251
|
Hartt LS, Carling SJ, Joyce MM, Johnson GA, Vanderwall DK, Ott TL. Temporal and spatial associations of oestrogen receptor alpha and progesterone receptor in the endometrium of cyclic and early pregnant mares. Reproduction 2005; 130:241-50. [PMID: 16049162 DOI: 10.1530/rep.1.00596] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uterine function is primarily controlled by the combined actions of oestrogen and progesterone working through their cognate nuclear receptors. The mechanism of establishment of pregnancy in the mare is of interest because it involves prolonged pre-attachment and conceptus migration phases, and both invasive and non-invasive placental cell types, and as such has been an important comparative model. This study characterised regulation of oestrogen (ER) and progesterone (PR) receptors in the endometrium of the mare during the oestrous cycle and early pregnancy. Endometrial tissues collected during the oestrous cycle and early pregnancy were analysed for steady-state levels of ER and PR mRNA and protein. Steady-state levels of ER and PR mRNA were highest on days 0, 17 and 20 in cyclic mares and lowest on days 11 and 14. A day-by-status interaction was detected, indicating that day 17 and day 20 pregnant mares exhibited low levels of ER and PR compared with the corresponding days of the oestrous cycle. In situ hybridisation analyses showed receptor mRNA localisation primarily in the luminal epithelium (LE), glandular epithelium (GE) and stroma around oestrus. During dioestrus and early pregnancy, receptors were not detected in the LE, and were lower in the stroma and deeper GE. Changes in hybridisation intensity in these cell types were consistent with changes in mRNA levels detected by slot-blot hybridisation. ER and PR proteins were detected in the nuclei of LE, GE and stromal cells. Consistent with results from in situ hybridisation, levels of ER and PR immunoreactivity were higher around oestrus, declined to low levels during dioestrus and remained low during early pregnancy. Results described here for temporal and spatial changes in steroid receptor gene expression in mares show the greatest similarities with those described for cattle and sheep.
Collapse
Affiliation(s)
- L S Hartt
- Department of Animal and Veterinary Science, Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844-2330, USA
| | | | | | | | | | | |
Collapse
|
252
|
Song G, Spencer TE, Bazer FW. Cathepsins in the ovine uterus: regulation by pregnancy, progesterone, and interferon tau. Endocrinology 2005; 146:4825-33. [PMID: 16099855 DOI: 10.1210/en.2005-0768] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cathepsins (CTS) are peptidases that have biological roles in degrading extracellular matrix, catabolism of intracellular proteins, and processing of prohormones. Expression of CTSB, CTSD, CTSH, CTSK, CTSL, CTSS, and CTSZ genes was detected in the endometria of cyclic and early pregnant ewes with distinct temporal and spatial expression patterns. In the d 18 and 20 conceptus, expression of CTSB, CTSD, CTSL, and CTSZ mRNA was detected in the trophectoderm. Of particular note, CTSL mRNA was the most abundant CTS mRNA in the ovine endometrium and detected only in the luminal epithelium and superficial glandular epithelium of cyclic and pregnant ewes. CTSL mRNA increased 8-fold between d 10 and 18 in endometria of pregnant ewes, whereas it declined between d 14 and 16 in cyclic ewes. CTSL protein was also detected in conceptus trophectoderm, and pro-CTSL was detected in uterine flushings from ewes between d 12 and 16 of pregnancy. In ovariectomized and catheterized ewes, CTSL mRNA in the endometrium was increased by progesterone and intrauterine injections of ovine interferon (IFN)tau. Other endometrial CTS genes were also regulated by progesterone alone (CTSB, CTSK, CTSS, and CTSZ) or progesterone and IFNtau (CTSH, CTSK, CTSS, and CTSZ). These results indicate that CTS of endometrial and conceptus origin may regulate endometrial remodeling and conceptus implantation, endometrial CTS genes are regulated by ovarian and placental hormones, and CTSL is a novel IFNtau-stimulated gene expressed only in luminal epithelium and superficial glandular epithelium of the endometrium.
