251
|
Lindquist SL, Kelly JW. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb Perspect Biol 2011; 3:a004507. [PMID: 21900404 PMCID: PMC3225948 DOI: 10.1101/cshperspect.a004507] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maintaining the proteome to preserve the health of an organism in the face of developmental changes, environmental insults, infectious diseases, and rigors of aging is a formidable task. The challenge is magnified by the inheritance of mutations that render individual proteins subject to misfolding and/or aggregation. Maintenance of the proteome requires the orchestration of protein synthesis, folding, degradation, and trafficking by highly conserved/deeply integrated cellular networks. In humans, no less than 2000 genes are involved. Stress sensors detect the misfolding and aggregation of proteins in specific organelles and respond by activating stress-responsive signaling pathways. These culminate in transcriptional and posttranscriptional programs that up-regulate the homeostatic mechanisms unique to that organelle. Proteostasis is also strongly influenced by the general properties of protein folding that are intrinsic to every proteome. These include the kinetics and thermodynamics of the folding, misfolding, and aggregation of individual proteins. We examine a growing body of evidence establishing that when cellular proteostasis goes awry, it can be reestablished by deliberate chemical and biological interventions. We start with approaches that employ chemicals or biological agents to enhance the general capacity of the proteostasis network. We then introduce chemical approaches to prevent the misfolding or aggregation of specific proteins through direct binding interactions. We finish with evidence that synergy is achieved with the combination of mechanistically distinct approaches to reestablish organismal proteostasis.
Collapse
Affiliation(s)
- Susan L Lindquist
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
252
|
Kandasamy S, Fan D, Sangha JS, Khan W, Evans F, Critchley AT, Prithiviraj B. Tasco(®), a product of Ascophyllum nodosum, imparts thermal stress tolerance in Caenorhabditis elegans. Mar Drugs 2011; 9:2256-2282. [PMID: 22163185 PMCID: PMC3229234 DOI: 10.3390/md9112256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/09/2011] [Accepted: 10/24/2011] [Indexed: 02/04/2023] Open
Abstract
Tasco(®), a commercial product manufactured from the brown alga Ascophyllum nodosum, has been shown to impart thermal stress tolerance in animals. We investigated the physiological, biochemical and molecular bases of this induced thermal stress tolerance using the invertebrate animal model, Caenorhabiditis elegans. Tasco(®) water extract (TWE) at 300 μg/mL significantly enhanced thermal stress tolerance as well as extended the life span of C. elegans. The mean survival rate of the model animals under thermal stress (35 °C) treated with 300 μg/mL and 600 μg/mL TWE, respectively, was 68% and 71% higher than the control animals. However, the TWE treatments did not affect the nematode body length, fertility or the cellular localization of daf-16. On the contrary, TWE under thermal stress significantly increased the pharyngeal pumping rate in treated animals compared to the control. Treatment with TWE also showed differential protein expression profiles over control following 2D gel-electrophoresis analysis. Furthermore, TWE significantly altered the expression of at least 40 proteins under thermal stress; among these proteins 34 were up-regulated while six were down-regulated. Mass spectroscopy analysis of the proteins altered by TWE treatment revealed that these proteins were related to heat stress tolerance, energy metabolism and a muscle structure related protein. Among them heat shock proteins, superoxide dismutase, glutathione peroxidase, aldehyde dehydrogenase, saposin-like proteins 20, myosin regulatory light chain 1, cytochrome c oxidase RAS-like, GTP-binding protein RHO A, OS were significantly up-regulated, while eukaryotic translation initiation factor 5A-1 OS, 60S ribosomal protein L18 OS, peroxiredoxin protein 2 were down regulated by TWE treatment. These results were further validated by gene expression and reporter gene expression analyses. Overall results indicate that the water soluble components of Tasco(®) imparted thermal stress tolerance in the C. elegans by altering stress related biochemical pathways.
Collapse
Affiliation(s)
- Saveetha Kandasamy
- Department of Environmental Sciences, Nova Scotia Agricultural College, P.O. Box 550, Truro NS B2B 5E3, Canada; E-Mails: (S.K.); (D.F.); (J.S.S.)
| | - Di Fan
- Department of Environmental Sciences, Nova Scotia Agricultural College, P.O. Box 550, Truro NS B2B 5E3, Canada; E-Mails: (S.K.); (D.F.); (J.S.S.)
| | - Jatinder Singh Sangha
- Department of Environmental Sciences, Nova Scotia Agricultural College, P.O. Box 550, Truro NS B2B 5E3, Canada; E-Mails: (S.K.); (D.F.); (J.S.S.)
