined by interactions of adaptor proteins with domains in the N-terminal extensions of HECT E3 ligases. These N-terminal domains have also been found to interact with the HECT domain, resulting in the formation of inhibitory conformations. In addition, catalytic activity of the HECT domain is commonly regulated at the level of E2 recruitment and through HECT E3 oligomerization. The previously mentioned regulatory mechanisms can be controlled through protein-protein interactions, post-translational modifications, the binding of calcium ions, and more. Functional activity is determined not only by substrate recruitment and catalytic activity, but also by the type of ubiquitin polymers catalyzed to the substrate. While this is often determined by the specific HECT member, recent studies demonstrate that HECT E3s can be modulated to alter the type of ubiquitin polymers they catalyze. Insight into these diverse regulatory mechanisms that control HECT E3 activity may open up new avenues for therapeutic strategies aimed at inhibition or enhancement of HECT E3 function in disease-related pathways.
Collapse
Affiliation(s)
- Jasper Sluimer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus Medical Center, Wijtemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
264
|
Basavanhally T, Fonseca R, Uversky VN. Born This Way: Using Intrinsic Disorder to Map the Connections between SLITRKs, TSHR, and Male Sexual Orientation. Proteomics 2018; 18:e1800307. [PMID: 30156382 DOI: 10.1002/pmic.201800307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Recently, genome-wide association study reveals a significant association between specific single nucleotide polymorphisms (SNPs) in men and their sexual orientation. These SNPs (rs9547443 and rs1035144) reside in the intergenic region between the SLITRK5 and SLITRK6 genes and in the intronic region of the TSHR gene and might affect functionality of SLITRK5, SLITRK6, and TSHR proteins that are engaged in tight control of key developmental processes, such as neurite outgrowth and modulation, cellular differentiation, and hormonal regulation. SLITRK5 and SLITRK6 are single-pass transmembrane proteins, whereas TSHR is a heptahelical G protein-coupled receptor (GPCR). Mutations in these proteins are associated with various diseases and are linked to phenotypes found at a higher rate in homosexual men. A bioinformatics analysis of SLITRK5, SLITRK6, and TSHR proteins is conducted to look at their structure, protein interaction networks, and propensity for intrinsic disorder. It is assumed that this information might improve understanding of the roles that SLITRK5, SLITRK6, and TSHR play within neuronal and thyroidal tissues and give insight into the phenotypes associated with male homosexuality.
Collapse
Affiliation(s)
- Tara Basavanhally
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Renée Fonseca
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290, Pushchino, Moscow, Russia
| |
Collapse
|
265
|
Liu Y, Wang X, Liu B. IDP⁻CRF: Intrinsically Disordered Protein/Region Identification Based on Conditional Random Fields. Int J Mol Sci 2018; 19:E2483. [PMID: 30135358 PMCID: PMC6164615 DOI: 10.3390/ijms19092483] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022] Open
Abstract
Accurate prediction of intrinsically disordered proteins/regions is one of the most important tasks in bioinformatics, and some computational predictors have been proposed to solve this problem. How to efficiently incorporate the sequence-order effect is critical for constructing an accurate predictor because disordered region distributions show global sequence patterns. In order to capture these sequence patterns, several sequence labelling models have been applied to this field, such as conditional random fields (CRFs). However, these methods suffer from certain disadvantages. In this study, we proposed a new computational predictor called IDP⁻CRF, which is trained on an updated benchmark dataset based on the MobiDB database and the DisProt database, and incorporates more comprehensive sequence-based features, including PSSMs (position-specific scoring matrices), kmer, predicted secondary structures, and relative solvent accessibilities. Experimental results on the benchmark dataset and two independent datasets show that IDP⁻CRF outperforms 25 existing state-of-the-art methods in this field, demonstrating that IDP⁻CRF is a very useful tool for identifying IDPs/IDRs (intrinsically disordered proteins/regions). We anticipate that IDP⁻CRF will facilitate the development of protein sequence analysis.
Collapse
Affiliation(s)
- Yumeng Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Xiaolong Wang
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
266
|
Pujols J, Santos J, Pallarès I, Ventura S. The Disordered C-Terminus of Yeast Hsf1 Contains a Cryptic Low-Complexity Amyloidogenic Region. Int J Mol Sci 2018; 19:ijms19051384. [PMID: 29734798 PMCID: PMC5983738 DOI: 10.3390/ijms19051384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023] Open
Abstract
Response mechanisms to external stress rely on networks of proteins able to activate specific signaling pathways to ensure the maintenance of cell proteostasis. Many of the proteins mediating this kind of response contain intrinsically disordered regions, which lack a defined structure, but still are able to interact with a wide range of clients that modulate the protein function. Some of these interactions are mediated by specific short sequences embedded in the longer disordered regions. Because the physicochemical properties that promote functional and abnormal interactions are similar, it has been shown that, in globular proteins, aggregation-prone and binding regions tend to overlap. It could be that the same principle applies for disordered protein regions. In this context, we show here that a predicted low-complexity interacting region in the disordered C-terminus of the stress response master regulator heat shock factor 1 (Hsf1) protein corresponds to a cryptic amyloid region able to self-assemble into fibrillary structures resembling those found in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
267
|
Meng F, Murray GF, Kurgan L, Donahue HJ. Functional and structural characterization of osteocytic MLO-Y4 cell proteins encoded by genes differentially expressed in response to mechanical signals in vitro. Sci Rep 2018; 8:6716. [PMID: 29712973 PMCID: PMC5928037 DOI: 10.1038/s41598-018-25113-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
The anabolic response of bone to mechanical load is partially the result of osteocyte response to fluid flow-induced shear stress. Understanding signaling pathways activated in osteocytes exposed to fluid flow could identify novel signaling pathways involved in the response of bone to mechanical load. Bioinformatics allows for a unique perspective and provides key first steps in understanding these signaling pathways. We examined proteins encoded by genes differentially expressed in response to fluid flow in murine osteocytic MLO-Y4 cells. We considered structural and functional characteristics including putative intrinsic disorder, evolutionary conservation, interconnectedness in protein-protein interaction networks, and cellular localization. Our analysis suggests that proteins encoded by fluid flow activated genes have lower than expected conservation, are depleted in intrinsic disorder, maintain typical levels of connectivity for the murine proteome, and are found in the cytoplasm and extracellular space. Pathway analyses reveal that these proteins are associated with cellular response to stress, chemokine and cytokine activity, enzyme binding, and osteoclast differentiation. The lower than expected disorder of proteins encoded by flow activated genes suggests they are relatively specialized.
