251
|
Chen K, Liu C, Li H, Lei Y, Zeng C, Xu S, Li J, Savino F. Infantile Colic Treated With Bifidobacterium longum CECT7894 and Pediococcus pentosaceus CECT8330: A Randomized, Double-Blind, Placebo-Controlled Trial. Front Pediatr 2021; 9:635176. [PMID: 34568236 PMCID: PMC8461252 DOI: 10.3389/fped.2021.635176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Colic is a common condition in infants <4 months of age. Attempts to treat infantile colic with probiotics have shown variable efficacy and overall low evidence of success. In this work, we tested the hypothesis that oral administration of Bifidobacterium longum CECT7894 (KABP042) and Pediococcus pentosaceus CECT8330 (KABP041) mix (1 × 109 colony forming units) would improve the symptoms of infantile colic. Methods: A total of 112 exclusively breastfed or mixed fed infants aged <2 months and meeting the ROME IV criteria for infantile colic were recruited. The infants were randomized in a double-blind, placebo-controlled trial to receive orally administered probiotics (intervention group, IG, n = 48) or placebo (placebo group, PG, n = 42) daily for 21 days. Results: Infants in the IG had significantly shorter crying time (p < 0.001) on day 7 [IG vs. PG, median (25-75th percentile): 38 (3.5-40.5) vs. 62 (40-108) min/day], day 14 [IG vs. PG: 20 (0-40) vs. 50 (30-75) min/day], and day 21 [IG vs. PG: 14 (0-33) vs. 40 (28-62) min/day]. Higher responder ratio and fewer crying/fussing episodes on days 7, 14, and 21 and better stool consistency on day 21 were observed in the IG (p < 0.01) as compared to the PG. Conversely, no significant effects on stool frequency or quality of life were observed. Conclusions: In summary, daily oral administration of B. longum CECT7894 (KABP042) and P. pentosaceus CECT8330 (KABP041) was an effective treatment for shortening crying time due to infantile colic and for improving fecal consistency. This trial was registered retrospectively in December 2019 with a trial number of ISRCTN92431452.
Collapse
Affiliation(s)
- Ke Chen
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Child Health Care, Angel Children's Hospital, Chengdu, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Hua Li
- Department of Child Health Care, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Yuehua Lei
- Department of Child Health Care, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Chenggui Zeng
- Department of Child Health Care, Chengdu Caojiaxiang Community Healthcare Center, Chengdu, China
| | - Shuhong Xu
- Department of Child Health Care, Huili Maternity and Child Care Center, Huili, China
| | - Jianqiu Li
- Department of Child Health Care, Angel Children's Hospital, Chengdu, China
| | - Francesco Savino
- Department of Paediatrics, S.S.D. Subintensive Neonatal Care, Children Hospital 'Regina Margherita', Turin, Italy
| |
Collapse
|
252
|
Hadi J, Wu S, Brightwell G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020; 9:E1895. [PMID: 33353056 PMCID: PMC7767196 DOI: 10.3390/foods9121895] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. Laboratory measurements indicate that antimicrobial blue light has minimal effects on the sensorial and nutritional properties of foods, although future research using human panels is required to ascertain these findings. Food properties also affect the efficacy of antimicrobial blue light, with attenuation or enhancement of the bactericidal activity observed in the presence of absorptive materials (for example, proteins on meats) or photosensitizers (for example, riboflavin in milk), respectively. Blue light can also be coupled with other treatments, such as polyphenols, essential oils and organic acids. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light-for example, the inactivation of spoilage bacteria in vacuum-packed meats.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
253
|
Steuer P, Tejeda C, Martinez O, Ramirez-Reveco A, González N, Grant IR, Foddai ACG, Collins MT, Salgado M. Effectiveness of copper ions against Mycobacterium avium subsp. paratuberculosis and bacterial communities in naturally contaminated raw cow's milk. J Appl Microbiol 2020; 131:146-154. [PMID: 33151641 DOI: 10.1111/jam.14923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023]
Abstract
AIM The focus of the present study was to evaluate the copper ions treatment on the viability of Mycobacterium avium subsp. paratuberculosis (MAP) and other bacterial communities in cow's milk. METHODS AND RESULTS A copper ions treatment was evaluated in naturally contaminated cow's milk to assay MAP load and/or viability, and relative abundance of other bacterial communities. In addition, physical-chemical analyses of the milk were also performed. All analyses were carried out before and after a copper ions treatment. After copper ions treatment, pH and copper concentration markedly increased in milk; the numbers of viable MAP significantly decreased. The relative abundance of the four target phyla decreased, with the phyla Bacteroidetes and Firmicutes surviving treatment in higher proportions (4 and 2·1% of original populations, respectively). A progressively higher percentage of dead bacterial cells after 5 and 20 min copper ions treatments was found (12 and 35%, respectively). CONCLUSION With the exception of some MAP-tolerant strains, we have once again demonstrated that copper ions have a significant inactivating effect on MAP as well as certain other bacterial communities found in naturally contaminated cow's milk. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed a significant inactivation of both MAP and other bacteria by copper ions in raw cow's milk, information that could be useful as a tool for MAP control.
Collapse
Affiliation(s)
- P Steuer
- Instituto de Medicina Preventiva Veterinaria, Valdivia, Chile.,Facultad de Ciencias Veterinarias, Escuela de Graduados, Valdivia, Chile
| | - C Tejeda
- Instituto de Medicina Preventiva Veterinaria, Valdivia, Chile
| | - O Martinez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | | | - N González
- Instituto de Medicina Preventiva Veterinaria, Valdivia, Chile
| | - I R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - A C G Foddai
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - M T Collins
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - M Salgado
- Instituto de Medicina Preventiva Veterinaria, Valdivia, Chile
| |
Collapse
|
254
|
Austrian Raw-Milk Hard-Cheese Ripening Involves Successional Dynamics of Non-Inoculated Bacteria and Fungi. Foods 2020; 9:foods9121851. [PMID: 33322552 PMCID: PMC7763656 DOI: 10.3390/foods9121851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Cheese ripening involves successional changes of the rind microbial composition that harbors a key role on the quality and safety of the final products. In this study, we analyzed the evolution of the rind microbiota (bacteria and fungi) throughout the ripening of Austrian Vorarlberger Bergkäse (VB), an artisanal surface-ripened cheese, by using quantitative and qualitative approaches. The real-time quantitative PCR results revealed that bacteria were more abundant than fungi in VB rinds throughout ripening, although both kingdoms were abundant along the process. The qualitative investigation was performed by high-throughput gene-targeted (amplicon) sequencing. The results showed dynamic changes of the rind microbiota throughout ripening. In the fresh products, VB rinds were dominated by Staphylococcus equorum and Candida. At early ripening times (14–30 days) Psychrobacter and Debaryomyces flourished, although their high abundance was limited to these time points. At the latest ripening times (90–160 days), VB rinds were dominated by S. equorum, Brevibacterium, Corynebacterium, and Scopulariopsis. Strong correlations were shown for specific bacteria and fungi linked to specific ripening periods. This study deepens our understanding of VB ripening and highlights different bacteria and fungi associated to specific ripening periods which may influence the organoleptic properties of the final products.
Collapse
|
255
|
Yap M, Feehily C, Walsh CJ, Fenelon M, Murphy EF, McAuliffe FM, van Sinderen D, O'Toole PW, O'Sullivan O, Cotter PD. Evaluation of methods for the reduction of contaminating host reads when performing shotgun metagenomic sequencing of the milk microbiome. Sci Rep 2020; 10:21665. [PMID: 33303873 PMCID: PMC7728742 DOI: 10.1038/s41598-020-78773-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Shotgun metagenomic sequencing is a valuable tool for the taxonomic and functional profiling of microbial communities. However, this approach is challenging in samples, such as milk, where a low microbial abundance, combined with high levels of host DNA, result in inefficient and uneconomical sequencing. Here we evaluate approaches to deplete host DNA or enrich microbial DNA prior to sequencing using three commercially available kits. We compared the percentage of microbial reads obtained from each kit after shotgun metagenomic sequencing. Using bovine and human milk samples, we determined that host depletion with the MolYsis complete5 kit significantly improved microbial sequencing depth compared to other approaches tested. Importantly, no biases were introduced. Additionally, the increased microbial sequencing depth allowed for further characterization of the microbiome through the generation of metagenome-assembled genomes (MAGs). Furthermore, with the use of a mock community, we compared three common classifiers and determined that Kraken2 was the optimal classifier for these samples. This evaluation shows that microbiome analysis can be performed on both bovine and human milk samples at a much greater resolution without the need for more expensive deep-sequencing approaches.
Collapse
Affiliation(s)
- Min Yap
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Conor Feehily
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Calum J Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Mark Fenelon
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | - Fionnuala M McAuliffe
- APC Microbiome Ireland, Cork, Ireland
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
| |
Collapse
|
256
|
Criste A, Copolovici L, Copolovici D, Kovacs M, Madden RH, Corcionivoschi N, Gundogdu O, Berchez M, Urcan AC. Determination of changes in the microbial and chemical composition of Țaga cheese during maturation. PLoS One 2020; 15:e0242824. [PMID: 33270702 PMCID: PMC7714210 DOI: 10.1371/journal.pone.0242824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/09/2020] [Indexed: 11/18/2022] Open
Abstract
Țaga cheese is a traditional Romanian smear-ripened cheese made from bovine milk and identified with the name of the village and caves where it is produced. As no previously reported microbiological and chemical studies have been undertaken on this product, this research aimed to investigate the microbiological and biochemical characteristics which ensure the uniqueness of Țaga cheese during the ripening process, to inform producers as to key quality determinants. Cheese samples, consisting of retail blocks, were collected on days 2, 5, 12, 18, and 25 of the ripening process. The evolution of lactic microbiota during the production and maturation of traditional cheeses involves isolating lactic acid microorganisms present in cheese. Cheese samples were analyzed for pH, fat, NaCl, fatty acids, and volatile compounds. The microbial ecosystem naturally changes during the maturation process, leading to variation in the microorganisms involved during ripening. Our results show that specific bacteria were identified in high levels during the entire ripening process and may be responsible for milk fat lipolysis contributing directly to cheese flavor by imparting detailed fatty acid flavor notes, or indirectly as precursors formation of other flavor compounds.
