251
|
Pagliai FA, Gardner CL, Bojilova L, Sarnegrim A, Tamayo C, Potts AH, Teplitski M, Folimonova SY, Gonzalez CF, Lorca GL. The transcriptional activator LdtR from 'Candidatus Liberibacter asiaticus' mediates osmotic stress tolerance. PLoS Pathog 2014; 10:e1004101. [PMID: 24763829 PMCID: PMC3999280 DOI: 10.1371/journal.ppat.1004101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/18/2014] [Indexed: 02/02/2023] Open
Abstract
The causal agent of Huanglongbing disease, ‘Candidatus Liberibacter asiaticus’, is a non-culturable, gram negative, phloem-limited α-proteobacterium. Current methods to control the spread of this disease are still limited to the removal and destruction of infected trees. In this study, we identified and characterized a regulon from ‘Ca. L. asiaticus’ involved in cell wall remodeling, that contains a member of the MarR family of transcriptional regulators (ldtR), and a predicted L,D-transpeptidase (ldtP). In Sinorhizobium meliloti, mutation of ldtR resulted in morphological changes (shortened rod-type phenotype) and reduced tolerance to osmotic stress. A biochemical approach was taken to identify small molecules that modulate LdtR activity. The LdtR ligands identified by thermal shift assays were validated using DNA binding methods. The biological impact of LdtR inactivation by the small molecules was then examined in Sinorhizobium meliloti and Liberibacter crescens, where a shortened-rod phenotype was induced by growth in presence of the ligands. A new method was also developed to examine the effects of small molecules on the viability of ‘Ca. Liberibacter asiaticus’, using shoots from HLB-infected orange trees. Decreased expression of ldtRLas and ldtPLas was observed in samples taken from HLB-infected shoots after 6 h of incubation with the LdtR ligands. These results provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease. The rapid expansion of Huanglongbing disease (HLB) has caused a severe crisis in the citrus industry, with no solution visible in the near future. The causative agent, ‘Candidatus Liberibacter asiaticus’, is an unculturable bacterium under common laboratory conditions, which has made it difficult to gain understanding of this pathogen. Here we used a biochemical approach to identify new chemicals that could be used for the treatment of this devastating disease. These chemicals target a specific transcription factor (LdtR) in ‘Ca. Liberibacter asiaticus’. When bound to LdtR, the chemicals inactivate the protein, which disrupts a cell wall remodeling process that is critical for survival of the pathogen when exposed to osmotic stress (i.e. within the phloem of a citrus tree). Several model strains were used to confirm that the newly identified transcription factor (LdtR) and its regulated genes (ldtR and ldtP) confer tolerance to osmotic stress. The results presented in this study provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease.
Collapse
Affiliation(s)
- Fernando A. Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Christopher L. Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Lora Bojilova
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Amanda Sarnegrim
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Cheila Tamayo
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Anastasia H. Potts
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Max Teplitski
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
- Soil and Water Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Claudio F. Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (CFG); (GLL)
| | - Graciela L. Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (CFG); (GLL)
| |
Collapse
|
252
|
Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae. Heredity (Edinb) 2014; 113:306-15. [PMID: 24736785 PMCID: PMC4181065 DOI: 10.1038/hdy.2014.32] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/12/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022] Open
Abstract
Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3′ terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.
Collapse
|
253
|
Dilanji GE, Teplitski M, Hagen SJ. Entropy-driven motility of Sinorhizobium meliloti on a semi-solid surface. Proc Biol Sci 2014; 281:20132575. [PMID: 24741008 DOI: 10.1098/rspb.2013.2575] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sinorhizobium meliloti growing on soft agar can exhibit an unusual surface spreading behaviour that differs from other bacterial surface motilities. Bacteria in the colony secrete an exopolysaccharide-rich mucoid fluid that expands outward on the surface, carrying within it a suspension of actively dividing cells. The moving slime disperses the cells in complex and dynamic patterns indicative of simultaneous bacterial growth, swimming and aggregation. We find that while flagellar swimming is required to maintain the cells in suspension, the spreading and the associated pattern formation are primarily driven by the secreted exopolysaccharide EPS II, which creates two entropy-increasing effects: an osmotic flow of water from the agar to the mucoid fluid and a crowding or depletion attraction between the cells. Activation of these physical/chemical phenomena may be a useful function for the high molecular weight EPS II, a galactoglucan whose biosynthesis is tightly regulated by the ExpR/SinI/SinR quorum-sensing system: unlike bacterial colonies that spread via bacterium-generated, physical propulsive forces, S. meliloti under quorum conditions may use EPS II to activate purely entropic forces within its environment, so that it can disperse by passively 'surfing' on those forces.
Collapse
Affiliation(s)
- Gabriel E Dilanji
- Department of Physics, University of Florida, , PO Box 118440, Gainesville, FL 32611, USA, Department of Soil and Water Science, University of Florida-IFAS, , PO Box 110290, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
254
|
Rudder S, Doohan F, Creevey CJ, Wendt T, Mullins E. Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics 2014; 15:268. [PMID: 24708309 PMCID: PMC4051167 DOI: 10.1186/1471-2164-15-268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/19/2014] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Recently it has been shown that Ensifer adhaerens can be used as a plant transformation technology, transferring genes into several plant genomes when equipped with a Ti plasmid. For this study, we have sequenced the genome of Ensifer adhaerens OV14 (OV14) and compared it with those of Agrobacterium tumefaciens C58 (C58) and Sinorhizobium meliloti 1021 (1021); the latter of which has also demonstrated a capacity to genetically transform crop genomes, albeit at significantly reduced frequencies. RESULTS The 7.7 Mb OV14 genome comprises two chromosomes and two plasmids. All protein coding regions in the OV14 genome were functionally grouped based on an eggNOG database. No genes homologous to the A. tumefaciens Ti plasmid vir genes appeared to be present in the OV14 genome. Unexpectedly, OV14 and 1021 were found to possess homologs to chromosomal based genes cited as essential to A. tumefaciens T-DNA transfer. Of significance, genes that are non-essential but exert a positive influence on virulence and the ability to genetically transform host genomes were identified in OV14 but were absent from the 1021 genome. CONCLUSIONS This study reveals the presence of homologs to chromosomally based Agrobacterium genes that support T-DNA transfer within the genome of OV14 and other alphaproteobacteria. The sequencing and analysis of the OV14 genome increases our understanding of T-DNA transfer by non-Agrobacterium species and creates a platform for the continued improvement of Ensifer-mediated transformation (EMT).
Collapse
Affiliation(s)
- Steven Rudder
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona Doohan
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christopher J Creevey
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- Current address: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3FL, UK
| | - Toni Wendt
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- Current address: Carlsberg Research Centre, Gamle Carlsberg Vej 4-10, 1799 Copenhagen V, Denmark
| | - Ewen Mullins
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
| |
Collapse
|
255
|
Peng J, Hao B, Liu L, Wang S, Ma B, Yang Y, Xie F, Li Y. RNA-Seq and microarrays analyses reveal global differential transcriptomes of Mesorhizobium huakuii 7653R between bacteroids and free-living cells. PLoS One 2014; 9:e93626. [PMID: 24695521 PMCID: PMC3973600 DOI: 10.1371/journal.pone.0093626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
Mesorhizobium huakuii 7653R occurs either in nitrogen-fixing symbiosis with its host plant, Astragalus sinicus, or free-living in the soil. The M. huakuii 7653R genome has recently been sequenced. To better understand the complex biochemical and developmental changes that occur in 7653R during bacteroid development, RNA-Seq and Microarrays were used to investigate the differential transcriptomes of 7653R bacteroids and free-living cells. The two approaches identified several thousand differentially expressed genes. The most prominent up-regulation occurred in the symbiosis plasmids, meanwhile gene expression is concentrated to a set of genes (clusters) in bacteroids to fulfill corresponding functional requirements. The results suggested that the main energy metabolism is active while fatty acid metabolism is inactive in bacteroid and that most of genes relevant to cell cycle are down-regulated accordingly. For a global analysis, we reconstructed a protein-protein interaction (PPI) network for 7653R and integrated gene expression data into the network using Cytoscape. A highly inter-connected subnetwork, with function enrichment for nitrogen fixation, was found, and a set of hubs and previously uncharacterized genes participating in nitrogen fixation were identified. The results described here provide a broader biological landscape and novel insights that elucidate rhizobial bacteroid differentiation, nitrogen fixation and related novel gene functions.