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth NS B3B 1X8, Canada; E-Mails: (F.E.); (A.T.C.)
| | - Wajahatullah Khan
- Genome Research Chair Unit, Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; E-Mail:
| | - Franklin Evans
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth NS B3B 1X8, Canada; E-Mails: (F.E.); (A.T.C.)
| | - Alan T. Critchley
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth NS B3B 1X8, Canada; E-Mails: (F.E.); (A.T.C.)
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Nova Scotia Agricultural College, P.O. Box 550, Truro NS B2B 5E3, Canada; E-Mails: (S.K.); (D.F.); (J.S.S.)
| |
Collapse
|
253
|
Anckar J, Sistonen L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 2011; 80:1089-115. [PMID: 21417720 DOI: 10.1146/annurev-biochem-060809-095203] [Citation(s) in RCA: 558] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To dampen proteotoxic stresses and maintain protein homeostasis, organisms possess a stress-responsive molecular machinery that detects and neutralizes protein damage. A prominent feature of stressed cells is the increased synthesis of heat shock proteins (Hsps) that aid in the refolding of misfolded peptides and restrain protein aggregation. Transcriptional activation of the heat shock response is orchestrated by heat shock factor 1 (HSF1), which rapidly translocates to hsp genes and induces their expression. Although the role of HSF1 in protecting cells and organisms against severe stress insults is well established, many aspects of how HSF1 senses qualitatively and quantitatively different forms of stresses have remained poorly understood. Moreover, recent discoveries that HSF1 controls life span have prompted new ways of thinking about an old transcription factor. Here, we review the established role of HSF1 in counteracting cell stress and prospect the role of HSF1 as a regulator of disease states and aging.
Collapse
Affiliation(s)
- Julius Anckar
- Department of Biosciences, Åbo Akademi University, BioCity, 20520 Turku, Finland.
| | | |
Collapse
|
254
|
Gaiser AM, Kaiser CJO, Haslbeck V, Richter K. Downregulation of the Hsp90 system causes defects in muscle cells of Caenorhabditis elegans. PLoS One 2011; 6:e25485. [PMID: 21980476 PMCID: PMC3182237 DOI: 10.1371/journal.pone.0025485] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022] Open
Abstract
The ATP-dependent molecular chaperone Hsp90 is required for the activation of a variety of client proteins involved in various cellular processes. Despite the abundance of known client proteins, functions of Hsp90 in the organismal context are not fully explored. In Caenorhabditis elegans, Hsp90 (DAF-21) has been implicated in the regulation of the stress-resistant dauer state, in chemosensing and in gonad formation. In a C. elegans strain carrying a DAF-21 mutation with a lower ATP turnover, we observed motility defects. Similarly, a reduction of DAF-21 levels in wild type nematodes leads to reduced motility and induction of the muscular stress response. Furthermore, aggregates of the myosin MYO-3 are visible in muscle cells, if DAF-21 is depleted, implying a role of Hsp90 in the maintenance of muscle cell functionality. Similar defects can also be observed upon knockdown of the Hsp90-cochaperone UNC-45. In life nematodes YFP-DAF-21 localizes to the I-band and the M-line of the muscular ultrastructure, but the protein is not stably attached there. The Hsp90-cofactor UNC-45-CFP contrarily can be found in all bands of the nematode muscle ultrastructure and stably associates with the UNC-54 containing A-band. Thus, despite the physical interaction between DAF-21 and UNC-45, apparently the two proteins are not always localized to the same muscular structures. While UNC-45 can stably bind to myofilaments in the muscular ultrastructure, Hsp90 (DAF-21) appears to participate in the maintenance of muscle structures as a transiently associated diffusible factor.
