251
|
Torrens-Spence MP, Liu P, Ding H, Harich K, Gillaspy G, Li J. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. J Biol Chem 2012. [PMID: 23204519 DOI: 10.1074/jbc.m112.401752] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant aromatic amino acid decarboxylase (AAAD) enzymes are capable of catalyzing either decarboxylation or decarboxylation-deamination on various combinations of aromatic amino acid substrates. These two different activities result in the production of arylalkylamines and the formation of aromatic acetaldehydes, respectively. Variations in product formation enable individual enzymes to play different physiological functions. Despite these catalytic variations, arylalkylamine and aldehyde synthesizing AAADs are indistinguishable without protein expression and characterization. In this study, extensive biochemical characterization of plant AAADs was performed to identify residues responsible for differentiating decarboxylation AAADs from aldehyde synthase AAADs. Results demonstrated that a tyrosine residue located on a catalytic loop proximal to the active site of plant AAADs is primarily responsible for dictating typical decarboxylase activity, whereas a phenylalanine at the same position is primarily liable for aldehyde synthase activity. Mutagenesis of the active site phenylalanine to tyrosine in Arabidopsis thaliana and Petroselinum crispum aromatic acetaldehyde synthases primarily converts the enzymes activity from decarboxylation-deamination to decarboxylation. The mutation of the active site tyrosine to phenylalanine in the Catharanthus roseus and Papaver somniferum aromatic amino acid decarboxylases changes the enzymes decarboxylation activity to a primarily decarboxylation-deamination activity. Generation of these mutant enzymes enables the production of unusual AAAD enzyme products including indole-3-acetaldehyde, 4-hydroxyphenylacetaldehyde, and phenylethylamine. Our data indicates that the tyrosine and phenylalanine in the catalytic loop region could serve as a signature residue to reliably distinguish plant arylalkylamine and aldehyde synthesizing AAADs. Additionally, the resulting data enables further insights into the mechanistic roles of active site residues.
Collapse
|
252
|
Dai X, Mashiguchi K, Chen Q, Kasahara H, Kamiya Y, Ojha S, DuBois J, Ballou D, Zhao Y. The biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase. J Biol Chem 2012. [PMID: 23188833 DOI: 10.1074/jbc.m112.424077] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Auxin regulates every aspect of plant growth and development. Previous genetic studies demonstrated that YUCCA (YUC) flavin-containing monooxygenases (FMOs) catalyze a rate-limiting step in auxin biosynthesis and that YUCs are essential for many developmental processes. We proposed that YUCs convert indole-3-pyruvate (IPA) to indole-3-acetate (IAA). However, the exact biochemical mechanism of YUCs has remained elusive. Here we present the biochemical characterization of recombinant Arabidopsis YUC6. Expressed in and purified from Escherichia coli, YUC6 contains FAD as a cofactor, which has peaks at 448 nm and 376 nm in the UV-visible spectrum. We show that YUC6 uses NADPH and oxygen to convert IPA to IAA. The first step of the YUC6-catalyzed reaction is the reduction of the FAD cofactor to FADH(-) by NADPH. Subsequently, FADH(-) reacts with oxygen to form a flavin-C4a-(hydro)peroxy intermediate, which we show has a maximum absorbance at 381 nm in its UV-visible spectrum. The final chemical step is the reaction of the C4a-intermediate with IPA to produce IAA. Although the sequences of the YUC enzymes are related to those of the mammalian FMOs, which oxygenate nucleophilic substrates, YUC6 oxygenates an electrophilic substrate (IPA). Nevertheless, both classes of enzymes form quasi-stable C4a-(hydro)peroxyl FAD intermediates. The YUC6 intermediate has a half-life of ∼20 s whereas that of some FMOs is >30 min. This work reveals the catalytic mechanism of the first known plant flavin monooxygenase and provides a foundation for further investigating how YUC activities are regulated in plants.