Collapse
Affiliation(s)
- Jieli Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Baohai Hao
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Liu Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Shanming Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Binguang Ma
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Yi Yang
- Center for Bioinformatics, School of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Fuli Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- * E-mail:
| |
Collapse
|
256
|
Patel SJ, Padilla-Benavides T, Collins JM, Argüello JM. Functional diversity of five homologous Cu+-ATPases present in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2014; 160:1237-1251. [PMID: 24662147 DOI: 10.1099/mic.0.079137-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Copper is an important element in host-microbe interactions, acting both as a catalyst in enzymes and as a potential toxin. Cu(+)-ATPases drive cytoplasmic Cu(+) efflux and protect bacteria against metal overload. Many pathogenic and symbiotic bacteria contain multiple Cu(+)-ATPase genes within particular genetic environments, suggesting alternative roles for each resulting protein. This hypothesis was tested by characterizing five homologous Cu(+)-ATPases present in the symbiotic organism Sinorhizobium meliloti. Mutation of each gene led to different phenotypes and abnormal nodule development in the alfalfa host. Distinct responses were detected in free-living S. meliloti mutant strains exposed to metal and redox stresses. Differential gene expression was detected under Cu(+), oxygen or nitrosative stress. These observations suggest that CopA1a maintains the cytoplasmic Cu(+) quota and its expression is controlled by Cu(+) levels. CopA1b is also regulated by Cu(+) concentrations and is required during symbiosis for bacteroid maturation. CopA2-like proteins, FixI1 and FixI2, are necessary for the assembly of two different cytochrome c oxidases at different stages of bacterial life. CopA3 is a phylogenetically distinct Cu(+)-ATPase that does not contribute to Cu(+) tolerance. It is regulated by redox stress and required during symbiosis. We postulated a model where non-redundant homologous Cu(+)-ATPases, operating under distinct regulation, transport Cu(+) to different target proteins.
Collapse
Affiliation(s)
- Sarju J Patel
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Teresita Padilla-Benavides
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Jessica M Collins
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| |
Collapse
|
257
|
Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing. Appl Environ Microbiol 2014; 80:3404-15. [PMID: 24657863 DOI: 10.1128/aem.00115-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing.
Collapse
|
258
|
Xie JB, Du Z, Bai L, Tian C, Zhang Y, Xie JY, Wang T, Liu X, Chen X, Cheng Q, Chen S, Li J. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet 2014; 10:e1004231. [PMID: 24651173 PMCID: PMC3961195 DOI: 10.1371/journal.pgen.1004231] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/26/2014] [Indexed: 11/18/2022] Open
Abstract
We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ(70)-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe-S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.
Collapse
Affiliation(s)
- Jian-Bo Xie
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Zhenglin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Lanqing Bai
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Changfu Tian
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Yunzhi Zhang
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Jiu-Yan Xie
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Tianshu Wang
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Xiaomeng Liu
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Xi Chen
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (QC); (SC)
| | - Sanfeng Chen
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
- * E-mail: (QC); (SC)
| | - Jilun Li
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
259
|
Berrabah F, Bourcy M, Cayrel A, Eschstruth A, Mondy S, Ratet P, Gourion B. Growth conditions determine the DNF2 requirement for symbiosis. PLoS One 2014; 9:e91866. [PMID: 24632747 PMCID: PMC3954807 DOI: 10.1371/journal.pone.0091866] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Rhizobia and legumes are able to interact in a symbiotic way leading to the development of root nodules. Within nodules, rhizobia fix nitrogen for the benefit of the plant. These interactions are efficient because spectacularly high densities of nitrogen fixing rhizobia are maintained in the plant cells. DNF2, a Medicago truncatula gene has been described as required for nitrogen fixation, bacteroid's persistence and to prevent defense-like reactions in the nodules. This manuscript shows that a Rhizobium mutant unable to differentiate is not sufficient to trigger defense-like reactions in this organ. Furthermore, we show that the requirement of DNF2 for effective symbiosis can be overcome by permissive growth conditions. The dnf2 knockout mutants grown in vitro on agarose or Phytagel as gelling agents are able to produce nodules fixing nitrogen with the same efficiency as the wild-type. However, when agarose medium is supplemented with the plant defense elicitor ulvan, the dnf2 mutant recovers the fix- phenotype. Together, our data show that plant growth conditions impact the gene requirement for symbiotic nitrogen fixation and suggest that they influence the symbiotic suppression of defense reactions in nodules.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Marie Bourcy
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Anne Cayrel
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Alexis Eschstruth
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Samuel Mondy
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
- * E-mail:
| | - Benjamin Gourion
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| |
Collapse
|
260
|
Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI(Ntr) integrates carbon and nitrogen signaling in Sinorhizobium meliloti. J Bacteriol 2014; 196:1901-7. [PMID: 24633875 DOI: 10.1128/jb.01489-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Sinorhizobium meliloti, catabolite repression is influenced by a noncanonical nitrogen-type phosphotransferase system (PTS(Ntr)). In this PTS(Ntr), the protein HPr is phosphorylated on histidine-22 by the enzyme EI(Ntr) and the flux of phosphate through this residue onto downstream proteins leads to an increase in succinate-mediated catabolite repression (SMCR). In order to explore the molecular determinants of HPr phosphorylation by EI(Ntr), both proteins were purified and the activity of EI(Ntr) was measured. Experimentally determined kinetic parameters of EI(Ntr) activity were significantly slower than those determined for the carbohydrate-type EI in Escherichia coli. Enzymatic assays showed that glutamine, a signal of nitrogen availability in many Gram-negative bacteria, strongly inhibits EI(Ntr). Binding experiments using the isolated GAF domain of EI(Ntr) (EIGAF) showed that it is the domain responsible for detection of glutamine. EI(Ntr) activity was not affected by α-ketoglutarate, and no binding between the EIGAF and α-ketoglutarate could be detected. These data suggest that in S. melilloti, EI(Ntr) phosphorylation of HPr is regulated by signals from both carbon metabolism (phosphoenolpyruvate) and nitrogen metabolism (glutamine).
Collapse
|
261
|
García-Rodríguez FM, Hernández-Gutiérrez T, Díaz-Prado V, Toro N. Use of the computer-retargeted group II intron RmInt1 of Sinorhizobium meliloti for gene targeting. RNA Biol 2014; 11:391-401. [PMID: 24646865 PMCID: PMC4075523 DOI: 10.4161/rna.28373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gene-targeting vectors derived from mobile group II introns capable of forming a ribonucleoprotein (RNP) complex containing excised intron lariat RNA and an intron-encoded protein (IEP) with reverse transcriptase (RT), maturase, and endonuclease (En) activities have been described. RmInt1 is an efficient mobile group II intron with an IEP lacking the En domain. We performed a comprehensive study of the rules governing RmInt1 target site recognition based on selection experiments with donor and recipient plasmid libraries, with randomization of the elements of the intron RNA involved in target recognition and the wild-type target site. The data obtained were used to develop a computer algorithm for identifying potential RmInt1 targets in any DNA sequence. Using this algorithm, we modified RmInt1 for the efficient recognition of DNA target sites at different locations in the Sinorhizobium meliloti chromosome. The retargeted RmInt1 integrated efficiently into the chromosome, regardless of the location of the target gene. Our results suggest that RmInt1 could be efficiently adapted for gene targeting.