Collapse
Affiliation(s)
- Andreas M. Gaiser
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Christoph J. O. Kaiser
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Veronika Haslbeck
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
| | - Klaus Richter
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) and Technische Universität München, München, Germany
- * E-mail:
| |
Collapse
|
255
|
Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins. Proc Natl Acad Sci U S A 2011; 108:14204-9. [PMID: 21844355 DOI: 10.1073/pnas.1106557108] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The consequence of chronic protein misfolding is the basis of many human diseases. To combat the deleterious effects of accumulated protein damage, all cells possess robust quality-control systems, specifically molecular chaperones and clearance machineries, that sense and respond to protein misfolding. However, for many protein conformational diseases, it is unclear why this quality-control system does not efficiently counter protein aggregation. Previous findings that the heat shock response in Caenorhabditis elegans is regulated by thermosensory neurons led us to consider whether neuronal activity could also be responsible for the inadequate response of an organism to chronic protein misfolding. Here we show, in animals expressing polyglutamine expansion proteins and mutant SOD-1(G93A) in intestinal or muscle cells, that the nervous system does indeed control the cellular response to misfolded proteins. Whereas polyglutamine expansion-expressing animals with WT thermosensory neurons readily express protein aggregates, leading to cellular dysfunction without concomitant up-regulation of molecular chaperones, modulation of the nervous system results in chaperone up-regulation that suppresses aggregation and toxicity. The neuronal signal is transmitted through calcium-activated dense core vesicle neurosecretion. Cell-nonautonomous control of chaperone expression by the thermosensory neurons allows C. elegans to respond differently to acute stress such as heat shock, and chronic stress caused by the expression of misfolded proteins, suggesting that neuronal signaling determines the course of cellular proteotoxicity.
Collapse
|
256
|
Wasserman SM, Beverly M, Bell HW, Sengupta P. Regulation of response properties and operating range of the AFD thermosensory neurons by cGMP signaling. Curr Biol 2011; 21:353-62. [PMID: 21315599 DOI: 10.1016/j.cub.2011.01.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND The neuronal mechanisms that encode specific stimulus features in order to elicit defined behavioral responses are poorly understood. C. elegans forms a memory of its cultivation temperature (T(c)) and exhibits distinct behaviors in different temperature ranges relative to T(c). In particular, C. elegans tracks isotherms only in a narrow temperature band near T(c). T(c) memory is in part encoded by the threshold of responsiveness (T∗(AFD)) of the AFD thermosensory neuron pair to temperature stimuli. However, because AFD thermosensory responses appear to be similar at all examined temperatures above T∗(AFD), the mechanisms that generate specific behaviors in defined temperature ranges remain to be determined. RESULTS Here, we show that the AFD neurons respond to the sinusoidal variations in thermal stimuli followed by animals during isothermal tracking (IT) behavior only in a narrow temperature range near T(c). We find that mutations in the AFD-expressed gcy-8 receptor guanylyl cyclase (rGC) gene result in defects in the execution of IT behavior and are associated with defects in the responses of the AFD neurons to oscillating thermal stimuli. In contrast, mutations in the gcy-18 or gcy-23 rGCs alter the temperature range in which IT behavior is exhibited. Alteration of intracellular cGMP levels via rGC mutations or addition of cGMP analogs shift the lower and upper ranges of the temperature range of IT behavior in part via alteration in T∗(AFD). CONCLUSIONS Our observations provide insights into the mechanisms by which a single sensory neuron type encodes features of a given stimulus to generate different behaviors in defined zones.
Collapse
Affiliation(s)
- Sara M Wasserman
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
257
|
Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans. Nat Neurosci 2011; 14:984-92. [DOI: 10.1038/nn.2854] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/03/2011] [Indexed: 01/09/2023]
|
258
|
Pukkila-Worley R, Ausubel FM, Mylonakis E. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog 2011; 7:e1002074. [PMID: 21731485 PMCID: PMC3121877 DOI: 10.1371/journal.ppat.1002074] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 04/06/2011] [Indexed: 12/31/2022] Open
Abstract
Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ∼1.6% of the genome) many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through “pattern recognition,” an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs). This study provides new information on the evolution and regulation of the innate immune response to divergent pathogens and demonstrates that nematodes selectively mount specific antifungal defenses at the expense of antibacterial responses. Despite being a part of the normal flora of healthy individuals, Candida albicans is the most common fungal pathogen of humans and can cause infections that are associated with staggeringly high mortality rates. Here we devise a model for the study of the host immune response to C. albicans infection using the nematode C. elegans. We found that infection with the yeast form of C. albicans induces rapid and robust transcriptional changes in C. elegans. Analyses of these differentially regulated genes indicate that the nematode mounts antifungal defenses that are remarkably distinct from the host responses to pathogenic bacteria and that the nematode recognizes components possessed by heat-killed C. albicans to initiate this response. Interestingly, during infection with a pathogenic fungus, the nematode downregulates antibacterial immune response genes, which may reflect an evolutionary tradeoff between bacterial and fungal defense.