Collapse
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Graeme F Murray
- Bone Engineering, Science and Technology (BEST) Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, United States of America.
| | - Henry J Donahue
- Bone Engineering, Science and Technology (BEST) Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America.
| |
Collapse
|
268
|
Salamanova E, Costeira-Paulo J, Han KH, Kim DH, Nilsson L, Wright APH. A subset of functional adaptation mutations alter propensity for α-helical conformation in the intrinsically disordered glucocorticoid receptor tau1core activation domain. Biochim Biophys Acta Gen Subj 2018; 1862:1452-1461. [PMID: 29550429 DOI: 10.1016/j.bbagen.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Adaptive mutations that alter protein functionality are enriched within intrinsically disordered protein regions (IDRs), thus conformational flexibility correlates with evolvability. Pre-structured motifs (PreSMos) with transient propensity for secondary structure conformation are believed to be important for IDR function. The glucocorticoid receptor tau1core transcriptional activation domain (GR tau1core) domain contains three α-helical PreSMos in physiological buffer conditions. METHODS Sixty change-of-function mutants affecting the intrinsically disordered 58-residue GR tau1core were studied using disorder prediction and molecular dynamics simulations. RESULTS Change-of-function mutations were partitioned into seven clusters based on their effect on IDR predictions and gene activation activity. Some mutations selected from clusters characterized by mutations altering the IDR prediction score, altered the apparent stability of the α-helical form of one of the PreSMos in molecular dynamics simulations, suggesting PreSMo stabilization or destabilization as strategies for functional adaptation. Indeed all tested gain-of-function mutations affecting this PreSMo were associated with increased stability of the α-helical PreSMo conformation, suggesting that PreSMo stabilization may be the main mechanism by which adaptive mutations can increase the activity of this IDR type. Some mutations did not appear to affect PreSMo stability. CONCLUSIONS Changes in PreSMo stability account for the effects of a subset of change-of-function mutants affecting the GR tau1core IDR. GENERAL SIGNIFICANCE Long IDRs occur in about 50% of human proteins. They are poorly characterized despite much recent attention. Our results suggest the importance of a subtle balance between PreSMo stability and IDR activity, which may provide a novel target for future pharmaceutical intervention.
Collapse
Affiliation(s)
- Evdokiya Salamanova
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, TTI, SE-141 83 Huddinge, Sweden
| | - Joana Costeira-Paulo
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, TTI, SE-141 83 Huddinge, Sweden.
| | - Kyou-Hoon Han
- Genome Editing Research Center, Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Nano and Bioinformatics, University of Science and Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 305-333, Republic of Korea.
| | - Do-Hyoung Kim
- Genome Editing Research Center, Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, TTI, SE-141 83 Huddinge, Sweden.
| | - Anthony P H Wright
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, NOVUM Level 5, Hälsovägen 7, SE-141 57 Huddinge, Sweden.
| |
Collapse
|
269
|
Prediction of Disordered Regions and Their Roles in the Anti-Pathogenic and Immunomodulatory Functions of Butyrophilins. Molecules 2018; 23:molecules23020328. [PMID: 29401697 PMCID: PMC6017450 DOI: 10.3390/molecules23020328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Butyrophilins (BTNs) are a group of the moonlighting proteins, some members of which are secreted in milk. They constitute a large family of structurally similar type 1 transmembrane proteins from the immunoglobulin superfamily. Although the founding member of this family is related to lactation, participating in the secretion, formation and stabilization of milk fat globules, it may also have a cell surface receptor function. Generally, the BTN family members are known to modulate co-stimulatory responses, T cell selection, differentiation, and cell fate determination. Polymorphism of these genes was shown to be associated with the pathology of several human diseases. Despite their biological significance, structural information on human butyrophilins is rather limited. Based on their remarkable multifunctionality, butyrophilins seem to belong to the category of moonlighting proteins, which are known to contain intrinsically disordered protein regions (IDPRs). However, the disorder status of human BTNs was not systematically investigated as of yet. The goal of this study is to fill this gap and to evaluate peculiarities of intrinsic disorder predisposition of the members of human BTN family, and to find if they have IDPRs that can be attributed to the multifunctionality of these important proteins.
Collapse
|
270
|
Castro IH, Ferrari A, Herrera MG, Noguera ME, Maso L, Benini M, Rufini A, Testi R, Costantini P, Santos J. Biophysical characterisation of the recombinant human frataxin precursor. FEBS Open Bio 2018; 8:390-405. [PMID: 29511616 PMCID: PMC5832983 DOI: 10.1002/2211-5463.12376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 11/10/2022] Open
Abstract
Friedreich's ataxia is a disease caused by a decrease in the levels of expression or loss of functionality of the mitochondrial protein frataxin (FXN). The development of an active and stable recombinant variant of FXN is important for protein replacement therapy. Although valuable data about the mature form FXN81-210 has been collected, not enough information is available about the conformation of the frataxin precursor (FXN1-210). We investigated the conformation, stability and function of a recombinant precursor variant (His6-TAT-FXN1-210), which includes a TAT peptide in the N-terminal region to assist with transport across cell membranes. His6-TAT-FXN1-210 was expressed in Escherichia coli and conditions were found for purifying folded protein free of aggregation, oxidation or degradation, even after freezing and thawing. The protein was found to be stable and monomeric, with the N-terminal stretch (residues 1-89) mostly unstructured and the C-terminal domain properly folded. The experimental data suggest a complex picture for the folding process of full-length frataxin in vitro: the presence of the N-terminal region increased the tendency of FXN to aggregate at high temperatures but this could be avoided by the addition of low concentrations of GdmCl. The purified precursor was translocated through cell membranes. In addition, immune response against His6-TAT-FXN1-210 was measured, suggesting that the C-terminal fragment was not immunogenic at the assayed protein concentrations. Finally, the recognition of recombinant FXN by cellular proteins was studied to evaluate its functionality. In this regard, cysteine desulfurase NFS1/ISD11/ISCU was activated in vitro by His6-TAT-FXN1-210. Moreover, the results showed that His6-TAT-FXN1-210 can be ubiquitinated in vitro by the recently identified frataxin E3 ligase RNF126, in a similar way as the FXN1-210, suggesting that the His6-TAT extension does not interfere with the ubiquitination machinery.
Collapse
Affiliation(s)
- Ignacio Hugo Castro
- Institute of Biological Chemistry and Physicochemistry Dr Alejandro Paladini (UBA-CONICET) University of Buenos Aires Argentina
| | - Alejandro Ferrari
- Institute of Biological Chemistry and Physicochemistry Dr Alejandro Paladini (UBA-CONICET) University of Buenos Aires Argentina
| | - María Georgina Herrera
- Institute of Biological Chemistry and Physicochemistry Dr Alejandro Paladini (UBA-CONICET) University of Buenos Aires Argentina
| | - Martín Ezequiel Noguera
- Institute of Biological Chemistry and Physicochemistry Dr Alejandro Paladini (UBA-CONICET) University of Buenos Aires Argentina
| | - Lorenzo Maso
- Department of Biology University of Padova Italy
| | - Monica Benini
- Laboratory of Signal Transduction Department of Biomedicine and Prevention University of Rome ''Tor Vergata'' Italy.,Fratagene Therapeutics srl Rome Italy
| | - Alessandra Rufini
- Laboratory of Signal Transduction Department of Biomedicine and Prevention University of Rome ''Tor Vergata'' Italy.,Fratagene Therapeutics srl Rome Italy
| | - Roberto Testi
- Laboratory of Signal Transduction Department of Biomedicine and Prevention University of Rome ''Tor Vergata'' Italy.,Fratagene Therapeutics srl Rome Italy
| | | | - Javier Santos
- Institute of Biological Chemistry and Physicochemistry Dr Alejandro Paladini (UBA-CONICET) University of Buenos Aires Argentina
| |
Collapse
|
271
|
Saravanan KM, Dunker AK, Krishnaswamy S. Sequence fingerprints distinguish erroneous from correct predictions of intrinsically disordered protein regions. J Biomol Struct Dyn 2017; 36:4338-4351. [PMID: 29228892 DOI: 10.1080/07391102.2017.1415822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
More than 60 prediction methods for intrinsically disordered proteins (IDPs) have been developed over the years, many of which are accessible on the World Wide Web. Nearly, all of these predictors give balanced accuracies in the ~65%-~80% range. Since predictors are not perfect, further studies are required to uncover the role of amino acid residues in native IDP as compared to predicted IDP regions. In the present work, we make use of sequences of 100% predicted IDP regions, false positive disorder predictions, and experimentally determined IDP regions to distinguish the characteristics of native versus predicted IDP regions. A higher occurrence of asparagine is observed in sequences of native IDP regions but not in sequences of false positive predictions of IDP regions. The occurrences of certain combinations of amino acids at the pentapeptide level provide a distinguishing feature in the IDPs with respect to globular proteins. The distinguishing features presented in this paper provide insights into the sequence fingerprints of amino acid residues in experimentally determined as compared to predicted IDP regions. These observations and additional work along these lines should enable the development of improvements in the accuracy of disorder prediction algorithm.