Collapse
Affiliation(s)
- Fernando M García-Rodríguez
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Teresa Hernández-Gutiérrez
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Vanessa Díaz-Prado
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| |
Collapse
|
262
|
Torres-Quesada O, Reinkensmeier J, Schlüter JP, Robledo M, Peregrina A, Giegerich R, Toro N, Becker A, Jiménez-Zurdo JI. Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti. RNA Biol 2014; 11:563-79. [PMID: 24786641 DOI: 10.4161/rna.28239] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The RNA chaperone Hfq is a global post-transcriptional regulator in bacteria. Here, we used RNAseq to analyze RNA populations from the legume symbiont Sinorhizobium meliloti that were co-immunoprecipitated (CoIP-RNA) with a FLAG-tagged Hfq in five growth/stress conditions. Hfq-bound transcripts (1315) were largely identified in stressed bacteria and derived from small RNAs (sRNAs), both trans-encoded (6.4%) and antisense (asRNAs; 6.3%), and mRNAs (86%). Pull-down with Hfq recovered a small proportion of annotated S. meliloti sRNAs (14% of trans-sRNAs and 2% of asRNAs) suggesting a discrete impact of this protein in sRNA pathways. Nonetheless, Hfq selectively stabilized CoIP-enriched sRNAs, anticipating that these interactions are functionally significant. Transcription of 26 Hfq-bound sRNAs was predicted to occur from promoters recognized by the major stress σ factors σ(E2) or σ(H1/2). Recovery rates of sRNAs in each of the CoIP-RNA libraries suggest a large impact of Hfq-assisted riboregulation in S. meliloti osmoadaptation. Hfq directly targeted 18% of the predicted S. meliloti mRNAs, which encode functionally diverse proteins involved in transport and metabolism, σ(E2)-dependent stress responses, quorum sensing, flagella biosynthesis, ribosome, and membrane assembly or symbiotic nitrogen fixation. Canonical targeting of the 5' regions of two of the ABC transporter mRNAs by the homologous Hfq-binding AbcR1 and AbcR2 sRNAs leading to inhibition of protein synthesis was confirmed in vivo. We therefore provide a comprehensive resource for the systems-level deciphering of hitherto unexplored S. meliloti stress and symbiotic post-transcriptional regulons and the identification of Hfq-dependent sRNA-mRNA regulatory pairs.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Grupo de Ecología Genética de la Rizosfera; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; CSIC, Granada, Spain
| | - Jan Reinkensmeier
- Center for Biotechnology (CeBiTec); Bielefeld University; Bielefeld, Germany
| | - Jan-Philip Schlüter
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology; Philipps-Universität Marburg; Marburg, Germany
| | - Marta Robledo
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology; Philipps-Universität Marburg; Marburg, Germany
| | - Alexandra Peregrina
- Grupo de Ecología Genética de la Rizosfera; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; CSIC, Granada, Spain
| | - Robert Giegerich
- Center for Biotechnology (CeBiTec); Bielefeld University; Bielefeld, Germany
| | - Nicolás Toro
- Grupo de Ecología Genética de la Rizosfera; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; CSIC, Granada, Spain
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology; Philipps-Universität Marburg; Marburg, Germany
| | - Jose I Jiménez-Zurdo
- Grupo de Ecología Genética de la Rizosfera; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; CSIC, Granada, Spain
| |
Collapse
|
263
|
ExpR coordinates the expression of symbiotically important, bundle-forming Flp pili with quorum sensing in Sinorhizobium meliloti. Appl Environ Microbiol 2014; 80:2429-39. [PMID: 24509921 DOI: 10.1128/aem.04088-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IVb pili in enteropathogenic bacteria function as a host colonization factor by mediating tight adherence to host cells, but their role in bacterium-plant symbiosis is currently unknown. The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains two clusters encoding proteins for type IVb pili of the Flp (fimbrial low-molecular-weight protein) subfamily. To establish the role of Flp pili in the symbiotic interaction of S. meliloti and its host, Medicago sativa, we deleted pilA1, which encodes the putative pilin subunit in the chromosomal flp-1 cluster and conducted competitive nodulation assays. The pilA1 deletion strain formed 27% fewer nodules than the wild type. Transmission electron microscopy revealed the presence of bundle-forming pili protruding from the polar and lateral region of S. meliloti wild-type cells. The putative pilus assembly ATPase CpaE1 fused to mCherry showed a predominantly unilateral localization. Transcriptional reporter gene assays demonstrated that expression of pilA1 peaks in early stationary phase and is repressed by the quorum-sensing regulator ExpR, which also controls production of exopolysaccharides and motility. Binding of acyl homoserine lactone-activated ExpR to the pilA1 promoter was confirmed with electrophoretic mobility shift assays. A 17-bp consensus sequence for ExpR binding was identified within the 28-bp protected region by DNase I footprinting analyses. Our results show that Flp pili are important for efficient symbiosis of S. meliloti with its plant host. The temporal inverse regulation of exopolysaccharides and pili by ExpR enables S. meliloti to achieve a coordinated expression of cellular processes during early stages of host interaction.
Collapse
|
264
|
Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti. Proc Natl Acad Sci U S A 2014; 111:3217-24. [PMID: 24501121 DOI: 10.1073/pnas.1400421111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In α-proteobacteria, strict regulation of cell cycle progression is necessary for the specific cellular differentiation required for adaptation to diverse environmental niches. The symbiotic lifestyle of Sinorhizobium meliloti requires a drastic cellular differentiation that includes genome amplification. To achieve polyploidy, the S. meliloti cell cycle program must be altered to uncouple DNA replication from cell division. In the α-proteobacterium Caulobacter crescentus, cell cycle-regulated transcription plays an important role in the control of cell cycle progression but this has not been demonstrated in other α-proteobacteria. Here we describe a robust method for synchronizing cell growth that enabled global analysis of S. meliloti cell cycle-regulated gene expression. This analysis identified 462 genes with cell cycle-regulated transcripts, including several key cell cycle regulators, and genes involved in motility, attachment, and cell division. Only 28% of the 462 S. meliloti cell cycle-regulated genes were also transcriptionally cell cycle-regulated in C. crescentus. Furthermore, CtrA- and DnaA-binding motif analysis revealed little overlap between the cell cycle-dependent regulons of CtrA and DnaA in S. meliloti and C. crescentus. The predicted S. meliloti cell cycle regulon of CtrA, but not that of DnaA, was strongly conserved in more closely related α-proteobacteria with similar ecological niches as S. meliloti, suggesting that the CtrA cell cycle regulatory network may control functions of central importance to the specific lifestyles of α-proteobacteria.
Collapse
|
265
|
RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti. J Bacteriol 2014; 196:1435-47. [PMID: 24488310 DOI: 10.1128/jb.01471-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Quorum sensing of Sinorhizobium meliloti relies on N-acyl-homoserine lactones (AHLs) as autoinducers. AHL production increases at high population density, and this depends on the AHL synthase SinI and two transcriptional regulators, SinR and ExpR. Our study demonstrates that ectopic expression of the gene rne, coding for RNase E, an endoribonuclease that is probably essential for growth, prevents the accumulation of AHLs at detectable levels. The ectopic rne expression led to a higher level of rne mRNA and a lower level of sinI mRNA independently of the presence of ExpR, the AHL receptor, and AHLs. In line with this, IPTG (isopropyl-β-D-thiogalactopyranoside)-induced overexpression of rne resulted in a shorter half-life of sinI mRNA and a strong reduction of AHL accumulation. Moreover, using translational sinI-egfp fusions, we found that sinI expression is specifically decreased upon induced overexpression of rne, independently of the presence of the global posttranscriptional regulator Hfq. The 28-nucleotide 5' untranslated region (UTR) of sinI mRNA was sufficient for this effect. Random amplification of 5' cDNA ends (5'-RACE) analyses revealed a potential RNase E cleavage site at position +24 between the Shine-Dalgarno site and the translation start site. We postulate therefore that RNase E-dependent degradation of sinI mRNA from the 5' end is one of the steps mediating a high turnover of sinI mRNA, which allows the Sin quorum-sensing system to respond rapidly to changes in transcriptional control of AHL production.
Collapse
|
266
|
Kakoi K, Yamaura M, Kamiharai T, Tamari D, Abe M, Uchiumi T, Kucho KI. Isolation of mutants of the nitrogen-fixing actinomycete Frankia. Microbes Environ 2014; 29:31-7. [PMID: 24389412 PMCID: PMC4041240 DOI: 10.1264/jsme2.me13126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Frankia is a nitrogen (N)-fixing multicellular actinomycete which establishes root-nodule symbiosis with actinorhizal plants. Several aspects of Frankia N fixation and symbiosis are distinct, but genes involved in the specific features are largely unknown because of the lack of an efficient mutant screening method. In this study, we isolated mutants of Frankia sp. strain CcI3 using hyphae fragments mutagenized by chemical mutagens. Firstly, we isolated uracil auxotrophs as gain-of-function mutants resistant to 5-fluoroorotic acid (5-FOA). We obtained seven 5-FOA resistant mutants, all of which required uracil for growth. Five strains carried a frame shift mutation in orotidine-5′-phosphate decarboxylase gene and two carried an amino acid substitution in the orotate phosphoribosyltransferase gene. Secondly, we isolated mutants showing loss-of-function phenotypes. Mutagenized hyphae were fragmented by ultrasound and allowed to multiply at their tips. Hyphae were fragmented again and short fragments were enriched by filtration through 5 μm pores filters. Next-generation and Sanger sequencing revealed that colonies formed from the short hyphae fragments consisted of cells with an identical genotype. From the mutagenized colony population, we isolated three pigmentation mutants and a mutant with reduced N-fixation activity. These results indicate that our procedure is useful for the isolation of loss-of-function mutants using hyphae of Frankia.
Collapse
Affiliation(s)
- Kentaro Kakoi
- Graduate School of Science and Engineering, Kagoshima University
| | | | | | | | | | | | | |
Collapse
|
267
|
Yurgel S, Sa N, Rice J, Roje S. Assay for GTP Cyclohydrolase II Activity in Bacterial Extracts. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
268
|
Baudisch B, Langner U, Garz I, Klösgen RB. The exception proves the rule? Dual targeting of nuclear-encoded proteins into endosymbiotic organelles. THE NEW PHYTOLOGIST 2014; 201:80-90. [PMID: 24024706 DOI: 10.1111/nph.12482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/05/2013] [Indexed: 05/17/2023]
Abstract
Plant cells harbor two types of endosymbiotic organelle: mitochondria and chloroplasts. As a consequence of endosymbiotic gene transfer, the majority of their proteins are encoded in the nucleus and post-translationally 're'-imported into the respective target organelle. The corresponding transport signals are usually selective for a single organelle, but several proteins are transported into both the mitochondria and chloroplasts. To estimate the number of proteins with such dual targeting properties in Arabidopsis, we classified the proteins encoded by nuclear genes of endosymbiotic origin according to the respective targeting specificity of their N-terminal transport signals as predicted by the TargetP software package. Selected examples of the resulting protein classes were subsequently analyzed by transient transformation assays as well as by in organello protein transport experiments. It was found that most proteins with high prediction values for both organelles show dual targeting with both experimental approaches. Unexpectedly, however, dual targeting was even found among those proteins that are predicted to be localized solely in one of the two endosymbiotic organelles. In total, among the 16 candidate proteins analyzed, we identified 10 proteins with dual targeting properties. This unexpectedly high proportion suggests that such transport properties are much more abundant than anticipated.