Collapse
Affiliation(s)
- Xinhua Dai
- Section of Cell and Developmental Biology, the University of California San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Bernardi J, Lanubile A, Li QB, Kumar D, Kladnik A, Cook SD, Ross JJ, Marocco A, Chourey PS. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. PLANT PHYSIOLOGY 2012; 160:1318-28. [PMID: 22961134 PMCID: PMC3490580 DOI: 10.1104/pp.112.204743] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/06/2012] [Indexed: 05/18/2023]
Abstract
The phytohormone auxin (indole-3-acetic acid [IAA]) plays a fundamental role in vegetative and reproductive plant development. Here, we characterized a seed-specific viable maize (Zea mays) mutant, defective endosperm18 (de18) that is impaired in IAA biosynthesis. de18 endosperm showed large reductions of free IAA levels and is known to have approximately 40% less dry mass, compared with De18. Cellular analyses showed lower total cell number, smaller cell volume, and reduced level of endoreduplication in the mutant endosperm. Gene expression analyses of seed-specific tryptophan-dependent IAA pathway genes, maize Yucca1 (ZmYuc1), and two tryptophan-aminotransferase co-orthologs were performed to understand the molecular basis of the IAA deficiency in the mutant. Temporally, all three genes showed high expression coincident with high IAA levels; however, only ZmYuc1 correlated with the reduced IAA levels in the mutant throughout endosperm development. Furthermore, sequence analyses of ZmYuc1 complementary DNA and genomic clones revealed many changes specific to the mutant, including a 2-bp insertion that generated a premature stop codon and a truncated YUC1 protein of 212 amino acids, compared with the 400 amino acids in the De18. The putative, approximately 1.5-kb, Yuc1 promoter region also showed many rearrangements, including a 151-bp deletion in the mutant. Our concurrent high-density mapping and annotation studies of chromosome 10, contig 395, showed that the De18 locus was tightly linked to the gene ZmYuc1. Collectively, the data suggest that the molecular changes in the ZmYuc1 gene encoding the YUC1 protein are the causal basis of impairment in a critical step in IAA biosynthesis, essential for normal endosperm development in maize.
Collapse
|
254
|
Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:523-36. [PMID: 22725617 DOI: 10.1111/j.1365-313x.2012.05085.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant hormone auxin is believed to influence almost every aspect of plant growth and development. Auxin transport, biosynthesis and degradation combine to form gradients of the hormone that influence a range of key developmental and environmental response processes. There is abundant genetic evidence for the existence of multiple pathways for auxin biosynthesis and degradation. The complexity of these pathways makes it difficult to obtain a clear picture of the relative importance of specific metabolic pathways during development. We have developed a sensitive mass spectrometry-based method to simultaneously profile the majority of known auxin precursors and conjugates/catabolites in small amounts of Arabidopsis tissue. The method includes a new derivatization technique for quantification of the most labile of the auxin precursors. We validated the method by profiling the auxin metabolome in root and shoot tissues from various Arabidopsis thaliana ecotypes and auxin over-producing mutant lines. Substantial differences were shown in metabolite patterns between the lines and tissues. We also found differences of several orders of magnitude in the abundance of auxin metabolites, potentially indicating the relative importance of these compounds in the maintenance of auxin levels and activity. The method that we have established will enable researchers to obtain a better understanding of the dynamics of auxin metabolism and activity during plant growth and development.
Collapse
Affiliation(s)
- Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
255
|
Brandt R, Salla-Martret M, Bou-Torrent J, Musielak T, Stahl M, Lanz C, Ott F, Schmid M, Greb T, Schwarz M, Choi SB, Barton MK, Reinhart BJ, Liu T, Quint M, Palauqui JC, Martínez-García JF, Wenkel S. Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:31-42. [PMID: 22578006 DOI: 10.1111/j.1365-313x.2012.05049.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Unlike the situation in animals, the final morphology of the plant body is highly modulated by the environment. During Arabidopsis development, intrinsic factors provide the framework for basic patterning processes. CLASS III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) transcription factors are involved in embryo, shoot and root patterning. During vegetative growth HD-ZIPIII proteins control several polarity set-up processes such as in leaves and the vascular system. We have identified several direct target genes of the HD-ZIPIII transcription factor REVOLUTA (REV) using a chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) approach. This analysis revealed that REV acts upstream of auxin biosynthesis and affects directly the expression of several class II HD-ZIP transcription factors that have been shown to act in the shade-avoidance response pathway. We show that, as well as involvement in basic patterning, HD-ZIPIII transcription factors have a critical role in the control of the elongation growth that is induced when plants experience shade. Leaf polarity is established by the opposed actions of HD-ZIPIII and KANADI transcription factors. Finally, our study reveals that the module that consists of HD-ZIPIII/KANADI transcription factors controls shade growth antagonistically and that this antagonism is manifested in the opposed regulation of shared target genes.