Collapse
Affiliation(s)
- Konda Mani Saravanan
- a Centre of Advanced Study in Crystallography & Biophysics , University of Madras , Guindy Campus, Chennai 600 025 , Tamilnadu , India
| | - A Keith Dunker
- b Centre for Computational Biology and Bioinformatics , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Sankaran Krishnaswamy
- c Institute of Mathematical Sciences , CIT Campus, Tharamani , Chennai 600 113 , Tamilnadu , India
| |
Collapse
|
272
|
Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. Int J Mol Sci 2017; 18:ijms18122761. [PMID: 29257115 PMCID: PMC5751360 DOI: 10.3390/ijms18122761] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Some of the intrinsically disordered proteins and protein regions are promiscuous interactors that are involved in one-to-many and many-to-one binding. Several studies have analyzed enrichment of intrinsic disorder among the promiscuous hub proteins. We extended these works by providing a detailed functional characterization of the disorder-enriched hub protein-protein interactions (PPIs), including both hubs and their interactors, and by analyzing their enrichment among disease-associated proteins. We focused on the human interactome, given its high degree of completeness and relevance to the analysis of the disease-linked proteins. We quantified and investigated numerous functional and structural characteristics of the disorder-enriched hub PPIs, including protein binding, structural stability, evolutionary conservation, several categories of functional sites, and presence of over twenty types of posttranslational modifications (PTMs). We showed that the disorder-enriched hub PPIs have a significantly enlarged number of disordered protein binding regions and long intrinsically disordered regions. They also include high numbers of targeting, catalytic, and many types of PTM sites. We empirically demonstrated that these hub PPIs are significantly enriched among 11 out of 18 considered classes of human diseases that are associated with at least 100 human proteins. Finally, we also illustrated how over a dozen specific human hubs utilize intrinsic disorder for their promiscuous PPIs.
Collapse
|
273
|
Erdős G, Szaniszló T, Pajkos M, Hajdu-Soltész B, Kiss B, Pál G, Nyitray L, Dosztányi Z. Novel linear motif filtering protocol reveals the role of the LC8 dynein light chain in the Hippo pathway. PLoS Comput Biol 2017; 13:e1005885. [PMID: 29240760 PMCID: PMC5746249 DOI: 10.1371/journal.pcbi.1005885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/28/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023] Open
Abstract
Protein-protein interactions (PPIs) formed between short linear motifs and globular domains play important roles in many regulatory and signaling processes but are highly underrepresented in current protein-protein interaction databases. These types of interactions are usually characterized by a specific binding motif that captures the key amino acids shared among the interaction partners. However, the computational proteome-level identification of interaction partners based on the known motif is hindered by the huge number of randomly occurring matches from which biologically relevant motif hits need to be extracted. In this work, we established a novel bioinformatic filtering protocol to efficiently explore interaction network of a hub protein. We introduced a novel measure that enabled the optimization of the elements and parameter settings of the pipeline which was built from multiple sequence-based prediction methods. In addition, data collected from PPI databases and evolutionary analyses were also incorporated to further increase the biological relevance of the identified motif hits. The approach was applied to the dynein light chain LC8, a ubiquitous eukaryotic hub protein that has been suggested to be involved in motor-related functions as well as promoting the dimerization of various proteins by recognizing linear motifs in its partners. From the list of putative binding motifs collected by our protocol, several novel peptides were experimentally verified to bind LC8. Altogether 71 potential new motif instances were identified. The expanded list of LC8 binding partners revealed the evolutionary plasticity of binding partners despite the highly conserved binding interface. In addition, it also highlighted a novel, conserved function of LC8 in the upstream regulation of the Hippo signaling pathway. Beyond the LC8 system, our work also provides general guidelines that can be applied to explore the interaction network of other linear motif binding proteins or protein domains. Fine-tuning of many cellular processes relies on weak, transient protein-protein interactions. Such interactions often involve compact functional modules, called short linear motifs (SLiMs) that can bind to specific globular domains. SLiM-mediated interactions can carry out diverse molecular functions by targeting proteins to specific cellular locations, regulating the activity and binding preferences of proteins, or aiding the assembly of macromolecular complexes. The key to the function of SLiMs is their small size and highly flexible nature. At the same time, these properties make their experimental identification challenging. Consequently, only a small portion of SLiM-mediated interactions is currently known. This underlies the importance of novel computational methods that can reliably identify candidate sites involved in binding to linear motif binding domains. Here we present a novel bioinformatic approach that efficiently predicts new binding partners for SLiM-binding domains. We applied this method to the dynein light chain LC8, a protein that was already known to bind many partners in a wide range of organisms. With this method, we not only significantly expanded the interaction network of LC8, but also identified a novel function of LC8 in a highly important pathway controlling organ size in animals.
Collapse
Affiliation(s)
- Gábor Erdős
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Szaniszló
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mátyás Pajkos
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Borbála Hajdu-Soltész
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
274
|
Abstract
Conditionally disordered proteins are either ordered or disordered depending on the environmental context. The substrates of the mitochondrial intermembrane space (IMS) oxidoreductase Mia40 are synthesized on cytosolic ribosomes and diffuse as intrinsically disordered proteins to the IMS, where they fold into their functional conformations; behaving thus as conditionally disordered proteins. It is not clear how the sequences of these polypeptides encode at the same time for their ability to adopt a folded structure and to remain unfolded. Here we characterize the disorder-to-order transition of a Mia40 substrate, the human small copper chaperone Cox17. Using an integrated real-time approach, including chromatography, fluorescence, CD, FTIR, SAXS, NMR, and MS analysis, we demonstrate that in this mitochondrial protein, the conformational switch between disordered and folded states is controlled by the formation of a single disulfide bond, both in the presence and in the absence of Mia40. We provide molecular details on how the folding of a conditionally disordered protein is tightly regulated in time and space, in such a way that the same sequence is competent for protein translocation and activity.