Collapse
Affiliation(s)
- Bianca Baudisch
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Uwe Langner
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Ingo Garz
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Ralf Bernd Klösgen
- Institute of Biology - Plant Physiology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| |
Collapse
|
269
|
Yurgel S, Lynch J, Rice J, Adhikari N, Roje S. Quantification of Flavin Production by Bacteria. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
270
|
Vanderlinde EM, Hynes MF, Yost CK. Homoserine catabolism by Rhizobium leguminosarum bv. viciae 3841 requires a plasmid-borne gene cluster that also affects competitiveness for nodulation. Environ Microbiol 2014; 16:205-17. [PMID: 23859230 DOI: 10.1111/1462-2920.12196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 01/24/2023]
Abstract
Homoserine represents a substantial component of pea root exudate that may be important for plant-microbe interactions in the rhizosphere. We identified a gene cluster on plasmid pRL8JI that is required for homoserine utilization by Rhizobium leguminosarum bv. viciae. The genes are arranged as two divergently expressed predicted operons that were induced by L-homoserine, pea root exudate, and were expressed on pea roots. A mutation in gene pRL80083 that prevented utilization of homoserine as a sole carbon and energy source affected the mutant's ability to nodulate peas and lentils competitively. The homoserine gene cluster was present in approximately 47% of natural R. leguminosarum isolates (n = 59) and was strongly correlated with homoserine utilization. Conjugation of pRL8JI to R. leguminosarum 4292 or Agrobacterium tumefaciens UBAPF2 was sufficient for homoserine utilization. The presence of L-homoserine increased conjugation efficiency of pRL8JI from R. leguminosarum to a pRL8JI-cured derivative of R. leguminosarum 1062 and to A. tumefaciens UBAPF2, and induced expression of the plasmid transfer gene trbB; however, there was no difference in conjugation efficiency or trbB expression with A. tumefaciens UBAPF2pRL8-Gm as the donor suggesting that other genes in R. leguminosarum may contribute to regulating conjugation of pRL8 in the presence of homoserine.
Collapse
|
271
|
Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiol Res 2014; 169:2-17. [DOI: 10.1016/j.micres.2013.09.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 11/24/2022]
|
272
|
Reeve W, Tian R, Bräu L, Goodwin L, Munk C, Detter C, Tapia R, Han C, Liolios K, Huntemann M, Pati A, Woyke T, Mavrommatis K, Markowitz V, Ivanova N, Kyrpides N, Willems A. Genome sequence of Ensifer arboris strain LMG 14919(T); a microsymbiont of the legume Prosopis chilensis growing in Kosti, Sudan. Stand Genomic Sci 2013; 9:473-83. [PMID: 25197433 PMCID: PMC4148966 DOI: 10.4056/sigs.4828625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Ensifer arboris LMG 14919T is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of several species of legume trees. LMG 14919T was isolated in 1987 from a nodule recovered from the roots of the tree Prosopis chilensis growing in Kosti, Sudan. LMG 14919T is highly effective at fixing nitrogen with P. chilensis (Chilean mesquite) and Acacia senegal (gum Arabic tree or gum acacia). LMG 14919T does not nodulate the tree Leucena leucocephala, nor the herbaceous species Macroptilium atropurpureum, Trifolium pratense, Medicago sativa, Lotus corniculatus and Galega orientalis. Here we describe the features of E. arboris LMG 14919T, together with genome sequence information and its annotation. The 6,850,303 bp high-quality-draft genome is arranged into 7 scaffolds of 12 contigs containing 6,461 protein-coding genes and 84 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
Affiliation(s)
- Wayne Reeve
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Rui Tian
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Lambert Bräu
- School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Christine Munk
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Chris Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Roxanne Tapia
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Cliff Han
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Konstantinos Mavrommatis
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Belgium
| |
Collapse
|
273
|
Molesini B, Cecconi D, Pii Y, Pandolfini T. Local and Systemic Proteomic Changes in Medicago Truncatula at an Early Phase of Sinorhizobium meliloti Infection. J Proteome Res 2013; 13:408-21. [DOI: 10.1021/pr4009942] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Barbara Molesini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Youry Pii
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Tiziana Pandolfini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| |
Collapse
|
274
|
Brewer TE, Stroupe ME, Jones KM. The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages. Virology 2013; 450-451:84-97. [PMID: 24503070 DOI: 10.1016/j.virol.2013.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 01/21/2023]
Abstract
Phage ΦM12 is an important transducing phage of the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. Here we report the genome, phylogenetic analysis, and proteome of ΦM12, the first report of the genome and proteome of a rhizobium-infecting T4-superfamily phage. The structural genes of ΦM12 are most similar to T4-superfamily phages of cyanobacteria. ΦM12 is the first reported T4-superfamily phage to lack genes encoding class I ribonucleotide reductase (RNR) and exonuclease dexA, and to possess a class II coenzyme B12-dependent RNR. ΦM12's novel collection of genes establishes it as the founder of a new group of T4-superfamily phages, fusing features of cyanophages and phages of enteric bacteria.
Collapse
Affiliation(s)
- Tess E Brewer
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States
| | - M Elizabeth Stroupe
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States; Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way Tallahassee, FL 32306-4380 United States
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States.
| |
Collapse
|
275
|
Terpolilli J, Garau G, Hill Y, Tian R, Howieson J, Bräu L, Goodwin L, Han J, Liolios K, Huntemann M, Pati A, Woyke T, Mavromatis K, Markowitz V, Ivanova N, Kyrpides N, Reeve W. Genome sequence of Ensifer medicae strain WSM1369; an effective microsymbiont of the annual legume Medicago sphaerocarpos. Stand Genomic Sci 2013; 9:420-30. [PMID: 24976897 PMCID: PMC4062641 DOI: 10.4056/sigs.4838624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ensifer medicae WSM1369 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1369 was isolated in 1993 from a nodule recovered from the roots of Medicago sphaerocarpos growing at San Pietro di Rudas, near Aggius in Sardinia (Italy). WSM1369 is an effective microsymbiont of the annual forage legumes M. polymorpha and M. sphaerocarpos. Here we describe the features of E. medicae WSM1369, together with genome sequence information and its annotation. The 6,402,557 bp standard draft genome is arranged into 307 scaffolds of 307 contigs containing 6,656 protein-coding genes and 79 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
Affiliation(s)
- Jason Terpolilli
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Giovanni Garau
- Dipartimento di Agraria, S.T.A.A., University of Sassari, Italy
| | - Yvette Hill
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Rui Tian
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - John Howieson
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Lambert Bräu
- School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - James Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Konstantinos Mavromatis
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Wayne Reeve
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| |
Collapse
|
276
|
Terpolilli J, Hill Y, Tian R, Howieson J, Bräu L, Goodwin L, Han J, Liolios K, Huntemann M, Pati A, Woyke T, Mavromatis K, Markowitz V, Ivanova N, Kyrpides N, Reeve W. Genome sequence of Ensifer meliloti strain WSM1022; a highly effective microsymbiont of the model legume Medicago truncatula A17. Stand Genomic Sci 2013; 9:315-24. [PMID: 24976888 PMCID: PMC4062635 DOI: 10.4056/sigs.4608286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
Collapse
Affiliation(s)
- Jason Terpolilli
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Yvette Hill
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Rui Tian
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - John Howieson
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| | - Lambert Bräu
- School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | - Lynne Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - James Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | - Amrita Pati
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Konstantinos Mavromatis
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Natalia Ivanova
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Nikos Kyrpides
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Wayne Reeve
- Centre for Rhizobium Studies, Murdoch University, Western Australia, Australia
| |
Collapse
|
277
|
Yoshida KI, Takemoto Y, Sotsuka T, Tanaka K, Takenaka S. PhaP phasins play a principal role in poly-β-hydroxybutyrate accumulation in free-living Bradyrhizobium japonicum. BMC Microbiol 2013; 13:290. [PMID: 24330393 PMCID: PMC4029623 DOI: 10.1186/1471-2180-13-290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/09/2013] [Indexed: 09/11/2024] Open
Abstract
Background Bradyrhizobium japonicum USDA110, a soybean symbiont, is capable of accumulating a large amount of poly-β-hydroxybutyrate (PHB) as an intracellular carbon storage polymer during free-living growth. Within the genome of USDA110, there are a number of genes annotated as paralogs of proteins involved in PHB metabolism, including its biosynthesis, degradation, and stabilization of its granules. They include two phbA paralogs encoding 3-ketoacyl-CoA thiolase, two phbB paralogs encoding acetoacetylCoA reductase, five phbC paralogs encoding PHB synthase, two phaZ paralogs encoding PHB depolymerase, at least four phaP phasin paralogs for stabilization of PHB granules, and one phaR encoding a putative transcriptional repressor to control phaP expression. Results Quantitative reverse-transcriptase PCR analyses of RNA samples prepared from cells grown using three different media revealed that PHB accumulation was related neither to redundancy nor expression levels of the phbA, phbB, phbC, and phaZ paralogs for PHB-synthesis and degradation. On the other hand, at least three of the phaP paralogs, involved in the growth and stabilization of PHB granules, were induced under PHB accumulating conditions. Moreover, the most prominently induced phasin exhibited the highest affinity to PHB in vitro; it was able to displace PhaR previously bound to PHB. Conclusions These results suggest that PHB accumulation in free-living B. japonicum USDA110 may not be achieved by controlling production and degradation of PHB. In contrast, it is achieved by stabilizing granules autonomously produced in an environment of excess carbon sources together with restricted nitrogen sources.