Collapse
Affiliation(s)
- Ronny Brandt
- Center for Plant Molecular Biology-ZMBP, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Sakai T, Haga K. Molecular genetic analysis of phototropism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:1517-34. [PMID: 22864452 PMCID: PMC3439871 DOI: 10.1093/pcp/pcs111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant life is strongly dependent on the environment, and plants regulate their growth and development in response to many different environmental stimuli. One of the regulatory mechanisms involved in these responses is phototropism, which allows plants to change their growth direction in response to the location of the light source. Since the study of phototropism by Darwin, many physiological studies of this phenomenon have been published. Recently, molecular genetic analyses of Arabidopsis have begun to shed light on the molecular mechanisms underlying this response system, including phototropin blue light photoreceptors, phototropin signaling components, auxin transporters, auxin action mechanisms and others. This review highlights some of the recent progress that has been made in further elucidating the phototropic response, with particular emphasis on mutant phenotypes.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181 Japan.
| | | |
Collapse
|
257
|
Dal Bosco C, Dovzhenko A, Liu X, Woerner N, Rensch T, Eismann M, Eimer S, Hegermann J, Paponov IA, Ruperti B, Heberle-Bors E, Touraev A, Cohen JD, Palme K. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:860-70. [PMID: 22540348 DOI: 10.1111/j.1365-313x.2012.05037.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant hormone auxin is a mobile signal which affects nuclear transcription by regulating the stability of auxin/indole-3-acetic acid (IAA) repressor proteins. Auxin is transported polarly from cell to cell by auxin efflux proteins of the PIN family, but it is not as yet clear how auxin levels are regulated within cells and how access of auxin to the nucleus may be controlled. The Arabidopsis genome contains eight PINs, encoding proteins with a similar membrane topology. While five of the PINs are typically targeted polarly to the plasma membranes, the smallest members of the family, PIN5 and PIN8, seem to be located not at the plasma membrane but in endomembranes. Here we demonstrate by electron microscopy analysis that PIN8, which is specifically expressed in pollen, resides in the endoplasmic reticulum and that it remains internally localized during pollen tube growth. Transgenic Arabidopsis and tobacco plants were generated overexpressing or ectopically expressing functional PIN8, and its role in control of auxin homeostasis was studied. PIN8 ectopic expression resulted in strong auxin-related phenotypes. The severity of phenotypes depended on PIN8 protein levels, suggesting a rate-limiting activity for PIN8. The observed phenotypes correlated with elevated levels of free IAA and ester-conjugated IAA. Activation of the auxin-regulated synthetic DR5 promoter and of auxin response genes was strongly repressed in seedlings overexpressing PIN8 when exposed to 1-naphthalene acetic acid. Thus, our data show a functional role for endoplasmic reticulum-localized PIN8 and suggest a mechanism whereby PIN8 controls auxin thresholds and access of auxin to the nucleus, thereby regulating auxin-dependent transcriptional activity.
Collapse
Affiliation(s)
- Cristina Dal Bosco
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, Franco-Zorrilla JM, Solano R, Trevisan M, Pradervand S, Xenarios I, Fankhauser C. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:699-711. [PMID: 22536829 DOI: 10.1111/j.1365-313x.2012.05033.x] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components.