Collapse
Affiliation(s)
- Adriana Criste
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Research Center in Technical and Natural Sciences, "Aurel Vlaicu" University, Arad, Romania
| | - Dana Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Research Center in Technical and Natural Sciences, "Aurel Vlaicu" University, Arad, Romania
| | - Melinda Kovacs
- INCDO-INOE 2000, Subsidiary Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Robert H. Madden
- Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Nicolae Corcionivoschi
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Veterinary Sciences Division, Bacteriology Branch, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mihaela Berchez
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
257
|
Identification and selection of heat-stable protease and lipase-producing psychrotrophic bacteria from fresh and chilled raw milk during up to five days storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
258
|
Implications of differences in safety and hygiene control practices for microbial safety and aflatoxin M1 in an emerging dairy chain: The case of Tanzania. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
259
|
de Melo Pereira GV, de Carvalho Neto DP, Maske BL, De Dea Lindner J, Vale AS, Favero GR, Viesser J, de Carvalho JC, Góes-Neto A, Soccol CR. An updated review on bacterial community composition of traditional fermented milk products: what next-generation sequencing has revealed so far? Crit Rev Food Sci Nutr 2020; 62:1870-1889. [PMID: 33207956 DOI: 10.1080/10408398.2020.1848787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of next-generation sequencing (NGS) technologies has revolutionized the way to investigate the microbial diversity in traditional fermentations. In the field of food microbial ecology, different NGS platforms have been used for community analysis, including 454 pyrosequencing from Roche, Illumina's instruments and Thermo Fisher's SOLiD/Ion Torrent sequencers. These recent platforms generate information about millions of rDNA amplicons in a single running, enabling accurate phylogenetic resolution of microbial taxa. This review provides a comprehensive overview of the application of NGS for microbiome analysis of traditional fermented milk products worldwide. Fermented milk products covered in this review include kefir, buttermilk, koumiss, dahi, kurut, airag, tarag, khoormog, lait caillé, and suero costeño. Lactobacillus-mainly represented by Lb. helveticus, Lb. kefiranofaciens, and Lb. delbrueckii-is the most important and frequent genus with 51 reported species. In general, dominant species detected by culturing were also identified by NGS. However, NGS studies have revealed a more complex bacterial diversity, with estimated 400-600 operational taxonomic units, comprising uncultivable microorganisms, sub-dominant populations, and late-growing species. This review explores the importance of these discoveries and address related topics on workflow, NGS platforms, and knowledge bioinformatics devoted to fermented milk products. The knowledge that has been gained is vital in improving the monitoring, manipulation, and safety of these traditional fermented foods.
Collapse
Affiliation(s)
- Gilberto V de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Dão Pedro de Carvalho Neto
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Bruna L Maske
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Alexander S Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Gabriel R Favero
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Jéssica Viesser
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Júlio C de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carlos R Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
260
|
Papademas P, Kamilari E, Aspri M, Anagnostopoulos DA, Mousikos P, Kamilaris A, Tsaltas D. Investigation of donkey milk bacterial diversity by 16S rDNA high-throughput sequencing on a Cyprus donkey farm. J Dairy Sci 2020; 104:167-178. [PMID: 33162091 DOI: 10.3168/jds.2020-19242] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The interest in milk originating from donkeys is growing worldwide due to its claimed functional and nutritional properties, especially for sensitive population groups, such as infants with cow milk protein allergy. The current study aimed to assess the microbiological quality of donkey milk produced in a donkey farm in Cyprus using culture-based and high-throughput sequencing techniques. The culture-based microbiological analysis showed very low microbial counts, whereas important food-borne pathogens were not detected in any sample. In addition, high-throughput sequencing was applied to characterize the bacterial communities of donkey milk samples. Donkey milk mostly composed of gram-negative Proteobacteria, including Sphingomonas, Pseudomonas, Mesorhizobium, and Acinetobacter; lactic acid bacteria, including Lactobacillus and Streptococcus; the endospores forming Clostridium; and the environmental genera Flavobacterium and Ralstonia, detected in lower relative abundances. The results of the study support existing findings that donkey milk contains mostly gram-negative bacteria. Moreover, it raises questions regarding the contribution of (1) antimicrobial agents (i.e., lysozyme, peptides) in shaping the microbial communities and (2) bacterial microbiota to the functional value of donkey milk.
Collapse
Affiliation(s)
- P Papademas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus.
| | - E Kamilari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - M Aspri
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - D A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - P Mousikos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - A Kamilaris
- Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Enschede, 7522 NB, the Netherlands; Research Centre on Interactive Media, Smart Systems and Emerging Technologies-RISE, Nicosia 1066, Cyprus
| | - D Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus.
| |
Collapse
|
261
|
Hajigholizadeh M, Mardani K, Moradi M, Jamshidi A. Molecular detection, phylogenetic analysis, and antibacterial performance of lactic acid bacteria isolated from traditional cheeses, North-West Iran. Food Sci Nutr 2020; 8:6007-6013. [PMID: 33282252 PMCID: PMC7684625 DOI: 10.1002/fsn3.1887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Lactic acid bacteria (LAB) are candidate probiotic bacteria that can provide health benefits when delivered via functional foods. The purpose of this study was to isolate and characterize LAB from traditional cheeses consumed in north-west regions of Iran. A number of sixty traditional cheeses samples were collected and initially screened as LAB using biochemical and molecular methods. A fragment of 1,540 bp in size of 16s rRNA gene was amplified from 70 bacterial isolates. Restriction fragment length polymorphism (RFLP) was employed to differentiate LAB isolates. LAB isolates generated three different RFLP patterns using HinfI restriction enzyme. Phylogenetic analysis revealed that LAB isolates belonged to three genera including Enterococcus, Lactobacillus, and Lactococcus. Most of the isolated LAB strains belonged to Enterococcus spp. The antimicrobial performance of eight LAB isolates with different RFLP patterns ranged from 6.72 to 14.00 mm. It was concluded that molecular characterization of LAB strains in traditional cheeses will enhance our understanding of traditional food microbiota and will help to find bacterial strains with probiotic potential with great benefit both in health and industry.
Collapse
Affiliation(s)
- Mehran Hajigholizadeh
- Department of Food Hygiene and AquacultureFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Karim Mardani
- Department of Food Hygiene and Quality ControlFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Mehran Moradi
- Department of Food Hygiene and Quality ControlFaculty of Veterinary MedicineUrmia UniversityUrmiaIran
| | - Abdollah Jamshidi
- Department of Food Hygiene and AquacultureFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
262
|
Zhang M, Dang N, Ren D, Zhao F, Lv R, Ma T, Bao Q, Menghe B, Liu W. Comparison of Bacterial Microbiota in Raw Mare's Milk and Koumiss Using PacBio Single Molecule Real-Time Sequencing Technology. Front Microbiol 2020; 11:581610. [PMID: 33193214 PMCID: PMC7652796 DOI: 10.3389/fmicb.2020.581610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Koumiss is a traditional fermented raw mare’s milk product. It contains high nutritional value and is well-known for its health-promoting effect as an alimentary supplement. This study aimed to investigate the bacterial diversity, especially lactic acid bacteria (LAB), in koumiss and raw mare’s milk. Forty-two samples, including koumiss and raw mare’s milk, were collected from the pastoral area in Yili, Kazakh Autonomous Prefecture, Xinjiang Uygur Autonomous Region in China. This work applied PacBio single-molecule real-time (SMRT) sequencing to profile full-length 16S rRNA genes, which was a powerful technology enabling bacterial taxonomic assignment to the species precision. The SMRT sequencing identified 12 phyla, 124 genera, and 227 species across 29 koumiss samples. Eighteen phyla, 286 genera, and 491 species were found across 13 raw mare’s milk samples. The bacterial microbiota diversity of the raw mare’s milk was more complex and diverse than the koumiss. Raw mare’s milk was rich in LAB, such as Lactobacillus (L.) helveticus, L. plantarum, Lactococcus (Lc.) lactis, and L. kefiranofaciens. In addition, raw mare’s milk also contained sequences representing pathogenic bacteria, such as Staphylococcus succinus, Acinetobacter lwoffii, Klebsiella (K.) oxytoca, and K. pneumoniae. The koumiss microbiota mainly comprised LAB, and sequences representing pathogenic bacteria were not detected. Meanwhile, the koumiss was enriched with secondary metabolic pathways that were potentially beneficial for health. Using a Random Forest model, the two kinds of samples could be distinguished with a high accuracy 95.2% [area under the curve (AUC) = 0.98] based on 42 species and functions. Comprehensive depiction of the microbiota in raw mare’s milk and koumiss might help elucidate evolutionary and functional relationships among the bacterial communities in these dairy products. The current work suffered from the limitation of a low sample size, so further work would be required to verify our findings.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Na Dang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyan Ren
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruirui Lv
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
263
|
Snapshot of Cyprus Raw Goat Milk Bacterial Diversity via 16S rDNA High-Throughput Sequencing; Impact of Cold Storage Conditions. FERMENTATION 2020. [DOI: 10.3390/fermentation6040100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In general, it is a common practice among dairy producers to store the milk in the refrigerator directly after milking, in order to preserve it and prevent the development of spoilage microbes. However, the impact of keeping the milk in the refrigerator overnight on milk microbial diversity has been poorly investigated. This study aimed to provide a snapshot of the bacterial composition of goat milk after direct storage at −80 °C and after being kept overnight at 4 °C and then in storage at −80 °, using high-throughput sequencing (HTS). Goat milk samples from four different farms were analyzed, to reveal that milk bacterial diversity differed between the two different storage conditions. Goat milk directly stored at −80 °C was characterized by the presence of the Gram-negative contaminants Pseudomonas and Acinetobacter, in addition to the genera Corynebacterium, Chryseobacterium, Bacteroides and Clostridium. Milk samples that were kept overnight at 4 °C were characterized by a reduction in their bacterial biodiversity and the predominance of the Gram-negative, aerobic Phyllobacterium. Overall, HTS methodologies provide an in-depth identification and characterization of the goat raw milk microbiome. Further, they offer a better understanding of the contribution of cold storage conditions to milk microbiota formation. This study may assist dairy producers in improving raw milk and raw milk cheeses quality and guaranteeing consumers’ safety.