Collapse
Affiliation(s)
- Ken-ichi Yoshida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan.
| | | | | | | | | |
Collapse
|
278
|
Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti. J Bacteriol 2013; 196:811-24. [PMID: 24317400 DOI: 10.1128/jb.01104-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toxin and antitoxin (TA) gene pairs are addiction systems that are present in many microbial genomes. Sinorhizobium meliloti is an N2-fixing bacterial symbiont of alfalfa and other leguminous plants, and its genome consists of three large replicons, a circular chromosome (3.7 Mb) and the megaplasmids pSymA (1.4 Mb) and pSymB (1.7 Mb). S. meliloti carries 211 predicted type II TA genes, each encoding a toxin or an antitoxin. We constructed defined deletion strains that collectively removed the entire pSymA and pSymB megaplasmids except for their oriV regions. Of approximately 100 TA genes on pSymA and pSymB, we identified four whose loss was associated with cell death or stasis unless copies of the genes were supplied in trans. Orthologs of three of these loci have been characterized in other organisms (relB/E [sma0471/sma0473], Fic [DOC] [sma2105], and VapC [PIN] [orf2230/sma2231]), and this report contains the first experimental proof that RES/Xre (smb21127/smb21128) loci can function as a TA system. Transcriptome sequencing (RNA-seq) analysis did not reveal transcriptional differences between the TA systems to account for why deletion of the four "active" systems resulted in cell toxicity. These data suggest that severe cell growth phenotypes result from the loss of a few TA systems and that loss of most TA systems may result in more subtle phenotypes. These four TA systems do not appear to play a direct role in the S. meliloti-alfalfa symbiosis, as strains lacking these TA systems had a symbiotic N2 fixation phenotype that was indistinguishable from the wild type.
Collapse
|
279
|
The FtsZ-like protein FtsZm of Magnetospirillum gryphiswaldense likely interacts with its generic homolog and is required for biomineralization under nitrate deprivation. J Bacteriol 2013; 196:650-9. [PMID: 24272781 DOI: 10.1128/jb.00804-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Midcell selection, septum formation, and cytokinesis in most bacteria are orchestrated by the eukaryotic tubulin homolog FtsZ. The alphaproteobacterium Magnetospirillum gryphiswaldense (MSR-1) septates asymmetrically, and cytokinesis is linked to splitting and segregation of an intracellular chain of membrane-enveloped magnetite crystals (magnetosomes). In addition to a generic, full-length ftsZ gene, MSR-1 contains a truncated ftsZ homolog (ftsZm) which is located adjacent to genes controlling biomineralization and magnetosome chain formation. We analyzed the role of FtsZm in cell division and biomineralization together with the full-length MSR-1 FtsZ protein. Our results indicate that loss of FtsZm has a strong effect on microoxic magnetite biomineralization which, however, could be rescued by the presence of nitrate in the medium. Fluorescence microscopy revealed that FtsZm-mCherry does not colocalize with the magnetosome-related proteins MamC and MamK but is confined to asymmetric spots at midcell and at the cell pole, coinciding with the FtsZ protein position. In Escherichia coli, both FtsZ homologs form distinct structures but colocalize when coexpressed, suggesting an FtsZ-dependent recruitment of FtsZm. In vitro analyses indicate that FtsZm is able to interact with the FtsZ protein. Together, our data suggest that FtsZm shares key features with its full-length homolog but is involved in redox control for magnetite crystallization.
Collapse
|
280
|
Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:1-20. [PMID: 23774057 DOI: 10.1016/j.plaphy.2013.05.009] [Citation(s) in RCA: 569] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/10/2013] [Indexed: 05/18/2023]
Abstract
Land-adapted plants appeared between about 480 and 360 million years ago in the mid-Palaeozoic era, originating from charophycean green algae. The successful adaptation to land of these prototypes of amphibious plants - when they emerged from an aquatic environment onto the land - was achieved largely by massive formation of "phenolic UV light screens". In the course of evolution, plants have developed the ability to produce an enormous number of phenolic secondary metabolites, which are not required in the primary processes of growth and development but are of vital importance for their interaction with the environment, for their reproductive strategy and for their defense mechanisms. From a biosynthetic point of view, beside methylation catalyzed by O-methyltransferases, acylation and glycosylation of secondary metabolites, including phenylpropanoids and various derived phenolic compounds, are fundamental chemical modifications. Such modified metabolites have altered polarity, volatility, chemical stability in cells but also in solution, ability for interaction with other compounds (co-pigmentation) and biological activity. The control of the production of plant phenolics involves a matrix of potentially overlapping regulatory signals. These include developmental signals, such as during lignification of new growth or the production of anthocyanins during fruit and flower development, and environmental signals for protection against abiotic and biotic stresses. For some of the key compounds, such as the flavonoids, there is now an excellent understanding of the nature of those signals and how the signal transduction pathway connects through to the activation of the phenolic biosynthetic genes. Within the plant environment, different microorganisms can coexist that can establish various interactions with the host plant and that are often the basis for the synthesis of specific phenolic metabolites in response to these interactions. In the rhizosphere, increasing evidence suggests that root specific chemicals (exudates) might initiate and manipulate biological and physical interactions between roots and soil organisms. These interactions include signal traffic between roots of competing plants, roots and soil microbes, and one-way signals that relate the nature of chemical and physical soil properties to the roots. Plant phenolics can also modulate essential physiological processes such as transcriptional regulation and signal transduction. Some interesting effects of plant phenolics are also the ones associated with the growth hormone auxin. An additional role for flavonoids in functional pollen development has been observed. Finally, anthocyanins represent a class of flavonoids that provide the orange, red and blue/purple colors to many plant tissues. According to the coevolution theory, red is a signal of the status of the tree to insects that migrate to (or move among) the trees in autumn.
Collapse
Affiliation(s)
- Véronique Cheynier
- INRA, UMR1083 Sciences Pour l'oenologie, 2 place Viala, 34060 Montpellier Cedex 1, France.
| | | | | | | | | |
Collapse
|
281
|
Butzin NC, Secinaro MA, Swithers KS, Gogarten JP, Noll KM. Thermotoga lettingae can salvage cobinamide to synthesize vitamin B12. Appl Environ Microbiol 2013; 79:7006-12. [PMID: 24014541 PMCID: PMC3811540 DOI: 10.1128/aem.01800-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/01/2013] [Indexed: 01/20/2023] Open
Abstract
We recently reported that the Thermotogales acquired the ability to synthesize vitamin B12 by acquisition of genes from two distantly related lineages, Archaea and Firmicutes (K. S. Swithers et al., Genome Biol. Evol. 4:730-739, 2012). Ancestral state reconstruction suggested that the cobinamide salvage gene cluster was present in the Thermotogales' most recent common ancestor. We also predicted that Thermotoga lettingae could not synthesize B12 de novo but could use the cobinamide salvage pathway to synthesize B12. In this study, these hypotheses were tested, and we found that Tt. lettingae did not synthesize B12 de novo but salvaged cobinamide. The growth rate of Tt. lettingae increased with the addition of B12 or cobinamide to its medium. It synthesized B12 when the medium was supplemented with cobinamide, and no B12 was detected in cells grown on cobinamide-deficient medium. Upstream of the cobinamide salvage genes is a putative B12 riboswitch. In other organisms, B12 riboswitches allow for higher transcriptional activity in the absence of B12. When Tt. lettingae was grown with no B12, the salvage genes were upregulated compared to cells grown with B12 or cobinamide. Another gene cluster with a putative B12 riboswitch upstream is the btuFCD ABC transporter, and it showed a transcription pattern similar to that of the cobinamide salvage genes. The BtuF proteins from species that can and cannot salvage cobinamides were shown in vitro to bind both B12 and cobinamide. These results suggest that Thermotogales species can use the BtuFCD transporter to import both B12 and cobinamide, even if they cannot salvage cobinamide.