Collapse
Affiliation(s)
- Patricia Hornitschek
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Liu X, Hegeman AD, Gardner G, Cohen JD. Protocol: High-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. PLANT METHODS 2012; 8:31. [PMID: 22883136 PMCID: PMC3457856 DOI: 10.1186/1746-4811-8-31] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/16/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND The plant hormone auxin, indole-3-acetic acid (IAA), plays important roles in plant growth and development. The signaling response to IAA is largely dependent on the local concentration of IAA, and this concentration is regulated by multiple mechanisms in plants. Therefore, the precise quantification of local IAA concentration provides insights into the regulation of IAA and its biological roles. Meanwhile, pathways and genes involved in IAA biosynthesis are not fully understood, so it is necessary to analyze the production of IAA at the metabolite level for unbiased studies of IAA biosynthesis. RESULTS We have developed high-throughput methods to quantify plant endogenous IAA and its biosynthetic precursors including indole, tryptophan, indole-3-pyruvic acid (IPyA), and indole-3-butyric acid (IBA). The protocol starts with homogenizing plant tissues with stable-labeled internal standards added, followed by analyte purification using solid phase extraction (SPE) tips and analyte derivatization. The derivatized analytes are finally analyzed by selected reaction monitoring on a gas chromatograph-mass spectrometer (GC-MS/MS) to determine the precise abundance of analytes. The amount of plant tissue required for the assay is small (typically 2-10 mg fresh weight), and the use of SPE tips is simple and convenient, which allows preparation of large sets of samples within reasonable time periods. CONCLUSIONS The SPE tips and GC-MS/MS based method enables high-throughput and accurate quantification of IAA and its biosynthetic precursors from minute plant tissue samples. The protocol can be used for measurement of these endogenous compounds using isotope dilution, and it can also be applied to analyze IAA biosynthesis and biosynthetic pathways using stable isotope labeling. The method will potentially advance knowledge of the role and regulation of IAA.
Collapse
Affiliation(s)
- Xing Liu
- Plant Biological Sciences Graduate Program, Department of Horticultural Science, and Microbial and Plant Genomics Institute, University of Minnesota, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
- Division of Biology, 156–29, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Adrian D Hegeman
- Plant Biological Sciences Graduate Program, Department of Horticultural Science, and Microbial and Plant Genomics Institute, University of Minnesota, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Gary Gardner
- Plant Biological Sciences Graduate Program, Department of Horticultural Science, and Microbial and Plant Genomics Institute, University of Minnesota, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Jerry D Cohen
- Plant Biological Sciences Graduate Program, Department of Horticultural Science, and Microbial and Plant Genomics Institute, University of Minnesota, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| |
Collapse
|
260
|
Guenot B, Bayer E, Kierzkowski D, Smith RS, Mandel T, Žádníková P, Benková E, Kuhlemeier C. Pin1-independent leaf initiation in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:1501-10. [PMID: 22723086 PMCID: PMC3425194 DOI: 10.1104/pp.112.200402] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/18/2012] [Indexed: 05/20/2023]
Abstract
Phyllotaxis, the regular arrangement of leaves and flowers around the stem, is a key feature of plant architecture. Current models propose that the spatiotemporal regulation of organ initiation is controlled by a positive feedback loop between the plant hormone auxin and its efflux carrier PIN-FORMED1 (PIN1). Consequently, pin1 mutants give rise to naked inflorescence stalks with few or no flowers, indicating that PIN1 plays a crucial role in organ initiation. However, pin1 mutants do produce leaves. In order to understand the regulatory mechanisms controlling leaf initiation in Arabidopsis (Arabidopsis thaliana) rosettes, we have characterized the vegetative pin1 phenotype in detail. We show that although the timing of leaf initiation in vegetative pin1 mutants is variable and divergence angles clearly deviate from the canonical 137° value, leaves are not positioned at random during early developmental stages. Our data further indicate that other PIN proteins are unlikely to explain the persistence of leaf initiation and positioning during pin1 vegetative development. Thus, phyllotaxis appears to be more complex than suggested by current mechanistic models.
Collapse
|
261
|
Orozco-Arroyo G, Vázquez-Santana S, Camacho A, Dubrovsky JG, Cruz-García F. Inception of maleness: auxin contribution to flower masculinization in the dioecious cactus Opuntia stenopetala. PLANTA 2012; 236:225-38. [PMID: 22328126 DOI: 10.1007/s00425-012-1602-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/26/2012] [Indexed: 05/13/2023]
Abstract
In Opuntia stenopetala, flowers initiate as hermaphrodite; however, at maturity, only the stamens in male flowers and the gynoecium in female flowers become functional. At early developmental stages, growth and morphogenesis of the gynoecium in male flowers cease, forming a short style lacking stigmatic tissue at maturity. Here, an analysis of the masculinization process of this species and its relationship with auxin metabolism during gynoecium morphogenesis is presented. Histological analysis and scanning electron microscopy were performed; auxin levels were immunoanalyzed and exogenous auxin was applied to developing gynoecia. Male flower style-tissue patterning revealed morphological defects in the vascular bundles, stylar canal, and transmitting tissue. These features are similar to those observed in Arabidopsis thaliana mutant plants affected in auxin transport, metabolism, or signaling. Notably, when comparing auxin levels between male and female gynoecia from O. stenopetala at an early developmental stage, we found that they were particularly low in the male gynoecium. Consequently, exogenous auxin application on male gynoecia partially restored the defects of gynoecium development. We therefore hypothesize that, the arrest in male flower gynoecia patterning could be related to altered auxin homeostasis; alternatively, the addition of auxin could compensate for the lack of another unknown factor affecting male flower gynoecium development.