Collapse
|
275
|
Fraga H, Pujols J, Gil-Garcia M, Roque A, Bernardo-Seisdedos G, Santambrogio C, Bech-Serra JJ, Canals F, Bernadó P, Grandori R, Millet O, Ventura S. Disulfide driven folding for a conditionally disordered protein. Sci Rep 2017; 7:16994. [PMID: 29208936 PMCID: PMC5717278 DOI: 10.1038/s41598-017-17259-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/23/2017] [Indexed: 11/09/2022] Open
Abstract
Conditionally disordered proteins are either ordered or disordered depending on the environmental context. The substrates of the mitochondrial intermembrane space (IMS) oxidoreductase Mia40 are synthesized on cytosolic ribosomes and diffuse as intrinsically disordered proteins to the IMS, where they fold into their functional conformations; behaving thus as conditionally disordered proteins. It is not clear how the sequences of these polypeptides encode at the same time for their ability to adopt a folded structure and to remain unfolded. Here we characterize the disorder-to-order transition of a Mia40 substrate, the human small copper chaperone Cox17. Using an integrated real-time approach, including chromatography, fluorescence, CD, FTIR, SAXS, NMR, and MS analysis, we demonstrate that in this mitochondrial protein, the conformational switch between disordered and folded states is controlled by the formation of a single disulfide bond, both in the presence and in the absence of Mia40. We provide molecular details on how the folding of a conditionally disordered protein is tightly regulated in time and space, in such a way that the same sequence is competent for protein translocation and activity.
Collapse
Affiliation(s)
- Hugo Fraga
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departamento de Bioquimica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marcos Gil-Garcia
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alicia Roque
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM-U1054, CNRS UMR-5048, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Oscar Millet
- Protein Stability and Inherited Diseases Laboratory, CIC bioGUNE, 48160, Derio, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina. Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
276
|
Somody JC, MacKinnon SS, Windemuth A. Structural coverage of the proteome for pharmaceutical applications. Drug Discov Today 2017; 22:1792-1799. [DOI: 10.1016/j.drudis.2017.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023]
|
277
|
Darling AL, Uversky VN. Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:2027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
Affiliation(s)
- April L. Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veteran’s Hospital, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
278
|
Dosztányi Z. Prediction of protein disorder based on IUPred. Protein Sci 2017; 27:331-340. [PMID: 29076577 DOI: 10.1002/pro.3334] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022]
Abstract
Many proteins contain intrinsically disordered regions (IDRs), functional polypeptide segments that in isolation adopt a highly flexible conformational ensemble instead of a single, well-defined structure. Disorder prediction methods, which can discriminate ordered and disordered regions from the amino acid sequence, have contributed significantly to our current understanding of the distinct properties of intrinsically disordered proteins by enabling the characterization of individual examples as well as large-scale analyses of these protein regions. One popular method, IUPred provides a robust prediction of protein disorder based on an energy estimation approach that captures the fundamental difference between the biophysical properties of ordered and disordered regions. This paper reviews the energy estimation method underlying IUPred and the basic properties of the web server. Through an example, it also illustrates how the prediction output can be interpreted in a more complex case by taking into account the heterogeneous nature of IDRs. Various applications that benefited from IUPred to provide improved disorder predictions, complementing domain annotations and aiding the identification of functional short linear motifs are also described here. IUPred is freely available for noncommercial users through the web server (http://iupred.enzim.hu and http://iupred.elte.hu) . The program can also be downloaded and installed locally for large-scale analyses.
Collapse
Affiliation(s)
- Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| |
Collapse
|
279
|
Liu Y, Yang M, Cheng H, Sun N, Liu S, Li S, Wang Y, Zheng Y, Uversky VN. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:1291-1303. [PMID: 28867216 DOI: 10.1016/j.bbapap.2017.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/08/2017] [Accepted: 08/27/2017] [Indexed: 12/29/2022]
Abstract
Enzymatically driven post-translated modifications (PTMs) usually happen within the intrinsically disordered regions of a target protein and can modulate variety of protein functions. Late embryogenesis abundant (LEA) proteins are a family of the plant intrinsically disordered proteins (IDPs). Despite their important roles in plant stress response, there is currently limited knowledge on the presence and functional and structural effects of phosphorylation on LEA proteins. In this study, we identified three phosphorylation sites (Ser90, Tyr136, and Thr266) in the soybean PM18 protein that belongs to the group-3 LEA proteins. In yeast expression system, PM18 protein increased the salt tolerance of yeast, and the phosphorylation of this protein further enhanced its protective function. Further analysis revealed that Ser90 and Tyr136 are more important than Thr266, and these two sites might work cooperatively in regulating the salt resistance function of PM18. The circular dichroism analysis showed that PM18 protein was disordered in aqueous media, and phosphorylation did not affect the disordered status of this protein. However, phosphorylation promoted formation of more helical structure in the presence of sodium dodecyl sulfate (SDS) or trifluoroethanol (TFE). Furthermore, in dedicated in vitro experiments, phosphorylated PM18 protein was able to better protect lactate dehydrogenase (LDH) from the inactivation induced by the freeze-thaw cycles than its un- or dephosphorylated forms. All these data indicate that phosphorylation may have regulatory effects on the stress-tolerance-related function of LEA proteins. Therefore, further studies are needed to shed more light on functional and structural roles of phosphorylation in LEA proteins.
Collapse
Affiliation(s)
- Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Meiyan Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Hua Cheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Shuiming Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yong Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia.
| |
Collapse
|
280
|
Uversky VN, El-Baky NA, El-Fakharany EM, Sabry A, Mattar EH, Uversky AV, Redwan EM. Functionality of intrinsic disorder in tumor necrosis factor-α and its receptors. FEBS J 2017; 284:3589-3618. [PMID: 28746777 DOI: 10.1111/febs.14182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/15/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic inflammatory cytokine that exerts potent cytotoxic effects on solid tumor cells, while not affecting their normal counterparts. It is also known that TNF-α exerts many of its biological functions via interaction with specific receptors. To understand the potential roles of intrinsic disorder in the functioning of this important cytokine, we explored the peculiarities of intrinsic disorder distribution in human TNF-α and its homologs from various species, ranging from zebrafish to chimpanzee. We also studied the peculiarities of intrinsic disorder distribution in human TNF-α receptors, TNFR1 and TNFR2. Analysis revealed that cytoplasmic domains of TNF-α and its receptors are expected to be highly disordered. Furthermore, although the sequence identities of analyzed TNF-α homologs range from 99.57% (between human and chimpanzee proteins) to 22.33% (between frog and fish proteins), their intrinsic disorder profiles are characterized by a remarkable similarity. These observations indicate that the peculiarities of distribution of the intrinsic disorder propensity within the amino acid sequences are evolutionary conserved, and therefore could be of functional importance for this family of proteins. We also show that disordered and flexible regions of human TNF-α and its TNFR1 and TNFR2 receptors are crucial for some of their biological activities.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Nawal Abd El-Baky
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Amira Sabry
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexey V Uversky
- Center for Data Analytics and Biomedical Informatics, Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
281
|
The spliceosomal proteins PPIH and PRPF4 exhibit bi-partite binding. Biochem J 2017; 474:3689-3704. [PMID: 28935721 DOI: 10.1042/bcj20170366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023]
Abstract
Pre-mRNA splicing is a dynamic, multistep process that is catalyzed by the RNA (ribonucleic acid)-protein complex called the spliceosome. The spliceosome contains a core set of RNAs and proteins that are conserved in all organisms that perform splicing. In higher organisms, peptidyl-prolyl isomerase H (PPIH) directly interacts with the core protein pre-mRNA processing factor 4 (PRPF4) and both integrate into the pre-catalytic spliceosome as part of the tri-snRNP (small nuclear RNA-protein complex) subcomplex. As a first step to understand the protein interactions that dictate PPIH and PRPF4 function, we expressed and purified soluble forms of each protein and formed a complex between them. We found two sites of interaction between PPIH and the N-terminus of PRPF4, an unexpected result. The N-terminus of PRPF4 is an intrinsically disordered region and does not adopt secondary structure in the presence of PPIH. In the absence of an atomic resolution structure, we used mutational analysis to identify point mutations that uncouple these two binding sites and find that mutations in both sites are necessary to break up the complex. A discussion of how this bipartite interaction between PPIH and PRPF4 may modulate spliceosomal function is included.