Collapse
Affiliation(s)
- Read Pukkila-Worley
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (FMA); (EM)
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (FMA); (EM)
| |
Collapse
|
259
|
Li X, Matilainen O, Jin C, Glover-Cutter KM, Holmberg CI, Blackwell TK. Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet 2011; 7:e1002119. [PMID: 21695230 PMCID: PMC3111486 DOI: 10.1371/journal.pgen.1002119] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/14/2011] [Indexed: 01/17/2023] Open
Abstract
SKN-1, the Caenorhabditis elegans Nrf1/2/3 ortholog, promotes both oxidative stress resistance and longevity. SKN-1 responds to oxidative stress by upregulating genes that detoxify and defend against free radicals and other reactive molecules, a SKN-1/Nrf function that is both well-known and conserved. Here we show that SKN-1 has a broader and more complex role in maintaining cellular stress defenses. SKN-1 sustains expression and activity of the ubiquitin-proteasome system (UPS) and coordinates specific protective responses to perturbations in protein synthesis or degradation through the UPS. If translation initiation or elongation is impaired, SKN-1 upregulates overlapping sets of cytoprotective genes and increases stress resistance. When proteasome gene expression and activity are blocked, SKN-1 activates multiple classes of proteasome subunit genes in a compensatory response. SKN-1 thereby maintains UPS activity in the intestine in vivo under normal conditions and promotes survival when the proteasome is inhibited. In contrast, when translation elongation is impaired, SKN-1 does not upregulate proteasome genes, and UPS activity is then reduced. This indicates that UPS activity depends upon presence of an intact translation elongation apparatus; and it supports a model, suggested by genetic and biochemical studies in yeast, that protein synthesis and degradation may be coupled processes. SKN-1 therefore has a critical tissue-specific function in increasing proteasome gene expression and UPS activity under normal conditions, as well as when the UPS system is stressed, but mounts distinct responses when protein synthesis is perturbed. The specificity of these SKN-1–mediated stress responses, along with the apparent coordination between UPS and translation elongation activity, may promote protein homeostasis under stress or disease conditions. The data suggest that SKN-1 may increase longevity, not only through its well-documented role in boosting stress resistance, but also through contributing to protein homeostasis. The mechanisms through which organisms defend against environmental stresses are critical during diverse disease processes and are likely to be important for longevity. The nematode C. elegans is advantageous for genetic analysis of how stress defenses function and contribute to survival. The evolutionarily conserved C. elegans protein SKN-1 promotes stress resistance and longevity, and it defends against toxic small molecules. We now report that in certain tissues SKN-1 also maintains production of the proteasome, a structure that degrades proteins in a regulated fashion. SKN-1 mounts distinct stress responses to perturbations in protein synthesis and degradation, in which it boosts proteasome levels only in response to proteasome impairment. Remarkably, proteasome activity also depends upon the proper functioning of the protein synthesis apparatus. The specificity of SKN-1 stress responses may be important for protein homeostasis, allowing SKN-1 to maintain levels and activity of the proteasomal degradation apparatus, but not increase degradation when protein synthesis is impaired. This role of SKN-1 in regulating protein turnover may be important for many of its stress defense functions and for protection against disease and aging.
Collapse
Affiliation(s)
- Xuan Li
- Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Olli Matilainen
- Research Programs Unit, Molecular Cancer Biology, and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Congyu Jin
- Research Programs Unit, Molecular Cancer Biology, and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kira M. Glover-Cutter
- Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carina I. Holmberg
- Research Programs Unit, Molecular Cancer Biology, and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- * E-mail: (CIH); (TKB)
| | - T. Keith Blackwell
- Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (CIH); (TKB)
| |
Collapse
|
260
|
Gidalevitz T, Prahlad V, Morimoto RI. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a009704. [PMID: 21536706 DOI: 10.1101/cshperspect.a009704] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organisms survive changes in the environment by altering their rates of metabolism, growth, and reproduction. At the same time, the system must ensure the stability and functionality of its macromolecules. Fluctuations in the environment are sensed by highly conserved stress responses and homeostatic mechanisms, and of these, the heat shock response (HSR) represents an essential response to acute and chronic proteotoxic damage. However, unlike the strategies employed to maintain the integrity of the genome, protection of the proteome must be tailored to accommodate the normal flux of nonnative proteins and the differences in protein composition between cells, and among individuals. Moreover, adult cells are likely to have significant differences in the rates of synthesis and clearance that are influenced by intrinsic errors in protein expression, genetic polymorphisms, and fluctuations in physiological and environmental conditions. Here, we will address how protein homeostasis (proteostasis) is achieved at the level of the cell and organism, and how the threshold of the stress response is set to detect and combat protein misfolding. For metazoans, the requirement for coordinated function and growth imposes additional constraints on the detection, signaling, and response to misfolding, and requires that the HSR is integrated into various aspects of organismal physiology, such as lifespan. This is achieved by hierarchical regulation of heat shock factor 1 (HSF1) by the metabolic state of the cell and centralized neuronal control that could allow optimal resource allocation between cells and tissues. We will examine how protein folding quality control mechanisms in individual cells may be integrated into a multicellular level of control, and further, even custom-designed to support individual variability and impose additional constraints on evolutionary adaptation.