Collapse
Affiliation(s)
- Gregorio Orozco-Arroyo
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000. Col. Universidad Nacional Autónoma de México, 04510, Mexico, D.F., Mexico
| | | | | | | | | |
Collapse
|
262
|
Rosquete MR, Barbez E, Kleine-Vehn J. Cellular auxin homeostasis: gatekeeping is housekeeping. MOLECULAR PLANT 2012; 5:772-86. [PMID: 22199236 DOI: 10.1093/mp/ssr109] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle. The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport. Auxin metabolism and transport are both crucial for plant development; however, it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs. In this review, we provide a glance at very diverse topics of auxin biology, such as biosynthesis, conjugation, oxidation, and transport of auxin. This broad, but certainly superficial, overview highlights the mutual importance of auxin metabolism and transport. Moreover, it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis. Even though these processes have been so far only separately studied, we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport. Besides the integrative power of the global hormone signaling, we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.
Collapse
Affiliation(s)
- Michel Ruiz Rosquete
- Department of Applied Genetics and Cell Biology, University of Applied Life Sciences and Natural Resources (BOKU), 1190 Vienna, Austria
| | | | | |
Collapse
|
263
|
Tivendale ND, Davidson SE, Davies NW, Smith JA, Dalmais M, Bendahmane AI, Quittenden LJ, Sutton L, Bala RK, Le Signor C, Thompson R, Horne J, Reid JB, Ross JJ. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. PLANT PHYSIOLOGY 2012; 159:1055-63. [PMID: 22573801 PMCID: PMC3387693 DOI: 10.1104/pp.112.198457] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/08/2012] [Indexed: 05/18/2023]
Abstract
Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea.
Collapse
Affiliation(s)
- Nathan D. Tivendale
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - Sandra E. Davidson
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - Noel W. Davies
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - Jason A. Smith
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - Marion Dalmais
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - Abdelhafid I. Bendahmane
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - Laura J. Quittenden
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - Lily Sutton
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - Raj K. Bala
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - Christine Le Signor
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - Richard Thompson
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - James Horne
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - James B. Reid
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| | - John J. Ross
- School of Plant Science (N.D.T., S.E.D., L.J.Q., L.S., R.K.B., J.B.R., J.J.R.), Central Science Laboratory (N.W.D., J.H.), and School of Chemistry (N.D.T., J.A.S.), University of Tasmania, Sandy Bay, Tasmania, Australia 7005; Unité de Recherche en Génomique Végétale, 2 Evry, France 91018 (M.D., A.I.B.); and Unité Mixte de Recherche 1347 Agroécologie, Institut National de la Recherche Agronomique, Dijon, France 21065 (C.L.S., R.T.)
| |
Collapse
|
264
|
Finet C, Jaillais Y. Auxology: when auxin meets plant evo-devo. Dev Biol 2012; 369:19-31. [PMID: 22687750 DOI: 10.1016/j.ydbio.2012.05.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/09/2012] [Accepted: 05/31/2012] [Indexed: 11/27/2022]
Abstract
Auxin is implicated throughout plant growth and development. Although the effects of this plant hormone have been recognized for more than a century, it is only in the past two decades that light has been shed on the molecular mechanisms that regulate auxin homeostasis, signaling, transport, crosstalk with other hormonal pathways as well as its roles in plant development. These discoveries established a molecular framework to study the role of auxin in land plant evolution. Here, we review recent advances in auxin biology and their implications in both micro- and macro-evolution of plant morphology. By analogy to the term 'hoxology', which refers to the critical role of HOX genes in metazoan evolution, we propose to introduce the term 'auxology' to take into account the crucial role of auxin in plant evo-devo.