Collapse
|
282
|
Taxonomically Restricted Genes with Essential Functions Frequently Play Roles in Chromosome Segregation in Caenorhabditis elegans and Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:3337-3347. [PMID: 28839119 PMCID: PMC5633384 DOI: 10.1534/g3.117.300193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genes encoding essential components of core cellular processes are typically highly conserved across eukaryotes. However, a small proportion of essential genes are highly taxonomically restricted; there appear to be no similar genes outside the genomes of highly related species. What are the functions of these poorly characterized taxonomically restricted genes (TRGs)? Systematic screens in Saccharomyces cerevisiae and Caenorhabditis elegans previously identified yeast or nematode TRGs that are essential for viability and we find that these genes share many molecular features, despite having no significant sequence similarity. Specifically, we find that those TRGs with essential phenotypes have an expression profile more similar to highly conserved genes, they have more protein–protein interactions and more protein disorder. Surprisingly, many TRGs play central roles in chromosome segregation; a core eukaryotic process. We thus find that genes that appear to be highly evolutionarily restricted do not necessarily play roles in species-specific biological functions but frequently play essential roles in core eukaryotic processes.
Collapse
|
283
|
Brandi V, Di Lella V, Marino M, Ascenzi P, Polticelli F. A comprehensive in silico analysis of huntingtin and its interactome. J Biomol Struct Dyn 2017; 36:3155-3171. [PMID: 28920551 DOI: 10.1080/07391102.2017.1381646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A polyglutamine expansion of the N-terminal region of huntingtin (Htt) causes Huntington's disease, a severe neurodegenerative disorder. Htt huge multidomain structure, the presence of disordered regions, and the lack of sequence homologs of known structure, so far prevented structural studies of Htt, making the study of its structure-function relationships very difficult. In this work, the presence and location of five Htt ordered domains (named from Hunt1 to Hunt5) has been detected and the structure of these domains has been predicted for the first time using a combined threading/ab initio modeling approach. This work has led to the identification of a previously undetected HEAT repeats region in the Hunt3 domain. Furthermore, a putative function has been assigned to four out of the five domains. Hunt1 and Hunt5, displaying structural similarity with the regulatory subunit A of protein phosphatase 2A, are predicted to play a role in regulating the phosphorylation status of cellular proteins. Hunt2 and Hunt3 are predicted to be homologs of two yeast importins and to mediate vescicles transport and protein trafficking. Finally, a comprehensive analysis of the Htt interactome has been carried out and is discussed to provide a global picture of the Htt's structure-function relationships.
Collapse
Affiliation(s)
- Valentina Brandi
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy
| | - Valentina Di Lella
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy
| | - Maria Marino
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy
| | - Paolo Ascenzi
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy.,b Interdepartmental Laboratory for Electron Microscopy , Roma Tre University , Roma I-00146 , Italy
| | - Fabio Polticelli
- a Department of Sciences , Roma Tre University, Viale Guglielmo Marconi 446 , Roma I-00146 , Italy.,c National Institute of Nuclear Physics , Roma Tre University, Roma Tre Section , Roma I-00146 , Italy
| |
Collapse
|
284
|
A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Int J Mol Sci 2017; 18:ijms18102010. [PMID: 28934129 PMCID: PMC5666700 DOI: 10.3390/ijms18102010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein–protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the perspective of intrinsic disorder provides useful information that can potentially lead to future experimental studies that may uncover latent and novel pathways associated with the disease.
Collapse
|
285
|
Necci M, Piovesan D, Dosztányi Z, Tompa P, Tosatto SCE. A comprehensive assessment of long intrinsic protein disorder from the DisProt database. Bioinformatics 2017; 34:445-452. [DOI: 10.1093/bioinformatics/btx590] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Marco Necci
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Zsuzsanna Dosztányi
- Agricoltural Sciences, University of Udine, Udine, Italy
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Peter Tompa
- Fondazione Edmund Mach, S. Michele all'Adige, Italy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), and Center for Structural Biology (CSB), Flanders Institute for Biotechnology (VIB), Brussels, Belgium
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
286
|
Yan J, Kurgan L. DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- and RNA-binding residues. Nucleic Acids Res 2017; 45:e84. [PMID: 28132027 PMCID: PMC5449545 DOI: 10.1093/nar/gkx059] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/24/2017] [Indexed: 01/18/2023] Open
Abstract
Protein-DNA and protein-RNA interactions are part of many diverse and essential cellular functions and yet most of them remain to be discovered and characterized. Recent research shows that sequence-based predictors of DNA-binding residues accurately find these residues but also cross-predict many RNA-binding residues as DNA-binding, and vice versa. Most of these methods are also relatively slow, prohibiting applications on the whole-genome scale. We describe a novel sequence-based method, DRNApred, which accurately and in high-throughput predicts and discriminates between DNA- and RNA-binding residues. DRNApred was designed using a new dataset with both DNA- and RNA-binding proteins, regression that penalizes cross-predictions, and a novel two-layered architecture. DRNApred outperforms state-of-the-art predictors of DNA- or RNA-binding residues on a benchmark test dataset by substantially reducing the cross predictions and predicting arguably higher quality false positives that are located nearby the native binding residues. Moreover, it also more accurately predicts the DNA- and RNA-binding proteins. Application on the human proteome confirms that DRNApred reduces the cross predictions among the native nucleic acid binders. Also, novel putative DNA/RNA-binding proteins that it predicts share similar subcellular locations and residue charge profiles with the known native binding proteins. Webserver of DRNApred is freely available at http://biomine.cs.vcu.edu/servers/DRNApred/.