Collapse
Affiliation(s)
- Tali Gidalevitz
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
261
|
Bouchecareilh M, Balch WE. Proteostasis: a new therapeutic paradigm for pulmonary disease. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2011; 8:189-95. [PMID: 21543800 PMCID: PMC3131838 DOI: 10.1513/pats.201008-055ms] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 02/01/2011] [Indexed: 01/10/2023]
Abstract
Among lung pathologies, α1AT, chronic obstructive pulmonary disease (COPD), emphysema, and asthma are diseases triggered by local environmental stress in the airway that we refer to herein collectively as airway stress diseases (ASDs). A deficiency of α-1-antitrypsin (α1AT) is an inherited genetic disorder that is a consequence of the misfolding of α1AT during protein synthesis in liver hepatocytes, reducing secretion to the plasma and delivery to the lung. Deficiency of α1AT in the lung triggers a similar pathological phenotype to other ASDs. Moreover, the loss of α1AT in the lung is a well-known environmental risk factor for COPD/emphysema. To date there are no effective therapeutic approaches to address ASDs, which reflects a general lack of understanding of their cellular basis. Herein, we propose that ASDs are disorders of proteostasis. That is, they are initiated and propagated by a common theme-a challenge to protein folding capacity maintained by the proteostasis network (PN) (see Balch et al., Science 2008;319:916-919). The PN is a network of chaperones and degradative components that generates and manages protein folding pathways responsible for normal human physiology. In ASD, we suggest that the PN system fails to respond to the increased burden of unfolded proteins due to genetic and environmental stresses, thus triggering pulmonary pathophysiology. We introduce the enabling concept of proteostasis regulators (PRs), small molecules that regulate signaling pathways that control the composition and activity of PN components, as a new and general approach for therapeutic management of ASDs.
Collapse
Affiliation(s)
- Marion Bouchecareilh
- Department of Cell Biology, The Skaggs Institute for Chemical Biology, Department of Chemical Physiology and the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California
| | - William E. Balch
- Department of Cell Biology, The Skaggs Institute for Chemical Biology, Department of Chemical Physiology and the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
262
|
Rodrigues AJ, Neves-Carvalho A, Teixeira-Castro A, Rokka A, Corthals G, Logarinho E, Maciel P. Absence of ataxin-3 leads to enhanced stress response in C. elegans. PLoS One 2011; 6:e18512. [PMID: 21526185 PMCID: PMC3079722 DOI: 10.1371/journal.pone.0018512] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/08/2011] [Indexed: 02/07/2023] Open
Abstract
Ataxin-3, the protein involved in Machado-Joseph disease, is able to bind ubiquitylated substrates and act as a deubiquitylating enzyme in vitro, and it has been involved in the modulation of protein degradation by the ubiquitin-proteasome pathway. C. elegans and mouse ataxin-3 knockout models are viable and without any obvious phenotype in a basal condition however their phenotype in stress situations has never been described. Considering the role of ataxin-3 in the protein degradation pathway, we analyzed the effects of heat shock, a known protein homeostasis stressor, in C. elegans ataxin-3 (ATX-3) knockout animals. We found that ATX-3 mutants have an exacerbated stress response and survive significantly better than wild type animals when subjected to a noxious heat shock stimulus. This increased thermotolerance of mutants was further enhanced by pre-exposure to a mild heat shock. At a molecular level, ATX-3 mutants have a distinct transcriptomic and proteomic profile with several molecular chaperones abnormally up-regulated during heat shock and recovery, consistent with the observed resistance phenotype. The improved thermotolerancein ATX-3 mutants is independent of heat shock factor 1, the maestro of the heat shock response, but fully dependent on DAF-16, a critical stress responsive transcription factor involved in longevity and stress resistance. We also show that the increased thermotolerance of ATX-3 mutants is mainly due to HSP-16.2, C12C8.1 and F44E5.5 given that the knockdown of these heat shock proteins using RNA interference causes the phenotype to revert. This report suggests that the absence of ATX-3 activates the DAF-16 pathway leading to an overexpression of molecular chaperones, which yields knockout animals with an improved capacity for dealing with deleterious stimuli.