Collapse
|
264
|
Cremonesi P, Morandi S, Ceccarani C, Battelli G, Castiglioni B, Cologna N, Goss A, Severgnini M, Mazzucchi M, Partel E, Tamburini A, Zanini L, Brasca M. Raw Milk Microbiota Modifications as Affected by Chlorine Usage for Cleaning Procedures: The Trentingrana PDO Case. Front Microbiol 2020; 11:564749. [PMID: 33123103 PMCID: PMC7573252 DOI: 10.3389/fmicb.2020.564749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Milk microbiota represents a key point in raw milk cheese production and contributes to the development of typical flavor and texture for each type of cheese. The aim of the present study was to evaluate the influence of chlorine products usage for cleaning and sanitizing the milking equipment on (i) raw milk microbiota; (ii) the deriving whey-starter microbiota; and (iii) Trentingrana Protected Designation of Origin (PDO) cheese microbiota and volatilome. Milk samples from three farms affiliated to a Trentingrana PDO cheese factory were collected three times per week during a 6-weeks period in which a sodium hypochlorite detergent (period C) was used and during a subsequent 6-weeks period of non-chlorine detergent usage (period NC). Samples were subjected to microbiological [Standard Plate Count; coliforms; coagulase-positive staphylococci; and lactic acid bacteria (LAB)] and metagenomic analysis (amplification of V3-V4 regions of 16S rRNA gene performed on Illumina MiSeq platform). In addition, cheese volatilome was determined by SPME-GC-MS. In the transition from period C to period NC, higher SPC and LAB counts in milk were recorded. Milk metagenomic analysis showed a peculiar distinctive microbiota composition for the three farms during the whole experimental period. Moreover, differences were highlighted comparing C and NC periods in each farm. A difference in microbial population related to chlorine usage in bulk milk and vat samples was evidenced. Moreover, chlorine utilization at farm level was found to affect the whey-starter population: the usually predominant Lactobacillus helveticus was significantly reduced during NC period, whereas Lactobacillus delbrueckii had the exact opposite trend. Alpha- and beta-diversity revealed a separation between the two treatment periods with a higher presence of L. helveticus, L. delbrueckii, and Streptococcus thermophilus in cheese samples after NC detergent period. Cheese volatilome analysis showed a slight decrease in lipolysis during C period in the inner part of the cheese wheel. Although preliminary, these results suggest a profound influence on milk and cheese microbiota, as well as on raw milk cheese production and quality, due to the use of chlorine. However, further studies will be needed to better understand the complex relationship between chlorine and microbiota along all the cheese production steps.
Collapse
Affiliation(s)
- Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Lodi, Italy
| | - Stefano Morandi
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, Italian National Research Council, Segrate, Italy
- Department of Health Sciences, San Paolo Hospital Medical School, University of Milan, Milan, Italy
| | - Giovanna Battelli
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Lodi, Italy
| | - Nicola Cologna
- Trentingrana–Consorzio dei Caseifici Sociali Trentini s.c.a., Trento, Italy
| | - Andrea Goss
- Trentingrana–Consorzio dei Caseifici Sociali Trentini s.c.a., Trento, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, Italian National Research Council, Segrate, Italy
| | | | - Erika Partel
- Technology Transfer Center, Edmund Mach Foundation, Trento, Italy
| | - Alberto Tamburini
- Department of Agricultural and Environmental Sciences, Faculty of Agricultural and Food Sciences, University of Milan, Milan, Italy
| | | | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| |
Collapse
|
265
|
Tao Y, Yun J, Wang J, Xu P, Li C, Liu H, Lan Y, Pan J, Du W. High-performance detection of Mycobacterium bovis in milk using digital LAMP. Food Chem 2020; 327:126945. [DOI: 10.1016/j.foodchem.2020.126945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 11/24/2022]
|
266
|
Biolcati F, Ferrocino I, Bottero MT, Dalmasso A. Short communication: High-throughput sequencing approach to investigate Italian artisanal cheese production. J Dairy Sci 2020; 103:10015-10021. [PMID: 32952028 DOI: 10.3168/jds.2020-18208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Abstract
In this study, high-throughput sequencing (HTS) was used to investigate the microbiota of Robiola di Roccaverano production, an artisanal Protected Designation of Origin soft cheese made with raw goat milk by addition of a natural milk starter (NMS), from the Piedmont region of Italy. Different steps of production of Robiola di Roccaverano cheese at one artisanal dairy were monitored. Matched samples of milk, NMS, curd, and 5-d and 15-d matured cheeses were collected at different periods of the year. The DNA sequences obtained by HTS belonged to 5 phyla: Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Tenericutes. In milk, Proteobacteria and Firmicutes were mainly found, and several operational taxonomic units (OTU) belonging to contaminant bacteria such as Pseudomonas, Serratia, and Staphylococcus were observed. However, in NMS, curd, and 5- and 15-d cheeses, Firmicutes were principally observed where OTU of Lactococcus lactis were predominant, followed by Leuconostoc mesenteroides OTU. The results of the analysis showed high bacterial diversity in milk samples compared with NMS, curd, and 5- and 15-d cheeses, suggesting strong action of NMS in driving the characteristics of the final products.
Collapse
Affiliation(s)
- Federica Biolcati
- Dipartimento di Scienze Veterinarie, Università di Torino, 10095 Grugliasco, Italy; Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università di Torino, 10095 Grugliasco, Italy.
| | - Ilario Ferrocino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università di Torino, 10095 Grugliasco, Italy
| | - Maria Teresa Bottero
- Dipartimento di Scienze Veterinarie, Università di Torino, 10095 Grugliasco, Italy
| | - Alessandra Dalmasso
- Dipartimento di Scienze Veterinarie, Università di Torino, 10095 Grugliasco, Italy
| |
Collapse
|
267
|
Luoyizha W, Wu X, Zhang M, Guo X, Li H, Liao X. Compared analysis of microbial diversity in donkey milk from Xinjiang and Shandong of China through High-throughput sequencing. Food Res Int 2020; 137:109684. [PMID: 33233260 DOI: 10.1016/j.foodres.2020.109684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 09/06/2020] [Indexed: 12/26/2022]
Abstract
Donkey milk has received increasing attention from consumers and dairy industry because of its nutritional value, health benefits, and proximity to human milk. Microbial diversity in donkey milk has a great impact on its quality and safety, however, microbiota in donkey milk from the major donkey-breeding regions of China have not been well documented. In this study, bacterial communities in donkey milk from Yopurga County in Western China (XJ), and Dong'e County in Eastern China (SD) were determined using high-throughput sequencing. Major phyla identified in the two donkey milk groups consistently included Acinetobacter, Proteobacteria, Firmicutes, and Bacteroidetes but with very different abundance for each phylum. Prevelence of genera was found to be diverse between the two groups, with Macrococcus and Acinetobacter dominating in the XJ samples while Streptococcus, Pseudoclavibacter, and Pseudomonas being the most abundant ones in the XJ samples. Alpha diversity analysis showed that there was significant difference in richness between the two sample groups but no difference in bacterial community diversity or coverage. The presence of possible harmful bacteria and lactic acid bacteria in donkey milk in this study provides the microbial profiles of pathogens and spoilage bacteria that need to be controlled and proposes possible utilization of beneficial microbial resources for the future.
Collapse
Affiliation(s)
- Wahafu Luoyizha
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100083, PR China; College of Life Science and Technology, Xinjiang University, Xinjiang 830046, PR China
| | - Xiaomeng Wu
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100083, PR China
| | - Ming Zhang
- Xinjiang Yukunlun Natural Food Engineering Co. Ltd., Xinjiang 8444400, PR China
| | - Xingfeng Guo
- College of Agronomy, Liaocheng University, Shandong 252000, PR China
| | - Hui Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xiaojun Liao
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
268
|
Boukria O, El Hadrami EM, Boudalia S, Safarov J, Leriche F, Aït-Kaddour A. The Effect of Mixing Milk of Different Species on Chemical, Physicochemical, and Sensory Features of Cheeses: A Review. Foods 2020; 9:E1309. [PMID: 32957530 PMCID: PMC7555713 DOI: 10.3390/foods9091309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 01/29/2023] Open
Abstract
The yield and quality of cheese are associated with the composition, physicochemical, sensory, rheological, and microbiological properties of milk and with the technology applied to the milk before and/or during cheese processing. This review describes the most important research on cheeses obtained from processing mixtures of different milk species and discusses the effect of milk mixtures (i.e., species and mixture ratios) on composition, physicochemical, sensory, rheological, and microbiological properties of cheeses. More specifically, the present review paper will gather and focus only on studies that have provided a clear comparison between cheeses produced from a mixture of two milk species to cheeses produced from only one species.
Collapse
Affiliation(s)
- Oumayma Boukria
- Applied Organic Chemistry Laboratory, Sciences and Techniques Faculty, Sidi Mohamed Ben Abedallah University, BP 2202 Route d’Immouzer, Fez 30050, Morocco; (O.B.); (E.M.E.H.)
| | - El Mestafa El Hadrami
- Applied Organic Chemistry Laboratory, Sciences and Techniques Faculty, Sidi Mohamed Ben Abedallah University, BP 2202 Route d’Immouzer, Fez 30050, Morocco; (O.B.); (E.M.E.H.)
| | - Sofiane Boudalia
- Laboratoire de Biologie, Département d’Écologie et Génie de l’Environnement, Faculté des Sciences de la Nature et de la Vie & Sciences de la Terre et l’Univers, Université 8 Mai 1945 Guelma, BP 401, Guelma 24000, Algeria;
| | - Jasur Safarov
- Department of Food Engineering, Faculty of Mechanical Building, Tashkent State Technical University Named after Islam Karimov, University str. 2, Tashkent 100095, Uzbekistan;
| | - Françoise Leriche
- Université Clermont Auvergne, INRA, VetAgro Sup, UMRF, F-63370 Lempdes, France;
| | | |
Collapse
|
269
|
Nguyen QD, Tsuruta T, Nishino N. Examination of milk microbiota, fecal microbiota, and blood metabolites of Jersey cows in cool and hot seasons. Anim Sci J 2020; 91:e13441. [PMID: 32885570 DOI: 10.1111/asj.13441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
Microbiota of individual cow milk, bulk tank milk, and feces of Jersey cows were examined. Samples were collected from two farms (F1 and F2) in cool (November, Nov) and hot (July, Jul) seasons. Milk yield and milk composition were similar between the two farms and between the two seasons. Prevalent taxa of the fecal microbiota, i.e. Ruminococcaceae, Bacteroidaceae, Lachnospiraceae, Rikenellaceae, and Clostridiaceae, were unaffected by the farm and season. Relative abundance of milk microbiota for Pseudomonadaceae, Enterobacteriaceae, and Streptococcaceae (F1 > F2) and Lactobacillaceae, Bifidobacteriaceae, and Cellulomonadaceae (F1 < F2) were different between the two farms, and those for Staphylococcaceae, Bacillaceae, Ruminococcaceae, and Veillonellaceae (Nov < Jul) and Methylobacteriaceae and Moraxellaceae (Nov > Jul) were different between the two seasons. The microbiota of bulk tank milk was numerically different from that of individual cow milk. Principal coordinate analysis indicated that the milk microbiota was unrelated to the fecal microbiota. The finding that relative abundance of Pseudomonadaceae and Moraxellaceae appeared greater than those reported for Holstein milk suggested that higher protein and fat content may result in a greater abundance of proteolytic and lipolytic taxa in Jersey cow milk.