Collapse
Affiliation(s)
- Jing Yan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, 23284, USA
| |
Collapse
|
287
|
Liu H, Wei Q, Huang C, Zhang Y, Guo Z. Potential Roles of Intrinsic Disorder in Maternal-Effect Proteins Involved in the Maintenance of DNA Methylation. Int J Mol Sci 2017; 18:E1898. [PMID: 28869544 PMCID: PMC5618547 DOI: 10.3390/ijms18091898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023] Open
Abstract
DNA methylation is an important epigenetic modification that needs to be carefully controlled as a prerequisite for normal early embryogenesis. Compelling evidence now suggests that four maternal-effect proteins, primordial germ cell 7 (PGC7), zinc finger protein 57 (ZFP57), tripartite motif-containing 28 (TRIM28) and DNA methyltransferase (cytosine-5) 1 (DNMT1) are involved in the maintenance of DNA methylation. However, it is still not fully understood how these maternal-effect proteins maintain the DNA methylation imprint. We noticed that a feature common to these proteins is the presence of significant levels of intrinsic disorder so in this study we started from an intrinsic disorder perspective to try to understand these maternal-effect proteins. To do this, we firstly analysed the intrinsic disorder predispositions of PGC7, ZFP57, TRIM28 and DNMT1 by using a set of currently available computational tools and secondly conducted an intensive literature search to collect information on their interacting partners and structural characterization. Finally, we discuss the potential effect of intrinsic disorder on the function of these proteins in maintaining DNA methylation.
Collapse
Affiliation(s)
- Hongliang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Qing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China.
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
288
|
Meng F, Uversky VN, Kurgan L. Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions. Cell Mol Life Sci 2017; 74:3069-3090. [PMID: 28589442 PMCID: PMC11107660 DOI: 10.1007/s00018-017-2555-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
Computational prediction of intrinsic disorder in protein sequences dates back to late 1970 and has flourished in the last two decades. We provide a brief historical overview, and we review over 30 recent predictors of disorder. We are the first to also cover predictors of molecular functions of disorder, including 13 methods that focus on disordered linkers and disordered protein-protein, protein-RNA, and protein-DNA binding regions. We overview their predictive models, usability, and predictive performance. We highlight newest methods and predictors that offer strong predictive performance measured based on recent comparative assessments. We conclude that the modern predictors are relatively accurate, enjoy widespread use, and many of them are fast. Their predictions are conveniently accessible to the end users, via web servers and databases that store pre-computed predictions for millions of proteins. However, research into methods that predict many not yet addressed functions of intrinsic disorder remains an outstanding challenge.
Collapse
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, USA.
| |
Collapse
|
289
|
Zitouni S, Méchali F, Papin C, Choquet A, Roche D, Baldin V, Coux O, Bonne-Andrea C. The stability of Fbw7α in M-phase requires its phosphorylation by PKC. PLoS One 2017; 12:e0183500. [PMID: 28850619 PMCID: PMC5574586 DOI: 10.1371/journal.pone.0183500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/05/2017] [Indexed: 12/21/2022] Open
Abstract
Fbw7 is a tumor suppressor often deleted or mutated in human cancers. It serves as the substrate-recruiting subunit of a SCF ubiquitin ligase that targets numerous critical proteins for degradation, including oncoproteins and master transcription factors. Cyclin E was the first identified substrate of the SCFFbw7 ubiquitin ligase. In human cancers bearing FBXW7-gene mutations, deregulation of cyclin E turnover leads to its aberrant expression in mitosis. We investigated Fbw7 regulation in Xenopus eggs, which, although arrested in a mitotic-like phase, naturally express high levels of cyclin E. Here, we report that Fbw7α, the only Fbw7 isoform detected in eggs, is phosphorylated by PKC (protein kinase C) at a key residue (S18) in a manner coincident with Fbw7α inactivation. We show that this PKC-dependent phosphorylation and inactivation of Fbw7α also occurs in mitosis during human somatic cell cycles, and importantly is critical for Fbw7α stabilization itself upon nuclear envelope breakdown. Finally, we provide evidence that S18 phosphorylation, which lies within the intrinsically disordered N-terminal region specific to the α-isoform reduces the capacity of Fbw7α to dimerize and to bind cyclin E. Together, these findings implicate PKC in an evolutionarily-conserved pathway that aims to protect Fbw7α from degradation by keeping it transiently in a resting, inactive state.
Collapse
Affiliation(s)
- Sihem Zitouni
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Francisca Méchali
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Catherine Papin
- Institut de Génétique Humaine, CNRS, UMR 9002, Université de Montpellier, Montpellier, France
| | - Armelle Choquet
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France
| | - Daniel Roche
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
- Institut de Biologie Computationnelle, LIRMM, CNRS, Université de Montpellier, Montpellier, France
| | - Véronique Baldin
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Olivier Coux
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
| | - Catherine Bonne-Andrea
- Centre de Recherche de Biologie Cellulaire de Montpellier, CNRS, UMR 5237, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
290
|
Wang S, Ma J, Xu J. AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields. Bioinformatics 2017; 32:i672-i679. [PMID: 27587688 DOI: 10.1093/bioinformatics/btw446] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MOTIVATION Protein intrinsically disordered regions (IDRs) play an important role in many biological processes. Two key properties of IDRs are (i) the occurrence is proteome-wide and (ii) the ratio of disordered residues is about 6%, which makes it challenging to accurately predict IDRs. Most IDR prediction methods use sequence profile to improve accuracy, which prevents its application to proteome-wide prediction since it is time-consuming to generate sequence profiles. On the other hand, the methods without using sequence profile fare much worse than using sequence profile. METHOD This article formulates IDR prediction as a sequence labeling problem and employs a new machine learning method called Deep Convolutional Neural Fields (DeepCNF) to solve it. DeepCNF is an integration of deep convolutional neural networks (DCNN) and conditional random fields (CRF); it can model not only complex sequence-structure relationship in a hierarchical manner, but also correlation among adjacent residues. To deal with highly imbalanced order/disorder ratio, instead of training DeepCNF by widely used maximum-likelihood, we develop a novel approach to train it by maximizing area under the ROC curve (AUC), which is an unbiased measure for class-imbalanced data. RESULTS Our experimental results show that our IDR prediction method AUCpreD outperforms existing popular disorder predictors. More importantly, AUCpreD works very well even without sequence profile, comparing favorably to or even outperforming many methods using sequence profile. Therefore, our method works for proteome-wide disorder prediction while yielding similar or better accuracy than the others. AVAILABILITY AND IMPLEMENTATION http://raptorx2.uchicago.edu/StructurePropertyPred/predict/ CONTACT wangsheng@uchicago.edu, jinboxu@gmail.com SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, IL, USA Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Jianzhu Ma
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| |
Collapse
|
291
|