Collapse
Affiliation(s)
- Gwonhwa Song
- Center for Animal Biotechnology and Genomics, 442 Kleberg Center, 2471 TAMU, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | |
Collapse
|
253
|
Gray CA, Abbey CA, Beremand PD, Choi Y, Farmer JL, Adelson DL, Thomas TL, Bazer FW, Spencer TE. Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus. Biol Reprod 2005; 74:383-94. [PMID: 16251498 DOI: 10.1095/biolreprod.105.046656] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During early pregnancy in ruminants, progesterone (P4) from the corpus luteum and interferon tau (IFNT) from the conceptus act on the endometrium to regulate genes important for uterine receptivity and conceptus growth. The use of the uterine gland knockout (UGKO) ewe has demonstrated the critical role of epithelial secretions in regulation of conceptus survival and growth. A custom ovine cDNA array was used to identify alterations in gene expression of endometria from Day 14 cyclic, pregnant, and UGKO ewes (study 1) and from cyclic ewes treated with P4 or P4 with ZK 136,317 antiprogestin and control proteins or IFNT (study 2). In study 1, expression of 47 genes was more than 2-fold different between Day 14 pregnant and cyclic endometria, whereas 23 genes was different between Day 14 cyclic and UGKO endometria. In study 2, 70 genes were different due to P4 alone, 74 genes were affected by IFNT in a P4-dependent manner, and 180 genes were regulated by IFNT in a P4-independent manner. In each study, an approximately equal number of genes were found to be activated or repressed in each group. Endometrial genes increased by pregnancy and P4 and/or IFNT include B2M, CTSL, CXCL10, G1P3, GRP, IFI27, IFIT1, IFITM3, LGALS15, MX1, POSTN, RSAD2, and STAT5A. Transcripts decreased by pregnancy and P4 and/or IFNT include COL3A1, LUM, PTMA, PUM1, RPL9, SPARC, and VIM. Identification and analysis of these hormonally responsive genes will help define endometrial pathways critical for uterine support of peri-implantation conceptus survival, growth, and implantation.
Collapse
Affiliation(s)
- C Allison Gray
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Sukjumlong S, Dalin AM, Sahlin L, Persson E. Immunohistochemical studies on the progesterone receptor (PR) in the sow uterus during the oestrous cycle and in inseminated sows at oestrus and early pregnancy. Reproduction 2005; 129:349-59. [PMID: 15749961 DOI: 10.1530/rep.1.00514] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Physiological changes in the sow uterus involve the regulation by progesterone and its receptor proteins (PR). Therefore, the aim of the present study was to investigate the localization of PR during different stages of the oestrous cycle and in inseminated sows during early pregnancy by use of immunohistochemistry. Uterine samples were collected from cyclic and inseminated sows at different stages of the oestrous cycle and early pregnancy. The samples were fixed in 10% formaldehyde and embedded in paraffin. Immunohistochemistry was done by use of a mouse monoclonal antibody to PR. The highest PR immunostaining in the surface epithelium was observed at oestrus/5–6 h after artificial insemination (AI) and early dioestrus/70 h after AI. In the glandular epithelium, the highest level of PR was found at oestrus with the lowest at late dioestrus/d 19. Higher levels of PR were observed in inseminated groups compared with cyclic sows. In the myometrium, a high level of PR was found at oestrus, while stromal PR cells were constantly present throughout the oestrous cycle and at different stages of early pregnancy. In conclusion, this study shows that the immunopresence of PR in the sow uterus differed between uterine compartments at the same reproductive stage. Differences were also found for some uterine compartments between cyclic and inseminated/early pregnant sows. The relatively consistent immunostaining of PR in the stroma strengthens a stromal role in the regulation of physiological activities in the sow uterus during the oestrous cycle as well as early pregnancy.
Collapse
Affiliation(s)
- S Sukjumlong
- Department of Anatomy and Physiology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | | | | | | |
Collapse
|
255
|
Spencer TE, Hayashi K, Hu J, Carpenter KD. Comparative developmental biology of the mammalian uterus. Curr Top Dev Biol 2005; 68:85-122. [PMID: 16124997 DOI: 10.1016/s0070-2153(05)68004-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The uterus is an essential organ for reproduction in mammals. Despite the importance of the uterus for the fertility and health of women and their offspring, relatively little is known about the hormonal, cellular, and molecular mechanisms that regulate development of the uterus in either the fetus or neonate. Disruption of uterine development in the fetus and neonate by genetic defects or exposure to endocrine disruptors can program the function of the uterus in the adult and lead to infertility, cancer, and even death. The intent of this chapter is to review the current knowledge of regulatory factors and pathways governing prenatal organogenesis and postnatal morphogenesis of the uterus in mammals, with a particular focus on laboratory and domestic animals. Prenatal organogenesis, postnatal morphogenesis, and adult functional differentiation of the uterus are complex, multifactorial processes. Although conservation of some factors and pathways are observed between species, it is clear that mutation of candidate genes in the mouse does not always recapitulate the same defects observed in the human. Therefore, comparative biology of the mechanisms regulating uterine development in other species may be useful to identify candidate genes and pathways to understand congenital abnormalities in humans. This knowledge is necessary to develop rational therapies to prevent and treat infertility and to enhance fertility in humans and domestic animals.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