Collapse
Affiliation(s)
- Qui D. Nguyen
- Graduate School of Environmental and Life Science Okayama University Okayama Japan
| | - Takeshi Tsuruta
- Graduate School of Environmental and Life Science Okayama University Okayama Japan
| | - Naoki Nishino
- Graduate School of Environmental and Life Science Okayama University Okayama Japan
| |
Collapse
|
270
|
Yasir M, Bibi F, Hashem AM, Azhar EI. Comparative metagenomics and characterization of antimicrobial resistance genes in pasteurized and homemade fermented Arabian laban. Food Res Int 2020; 137:109639. [PMID: 33233218 DOI: 10.1016/j.foodres.2020.109639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate bacterial diversity and function in a fermented milk drink called laban, which is traditionally served in the Middle East, Africa, and Indian subcontinent. Pasteurized laban (LBP) and unpasteurized, homemade, raw laban (LBR) underwent 16S rRNA gene amplicon and shotgun sequencing to analyze their bacterial community, presence of antimicrobial resistance genes (ARGs), and metabolic pathways. This study highlighted relatively greater diversity in LBR bacterial populations compared to LBP, despite containing similar major taxa that consisted primarily of Firmicutes followed by Proteobacteria, Bacteroidetes, and Actinobacteria. The dominant species, Streptococcus thermophilus, was relatively more abundant in LBP (80.7%) compared to LBR (47.9%). LBR had increased diversity and higher relative abundance of several known probiotic bacteria, such as Streptococcus salivarius and Lactococcus lactis, whereas Lactobacillus acidophilus was detected at a higher abundance in LBP. Pathogens like Acinetobacter baumannii, Streptococcus pneumoniae, Streptococcus pyogenes, and Escherichia coli had lower abundance in LBP compared to LBR. Thirty-three ARGs were detected in LBR compared to nine in LBP and are responsible for resistance to 11 classes of antibiotics. A significant proportion of the metagenomes from both types of laban were assigned to housekeeping functions, such as amino acid metabolism, translation, membrane transport, and carbohydrate metabolism. LBR demonstrated increased diversity in probiotics and metabolic functions compared to LBP. However, the relatively high diversity of pathogenic and opportunistic bacteria and ARGs in LBR raises safety concerns and highlights the need for a more hygienic environment for the processing of homemade fermented dairy foods.
Collapse
Affiliation(s)
- Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Vaccines and Immunnotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
271
|
Shojaei Zinjanab M, Golmakani MT, Eskandari MH, Toh M, Liu SQ. Natural flavor biosynthesis by lipase in fermented milk using in situ produced ethanol. Journal of Food Science and Technology 2020; 58:1858-1868. [PMID: 33897022 DOI: 10.1007/s13197-020-04697-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
Abstract Many flavoring agents on the market are extracted from natural sources or synthesized chemically. Due to the disadvantages of both methods, biotechnology is becoming a promising alternative. In this study, short chain ethyl esters with fruity notes were biosynthesized in UHT whole milk via coupling ethanolic fermentation with lipase (Palatase®) transesterification. Kluyveromyces marxianus, Lactobacillus fermentum and Lb. paracasei were used for fermentation. Milk fat was esterified with in situ produced ethanol by adding lipase at 0, 8 and 24 h of fermentation. Viable cell counts and pH were monitored during 48 h fermentation period. Flavor active ethyl esters, ethanol and free fatty acids were analyzed using headspace SPME-GC. Free fatty acid levels were lower in K. marxianus samples than lactobacilli. K. marxianus produced higher amounts of ethanol and esters than lactic acid bacteria. Viable cell counts decreased after lipase application at 0 and 8 h, possibly due to fatty acid production. Addition of lipase at 24 h resulted in improved cell counts as well as ethanol and ester production in the case of K. marxianus. This study demonstrated that fermenting milk with alcohol producing cultures in conjunction with lipase application can be an alternative to artificial flavorings in fermented milks. Graphic abstract
Collapse
Affiliation(s)
- Maryam Shojaei Zinjanab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.,Department of Food Science and Technology, Science Drive 2, National University of Singapore, Singapore, 117543 Singapore
| | - Mohammad Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mingzhan Toh
- Department of Food Science and Technology, Science Drive 2, National University of Singapore, Singapore, 117543 Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, National University of Singapore, Singapore, 117543 Singapore.,National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, 215123 Jiangsu China
| |
Collapse
|
272
|
Delhalle L, Taminiau B, Fastrez S, Fall A, Ballesteros M, Burteau S, Daube G. Evaluation of Enzymatic Cleaning on Food Processing Installations and Food Products Bacterial Microflora. Front Microbiol 2020; 11:1827. [PMID: 32849429 PMCID: PMC7431609 DOI: 10.3389/fmicb.2020.01827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022] Open
Abstract
Biofilms are a permanent source of contamination in food industries and could harbor various types of microorganisms, such as spoiling bacteria. New strategies, such as enzymatic cleaning, have been proposed to eradicate them. The purpose of this study was to evaluate the impact of enzymatic cleaning on the microbial flora of installations in a processing food industry and of the final food product throughout its shelf life. A total of 189 samples were analyzed by classical microbiology and 16S rDNA metagenetics, including surface samples, cleaning-in-place (CIP) systems, and food products (at D0, Dend of the shelf life, and Dend of the shelf life +7 days). Some surfaces were highly contaminated with spoiling bacteria during conventional cleaning while the concentration of the total flora decreased during enzymatic cleaning. Although the closed circuits were cleaned with conventional cleaning before enzymatic cleaning, there was a significant release of microorganisms from some parts of the installations during enzymatic treatment. A significant difference in the total flora in the food products at the beginning of the shelf life was observed during enzymatic cleaning compared to the conventional cleaning, with a reduction of up to 2 log CFU/g. Metagenetic analysis of the food samples at the end of their shelf life showed significant differences in bacterial flora between conventional and enzymatic cleaning, with a decrease of spoiling bacteria (Leuconostoc sp.). Enzymatic cleaning has improved the hygiene of the food processing instillations and the microbial quality of the food throughout the shelf life. Although enzymatic cleaning is not yet commonly used in the food industry, it should be considered in combination with conventional sanitizing methods to improve plant hygiene.
Collapse
Affiliation(s)
- Laurent Delhalle
- Fundamental and Applied Research for Animals and Health, Department of Food Science, University of Liège, Liège, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals and Health, Department of Food Science, University of Liège, Liège, Belgium
| | | | | | | | | | - Georges Daube
- Fundamental and Applied Research for Animals and Health, Department of Food Science, University of Liège, Liège, Belgium
| |
Collapse
|
273
|
Kingsbury JM, Soboleva TK. Evaluation of culture-based and molecular detection methods for Campylobacter in New Zealand raw cows' milk. J Appl Microbiol 2020; 130:478-492. [PMID: 32725959 DOI: 10.1111/jam.14798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/23/2023]
Abstract
AIMS This study evaluated the performance of a commercial molecular detection method (mericon Campylobacter triple kit real-time/quantitative (q)PCR) and a selective plating medium (R&F Campylobacter jejuni/Campylobacter coli Chromogenic Plating Medium (CCPM)) against a culture-based reference method (ISO 10272-1:2017 detection procedure B) for the detection of Campylobacter from raw milk enrichment broths. METHODS AND RESULTS New Zealand raw cows' milk and Ultra-High Temperature-processed milk samples were inoculated with 50, 125 and 500 colony forming units of C. jejuni and C. coli cocktail per analytical unit. Samples were tested for Campylobacter after 0, 24- and 48 h refrigeration. ISO 10272-1:2017 proved to be a sensitive detection method (77/80 positive samples); detection only failed for some milk samples tested 48 h postinoculation. CCPM was as effective as Cefoperazone Charcoal Deoxycholate Agar for selective plating of Campylobacter raw milk enrichments (78/80 positive samples). However, the qPCR detected Campylobacter in only 42/80 samples and qPCR reaction inhibition was observed. CONCLUSIONS The ISO 10272-1:2017 method was a more sensitive method for Campylobacter detection from raw milk than the mericon Campylobacter triple kit qPCR, and CCPM was a useful complementary medium to mCCDA where one of these media is required by the standard. SIGNIFICANCE AND IMPACT OF THE STUDY In regions where testing is required or recommended, optimized methods for Campylobacter detection from raw milk will reduce risk to the raw milk consumer. Although molecular methods are generally touted as a rapid alternative to culture, issues with inhibition due to matrix components mean that culture-based methods might provide the most sensitive option for Campylobacter detection in raw milk. Findings also emphasize the importance of minimizing the time between milk collection and testing for Campylobacter.
Collapse
Affiliation(s)
- J M Kingsbury
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - T K Soboleva
- New Zealand Food Safety, Ministry for Primary Industries, Wellington, New Zealand
| |
Collapse
|
274
|
Li N, Han S, Zhang C, Lin S, Sha XY, Hasi W. Detection of Chlortetracycline Hydrochloride in Milk with a Solid SERS Substrate Based on Self-assembled Gold Nanobipyramids. ANAL SCI 2020; 36:935-940. [PMID: 32009022 DOI: 10.2116/analsci.19p476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper described how a high-yield, monodisperse Au nanobipyramids (Au NBs) sol was prepared by a seed-mediated method, and gold nanoparticles were assembled on the surface of a silicon wafer by self-assembly technology to obtain a solid SERS substrate. Scanning electron microscopy (SEM) showed that the average length of Au NBs was 34.31 nm, and the analysis enhancement factor (AEF) was approximately 7.3 × 105 with rhodamine 6G (R6G) used as a probe. SERS detection of chlortetracycline hydrochloride (CCH) in milk was performed utilizing the prepared Au NBs substrate, and the limit of detection was 0.01 mg/mL. In the range of 0.01 - 1 mg/mL, the mass concentration of CCH and the SERS signal intensity satisfied the linear relationship y = 258.467x + 150.501; the value of the correlation coefficient was 0.9785. In addition, the recovery of spiked samples fluctuated between 96.80 to 111.38%. These results proved that the method is simple and fast, and it is promising to be applied to the field detection of antibiotics in milk.