Collapse
Affiliation(s)
- Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Anne Rokka
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Garry Corthals
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Elsa Logarinho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- * E-mail:
| |
Collapse
|
263
|
Roth DM, Balch WE. Modeling general proteostasis: proteome balance in health and disease. Curr Opin Cell Biol 2011; 23:126-34. [PMID: 21131189 PMCID: PMC3077458 DOI: 10.1016/j.ceb.2010.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/07/2010] [Accepted: 11/08/2010] [Indexed: 12/17/2022]
Abstract
Protein function is generated and maintained by the proteostasis network (PN) (Balch et al. (2008) Science, 319:916). The PN is a modular, yet integrated system unique to each cell type that is sensitive to signaling pathways that direct development and aging, and respond to folding stress. Mismanagement of protein folding and function triggered by genetic, epigenetic and environmental causes poses a major challenge to human health and lifespan. Herein, we address the impact of proteostasis defined by the FoldFx model on our understanding of protein folding and function in biology. FoldFx describes how general proteostasis control (GPC) enables the polypeptide chain sequence to achieve functional balance in the context of the cellular proteome. By linking together the chemical and energetic properties of the protein fold with the composition of the PN we discuss the principle of the proteostasis boundary (PB) as a key component of GPC. The curved surface of the PB observed in 3-dimensional space suggests that the polypeptide chain sequence and the PN operate as an evolutionarily conserved functional unit to generate and sustain protein dynamics required for biology. Modeling general proteostasis provides a rational basis for tackling some of the most challenging diseases facing mankind in the 21st century.
Collapse
Affiliation(s)
- Daniela M. Roth
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - William E. Balch
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
- Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
264
|
Abstract
The function of the human proteome is defined by the proteostasis network (PN) (Science 2008;319:916; Science 2010;329:766), a biological system that generates, protects, and, where necessary, degrades a protein to optimize the cell, tissue, and organismal response to diet, stress, and aging. Numerous human diseases result from the failure of proteins to fold properly in response to mutation, disrupting the proteome. In the case of the exocytic pathway, this includes proteostasis components that direct folding, and export of proteins from the endoplasmic reticulum (ER). Included here are serpin deficiencies, a class of related diseases that result in a significant reduction of secretion of serine proteinase inhibitors from the liver into serum. In response to misfolding, variants of the serine protease α(1)-antitrypsin (α1AT) fail to exit the ER and are targeted for either ER-associated degradation or autophagic pathways. The challenge for developing α1AT deficiency therapeutics is to understand the PN pathways involved in folding and export. Herein, we review the role of the PN in managing the protein fold and function during synthesis in the ER and trafficking to the cell surface or extracellular space. We highlight the role of the proteostasis boundary to define the operation of the proteome (Annu Rev Biochem 2009;78:959). We discuss how manipulation of folding energetics or the PN by pharmacological intervention could provide multiple routes for restoration of variant α1AT function to the benefit of human health.
Collapse
|
265
|
Exploring the influence of torsinA expression on protein quality control. Neurochem Res 2010; 36:452-9. [PMID: 21161590 DOI: 10.1007/s11064-010-0363-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2010] [Indexed: 10/18/2022]
Abstract
DYT1 dystonia is caused by a glutamic acid deletion (ΔE) in the endoplasmic reticulum (ER) protein torsinA. Previous studies suggest that torsinA modulates the aggregation of cytosolic misfolded proteins and ER stress responses, although the mechanisms underlying those effects remain unclear. In order to investigate the bases of these observations, we analyzed the interaction between torsinA expression, protein aggregation and ER stress in PC6.3 cells. Unexpectedly, we found that expression of torsinA(wt) or (ΔE) does not influence the inclusion formation by an expanded polyglutamine reporter protein in this cellular model. Furthermore, torsinA does not prevent the activation of ER stress induced by thapsigargin or the reducing agent DTT. Interestingly, DTT induces post-translational changes in torsinA, more prominently for torsinA(wt) than (ΔE). This work highlights the importance of model system selection for the study of torsinA function. Furthermore, it provides additional evidence suggesting that torsinA is sensitive to changes in the cellular redox potential.