256
|
Spencer TE, Johnson GA, Bazer FW, Burghardt RC. Implantation mechanisms: insights from the sheep. Reproduction 2004; 128:657-68. [PMID: 15579583 DOI: 10.1530/rep.1.00398] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Implantation in all mammals involves shedding of the zona pellucida, followed by orientation, apposition, attachment and adhesion of the blastocyst to the endometrium. Endometrial invasion does not occur in domestic ruminants; thus, definitive implantation is achieved by adhesion of the mononuclear trophoblast cells to the endometrial lumenal epithelium (LE) and formation of syncytia by the fusion of trophoblast binucleate cells with the LE. This review highlights new information on mechanisms regulating the implantation cascade in sheep. The embryo enters the uterus on day 4 at the morula stage of development and then develops into a blastocyst by day 6. The blastocyst sheds the zona pellucida (day 8), elongates to a filamentous form (days 11–16), and adheres to the endometrial LE (day 16). Between days 14 and 16, the binucleate cells begin to differentiate in the trophoblast and subsequently migrate and fuse with the endometrial LE to form syncytia. Continuous exposure of the endometrium to progesterone in early pregnancy downregulates the progesterone receptors in the epithelia, a process which is associated with loss of the cell-surface mucin MUC1 and induction of several secreted adhesion proteins. Recurrent early pregnancy loss in the uterine gland knockout ewe model indicates that secretions of the endometrial epithelia have a physiologic role in blastocyst elongation and implantation. A number of endometrial proteins have been identified as potential regulators of blastocyst development and implantation in sheep, including glycosylated cell adhesion molecule 1 (GlyCAM-1), galectin-15, integrins and osteopontin. The epithelial derived secreted adhesion proteins (GlyCAM-1, galectin-15 and osteopontin) are expressed in a dynamic temporal and spatial manner and regulated by progesterone and/or interferon tau, which is the pregnancy recognition signal produced by the trophoblast during blastocyst elongation. The noninvasive and protracted nature of implantation in domestic animals provides valuable opportunities to investigate fundamental processes of implantation that are shared among all mammals. Understanding of the cellular and molecular signals that regulate uterine receptivity and implantation can be used to diagnose and identify causes of recurrent pregnancy loss and to improve pregnancy outcome in domestic animals and humans.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Animal Biotechnology and Genomics, Animal Science and Veterinary Anatomy and Public Health, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | |
Collapse
|
257
|
Spencer TE, Burghardt RC, Johnson GA, Bazer FW. Conceptus signals for establishment and maintenance of pregnancy. Anim Reprod Sci 2004; 82-83:537-50. [PMID: 15271478 DOI: 10.1016/j.anireprosci.2004.04.014] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Establishment and maintenance of pregnancy results from signaling by the conceptus (embryo/fetus and associated extraembryonic membranes) and requires progesterone produced by the corpus luteum. In most mammals, hormones produced by the trophoblast maintain progesterone production by acting directly or indirectly to maintain the corpus luteum. In domestic animals (ruminants and pigs), hormones from the trophoblast are antiluteolytic in that they act on the endometrium to prevent uterine release of luteolytic prostaglandin F2alpha. In cyclic and pregnant sheep, progesterone negatively autoregulates progesterone receptor gene expression in the endometrial luminal and superficial glandular epithelium. In cyclic sheep, loss of the progesterone receptor is closely followed by increases in epithelial estrogen receptors and then oxytocin receptors, allowing oxytocin to induce uterine release of luteolytic prostaglandin F2alpha pulses. In pregnant sheep, the conceptus trophoblast produces interferon tau that acts on the endometrium to inhibit transcription of the estrogen receptor alpha gene directly and the oxytocin receptor gene indirectly to abrogate development of the endometrial luteolytic mechanism. Subsequently, sequential, overlapping actions of progesterone, interferon tau, placental lactogen, and growth hormone comprise a hormonal servomechanism that regulates endometrial gland morphogenesis and terminal differentiated function to maintain pregnancy in sheep. In pigs, the conceptus trophoblast produces estrogen that alters the direction of prostaglandin F2alpha secretion from an endocrine to exocrine direction, thereby sequestering luteolytic prostaglandin F2alpha within the uterine lumen. Conceptus estrogen also increases expression of fibroblast growth factor 7 in the endometrial lumenal epithelium that, in turn, stimulates proliferation and differentiated functions of the trophectoderm, which expresses the fibroblast growth factor 7 receptor. Strategic manipulation of these physiological mechanisms may improve uterine capacity, conceptus survival, and reproductive health.
Collapse
Affiliation(s)
- T E Spencer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A and M University, College Station, TX 77843-2471, USA.
| | | | | | | |
Collapse
|