Collapse
Affiliation(s)
- Nicholas C Butzin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | |
Collapse
|
282
|
Wibberg D, Blom J, Rückert C, Winkler A, Albersmeier A, Pühler A, Schlüter A, Scharf BE. Draft genome sequence of Sinorhizobium meliloti RU11/001, a model organism for flagellum structure, motility and chemotaxis. J Biotechnol 2013; 168:731-3. [PMID: 24184089 DOI: 10.1016/j.jbiotec.2013.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/09/2013] [Indexed: 11/16/2022]
Abstract
Sinorhizobium meliloti of the order Rhizobiales is a symbiotic nitrogen-fixing bacterium nodulating plants of the genera Medicago, Trigonella and Melilotus and hence is of great agricultural importance. In its free-living state it is motile and capable of modulating its movement patterns in response to chemical attractants. Here, the draft genome consisting of a circular chromosome, the megaplasmids pSymA and pSymB and three accessory plasmids of Sinorhizobium meliloti RU11/001, a model organism for flagellum structure, motility and chemotaxis, is reported.
Collapse
Affiliation(s)
- Daniel Wibberg
- Center for Biotechnology, Institute for Genome Research and Systems Biology, Bielefeld University, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Functional conservation of the capacity for ent-kaurene biosynthesis and an associated operon in certain rhizobia. J Bacteriol 2013; 196:100-6. [PMID: 24142247 DOI: 10.1128/jb.01031-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial interactions with plants are accompanied by complex signal exchange processes. Previously, the nitrogen-fixing symbiotic (rhizo)bacterium Bradyrhizobium japonicum was found to carry adjacent genes encoding two sequentially acting diterpene cyclases that together transform geranylgeranyl diphosphate to ent-kaurene, the olefin precursor to the gibberellin plant hormones. Species from the three other major genera of rhizobia were found to have homologous terpene synthase genes. Cloning and functional characterization of a representative set of these enzymes confirmed the capacity of each genus to produce ent-kaurene. Moreover, comparison of their genomic context revealed that these diterpene synthases are found in a conserved operon which includes an adjacent isoprenyl diphosphate synthase, shown here to produce the geranylgeranyl diphosphate precursor, providing a critical link to central metabolism. In addition, the rest of the operon consists of enzymatic genes that presumably lead to a more elaborated diterpenoid, although the production of gibberellins was not observed. Nevertheless, it has previously been shown that the operon is selectively expressed during nodulation, and the scattered distribution of the operon via independent horizontal gene transfer within the symbiotic plasmid or genomic island shown here suggests that such diterpenoid production may modulate the interaction of these particular symbionts with their host plants.
Collapse
|
284
|
Jones KM, Mendis HC, Queiroux C. Single-plant, sterile microcosms for nodulation and growth of the legume plant Medicago truncatula with the rhizobial symbiont Sinorhizobium meliloti. J Vis Exp 2013. [PMID: 24121837 DOI: 10.3791/50916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Rhizobial bacteria form symbiotic, nitrogen-fixing nodules on the roots of compatible host legume plants. One of the most well-developed model systems for studying these interactions is the plant Medicago truncatula cv. Jemalong A17 and the rhizobial bacterium Sinorhizobium meliloti 1021. Repeated imaging of plant roots and scoring of symbiotic phenotypes requires methods that are non-destructive to either plants or bacteria. The symbiotic phenotypes of some plant and bacterial mutants become apparent after relatively short periods of growth, and do not require long-term observation of the host/symbiont interaction. However, subtle differences in symbiotic efficiency and nodule senescence phenotypes that are not apparent in the early stages of the nodulation process require relatively long growth periods before they can be scored. Several methods have been developed for long-term growth and observation of this host/symbiont pair. However, many of these methods require repeated watering, which increases the possibility of contamination by other microbes. Other methods require a relatively large space for growth of large numbers of plants. The method described here, symbiotic growth of M. truncatula/S. meliloti in sterile, single-plant microcosms, has several advantages. Plants in these microcosms have sufficient moisture and nutrients to ensure that watering is not required for up to 9 weeks, preventing cross-contamination during watering. This allows phenotypes to be quantified that might be missed in short-term growth systems, such as subtle delays in nodule development and early nodule senescence. Also, the roots and nodules in the microcosm are easily viewed through the plate lid, so up-rooting of the plants for observation is not required.
Collapse
|
285
|
Mendis HC, Queiroux C, Brewer TE, Davis OM, Washburn BK, Jones KM. The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (Alfalfa). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1089-1105. [PMID: 23656330 DOI: 10.1094/mpmi-03-13-0087-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The acidic polysaccharide succinoglycan produced by the nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and to efficiently invade the host plant M. sativa (alfalfa). The β-glucanase enzyme encoded by exoK has previously been demonstrated to cleave succinoglycan and participate in producing the low molecular weight form of this polysaccharide. Here, we show that exoK is required for efficient S. meliloti invasion of both M. truncatula and alfalfa. Deletion mutants of exoK have a substantial reduction in symbiotic productivity on both of these plant hosts. Insertion mutants of exoK have an even less productive symbiosis than the deletion mutants with the host M. truncatula that is caused by a secondary effect of the insertion itself, and may be due to a polar effect on the expression of the downstream exoLAMON genes.
Collapse
Affiliation(s)
- Hajeewaka C Mendis
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | | | | | |
Collapse
|
286
|
Antimicrobial nodule-specific cysteine-rich peptides induce membrane depolarization-associated changes in the transcriptome of Sinorhizobium meliloti. Appl Environ Microbiol 2013; 79:6737-46. [PMID: 23995935 DOI: 10.1128/aem.01791-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Leguminous plants establish symbiosis with nitrogen-fixing alpha- and betaproteobacteria, collectively called rhizobia, which provide combined nitrogen to support plant growth. Members of the inverted repeat-lacking clade of legumes impose terminal differentiation on their endosymbiotic bacterium partners with the help of the nodule-specific cysteine-rich (NCR) peptide family composed of close to 600 members. Among the few tested NCR peptides, cationic ones had antirhizobial activity measured by reduction or elimination of the CFU and uptake of the membrane-impermeable dye propidium iodide. Here, the antimicrobial spectrum of two of these peptides, NCR247 and NCR335, was investigated, and their effect on the transcriptome of the natural target Sinorhizobium meliloti was characterized. Both peptides were able to kill quickly a wide range of Gram-negative and Gram-positive bacteria; however, their spectra were only partially overlapping, and differences were found also in their efficacy on given strains, indicating that the actions of NCR247 and NCR335 might be similar though not identical. Treatment of S. meliloti cultures with either peptide resulted in a quick downregulation of genes involved in basic cellular functions, such as transcription-translation and energy production, as well as upregulation of genes involved in stress and oxidative stress responses and membrane transport. Similar changes provoked mainly in Gram-positive bacteria by antimicrobial agents were coupled with the destruction of membrane potential, indicating that it might also be a common step in the bactericidal actions of NCR247 and NCR335.
Collapse
|
287
|
Pini F, Frage B, Ferri L, De Nisco NJ, Mohapatra SS, Taddei L, Fioravanti A, Dewitte F, Galardini M, Brilli M, Villeret V, Bazzicalupo M, Mengoni A, Walker GC, Becker A, Biondi EG. The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti. Mol Microbiol 2013; 90:54-71. [PMID: 23909720 DOI: 10.1111/mmi.12347] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 01/09/2023]
Abstract
Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen-fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria. We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis.
Collapse
Affiliation(s)
- Francesco Pini
- Interdisciplinary Research Institute USR3078, CNRS-Université Lille Nord de France, 50 avenue de Halley, Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Galardini M, Pini F, Bazzicalupo M, Biondi EG, Mengoni A. Replicon-dependent bacterial genome evolution: the case of Sinorhizobium meliloti. Genome Biol Evol 2013; 5:542-58. [PMID: 23431003 PMCID: PMC3622305 DOI: 10.1093/gbe/evt027] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many bacterial species, such as the alphaproteobacterium Sinorhizobium meliloti, are characterized by open pangenomes and contain multipartite genomes consisting of a chromosome and other large-sized replicons, such as chromids, megaplasmids, and plasmids. The evolutionary forces in both functional and structural aspects that shape the pangenome of species with multipartite genomes are still poorly understood. Therefore, we sequenced the genomes of 10 new S. meliloti strains, analyzed with four publicly available additional genomic sequences. Results indicated that the three main replicons present in these strains (a chromosome, a chromid, and a megaplasmid) partly show replicon-specific behaviors related to strain differentiation. In particular, the pSymB chromid was shown to be a hot spot for positively selected genes, and, unexpectedly, genes resident in the pSymB chromid were also found to be more widespread in distant taxa than those located in the other replicons. Moreover, through the exploitation of a DNA proximity network, a series of conserved “DNA backbones” were found to shape the evolution of the genome structure, with the rest of the genome experiencing rearrangements. The presented data allow depicting a scenario where the pSymB chromid has a distinctive role in intraspecies differentiation and in evolution through positive selection, whereas the pSymA megaplasmid mostly contributes to structural fluidity and to the emergence of new functions, indicating a specific evolutionary role for each replicon in the pangenome evolution.