Collapse
|
266
|
Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell 2010; 40:253-66. [PMID: 20965420 DOI: 10.1016/j.molcel.2010.10.006] [Citation(s) in RCA: 1385] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/03/2010] [Accepted: 10/05/2010] [Indexed: 12/16/2022]
Abstract
Organisms must survive a variety of stressful conditions, including sudden temperature increases that damage important cellular structures and interfere with essential functions. In response to heat stress, cells activate an ancient signaling pathway leading to the transient expression of heat shock or heat stress proteins (Hsps). Hsps exhibit sophisticated protection mechanisms, and the most conserved Hsps are molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. In this Review, we summarize the concepts of the protective Hsp network.
Collapse
Affiliation(s)
- Klaus Richter
- Munich Center for Integrated Protein Science, Department Chemie Technische Universität München, 85747 Garching, Germany
| | | | | |
Collapse
|
267
|
Abstract
Heat shock protein 90 (Hsp90) was the focus of a recent meeting in the Swiss Alps, where the Hsp90 community met to discuss the operation and functions of this ubiquitous and essential molecular chaperone.
Collapse
Affiliation(s)
- Cara K Vaughan
- Cara K. Vaughan is at the Institute of Structural Molecular Biology, Birkbeck College, London, UK
| | | | | |
Collapse
|
268
|
Garrity PA, Goodman MB, Samuel AD, Sengupta P. Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes Dev 2010; 24:2365-82. [PMID: 21041406 PMCID: PMC2964747 DOI: 10.1101/gad.1953710] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Like other ectotherms, the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster rely on behavioral strategies to stabilize their body temperature. Both animals use specialized sensory neurons to detect small changes in temperature, and the activity of these thermosensors governs the neural circuits that control migration and accumulation at preferred temperatures. Despite these similarities, the underlying molecular, neuronal, and computational mechanisms responsible for thermotaxis are distinct in these organisms. Here, we discuss the role of thermosensation in the development and survival of C. elegans and Drosophila, and review the behavioral strategies, neuronal circuits, and molecular networks responsible for thermotaxis behavior.
Collapse
Affiliation(s)
- Paul A. Garrity
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
- National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA
| | - Aravinthan D. Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
- National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
269
|
van der Linden AM, Beverly M, Kadener S, Rodriguez J, Wasserman S, Rosbash M, Sengupta P. Genome-wide analysis of light- and temperature-entrained circadian transcripts in Caenorhabditis elegans. PLoS Biol 2010; 8:e1000503. [PMID: 20967231 PMCID: PMC2953524 DOI: 10.1371/journal.pbio.1000503] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 08/19/2010] [Indexed: 12/05/2022] Open
Abstract
Transcriptional profiling experiments identify light- and temperature-entrained circadian transcripts in C. elegans. Most organisms have an endogenous circadian clock that is synchronized to environmental signals such as light and temperature. Although circadian rhythms have been described in the nematode Caenorhabditis elegans at the behavioral level, these rhythms appear to be relatively non-robust. Moreover, in contrast to other animal models, no circadian transcriptional rhythms have been identified. Thus, whether this organism contains a bona fide circadian clock remains an open question. Here we use genome-wide expression profiling experiments to identify light- and temperature-entrained oscillating transcripts in C. elegans. These transcripts exhibit rhythmic expression with temperature-compensated 24-h periods. In addition, their expression is sustained under constant conditions, suggesting that they are under circadian regulation. Light and temperature cycles strongly drive gene expression and appear to entrain largely nonoverlapping gene sets. We show that mutations in a cyclic nucleotide-gated channel required for sensory transduction abolish both light- and temperature-entrained gene expression, implying that environmental cues act cell nonautonomously to entrain circadian rhythms. Together, these findings demonstrate circadian-regulated transcriptional rhythms in C. elegans and suggest that further analyses in this organism will provide new information about the evolution and function of this biological clock. Daily (circadian) rhythms in behavior and physiology allow organisms to adapt to periodic cues such as light and temperature associated with the rotation of the earth. Subsets of molecular components of the internal clock that drive these rhythms, as well as effector genes for behavioral outputs, also exhibit rhythmic expression in many organisms. While circadian rhythms in behavior have previously been described in the nematode Caenorhabditis elegans, no transcriptional rhythms or clock genes have been identified, leaving open the question of the nature of the clock in this organism. Here, we identify light- and temperature-entrained cycling genes in C. elegans via genome-wide transcriptional profiling. Transcripts showing circadian regulation (including expression with a 24-h period maintained upon removal of the entraining stimulus) and temperature compensation were identified. Light and temperature appear to entrain independent sets of genes. We also identify large sets of light- or temperature-driven genes. Mutations in a channel gene previously implicated in sensory transduction in a small set of sensory neurons abolish entrainment of gene expression by environmental signals. This work demonstrates the presence of circadian transcriptional rhythms in C. elegans, and provides the foundation for future investigations into the underlying mechanisms.