Collapse
Affiliation(s)
- Nan Li
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology.,College of Art and Sciences, Northeast Agricultural University
| | - Siqingaowa Han
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology.,Affiliated Hospital of Inner Mongolia University for Nationalities
| | - Chen Zhang
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology
| | - Shuang Lin
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology
| | - Xuan-Yu Sha
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology
| | - Wuliji Hasi
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology
| |
Collapse
|
275
|
Albonico F, Barelli C, Albanese D, Manica M, Partel E, Rosso F, Ripellino S, Pindo M, Donati C, Zecconi A, Mortarino M, Hauffe HC. Raw milk and fecal microbiota of commercial Alpine dairy cows varies with herd, fat content and diet. PLoS One 2020; 15:e0237262. [PMID: 32760129 PMCID: PMC7410245 DOI: 10.1371/journal.pone.0237262] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The factors that influence the diversity and composition of raw milk and fecal microbiota in healthy commercial dairy herds are not fully understood, partially because the majority of metataxonomic studies involve experimental farms and/or single factors. We analyzed the raw milk and fecal microbiota of 100 healthy cows from 10 commercial alpine farms from the Province of Trento, Italy, using metataxonomics and applied statistical modelling to investigate which extrinsic and intrinsic parameters (e.g. herd, diet and milk characteristics) correlated with microbiota richness and composition in these relatively small traditional farms. We confirmed that Firmicutes, Ruminococcaceae and Lachnospiraceae families dominated the fecal and milk samples of these dairy cows, but in addition, we found an association between the number of observed OTUs and Shannon entropy on each farm that indicates higher microbiota richness is associated with increased microbiota stability. Modelling showed that herd was the most significant factor affecting the variation in both milk and fecal microbiota composition. Furthermore, the most important predictors explaining the variation of microbiota richness were milk characteristics (i.e. percentage fat) and diet for milk and fecal samples, respectively. We discuss how high intra-herd variation could affect the development of treatments based on microbiota manipulation.
Collapse
Affiliation(s)
- Francesca Albonico
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Veterinary Medicine, Universiy of Milan, Milan, Italy
| | - Claudia Barelli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Davide Albanese
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Erika Partel
- Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Silvia Ripellino
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Massimo Pindo
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all’ Adige (TN), Trento, Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Alfonso Zecconi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Heidi C. Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
276
|
|
277
|
Munsch-Alatossava P, Alatossava T. Potential of N 2 Gas Flushing to Hinder Dairy-Associated Biofilm Formation and Extension. Front Microbiol 2020; 11:1675. [PMID: 32849349 PMCID: PMC7399044 DOI: 10.3389/fmicb.2020.01675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Worldwide, the dairy sector remains of vital importance for food production despite severe environmental constraints. The production and handling conditions of milk, a rich medium, promote inevitably the entrance of microbial contaminants, with notable impact on the quality and safety of raw milk and dairy products. Moreover, the persistence of high concentrations of microorganisms (especially bacteria and bacterial spores) in biofilms (BFs) present on dairy equipment or environments constitutes an additional major source of milk contamination from pre- to post-processing stages: in dairies, BFs represent a major concern regarding the risks of disease outbreaks and are often associated with significant economic losses. One consumption trend toward "raw or low-processed foods" combined with current trends in food production systems, which tend to have more automation and longer processing runs with simultaneously more stringent microbiological requirements, necessitate the implementation of new and obligatory sustainable strategies to respond to new challenges regarding food safety. Here, in light of studies, performed mainly with raw milk, that considered dominant "planktonic" conditions, we reexamine the changes triggered by cold storage alone or combined with nitrogen gas (N2) flushing on bacterial populations and discuss how the observed benefits of the treatment could also contribute to limiting BF formation in dairies.
Collapse
Affiliation(s)
| | - Tapani Alatossava
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
278
|
Chen T, Wang L, Li Q, Long Y, Lin Y, Yin J, Zeng Y, Huang L, Yao T, Abbasi MN, Yang H, Wang Q, Tang C, Khan TA, Liu Q, Yin J, Tu Q, Yin Y. Functional probiotics of lactic acid bacteria from Hu sheep milk. BMC Microbiol 2020; 20:228. [PMID: 32723292 PMCID: PMC7390111 DOI: 10.1186/s12866-020-01920-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background Probiotics are being considered as valuable microorganisms related to human health. Hu sheep is referred as one of the important sheep breeds in China. Goat milk produced by Hu sheep is characterized with high nutritional value and hypoallergenic in nature. Particularly, this milk contains plenty of milk prebiotic and probiotic bacteria. This study was aimed to scrutinize more bacterial strains from Hu sheep milk with potential probiotic activity. Results Based on 16S rRNA sequence analysis, pool of forty bacterial strains were identified and evaluated their antimicrobial activities against Staphylococcus aureus, enterohemorrhagic Escherichia coli (EHEC), Salmonella typhimurium, Listeria monocytogenes enterotoxigenic E. coli (ETEC) and Aeromonas caviae. Four out of these isolated strains demonstrated their efficient bacteriostatic ability and potential healthy properties. We also examined the safety aspects of these bacterial candidates including three Lactococcus lactis strains (named as HSM-1, HSM-10, and HSM-18) and one Leuconostoc lactis strain (HSM-14), and were further evaluated via in vitro tests, including antimicrobial activity, cell surface characteristics (hydrophobicity, co-aggregation, and self-aggregation), heat treatment, antibiotic susceptibility, simulated transport tolerance in the gastrointestinal tract, and acid/bile tolerance. The obtained results revealed that HSM-1, HSM-10, HSM-14, and HSM-18 showed high survival rate at different conditions for example low pH, presence of bovine bile and demonstrated high hydrophobicity. Moreover, HSM-14 had an advantage over other strains in terms of gastrointestinal tract tolerance, antimicrobial activities against pathogens, and these results were significantly better than other bacterial candidates. Conclusion Hu sheep milk as a source of exploration of potential lactic acid bacteria (LAB) probiotics open the new horizon of probiotics usage from unconventional milk sources. The selected LAB strains are excellent probiotic candidates which can be used for animal husbandry in the future. Rationale of the study was to utilize Hu sheep milk as a source of potential probiotic LABs. The study has contributed to the establishment of a complete bacterial resource pool by exploring the Hu sheep milk microflora.
Collapse
Affiliation(s)
- Taohong Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Qinxin Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yingjie Long
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuming Lin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yan Zeng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Le Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Tingyu Yao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Muhammad Nazeer Abbasi
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Congjia Tang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Tahir Ali Khan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuyue Liu
- Institute of Genetics and Developmental Biology, the Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China. .,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Qiang Tu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha, 410081, China.,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Regions, Ministry of Agriculture, Changsha, China
| |
Collapse
|
279
|
Igwaran A, Okoh AI. Occurrence, Virulence and Antimicrobial Resistance-Associated Markers in Campylobacter Species Isolated from Retail Fresh Milk and Water Samples in Two District Municipalities in the Eastern Cape Province, South Africa. Antibiotics (Basel) 2020; 9:E426. [PMID: 32708075 PMCID: PMC7400711 DOI: 10.3390/antibiotics9070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/02/2022] Open
Abstract
Campylobacter species are among the major bacteria implicated in human gastrointestinal infections and are majorly found in faeces of domestic animals, sewage discharges and agricultural runoff. These pathogens have been implicated in diseases outbreaks through consumption of contaminated milk and water in some parts of the globe and reports on this is very scanty in the Eastern Cape Province. Hence, this study evaluated the occurrence as well as virulence and antimicrobial-associated makers of Campylobacter species recovered from milk and water samples. A total of 56 water samples and 72 raw milk samples were collected and the samples were processed for enrichment in Bolton broth and incubated for 48 h in 10% CO2 at 42 °C under microaerobic condition. Thereafter, the enriched cultures were further processed and purified. After which, presumptive Campylobacter colonies were isolated and later confirmed by PCR using specific primers for the detection of the genus Campylobacter, target species and virulence associated genes. Antimicrobial resistance profiles of the isolates were determined by disk diffusion method against a panel of 12 antibiotics and relevant genotypic resistance genes were assessed by PCR assay. A total of 438 presumptive Campylobacter isolates were obtained; from which, 162 were identified as belonging to the genus Campylobacter of which 36.92% were obtained from water samples and 37.11% from milk samples. The 162 confirmed isolates were further delineated into four species, of which, 7.41%, 27.16% and 8.64% were identified as C. fetus, C. jejuni and C. coli respectively. Among the virulence genes screened for, the iam (32.88%) was most prevalent, followed by flgR (26.87%) gene and cdtB and cadF (5.71% each) genes. Of the 12 antibiotics tested, the highest phenotypic resistance displayed by Campylobacter isolates was against clindamycin (95.68%), while the lowest was observed against imipenem (21.47%). Other high phenotypic resistance displayed by the isolates were against erythromycin (95.06%), followed by ceftriaxone (93.21%), doxycycline (87.65%), azithromycin and ampicillin (87.04% each), tetracycline (83.33%), chloramphenicol (78.27%), ciprofloxacin (77.78%), levofloxacin (59.88%) and gentamicin (56.17%). Relevant resistance genes were assessed in the isolates that showed high phenotypic resistance, and the highest resistance gene harbored by the isolates was catII (95%) gene while VIM, KPC, Ges, bla-OXA-48-like, tetC, tetD, tetK, IMI and catI genes were not detected. The occurrence of this pathogen and the detection of virulence and antimicrobial resistance-associated genes in Campylobacter isolates recovered from milk/water samples position them a risk to human health.
Collapse
Affiliation(s)
- Aboi Igwaran
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
280
|
Kehinde BA, Panghal A, Garg MK, Sharma P, Chhikara N. Vegetable milk as probiotic and prebiotic foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:115-160. [PMID: 32892832 DOI: 10.1016/bs.afnr.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vegetable milks are fast gaining attention on the global scale as the possible alternatives due to concerns associated with milk consumption. In particular, issues varying from allergenic constituents and lactose intolerance to social and religious beliefs among consumers have induced an increase in the market demand for vegetable milks. Their concomitant nutritional and bioactive components appraise them of the suitable profile for the food-based carriage and delivery of probiotics. More so, the presence of prebiotics in their natural configuration makes them serviceable for the assurance of the needed probiotic viability, subsequent to their exposure to digestive conditions. On another note, their availability, ease of processing, and cost-effectiveness have been established as other possible rationales behind their adoption. This chapter comprehensively delineates the probiotic and prebiotic food-usage of vegetable milks. Captions related with consumer concerns, processing operations, nutritional and prebiotic constitutions, metabolic interactions during probiotic fermentation, and associated health benefits of vegetable milks are discoursed.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| | - Anil Panghal
- Department of Processing and Food Engineering, AICRP-PHET, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - M K Garg
- Department of Processing and Food Engineering, AICRP-PHET, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Poorva Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Navnidhi Chhikara
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, India.
| |
Collapse
|
281
|
Bacteriological Quality of Raw Ovine Milk from Different Sheep Farms. Animals (Basel) 2020; 10:ani10071163. [PMID: 32660002 PMCID: PMC7401633 DOI: 10.3390/ani10071163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
The primary purpose of this research was to examine the bacteriological properties of raw ovine milk produced by Merino, Tsigai, Dorper, Lacaune, and British Milk Sheep flocks on four sheep farms located in the eastern part of Hungary. In addition to individual raw milk (IRM) and bulk tank milk (BTM) samples, the udder surface (US) of ewes was also tested for bacteriological quality. A total of 77 US, 77 IRM, and 10 BTM samples were collected in the early morning during regular milking sessions. The samples, kept cooled at temperatures below 4 °C, were delivered to the microbiological laboratory and were examined immediately. The relatively low numbers of bacteria in both US and IRM samples reflected good housing conditions of ewes kept on the four farms studied. However, BTM samples had up to 3.5-4.0 log10 CFU/mL higher mean bacterial counts than their IRM counterparts, and the mean levels of bacteria in BTM on two farms even exceeded the regulatory limit of 6.18 log10 CFU/mL. Further studies need to be performed to clarify this issue.