Meng F, Kurgan L. DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences. Bioinformatics 2017; 32:i341-i350. [PMID: 27307636 PMCID: PMC4908364 DOI: 10.1093/bioinformatics/btw280] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motivation: Disordered flexible linkers (DFLs) are disordered regions that serve as flexible linkers/spacers in multi-domain proteins or between structured constituents in domains. They are different from flexible linkers/residues because they are disordered and longer. Availability of experimentally annotated DFLs provides an opportunity to build high-throughput computational predictors of these regions from protein sequences. To date, there are no computational methods that directly predict DFLs and they can be found only indirectly by filtering predicted flexible residues with predictions of disorder. Results: We conceptualized, developed and empirically assessed a first-of-its-kind sequence-based predictor of DFLs, DFLpred. This method outputs propensity to form DFLs for each residue in the input sequence. DFLpred uses a small set of empirically selected features that quantify propensities to form certain secondary structures, disordered regions and structured regions, which are processed by a fast linear model. Our high-throughput predictor can be used on the whole-proteome scale; it needs <1 h to predict entire proteome on a single CPU. When assessed on an independent test dataset with low sequence-identity proteins, it secures area under the receiver operating characteristic curve equal 0.715 and outperforms existing alternatives that include methods for the prediction of flexible linkers, flexible residues, intrinsically disordered residues and various combinations of these methods. Prediction on the complete human proteome reveals that about 10% of proteins have a large content of over 30% DFL residues. We also estimate that about 6000 DFL regions are long with ≥30 consecutive residues. Availability and implementation:http://biomine.ece.ualberta.ca/DFLpred/. Contact:lkurgan@vcu.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4, Canada Department of Computer Science, Virginia Commonwealth University, Richmond, 23284, U.S.A
| |
Collapse
|
292
|
Uversky VN, Redwan EM. Erythropoietin and co.: intrinsic structure and functional disorder. MOLECULAR BIOSYSTEMS 2017; 13:56-72. [PMID: 27833947 DOI: 10.1039/c6mb00657d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Erythropoietin (Epo) is a heavily glycosylated protein, with its main function being related to erythropoiesis, where it controls red blood cell production via interaction with the Epo receptor (EpoR). It also plays a number of important roles in various hormonal, growth factor, and cytokine pathways. These roles are defined by Epo partners, such as the homodimeric (EpoR)2 receptor, the heterodimeric EpoR/βCR receptor and hypoxia inducing factor (HIF). Although the main structural features of both Epo and EpoR are conserved in vertebrates, the secretion sites of Epo in mammals are different from those in other vertebrates. Both biosynthetic and synthetic analogues of this protein are available on the market. Several side effects, such as pure red cells aplaisa, increase the rate of cancer-related death in patients treated with recombinant Epo. The multifunctionality of Epo and the ability of this protein to serve as a hormone, a cytokine, and a growth factor suggest the presence of functional disorder, which is a typical "structural" feature of moonlighting proteins. The goal of this article is to evaluate the roles of intrinsic disorder in the functions of Epo and its primary interactors, EpoR, βCR, and HIF-1α.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia. and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia and Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia. and Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab 21934, Alexandria, Egypt
| |
Collapse
|
293
|
DeForte S, Uversky VN. Not an exception to the rule: the functional significance of intrinsically disordered protein regions in enzymes. MOLECULAR BIOSYSTEMS 2017; 13:463-469. [PMID: 28098335 DOI: 10.1039/c6mb00741d] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered protein regions (IDPRs) are remarkably common and have unique and important biological functions. Enzymes have long been considered an exception to the rule of protein intrinsic disorder due to the structural requirements for catalysis. Although functionally significant IDPRs have been described in several enzymes, there has been no study quantifying the extent of this phenomenon. We have conducted a multilevel computational analysis of missing regions in X-ray crystal structures in the PDB and predicted disorder in 66 representative proteomes. We found that the fraction of predicted disorder was higher in non-enzymes than enzymes, because non-enzymes were more likely to be fully disordered. However, we also found that transferases, hydrolases and enzymes with multiple assigned functional classifications were similar to non-enzymes in terms of the length of the longest continuous stretch of predicted disorder. Both eukaryotic enzymes and non-enzymes had a greater disorder content than was seen in bacteria. Disorder at the proteome level appears to emerge in response to organismic and functional complexity, and enzymes are not an exception to this rule.
Collapse
Affiliation(s)
- Shelly DeForte
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA. and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
294
|
Na I, Meng F, Kurgan L, Uversky VN. Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. MOLECULAR BIOSYSTEMS 2017; 12:2798-817. [PMID: 27377881 DOI: 10.1039/c6mb00069j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent analyses indicated that autophagy can be regulated via some nuclear transcriptional networks and many important players in the autophagy and other forms of programmed cell death are known to be intrinsically disordered. To this end, we analyzed similarities and differences in the intrinsic disorder distribution of nuclear and non-nuclear proteins related to autophagy. We also looked at the peculiarities of the distribution of the intrinsically disordered autophagy-related proteins in various intra-nuclear organelles, such as the nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinucleolar compartment. This analysis revealed that the autophagy-related proteins constitute about 2.5% of the non-nuclear proteins and 3.3% of the nuclear proteins, which corresponds to a substantial enrichment by about 32% in the nucleus. Curiously, although, in general, the autophagy-related proteins share similar characteristics of disorder with a generic set of all non-nuclear proteins, chromatin and nuclear speckles are enriched in the intrinsically disordered autophagy proteins (29 and 37% of these proteins are disordered, respectively) and have high disorder content at 0.24 and 0.27, respectively. Therefore, our data suggest that some of the nuclear disordered proteins may play important roles in autophagy.
Collapse
Affiliation(s)
- Insung Na
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23219, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA. and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
295
|
Liu Y, Wu J, Sun N, Tu C, Shi X, Cheng H, Liu S, Li S, Wang Y, Zheng Y, Uversky VN. Intrinsically Disordered Proteins as Important Players during Desiccation Stress of Soybean Radicles. J Proteome Res 2017; 16:2393-2409. [PMID: 28525284 DOI: 10.1021/acs.jproteome.6b01045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) play a variety of important physiological roles in all living organisms. However, there is no comprehensive analysis of the abundance of IDPs associated with environmental stress in plants. Here, we show that a set of heat-stable proteins (i.e., proteins that do not denature after boiling at 100 °C for 10 min) was present in R0mm and R15mm radicles (i.e., before radicle emergence and 15 mm long radicles) of soybean (Glycine max) seeds. This set of 795 iTRAQ-quantified heat-stable proteins contained a high proportion of wholly or highly disordered proteins (15%), which was significantly higher than that estimated for the whole soybean proteome containing 55,787 proteins (9%). The heat-stable proteome of soybean radicles that contain many IDPs could protect lactate dehydrogenase (LDH) during freeze-thaw cycles. Comparison of the 795 heat-stable proteins in the R0mm and R15mm soybean radicles revealed that many of these proteins changed abundance during seedling growth with 170 and 89 proteins being more abundant in R0mm and R15mm, respectively. KEGG analysis identified 18 proteins from the cysteine and methionine metabolism pathways and nine proteins from the phenylpropanoid biosynthesis pathway. As an important type of IDP related to stress, 30 late embryogenesis abundant proteins were also found. Ten selected proteins with high levels of predicted intrinsic disorder were able to efficiently protect LDH from the freeze-thaw-induced inactivation, but the protective ability was not correlated with the disorder content of these proteins. These observations suggest that protection of the enzymes and other proteins in a stressed cell can be one of the biological functions of plant IDPs.