Collapse
Affiliation(s)
- Cédric Finet
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
265
|
Böttcher C, Dennis EG, Booker GW, Polyak SW, Boss PK, Davies C. A novel tool for studying auxin-metabolism: the inhibition of grapevine indole-3-acetic acid-amido synthetases by a reaction intermediate analogue. PLoS One 2012; 7:e37632. [PMID: 22649546 PMCID: PMC3359377 DOI: 10.1371/journal.pone.0037632] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/27/2012] [Indexed: 02/03/2023] Open
Abstract
An important process for the regulation of auxin levels in plants is the inactivation of indole-3-acetic acid (IAA) by conjugation to amino acids. The conjugation reaction is catalysed by IAA-amido synthetases belonging to the family of GH3 proteins. Genetic approaches to study the biological significance of these enzymes have been hampered by large gene numbers and a high degree of functional redundancy. To overcome these difficulties a chemical approach based on the reaction mechanism of GH3 proteins was employed to design a small molecule inhibitor of IAA-amido synthetase activity. Adenosine-5'-[2-(1H-indol-3-yl)ethyl]phosphate (AIEP) mimics the adenylated intermediate of the IAA-conjugation reaction and was therefore proposed to compete with the binding of MgATP and IAA in the initial stages of catalysis. Two grapevine IAA-amido synthetases with different catalytic properties were chosen to test the inhibitory effects of AIEP in vitro. GH3-1 has previously been implicated in the grape berry ripening process and is restricted to two amino acid substrates, whereas GH3-6 conjugated IAA to 13 amino acids. AIEP is the most potent inhibitor of GH3 enzymes so far described and was shown to be competitive against MgATP and IAA binding to both enzymes with K(i)-values 17-68-fold lower than the respective K(m)-values. AIEP also exhibited in vivo activity in an ex planta test system using young grape berries. Exposure to 5-20 µM of the inhibitor led to decreased levels of the common conjugate IAA-Asp and reduced the accumulation of the corresponding Asp-conjugate upon treatment with a synthetic auxin. AIEP therefore represents a novel chemical probe with which to study IAA-amido synthetase function.
Collapse
|
266
|
Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2853-72. [PMID: 22447967 DOI: 10.1093/jxb/ers091] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. In Trp-dependent IAA biosynthesis, four pathways have been postulated in plants: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) pathway. Although different plant species may have unique strategies and modifications to optimize their metabolic pathways, plants would be expected to share evolutionarily conserved core mechanisms for auxin biosynthesis because IAA is a fundamental substance in the plant life cycle. In this review, the genes now known to be involved in auxin biosynthesis are summarized and the major IAA biosynthetic pathway distributed widely in the plant kingdom is discussed on the basis of biochemical and molecular biological findings and bioinformatics studies. Based on evolutionarily conserved core mechanisms, it is thought that the pathway via IAM or IPA is the major route(s) to IAA in plants.
Collapse
Affiliation(s)
- Yoshihiro Mano
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan.
| | | |
Collapse
|
267
|
Stes E, Prinsen E, Holsters M, Vereecke D. Plant-derived auxin plays an accessory role in symptom development upon Rhodococcus fascians infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:513-527. [PMID: 22181713 DOI: 10.1111/j.1365-313x.2011.04890.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The biotrophic phytopathogen Rhodococcus fascians has a profound impact on plant development, mainly through its principal virulence factors, a mix of synergistically acting cytokinins that induce shoot formation. Expression profiling of marker genes for several auxin biosynthesis routes and mutant analysis demonstrated that the bacterial cytokinins stimulate the auxin biosynthesis of plants via specific targeting of the indole-3-pyruvic acid (IPA) pathway, resulting in enhanced auxin signaling in infected tissues. The double mutant tryptophan aminotransferase 1-1 tryptophan aminotransferase related 2-1 (taa1-1 tar2-1) of Arabidopsis (Arabidopsis thaliana), in which the IPA pathway is defective, displayed a decreased responsiveness towards R. fascians infection, although bacterial colonization and virulence gene expression were not impaired. These observations implied that plant-derived auxin was employed to reinforce symptom formation. Furthermore, the increased auxin production and, possibly, the accumulating bacterial cytokinins in infected plants modified the polar auxin transport so that new auxin maxima were repetitively established and distributed, a process that is imperative for symptom onset and maintenance. Based on these findings, we extend our model of the mode of action of bacterial and plant signals during the interaction between R. fascians and Arabidopsis.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
268
|
Ståldal V, Cierlik I, Chen S, Landberg K, Baylis T, Myrenås M, Sundström JF, Eklund DM, Ljung K, Sundberg E. The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. PLANT MOLECULAR BIOLOGY 2012; 78:545-59. [PMID: 22318676 DOI: 10.1007/s11103-012-9888-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/10/2012] [Indexed: 05/09/2023]
Abstract
SHORT-INTERNODES/STYLISH (SHI/STY)-family proteins redundantly regulate development of lateral organs in Arabidopsis thaliana. We have previously shown that STY1 interacts with the promoter of the auxin biosynthesis gene YUCCA (YUC)4 and activates transcription of the genes YUC4, YUC8 and OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF (ORA)59 independently of protein translation. STY1 also affects auxin levels and auxin biosynthesis rates. Here we show that STY1 induces the transcription of 16 additional genes independently of protein translation. Several of these genes are tightly co-expressed with SHI/STY-family genes and/or down-regulated in SHI/STY-family multiple mutant lines, suggesting them to be regulated by SHI/STY proteins during plant development. The majority of the identified genes encode transcription factors or cell expansion-related enzymes and functional studies suggest their involvement in stamen and leaf development or flowering time regulation.