Collapse
|
282
|
Gagnon M, Ouamba AJK, LaPointe G, Chouinard PY, Roy D. Prevalence and abundance of lactic acid bacteria in raw milk associated with forage types in dairy cow feeding. J Dairy Sci 2020; 103:5931-5946. [PMID: 32359994 DOI: 10.3168/jds.2019-17918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/17/2020] [Indexed: 01/06/2023]
Abstract
Lactic acid bacteria (LAB) found in milk can be responsible for organoleptic defects in cheese. To identify sources of LAB that could potentially develop during cheese making, we evaluated their prevalence and abundance in milk according to the type of forage used in dairy cow feeding. Forages and bulk tank milk were sampled 3 times on 24 farms using either hay alone (control), or grass or legume silage supplemented with corn silage or not. Both types of silage were either non-inoculated or inoculated with commercial preparations containing at least a Lactobacillus buchneri strain along with Lactobacillus casei, Lactobacillus plantarum, Enterococcus faecium, or Pediococcus pentosaceus. Our results indicate that LAB viable counts in milk samples (2.56 log cfu/mL) did not differ according to the type of forage used. A total of 1,239 LAB were isolated and identified by partial 16S rRNA gene sequencing. Although inoculation increased lactobacilli abundance in grass silage by 35%, we did not observe an effect on the LAB profile of milk. Indeed, we found no significant difference in milk LAB prevalence and abundance according to the type of forage (P > 0.05). Moreover, isolates belonging to the L. buchneri group were rarely found in bulk tank milk (3 out of 481 isolates). Random amplified polymorphic DNA typing of 406 LAB isolates revealed the plausible transfer of some strains from silage to milk (~6%). Thus, forage is only a minor contributor to LAB contamination of milk.
Collapse
Affiliation(s)
- Mérilie Gagnon
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, QC G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Alexandre J K Ouamba
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, QC G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Gisèle LaPointe
- Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, QC J2S 2M2, Canada; Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - P Yvan Chouinard
- Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, QC J2S 2M2, Canada; Département des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Roy
- Département des Sciences des Aliments, Laboratoire de Génomique Microbienne, Université Laval, Québec, QC G1V 0A6, Canada; Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
283
|
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. Food Res Int 2020; 136:109494. [PMID: 32846575 DOI: 10.1016/j.foodres.2020.109494] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jovanka Lukić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Lozo
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Đorđe Fira
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branko Jovčić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Ivana Strahinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Begović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Ljubiša Topisirović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| |
Collapse
|
284
|
Liu J, Zhu Y, Jay-Russell M, Lemay DG, Mills DA. Reservoirs of antimicrobial resistance genes in retail raw milk. MICROBIOME 2020; 8:99. [PMID: 32591006 PMCID: PMC7320593 DOI: 10.1186/s40168-020-00861-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/11/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND It has been estimated that at least 3% of the USA population consumes unpasteurized (raw) milk from animal sources, and the demand to legalize raw milk sales continues to increase. However, consumption of raw milk can cause foodborne illness and be a source of bacteria containing transferrable antimicrobial resistance genes (ARGs). To obtain a comprehensive understanding of the microbiome and antibiotic resistome in both raw and processed milk, we systematically analyzed 2034 retail milk samples including unpasteurized milk and pasteurized milk via vat pasteurization, high-temperature-short-time pasteurization, and ultra-pasteurization from the United States using complementary culture-based, 16S rRNA gene, and metagenomic sequencing techniques. RESULTS Raw milk samples had the highest prevalence of viable bacteria which were measured as all aerobic bacteria, coliform, and Escherichia coli counts, and their microbiota was distinct from other types of milk. 16S rRNA gene sequencing revealed that Pseudomonadaceae dominated raw milk with limited levels of lactic acid bacteria. Among all milk samples, the microbiota remained stable with constant bacterial populations when stored at 4 °C. In contrast, storage at room temperature dramatically enriched the bacterial populations present in raw milk samples and, in parallel, significantly increased the richness and abundance of ARGs. Metagenomic sequencing indicated raw milk possessed dramatically more ARGs than pasteurized milk, and a conjugation assay documented the active transfer of blaCMY-2, one ceftazidime resistance gene present in raw milk-borne E. coli, across bacterial species. The room temperature-enriched resistome differed in raw milk from distinct geographic locations, a difference likely associated with regionally distinct milk microbiota. CONCLUSION Despite advertised "probiotic" effects, our results indicate that raw milk microbiota has minimal lactic acid bacteria. In addition, retail raw milk serves as a reservoir of ARGs, populations of which are readily amplified by spontaneous fermentation. There is an increased need to understand potential food safety risks from improper transportation and storage of raw milk with regard to ARGs. Video Abstract.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
- Foods for Health Institute, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Yuanting Zhu
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
- Foods for Health Institute, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Michele Jay-Russell
- Western Center for Food Safety, University of California, Davis, Davis, CA, 95616, USA
| | - Danielle G Lemay
- USDA ARS Western Human Nutrition Research Center, 430 West Health Sciences Dr, Davis, CA, 95616, USA
- Genome Center, University of California, 451 Health Sciences Dr., Davis, California, 95616, USA
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - David A Mills
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- Foods for Health Institute, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
285
|
Niccum BA, Kastman EK, Kfoury N, Robbat A, Wolfe BE. Strain-Level Diversity Impacts Cheese Rind Microbiome Assembly and Function. mSystems 2020; 5:e00149-20. [PMID: 32546667 PMCID: PMC7300356 DOI: 10.1128/msystems.00149-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Diversification can generate genomic and phenotypic strain-level diversity within microbial species. This microdiversity is widely recognized in populations, but the community-level consequences of microbial strain-level diversity are poorly characterized. Using the cheese rind model system, we tested whether strain diversity across microbiomes from distinct geographic regions impacts assembly dynamics and functional outputs. We first isolated the same three bacterial species (Staphylococcus equorum, Brevibacterium auranticum, and Brachybacterium alimentarium) from nine cheeses produced in different regions of the United States and Europe to construct nine synthetic microbial communities consisting of distinct strains of the same three bacterial species. Comparative genomics identified distinct phylogenetic clusters and significant variation in genome content across the nine synthetic communities. When we assembled each synthetic community with initially identical compositions, community structure diverged over time, resulting in communities with different dominant taxa. The taxonomically identical communities showed differing responses to abiotic (high salt) and biotic (the fungus Penicillium) perturbations, with some communities showing no response and others substantially shifting in composition. Functional differences were also observed across the nine communities, with significant variation in pigment production (light yellow to orange) and in composition of volatile organic compound profiles emitted from the rinds (nutty to sulfury).IMPORTANCE Our work demonstrated that the specific microbial strains used to construct a microbiome could impact the species composition, perturbation responses, and functional outputs of that system. These findings suggest that 16S rRNA gene taxonomic profiles alone may have limited potential to predict the dynamics of microbial communities because they usually do not capture strain-level diversity. Observations from our synthetic communities also suggest that strain-level diversity has the potential to drive variability in the aesthetics and quality of surface-ripened cheeses.
Collapse
Affiliation(s)
- Brittany A Niccum
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Erik K Kastman
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Nicole Kfoury
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
| | - Albert Robbat
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
| | - Benjamin E Wolfe
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| |
Collapse
|
286
|
Meng L, Liu H, Lan T, Dong L, Hu H, Zhao S, Zhang Y, Zheng N, Wang J. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated From Raw Milk Revealed by Whole Genome Sequencing. Front Microbiol 2020; 11:1005. [PMID: 32655503 PMCID: PMC7326020 DOI: 10.3389/fmicb.2020.01005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Psychrotrophic bacteria in raw milk are most well known for their spoilage potential and the economic losses they cause to the dairy industry. Food-related psychrotrophic bacteria are increasingly reported to have antibiotic resistance features. The aim of this study was to evaluate the resistance patterns of Pseudomonas spp. isolated from bulk-tank milk. In total, we investigated the antibiotic susceptibility profiles of 86 Pseudomonas spp. isolates from raw milk. All strains were tested against 15 antimicrobial agents. Pseudomonas isolates were most highly resistant to imipenem (95.3%), followed by trimethoprim-sulfamethoxazole (69.8%), aztreonam (60.5%), chloramphenicol (45.3%), and meropenem (27.9%). Their multiple antibiotic resistance (MAR) index values ranged from 0.0 to 0.8. Whole-genome sequencing revealed the presence of intrinsic resistance determinants, such as BcI, ampC-09, blaCTX-M, oprD, sul1, dfrE, catA1, catB3, catI, floR, and cmlV. Moreover, resistance-nodulation-cell division (RND) and ATP-binding cassette (ABC) antibiotic efflux pumps were also found. This study provides further knowledge of the antibiotic resistance patterns of Pseudomonas spp. in milk, which may advance our understanding of resistance in Pseudomonas and suggests that antibiotic resistance of Pseudomonas spp. in raw milk should be a concern.