Collapse
Affiliation(s)
- Marco Galardini
- Department of Biology, University of Firenze, Firenze, Italy
| | | | | | | | | |
Collapse
|
289
|
Hernández-Salmerón JE, Valencia-Cantero E, Santoyo G. Genome-wide analysis of long, exact DNA repeats in rhizobia. Genes Genomics 2013. [DOI: 10.1007/s13258-012-0052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
290
|
Torres-Quesada O, Millán V, Nisa-Martínez R, Bardou F, Crespi M, Toro N, Jiménez-Zurdo JI. Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti. PLoS One 2013; 8:e68147. [PMID: 23869210 PMCID: PMC3712013 DOI: 10.1371/journal.pone.0068147] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/26/2013] [Indexed: 11/18/2022] Open
Abstract
The legume symbiont Sinorhizobium meliloti expresses a plethora of small noncoding RNAs (sRNAs) whose function is mostly unknown. Here, we have functionally characterized two tandemly encoded S. meliloti Rm1021 sRNAs that are similar in sequence and structure. Homologous sRNAs (designated AbcR1 and AbcR2) have been shown to regulate several ABC transporters in the related α-proteobacteria Agrobacterium tumefaciens and Brucella abortus. In Rm1021, AbcR1 and AbcR2 exhibit divergent unlinked regulation and are stabilized by the RNA chaperone Hfq. AbcR1 is transcribed in actively dividing bacteria, either in culture, rhizosphere or within the invasion zone of mature alfalfa nodules. Conversely, AbcR2 expression is induced upon entry into stationary phase and under abiotic stress. Only deletion of AbcR1 resulted into a discrete growth delay in rich medium, but both are dispensable for symbiosis. Periplasmic proteome profiling revealed down-regulation of the branched-chain amino acid binding protein LivK by AbcR1, but not by AbcR2. A double-plasmid reporter assay confirmed the predicted specific targeting of the 5′-untranslated region of the livK mRNA by AbcR1 in vivo. Our findings provide evidences of independent regulatory functions of these sRNAs, probably to fine-tune nutrient uptake in free-living and undifferentiated symbiotic rhizobia.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
291
|
Bélanger L, Charles TC. Members of the Sinorhizobium meliloti ChvI regulon identified by a DNA binding screen. BMC Microbiol 2013; 13:132. [PMID: 23758731 PMCID: PMC3687685 DOI: 10.1186/1471-2180-13-132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/08/2013] [Indexed: 11/28/2022] Open
Abstract
Background The Sinorhizobium meliloti ExoS/ChvI two component regulatory system is required for N2-fixing symbiosis and exopolysaccharide synthesis. Orthologous systems are present in other Alphaproteobacteria, and in many instances have been shown to be necessary for normal interactions with corresponding eukaryotic hosts. Only a few transcriptional regulation targets have been determined, and as a result there is limited understanding of the mechanisms that are controlled by the system. Results In an attempt to better define the members of the regulon, we have applied a simple in vitro electrophoretic screen for DNA fragments that are bound by the ChvI response regulator protein. Several putative transcriptional targets were identified and three were further examined by reporter gene fusion experiments for transcriptional regulation. Two were confirmed to be repressed by ChvI, while one was activated by ChvI. Conclusions Our results suggest a role for ChvI as both a direct activator and repressor of transcription. The identities and functions of many of these genes suggest explanations for some aspects of the pleiotropic phenotype of exoS and chvI mutants. This work paves the way for in depth characterization of the ExoS/ChvI regulon and its potential role in directing bacteria-host relationships.
Collapse
Affiliation(s)
- Louise Bélanger
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
292
|
Carbohydrate kinase (RhaK)-dependent ABC transport of rhamnose in Rhizobium leguminosarum demonstrates genetic separation of kinase and transport activities. J Bacteriol 2013; 195:3424-32. [PMID: 23708135 DOI: 10.1128/jb.00289-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhizobium leguminosarum the ABC transporter responsible for rhamnose transport is dependent on RhaK, a sugar kinase that is necessary for the catabolism of rhamnose. This has led to a working hypothesis that RhaK has two biochemical functions: phosphorylation of its substrate and affecting the activity of the rhamnose ABC transporter. To address this hypothesis, a linker-scanning random mutagenesis of rhaK was carried out. Thirty-nine linker-scanning mutations were generated and mapped. Alleles were then systematically tested for their ability to physiologically complement kinase and transport activity in a strain carrying an rhaK mutation. The rhaK alleles generated could be divided into three classes: mutations that did not affect either kinase or transport activity, mutations that eliminated both transport and kinase activity, and mutations that affected transport activity but not kinase activity. Two genes of the last class (rhaK72 and rhaK73) were found to have similar biochemical phenotypes but manifested different physiological phenotypes. Whereas rhaK72 conferred a slow-growth phenotype when used to complement rhaK mutants, the rhaK73 allele did not complement the inability to use rhamnose as a sole carbon source. To provide insight to how these insertional variants might be affecting rhamnose transport and catabolism, structural models of RhaK were generated based on the crystal structure of related sugar kinases. Structural modeling suggests that both rhaK72 and rhaK73 affect surface-exposed residues in two distinct regions that are found on one face of the protein, suggesting that this protein's face may play a role in protein-protein interaction that affects rhamnose transport.
Collapse
|
293
|
Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti. J Bacteriol 2013; 195:3224-36. [PMID: 23687265 DOI: 10.1128/jb.00234-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sin quorum sensing (QS) system of S. meliloti activates exopolysaccharide and represses flagellum production. The system consists of an N-acyl-homoserine lactone (AHL) synthase, SinI, and at least two LuxR-type regulators, SinR and ExpR. SinR appears to be independent of AHLs for its control of sinI expression, while ExpR is almost completely dependent upon AHLs. In this study, we confirmed 7 previously detected ExpR-DNA binding sites and used the consensus sequence to identify another 26 sites, some of which regulate genes previously not known to be members of the ExpR/AHL regulon. The activities of promoters dependent upon ExpR/AHL were titrated against AHL levels, with varied outcomes in AHL sensitivity. The data suggest a type of temporal expression program whereby the activity of each promoter is subject to a specific range of AHL concentrations. For example, genes responsible for exopolysaccharide production are activated at lower concentrations of AHLs than those required for the repression of genes controlling flagellum production. Several features of ExpR-regulated promoters appear to determine their response to AHLs. The location of the ExpR-binding site with respect to the relevant transcription start within each promoter region determines whether ExpR/AHL activates or represses promoter activity. Furthermore, the strength of the response is dependent upon the concentration of AHLs. We propose that this differential sensitivity to AHLs provides a bacterial colony with a transcription control program that is dynamic and precise.
Collapse
|
294
|
Coba de la Peña T, Redondo FJ, Fillat MF, Lucas MM, Pueyo JJ. Flavodoxin overexpression confers tolerance to oxidative stress in beneficial soil bacteria and improves survival in the presence of the herbicides paraquat and atrazine. J Appl Microbiol 2013; 115:236-46. [PMID: 23594228 DOI: 10.1111/jam.12224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/09/2013] [Accepted: 04/14/2013] [Indexed: 12/01/2022]
Abstract
AIM To determine whether expression of a cyanobacterial flavodoxin in soil bacteria of agronomic interest confers protection against the widely used herbicides paraquat and atrazine. METHODS AND RESULTS The model bacterium Escherichia coli, the symbiotic nitrogen-fixing bacterium Ensifer meliloti and the plant growth-promoting rhizobacterium Pseudomonas fluorescens Aur6 were transformed with expression vectors containing the flavodoxin gene of Anabaena variabilis. Expression of the cyanobacterial protein was confirmed by Western blot. Bacterial tolerance to oxidative stress was tested in solid medium supplemented with hydrogen peroxide, paraquat or atrazine. In all three bacterial strains, flavodoxin expression enhanced tolerance to the oxidative stress provoked by hydrogen peroxide and by the reactive oxygen species-inducing herbicides, witnessed by the enhanced survival of the transformed bacteria in the presence of these oxidizing agents. CONCLUSIONS Flavodoxin overexpression in beneficial soil bacteria confers tolerance to oxidative stress and improves their survival in the presence of the herbicides paraquat and atrazine. Flavodoxin could be considered as a general antioxidant resource to face oxidative challenges in different micro-organisms. SIGNIFICANCE AND IMPACT OF THE STUDY The use of plant growth-promoting rhizobacteria or nitrogen-fixing bacteria with enhanced tolerance to oxidative stress in contaminated soils is of significant agronomic interest. The enhanced tolerance of flavodoxin-expressing bacteria to atrazine and paraquat points to potential applications in herbicide-treated soils.