Collapse
Affiliation(s)
- Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Jiahui Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo , 285 Kapoor Hall, Buffalo, New York14260, United States
| | - Xiaoying Shi
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Hua Cheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Shuiming Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yong Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard MDC07, Tampa, Florida 33612, United States
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
296
|
Na I, Kong MJ, Straight S, Pinto JR, Uversky VN. Troponins, intrinsic disorder, and cardiomyopathy. Biol Chem 2017; 397:731-51. [PMID: 27074551 DOI: 10.1515/hsz-2015-0303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/05/2016] [Indexed: 11/15/2022]
Abstract
Cardiac troponin is a dynamic complex of troponin C, troponin I, and troponin T (TnC, TnI, and TnT, respectively) found in the myocyte thin filament where it plays an essential role in cardiac muscle contraction. Mutations in troponin subunits are found in inherited cardiomyopathies, such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). The highly dynamic nature of human cardiac troponin and presence of numerous flexible linkers in its subunits suggest that understanding of structural and functional properties of this important complex can benefit from the consideration of the protein intrinsic disorder phenomenon. We show here that mutations causing decrease in the disorder score in TnI and TnT are significantly more abundant in HCM and DCM than mutations leading to the increase in the disorder score. Identification and annotation of intrinsically disordered regions in each of the troponin subunits conducted in this study can help in better understanding of the roles of intrinsic disorder in regulation of interactomes and posttranslational modifications of these proteins. These observations suggest that disease-causing mutations leading to a decrease in the local flexibility of troponins can trigger a whole plethora of functional changes in the heart.
Collapse
|
297
|
Migliaccio AR, Uversky VN. Dissecting physical structure of calreticulin, an intrinsically disordered Ca 2+-buffering chaperone from endoplasmic reticulum. J Biomol Struct Dyn 2017; 36:1617-1636. [PMID: 28504081 DOI: 10.1080/07391102.2017.1330224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calreticulin (CALR) is a Ca2+ binding multifunctional protein that mostly resides in the endoplasmic reticulum (ER) and plays a number of important roles in various physiological and pathological processes. Although the major functions ascribed to CALR are controlling the Ca2+ homeostasis in ER and acting as a lectin-like ER chaperon for many glycoproteins, this moonlighting protein can be found in various cellular compartments where it has many non-ER functions. To shed more light on the mechanisms underlying polyfunctionality of this moonlighting protein that can be found in different cellular compartments and that possesses a wide spectrum of unrelated biological activities, being able to interact with Ca2+ (and potentially other metal ions), RNA, oligosaccharides, and numerous proteins, we used a set of experimental and computational tools to evaluate the intrinsic disorder status of CALR and the role of calcium binding on structural properties and conformational stability of the full-length CALR and its isolated P- and C-domains.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS) , New York , NY , USA.,b Department of Biomedical and Neuromotorial Sciences , Alma Mater University , Bologna , Italy
| | - Vladimir N Uversky
- c Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,d Laboratory of New Methods in Biology , Institute for Biological Instrumentation, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| |
Collapse
|
298
|
DisBind: A database of classified functional binding sites in disordered and structured regions of intrinsically disordered proteins. BMC Bioinformatics 2017; 18:206. [PMID: 28381244 PMCID: PMC5382478 DOI: 10.1186/s12859-017-1620-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/31/2017] [Indexed: 01/01/2023] Open
Abstract
Background Intrinsically unstructured or disordered proteins function via interacting with other molecules. Annotation of these binding sites is the first step for mapping functional impact of genetic variants in coding regions of human and other genomes, considering that a significant portion of eukaryotic genomes code for intrinsically disordered regions in proteins. Results DisBind (available at http://biophy.dzu.edu.cn/DisBind) is a collection of experimentally supported binding sites in intrinsically disordered proteins and proteins with both structured and disordered regions. There are a total of 226 IDPs with functional site annotations. These IDPs contain 465 structured regions (ORs) and 428 IDRs according to annotation by DisProt. The database contains a total of 4232 binding residues (from UniProt and PDB structures) in which 2836 residues are in ORs and 1396 in IDRs. These binding sites are classified according to their interacting partners including proteins, RNA, DNA, metal ions and others with 2984, 258, 383, 350, and 262 annotated binding sites, respectively. Each entry contains site-specific annotations (structured regions, intrinsically disordered regions, and functional binding regions) that are experimentally supported according to PDB structures or annotations from UniProt. Conclusion The searchable DisBind provides a reliable data resource for functional classification of intrinsically disordered proteins at the residue level.
Collapse
|
299
|
Santamaria N, Alhothali M, Alfonso MH, Breydo L, Uversky VN. Intrinsic disorder in proteins involved in amyotrophic lateral sclerosis. Cell Mol Life Sci 2017; 74:1297-1318. [PMID: 27838743 PMCID: PMC11107678 DOI: 10.1007/s00018-016-2416-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/17/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022]
Abstract
Five structurally and functionally different proteins, an enzyme superoxide dismutase 1 (SOD1), a TAR-DNA binding protein-43 (TDP-43), an RNA-binding protein FUS, a cofilin-binding protein C9orf72, and polypeptides generated as a result of its intronic hexanucleotide expansions, and to lesser degree actin-binding profilin-1 (PFN1), are considered to be the major drivers of amyotrophic lateral sclerosis. One of the features common to these proteins is the presence of significant levels of intrinsic disorder. The goal of this study is to consider these neurodegeneration-related proteins from the intrinsic disorder perspective. To this end, we employed a broad set of computational tools for intrinsic disorder analysis and conducted intensive literature search to gain information on the structural peculiarities of SOD1, TDP-43, FUS, C9orf72, and PFN1 and their intrinsic disorder predispositions, and the roles of intrinsic disorder in their normal and pathological functions.
Collapse
Affiliation(s)
- Nikolas Santamaria
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA
| | - Marwa Alhothali
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA
| | - Maria Harreguy Alfonso
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA
| | - Leonid Breydo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA.
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
300
|
Cancer/Testis Antigens: "Smart" Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers. Int J Mol Sci 2017; 18:ijms18040740. [PMID: 28362316 PMCID: PMC5412325 DOI: 10.3390/ijms18040740] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
A clinical dilemma in the management of prostate cancer (PCa) is to distinguish men with aggressive disease who need definitive treatment from men who may not require immediate intervention. Accurate prediction of disease behavior is critical because radical treatment is associated with high morbidity. Here, we highlight the cancer/testis antigens (CTAs) as potential PCa biomarkers. The CTAs are a group of proteins that are typically restricted to the testis in the normal adult but are aberrantly expressed in several types of cancers. Interestingly, >90% of CTAs are predicted to belong to the realm of intrinsically disordered proteins (IDPs), which do not have unique structures and exist as highly dynamic conformational ensembles, but are known to play important roles in several biological processes. Using prostate-associated gene 4 (PAGE4) as an example of a disordered CTA, we highlight how IDP conformational dynamics may regulate phenotypic heterogeneity in PCa cells, and how it may be exploited both as a potential biomarker as well as a promising therapeutic target in PCa. We also discuss how in addition to intrinsic disorder and post-translational modifications, structural and functional variability induced in the CTAs by alternate splicing represents an important feature that might have different roles in different cancers. Although it is clear that significant additional work needs to be done in the outlined direction, this novel concept emphasizing (multi)functionality as an important trait in selecting a biomarker underscoring the theranostic potential of CTAs that is latent in their structure (or, more appropriately, the lack thereof), and casts them as next generation or “smart” biomarker candidates.
Collapse
|