Collapse
Affiliation(s)
- Lu Meng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huimin Liu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tu Lan
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Dong
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyan Hu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengguo Zhao
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
287
|
ANJOS TRD, CAVICCHIOLI VQ, LIMA JAS, VASCONCELLOS AN, VAZ ACN, ROSSI GAM, CAMPOS-GALVÃO MEM, TODOROV SD, MATHIAS LA, SCHOCKEN-ITURRINO RP, NERO LA, VIDAL AMC. Unsatisfactory microbiological aspects of UHT goat milk, soymilk and dairy beverage of goat milk and soy protein: A public health issue. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.14019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
288
|
Elegbeleye J, Buys E. Molecular characterization and biofilm formation potential of Bacillus subtilis and Bacillus velezensis in extended shelf-life milk processing line. J Dairy Sci 2020; 103:4991-5002. [DOI: 10.3168/jds.2019-17919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
|
289
|
Hassan AA, Khan IUH, Ganz S, Wehrend A, Failing K, Eisenberg T, Abdulmawjood A, Bülte M. Assessing efficacy of N-Acetyl-l-Cysteine-Sodium Hydroxide on bacterial viability and enhanced recovery of Mycobacterium avium subsp. paratuberculosis from bovine colostrum. J Microbiol Methods 2020; 175:105968. [PMID: 32479871 DOI: 10.1016/j.mimet.2020.105968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
The standard procedure for the improved cultural recovery of viable Mycobacterium spp. from diverse samples mainly depends on reducing the viability of background microbiota using different chemical compounds. This study was designed to i) evaluate the efficacy and comparison between N-Acetyl-l-Cysteine-Sodium hydroxide (NALC-2% NaOH) and hexadecylpyridinium chloride (0.75% HPC) treatment and exposure time on reducing the viability of undesirable microorganisms with minimal impact on colostrum consistency; and ii) assess the impact of NALC-2% NaOH on improved and enhanced recovery of Mycobacterium avium subsp. paratuberculosis (MAP) in spiked postpartum colostrum samples and consistency of colostrum. A total of 40 samples, each treated with NALC-2% NaOH for 15 min or 0.75% HPC for 5 h, were investigated for total mesophilic aerobic bacteria (MAB) and enterobacteria (EB) (CFU mL-1). The results showed that treatment of colostrum samples with NALC-2% NaOH completely eliminated EB and significantly reduced MAB (3.6 log10 CFU mL-1). Conversely, samples treated with 0.75% HPC produced a complex mixture following interaction with the colostrum protein and showed non-significant and variable results. In addition, the spiked colostrum treated with NALC-2% NaOH for 15 min revealed recovery of viable MAP cells with a minimum limit of detection of 1.36 log10 CFU 10 mL-1 where no change in the consistency of colostrum was observed. In conclusion, 15-min NALC-2% NaOH treatment of colostrum may significantly reduce the viability of undesirable microorganisms and help to enhance the efficient recovery of MAP without impacting the consistency of high quality postpartum colostrum. This rapid procedure is suitable for efficient recovery and early detection of MAP as well as preventing its transmission to neonates and young calves in MAP infected herds.
Collapse
Affiliation(s)
- Abdulwahed Ahmed Hassan
- Institute of Veterinary Food Science, Justus-Liebig-University Gießen, Frankfurter Street 92, D-35392 Gießen, Germany; Department of Veterinary Public Health (DVPH), College of Veterinary Medicine, Mosul University, Mosul, Iraq.
| | - Izhar U H Khan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
| | - Sebastian Ganz
- Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere mit Tierärztlicher Ambulanz, Justus-Liebig-University Gießen, Frankfurter Str. 106, D-35392 Gießen, Germany
| | - Axel Wehrend
- Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere mit Tierärztlicher Ambulanz, Justus-Liebig-University Gießen, Frankfurter Str. 106, D-35392 Gießen, Germany
| | - Klaus Failing
- Biomathematik und Datenverarbeitung, Justus-Liebig-University Gießen, Frankfurter Str. 95, D-35392 Gießen, Germany
| | - Tobias Eisenberg
- Landesbetrieb Hessisches Landeslabor, Schubertstr. 60, 35392 Gießen, Germany
| | - Amir Abdulmawjood
- Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Michael Bülte
- Institute of Veterinary Food Science, Justus-Liebig-University Gießen, Frankfurter Street 92, D-35392 Gießen, Germany
| |
Collapse
|
290
|
Fusco V, Chieffi D, Fanelli F, Logrieco AF, Cho G, Kabisch J, Böhnlein C, Franz CMAP. Microbial quality and safety of milk and milk products in the 21st century. Compr Rev Food Sci Food Saf 2020; 19:2013-2049. [DOI: 10.1111/1541-4337.12568] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Vincenzina Fusco
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production National Research Council of Italy (CNR‐ISPA) Bari Italy
| | - Gyu‐Sung Cho
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | - Jan Kabisch
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | - Christina Böhnlein
- Department of Microbiology and BiotechnologyMax‐Rubner Institut Kiel Germany
| | | |
Collapse
|
291
|
Butler MI, Bastiaanssen TFS, Long-Smith C, Berding K, Morkl S, Cusack AM, Strain C, Busca K, Porteous-Allen P, Claesson MJ, Stanton C, Cryan JF, Allen D, Dinan TG. Recipe for a Healthy Gut: Intake of Unpasteurised Milk Is Associated with Increased Lactobacillus Abundance in the Human Gut Microbiome. Nutrients 2020; 12:nu12051468. [PMID: 32438623 PMCID: PMC7285075 DOI: 10.3390/nu12051468] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The gut microbiota plays a role in gut-brain communication and can influence psychological functioning. Diet is one of the major determinants of gut microbiota composition. The impact of unpasteurised dairy products on the microbiota is unknown. In this observational study, we investigated the effect of a dietary change involving intake of unpasteurised dairy on gut microbiome composition and psychological status in participants undertaking a residential 12-week cookery course on an organic farm. METHODS Twenty-four participants completed the study. The majority of food consumed during their stay originated from the organic farm itself and included unpasteurised milk and dairy products. At the beginning and end of the course, participants provided faecal samples and completed self-report questionnaires on a variety of parameters including mood, anxiety and sleep. Nutrient intake was monitored with a food frequency questionnaire. Gut microbiota analysis was performed with 16S rRNA gene sequencing. Additionally, faecal short chain fatty acids (SCFAs) were measured. RESULTS Relative abundance of the genus Lactobacillus increased significantly between pre- and post-course time points. This increase was associated with participants intake of unpasteurised milk and dairy products. An increase in the faecal SCFA, valerate, was observed along with an increase in the functional richness of the microbiome profile, as determined by measuring the predictive neuroactive potential using a gut-brain module approach. CONCLUSIONS While concerns in relation to safety need to be considered, intake of unpasteurised milk and dairy products appear to be associated with the growth of the probiotic bacterial genus, Lactobacillus, in the human gut. More research is needed on the effect of dietary changes on gut microbiome composition, in particular in relation to the promotion of bacterial genera, such as Lactobacillus, which are recognised as being beneficial for a range of physical and mental health outcomes.
Collapse
Affiliation(s)
- Mary I. Butler
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Department of Psychiatry, University College Cork, T12 YN60 Cork, Ireland
- Correspondence: ; Tel.: +353-0-21-4901224
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YN60 Cork, Ireland
| | - Caitriona Long-Smith
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
| | - Sabrina Morkl
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Anne-Marie Cusack
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Teagasc Food Research Programme, Moorepark, Fermoy, Co. Cork, T12 YN60 Cork, Ireland
| | - Kizkitza Busca
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Teagasc Food Research Programme, Moorepark, Fermoy, Co. Cork, T12 YN60 Cork, Ireland
| | - Penny Porteous-Allen
- Ballymaloe Cookery School, Organic Farm and Gardens, Shanagarry, Co. Cork, T12 YN60 Cork, Ireland; (P.P.-A.); (D.A.)
| | - Marcus J. Claesson
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Teagasc Food Research Programme, Moorepark, Fermoy, Co. Cork, T12 YN60 Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YN60 Cork, Ireland
| | - Darina Allen
- Ballymaloe Cookery School, Organic Farm and Gardens, Shanagarry, Co. Cork, T12 YN60 Cork, Ireland; (P.P.-A.); (D.A.)
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland; (T.F.S.B.); (C.L.-S.); (K.B.); (S.M.); (A.-M.C.); (C.S.); (K.B.); (M.J.C.); (C.S.); (J.F.C.); (T.G.D.)
- Department of Psychiatry, University College Cork, T12 YN60 Cork, Ireland
| |
Collapse
|
292
|
Microbial Safety of Milk Production and Fermented Dairy Products in Africa. Microorganisms 2020; 8:microorganisms8050752. [PMID: 32429521 PMCID: PMC7285323 DOI: 10.3390/microorganisms8050752] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
In Africa, milk production, processing and consumption are integral part of traditional food supply, with dairy products being a staple component of recommended healthy diets. This review provides an overview of the microbial safety characteristics of milk production and fermented dairy products in Africa. The object is to highlight the main microbial food safety hazards in the dairy chain and to propose appropriate preventive and control measures. Pathogens of public health concern including Mycobacterium bovis, Brucella abortus and Coxiella burnettii, which have largely been eradicated in many developed nations, still persist in the dairy chain in Africa. Factors such as the natural antimicrobial systems in milk and traditional processing technologies, including fermentation, heating and use of antimicrobial additives, that can potentially contribute to microbial safety of milk and dairy products in Africa will be discussed. Practical approaches to controlling safety hazards in the dairy chain in Africa have been proposed. Governmental regulatory bodies need to set the necessary national and regional safety standards, perform inspections and put measures in place to ensure that the standards are met, including strong enforcement programs within smallholder dairy chains. Dairy chain actors would require upgraded knowledge and training in preventive approaches such as good agricultural practices (GAP), hazard analysis and critical control points (HACCP) design and implementation and good hygienic practices (GHPs). Food safety education programs should be incorporated into school curricula, beginning at the basic school levels, to improve food safety cognition among students and promote life-long safe food handling behaviour.
Collapse
|
293
|
High-Throughput 16S rRNA Gene Sequencing of Butter Microbiota Reveals a Variety of Opportunistic Pathogens. Foods 2020; 9:foods9050608. [PMID: 32397488 PMCID: PMC7278763 DOI: 10.3390/foods9050608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Microbial contamination of dairy products with a high fat content (e.g., butter) has been studied insufficiently. No studies using modern molecular methods to investigate microbial communities in butter have been conducted so far. In this work, we used high-throughput sequencing and Sanger sequencing of individual bacterial colonies to analyze microbial content of commercially available butter brands. A total of 21 samples of commercially available butter brands were analyzed. We identified a total of 94 amplicon sequence variants corresponding to different microbial taxa. The most abundant lactic acid bacteria in butter were Lactobacillus kefiri, Lactobacillus parakefiri, Lactococcus taiwanensis and Lactococcus raffinolactis. A large amount of Streptococcus spp. bacteria (87.9% of all identified bacteria) was found in one of the butter samples. Opportunistic pathogens such as Bacillus cereus group, Pseudomonas aeruginosa, Cronobacter spp., Escherichia coli, Listeria innocua, Citrobacter spp., Enterococcus spp., Klebsiella pneumonia were detected. The analyzed butter samples were most strongly contaminated with bacteria from the Bacillus cereus group, and to a lesser extent - with Cronobacter spp. and Enterococcus spp. The plating and Sanger sequencing of individual colonies revealed the presence of Enterobacter cloacae and Staphylococcus epidermidis. The Sanger sequencing also showed the presence of Cronobacter sakazakii in butter which can be dangerous for children under the age of 1 year. We demonstrated that butter is a good growth medium for opportunistic pathogenic bacteria. Our data indicate that despite the fact that butter is a dairy product with a long shelf life, it should be subjected to quality control for the presence of opportunistic bacteria.