Collapse
Affiliation(s)
- T Coba de la Peña
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
295
|
Kasai-Maita H, Hirakawa H, Nakamura Y, Kaneko T, Miki K, Maruya J, Okazaki S, Tabata S, Saeki K, Sato S. Commonalities and differences among symbiosis islands of three Mesorhizobium loti strains. Microbes Environ 2013; 28:275-8. [PMID: 23666538 PMCID: PMC4070662 DOI: 10.1264/jsme2.me12201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To shed light on the breadth of the host range of Mesorhizobium loti strain NZP2037, we determined the sequence of the NZP2037 symbiosis island and compared it with those of strain MAFF303099 and R7A islands. The determined 533 kb sequence of NZP2037 symbiosis island, on which 504 genes were predicted, implied its integration into a phenylalanine-tRNA gene and subsequent genome rearrangement. Comparative analysis revealed that the core regions of the three symbiosis islands consisted of 165 genes. We also identified several NZP2037-specific genes with putative functions in nodulation-related events, suggesting that these genes contribute to broaden the host range of NZP2037.
Collapse
Affiliation(s)
- Hiroko Kasai-Maita
- Department of Plant Genome Research, Kazusa DNA Research Institute, 2–6–7 Kazusa-kamatari Kisarazu, Chiba 292–0818, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Sallet E, Roux B, Sauviac L, Jardinaud MF, Carrère S, Faraut T, de Carvalho-Niebel F, Gouzy J, Gamas P, Capela D, Bruand C, Schiex T. Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011. DNA Res 2013; 20:339-54. [PMID: 23599422 PMCID: PMC3738161 DOI: 10.1093/dnares/dst014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The availability of next-generation sequences of transcripts from prokaryotic organisms offers the opportunity to design a new generation of automated genome annotation tools not yet available for prokaryotes. In this work, we designed EuGene-P, the first integrative prokaryotic gene finder tool which combines a variety of high-throughput data, including oriented RNA-Seq data, directly into the prediction process. This enables the automated prediction of coding sequences (CDSs), untranslated regions, transcription start sites (TSSs) and non-coding RNA (ncRNA, sense and antisense) genes. EuGene-P was used to comprehensively and accurately annotate the genome of the nitrogen-fixing bacterium Sinorhizobium meliloti strain 2011, leading to the prediction of 6308 CDSs as well as 1876 ncRNAs. Among them, 1280 appeared as antisense to a CDS, which supports recent findings that antisense transcription activity is widespread in bacteria. Moreover, 4077 TSSs upstream of protein-coding or non-coding genes were precisely mapped providing valuable data for the study of promoter regions. By looking for RpoE2-binding sites upstream of annotated TSSs, we were able to extend the S. meliloti RpoE2 regulon by ∼3-fold. Altogether, these observations demonstrate the power of EuGene-P to produce a reliable and high-resolution automatic annotation of prokaryotic genomes.
Collapse
Affiliation(s)
- Erika Sallet
- INRA, Laboratoire des Interactions Plantes-Microorganismes-LIPM, UMR 441, Castanet-Tolosan F-31326, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Shams M, Vial L, Chapulliot D, Nesme X, Lavire C. Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR. Syst Appl Microbiol 2013; 36:351-8. [PMID: 23578959 DOI: 10.1016/j.syapm.2013.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/04/2013] [Accepted: 03/10/2013] [Indexed: 11/17/2022]
Abstract
Agrobacteria are common soil bacteria that interact with plants as commensals, plant growth promoting rhizobacteria or alternatively as pathogens. Indigenous agrobacterial populations are composites, generally with several species and/or genomic species and several strains per species. We thus developed a recA-based PCR approach to accurately identify and specifically detect agrobacteria at various taxonomic levels. Specific primers were designed for all species and/or genomic species of Agrobacterium presently known, including 11 genomic species of the Agrobacterium tumefaciens complex (G1-G9, G13 and G14, among which only G2, G4, G8 and G14 still received a Latin epithet: pusense, radiobacter, fabrum and nepotum, respectively), A. larrymoorei, A. rubi, R. skierniewicense, A. sp. 1650, and A. vitis, and for the close relative Allorhizobium undicola. Specific primers were also designed for superior taxa, Agrobacterium spp. and Rhizobiaceace. Primer specificities were assessed with target and non-target pure culture DNAs as well as with DNAs extracted from composite agrobacterial communities. In addition, we showed that the amplicon cloning-sequencing approach used with Agrobacterium-specific or Rhizobiaceae-specific primers is a way to assess the agrobacterial diversity of an indigenous agrobacterial population. Hence, the agrobacterium-specific primers designed in the present study enabled the first accurate and rapid identification of all species and/or genomic species of Agrobacterium, as well as their direct detection in environmental samples.
Collapse
Affiliation(s)
- M Shams
- Université de Lyon, F-69622 Lyon, France; Université Lyon 1, F-69622 Villeurbanne, France
| | | | | | | | | |
Collapse
|
298
|
The Bartonella quintana extracytoplasmic function sigma factor RpoE has a role in bacterial adaptation to the arthropod vector environment. J Bacteriol 2013; 195:2662-74. [PMID: 23564167 DOI: 10.1128/jb.01972-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bartonella quintana is a vector-borne bacterial pathogen that causes fatal disease in humans. During the infectious cycle, B. quintana transitions from the hemin-restricted human bloodstream to the hemin-rich body louse vector. Because extracytoplasmic function (ECF) sigma factors often regulate adaptation to environmental changes, we hypothesized that a previously unstudied B. quintana ECF sigma factor, RpoE, is involved in the transition from the human host to the body louse vector. The genomic context of B. quintana rpoE identified it as a member of the ECF15 family of sigma factors found only in alphaproteobacteria. ECF15 sigma factors are believed to be the master regulators of the general stress response in alphaproteobacteria. In this study, we examined the B. quintana RpoE response to two stressors that are encountered in the body louse vector environment, a decreased temperature and an increased hemin concentration. We determined that the expression of rpoE is significantly upregulated at the body louse (28°C) versus the human host (37°C) temperature. rpoE expression also was upregulated when B. quintana was exposed to high hemin concentrations. In vitro and in vivo analyses demonstrated that RpoE function is regulated by a mechanism involving the anti-sigma factor NepR and the response regulator PhyR. The ΔrpoE ΔnepR mutant strain of B. quintana established that RpoE-mediated transcription is important in mediating the tolerance of B. quintana to high hemin concentrations. We present the first analysis of an ECF15 sigma factor in a vector-borne human pathogen and conclude that RpoE has a role in the adaptation of B. quintana to the hemin-rich arthropod vector environment.
Collapse
|
299
|
Torres M, Hidalgo-García A, Bedmar E, Delgado M. Functional analysis of the copy 1 of the fixNOQP
operon of Ensifer meliloti
under free-living micro-oxic and symbiotic conditions. J Appl Microbiol 2013; 114:1772-81. [DOI: 10.1111/jam.12168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/08/2013] [Accepted: 02/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- M.J. Torres
- Estación Experimental del Zaidin; CSIC; Granada Spain
| | | | - E.J. Bedmar
- Estación Experimental del Zaidin; CSIC; Granada Spain
| | - M.J. Delgado
- Estación Experimental del Zaidin; CSIC; Granada Spain
| |
Collapse
|
300
|
Yurgel SN, Rice J, Kahn ML. Transcriptome analysis of the role of GlnD/GlnBK in nitrogen stress adaptation by Sinorhizobium meliloti Rm1021. PLoS One 2013; 8:e58028. [PMID: 23516427 PMCID: PMC3596328 DOI: 10.1371/journal.pone.0058028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
Transcriptional changes in the nitrogen stress response (NSR) of wild type S. meliloti Rm1021, and isogenic strains missing both PII proteins, GlnB and GlnK, or carrying a ΔglnD-sm2 mutation were analyzed using whole-genome microarrays. This approach allowed us to identify a number of new genes involved in the NSR and showed that the response of these bacteria to nitrogen stress overlaps with other stress responses, including induction of the fixK2 transcriptional activator and genes that are part of the phosphate stress response. Our data also show that GlnD and GlnBK proteins may regulate many genes that are not part of the NSR. Analysis of transcriptome profiles of the Rm1021 ΔglnD-sm2 strain allowed us to identify several genes that appear to be regulated by GlnD without the participation of the PII proteins.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA.
| | | | | |
Collapse
|