Collapse
Affiliation(s)
- Veronika Ståldal
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Linnean Centre of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, PO-Box 7080, 75007 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Sun J, Qi L, Li Y, Chu J, Li C. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet 2012; 8:e1002594. [PMID: 22479194 PMCID: PMC3315464 DOI: 10.1371/journal.pgen.1002594] [Citation(s) in RCA: 412] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/30/2012] [Indexed: 11/18/2022] Open
Abstract
Higher plants adapt their growth to high temperature by a dramatic change in plant architecture. It has been shown that the transcriptional regulator phytochrome-interacting factor 4 (PIF4) and the phytohormone auxin are involved in the regulation of high temperature-induced hypocotyl elongation in Arabidopsis. Here we report that PIF4 regulates high temperature-induced hypocotyl elongation through direct activation of the auxin biosynthetic gene YUCCA8 (YUC8). We show that high temperature co-upregulates the transcript abundance of PIF4 and YUC8. PIF4-dependency of high temperature-mediated induction of YUC8 expression as well as auxin biosynthesis, together with the finding that overexpression of PIF4 leads to increased expression of YUC8 and elevated free IAA levels in planta, suggests a possibility that PIF4 directly activates YUC8 expression. Indeed, gel shift and chromatin immunoprecipitation experiments demonstrate that PIF4 associates with the G-box-containing promoter region of YUC8. Transient expression assay in Nicotiana benthamiana leaves support that PIF4 directly activates YUC8 expression in vivo. Significantly, we show that the yuc8 mutation can largely suppress the long-hypocotyl phenotype of PIF4-overexpression plants and also can reduce high temperature-induced hypocotyl elongation. Genetic analyses reveal that the shy2-2 mutation, which harbors a stabilized mutant form of the IAA3 protein and therefore is defective in high temperature-induced hypocotyl elongation, largely suppresses the long-hypocotyl phenotype of PIF4-overexpression plants. Taken together, our results illuminate a molecular framework by which the PIF4 transcriptional regulator integrates its action into the auxin pathway through activating the expression of specific auxin biosynthetic gene. These studies advance our understanding on the molecular mechanism underlying high temperature-induced adaptation in plant architecture.
Collapse
Affiliation(s)
- Jiaqiang Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Linlin Qi
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
270
|
Posttranslational modification and trafficking of PIN auxin efflux carriers. Mech Dev 2012; 130:82-94. [PMID: 22425600 DOI: 10.1016/j.mod.2012.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/03/2012] [Accepted: 02/10/2012] [Indexed: 11/23/2022]
Abstract
Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment. The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.
Collapse
|
271
|
Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci U S A 2012; 109:4668-73. [PMID: 22393022 DOI: 10.1073/pnas.1201498109] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a "tipping point" mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.
Collapse
|
272
|
Hofmann NR. YUC and TAA1/TAR proteins function in the same pathway for auxin biosynthesis. THE PLANT CELL 2011; 23:3869. [PMID: 22108405 PMCID: PMC3246332 DOI: 10.1105/tpc.111.231112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|