Collapse
|
294
|
Hang F, Jiang Y, Yan L, Hong Q, Lu W, Zhao J, Zhang H, Chen W. Preliminary study for the stimulation effect of plant-based meals on pure culture Lactobacillus plantarum growth and acidification in milk fermentation. J Dairy Sci 2020; 103:4078-4087. [DOI: 10.3168/jds.2019-17200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
|
295
|
Biolcati F, Andrighetto C, Bottero MT, Dalmasso A. Microbial characterization of an artisanal production of Robiola di Roccaverano cheese. J Dairy Sci 2020; 103:4056-4067. [DOI: 10.3168/jds.2019-17451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/14/2020] [Indexed: 01/26/2023]
|
296
|
Jaakkonen A, Kivistö R, Aarnio M, Kalekivi J, Hakkinen M. Persistent contamination of raw milk by Campylobacter jejuni ST-883. PLoS One 2020; 15:e0231810. [PMID: 32315369 PMCID: PMC7173850 DOI: 10.1371/journal.pone.0231810] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Abstract
Campylobacter jejuni has caused several campylobacteriosis outbreaks via raw milk consumption. This study reports follow-up of a milk-borne campylobacteriosis outbreak that revealed persistent C. jejuni contamination of bulk tank milk for seven months or longer. Only the outbreak-causing strain, representing sequence type (ST) 883, was isolated from milk, although other C. jejuni STs were also isolated from the farm. We hypothesized that the outbreak strain harbors features that aid its environmental transmission or survival in milk. To identify such phenotypic features, the outbreak strain was characterized for survival in refrigerated raw milk and in aerobic broth culture by plate counting and for biofilm formation on microplates by crystal violet staining and quantification. Furthermore, whole-genome sequences were studied for such genotypic features. For comparison, we characterized isolates representing other STs from the same farm and an ST-883 isolate that persisted on another dairy farm, but was not isolated from bulk tank milk. With high inocula (105 CFU/ml), ST-883 strains survived in refrigerated raw milk longer (4-6 days) than the other strains (≤3 days), but the outbreak strain showed no outperformance among ST-883 strains. This suggests that ST-883 strains may share features that aid their survival in milk, but other mechanisms are required for persistence in milk. No correlation was observed between survival in refrigerated milk and aerotolerance. The outbreak strain formed a biofilm, offering a potential explanation for persistence in milk. Whether biofilm formation was affected by pTet-like genomic element and phase-variable genes encoding capsular methyltransferase and cytochrome C551 peroxidase warrants further study. This study suggests a phenotypic target candidate for interventions and genetic markers for the phenotype, which should be investigated further with the final aim of developing control strategies against C. jejuni infections.
Collapse
Affiliation(s)
- Anniina Jaakkonen
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Aarnio
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland
| | - Jenni Kalekivi
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland
| | - Marjaana Hakkinen
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland
| |
Collapse
|
297
|
Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. Composition and co-occurrence patterns of the microbiota of different niches of the bovine mammary gland: potential associations with mastitis susceptibility, udder inflammation, and teat-end hyperkeratosis. Anim Microbiome 2020; 2:11. [PMID: 33499931 PMCID: PMC7807822 DOI: 10.1186/s42523-020-00028-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Background Within complex microbial ecosystems, microbe-microbe interrelationships play crucial roles in determining functional properties such as metabolic potential, stability and colonization resistance. In dairy cows, microbes inhabiting different ecological niches of the udder may have the potential to interact with mastitis pathogens and therefore modulate susceptibility to intramammary infection. In the present study, we investigated the co-occurrence patterns of bacterial communities within and between different niches of the bovine mammary gland (teat canal vs. milk) in order to identify key bacterial taxa and evaluate their associations with udder health parameters and mastitis susceptibility. Results Overall, teat canal microbiota was more diverse, phylogenetically less dispersed, and compositionally distinct from milk microbiota. This, coupled with identification of a large number of bacterial taxa that were exclusive to the teat canal microbiota suggested that the intramammary ecosystem, represented by the milk microbiota, acts as a selective medium that disfavors the growth of certain environmental bacterial lineages. We further observed that the diversity of milk microbiota was negatively correlated with udder inflammation. By performing correlation network analysis, we identified two groups of phylogenetically distinct hub species that were either positively (unclassified Bacteroidaceae and Phascolarctobacterium) or negatively (Sphingobacterium) correlated with biodiversity metrics of the mammary gland (MG). The latter group of bacteria also showed positive associations with the future incidence of clinical mastitis. Conclusions Our results provide novel insights into the composition and structure of bacterial communities inhabiting different niches of the bovine MG. In particular, we identified hub species and candidate foundation taxa that were associated with the inflammatory status of the MG and/or future incidences of clinical mastitis. Further in vitro and in vivo interrogations of MG microbiota can shed light on different mechanisms by which commensal microbiota interact with mastitis pathogens and modulate udder homeostasis.
Collapse
Affiliation(s)
- Hooman Derakhshani
- Present Address: McMaster University, Faculty of Medicine, Hamilton, ON, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jan C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada. .,Present Address: Cargill, Animal Nutrition and Health Division, Cargill Health Technologies, Diamond V brand, Cedar Rapids, IA, USA.
| |
Collapse
|
298
|
Microbial Populations of Fresh and Cold Stored Donkey Milk by High-Throughput Sequencing Provide Indication for A Correct Management of This High-Value Product. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Donkey milk is receiving increasing interest due to its attractive nutrient and functional properties (but also cosmetic), which make it a suitable food for sensitive consumers, such as infants with allergies, the immunocompromised, and elderly people. Our study aims to provide further information on the microbial variability of donkey milk under cold storage conditions. Therefore, we analysed by high-throughput sequencing the bacterial communities in unpasteurized donkey milk just milked, and after three days of conservation at 4 °C, respectively. Results showed that fresh donkey milk was characterized by a high incidence of spoilage Gram-negative bacteria mainly belonging to Pseudomonas spp. A composition lower than 5% of lactic acid bacteria was found in fresh milk samples, with Lactococcus spp. being the most abundant. The occurrence of microbial species belonging to risk group 2 was found in fresh milk. After three days of cold storage, the bacterial biodiversity of donkey milk was strongly reduced, since about 93% of the bacterial communities were identified as different species of psychrotrophic Pseudomonas. In conclusion, we report a preliminary description of the microbial diversity of donkey milk by using a metagenomic approach and encouraging a correct exploitation of this high-value niche product.
Collapse
|
299
|
Milk microbial composition of Brazilian dairy cows entering the dry period and genomic comparison between Staphylococcus aureus strains susceptible to the bacteriophage vB_SauM-UFV_DC4. Sci Rep 2020; 10:5520. [PMID: 32218514 PMCID: PMC7099093 DOI: 10.1038/s41598-020-62499-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/03/2020] [Indexed: 11/23/2022] Open
Abstract
Brazil has the second-largest dairy cattle herd in the world, and bovine mastitis still can cause significant losses for dairy farmers. Despite this fact, little information is available about milk microbial composition of Brazilian dairy cows, as well as the potential use of bacteriophages in the control of S. aureus. Here, we investigated milk bacterial composition of 28 Holstein Fresian cows (109 teats), selected in the dry-off period, using 16S rRNA analysis. Furthermore, a representative S. aureus strain (UFV2030RH1) was obtained at drying-off for isolation of a bacteriophage (vB_SauM-UFV_DC4, UFV_DC4) and bacterial genomic comparison purposes. Our outcomes revealed that Staphylococcus was the third most prevalent genus and positively correlated with subclinical mastitis events. As a major finding, genomic analyses showed the presence of adhesive matrix molecules that recognize microbial surface components (MSCRAMM) in UFV2030RH1 and might indicate great biofilm formation capability. A minimum inhibitory concentration (MIC) assay showed that resistance to ampicillin was the highest among the antibiotic tested in S. aureus 3059 and UFV2030RH1, displaying values four and sixteen times greater than MIC resistance breakpoint, respectively. Together, our results suggest that Staphylococcus is highly prevalent in dairy cows at drying-off and the use of the phage UFV_DC4 as a biocontrol agent must be investigated in future studies.
Collapse
|
300
|
Quintana ÁR, Seseña S, Garzón A, Arias R. Factors Affecting Levels of Airborne Bacteria in Dairy Farms: A Review. Animals (Basel) 2020; 10:E526. [PMID: 32245161 PMCID: PMC7142656 DOI: 10.3390/ani10030526] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/05/2023] Open
Abstract
This review attempts to reflect the importance of different factors that affect the environmental quality of dairy farms and must, therefore, be taken into account when considering the importance of environmental microbiology as a tool in the improvement of the quality of milk and dairy products. The effect of a factor such as temperature is vital for the dairy farm environment, especially when the temperatures are extreme, because a proper choice of temperature range improves the quality of the air and, thus, animal welfare. Similarly, the appropriate level of relative humidity in the environment should be taken into consideration to avoid the proliferation of microorganisms on the farm. Air quality, well-designed livestock housing, proper hygienic practices on the farm, stocking density, and the materials used in the livestock houses are all important factors in the concentration of microorganisms in the environment, promoting better welfare for the animals. In addition, a ventilation system is required to prevent the pollution of the farm environment. It is demonstrated that proper ventilation reduces the microbial load of the environment of dairy farms, enhancing the quality of the air and, therefore, the wellbeing of the animals. All this information is very useful to establish certain standards on dairy farms to improve the quality of the environment and, thereby, achieve better quality milk and dairy products.
Collapse
Affiliation(s)
- Álvaro Rafael Quintana
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), 13300 CERSYRA de Valdepeñas (Ciudad Real), Spain;
| | - Susana Seseña
- Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain;
| | - Ana Garzón
- Departamento de Producción Animal, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Ramón Arias
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), 13300 CERSYRA de Valdepeñas (Ciudad Real), Spain;
| |
Collapse
|