Collapse
Affiliation(s)
- Alexander M van der Linden
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, United States of America
| | | | | | | | | | | | | |
Collapse
|
270
|
Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2010; 11:545-55. [PMID: 20628411 PMCID: PMC3402356 DOI: 10.1038/nrm2938] [Citation(s) in RCA: 1029] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat shock genes. These unexpected observations have uncovered complex layers of post-translational regulation of HSFs that integrate the metabolic state of the cell with stress biology, and in doing so control fundamental aspects of the health of the proteome and ageing.
Collapse
Affiliation(s)
- Malin Akerfelt
- Department of Biosciences, Abo Akademi University, BioCity, 20520 Turku, Finland
| | | | | |
Collapse
|
271
|
Tvermoes BE, Boyd WA, Freedman JH. Molecular characterization of numr-1 and numr-2: genes that increase both resistance to metal-induced stress and lifespan in Caenorhabditis elegans. J Cell Sci 2010; 123:2124-34. [PMID: 20501697 PMCID: PMC2880014 DOI: 10.1242/jcs.065433] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2010] [Indexed: 01/04/2023] Open
Abstract
To define the mechanisms involved in the molecular response to the carcinogenic metal cadmium, two novel metal-inducible genes from C. elegans were characterized: numr-1 and numr-2 (nuclear localized metal responsive). numr-1 and numr-2 sequences and cellular patterns of expression are identical, indicating that these are functionally equivalent genes. Constitutive transcription of numr-1 and numr-2 is developmentally regulated and occurs in the intestine, in head and tail neurons, and vulva muscles. Exposure to metals induces numr-1 and numr-2 transcription in pharyngeal and intestinal cells. Other environmental stressors do not affect transcription, indicating that these are metal-specific, stress-responsive genes. NUMR-1 and NUMR-2 target to nuclei and colocalize with HSF-1, suggesting that they may be components of nuclear stress granules. Nematodes overexpressing NUMR-1 and NUMR-2 are resistant to stress and live longer than control animals; likewise reducing expression increases sensitivity to metals and decreases neuromuscular functions. Upstream regulatory regions of both genes contain potential binding sites for DAF-16 and SKN-1, which are components of the insulin-IGF-like signaling pathway. This pathway regulates longevity and stress responses in C. elegans. NUMR-1 and NUMR-2 may function to promote resistance to environmental stressors and longevity, which is mediated by the insulin-IGF-like signaling pathway.
Collapse
Affiliation(s)
- Brooke E. Tvermoes
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, MD E1-05, PO Box 12233, 111 T. W. Alexander Drive, Research Triangle Park, NC 27009, USA
- Nicholas School of the Environment at Duke University, Durham, NC 27708, USA
| | - Windy A. Boyd
- Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27009, USA
| | - Jonathan H. Freedman
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, MD E1-05, PO Box 12233, 111 T. W. Alexander Drive, Research Triangle Park, NC 27009, USA
- Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27009, USA
| |
Collapse
|
272
|
Wu Y, Cao Z, Klein WL, Luo Y. Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers. Neurobiol Aging 2010; 31:1055-8. [PMID: 18762355 PMCID: PMC2921903 DOI: 10.1016/j.neurobiolaging.2008.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 07/09/2008] [Accepted: 07/14/2008] [Indexed: 11/28/2022]
Abstract
Heat shock response, mediated by heat shock proteins, is a highly conserved physiological process in multicellular organisms for reestablishment of cellular homeostasis. Expression of heat shock factors and subsequent heat shock protein plays a role in protection against proteotoxicity in invertebrate and vertebrate models. Proteotoxicity due to beta-amyloid peptide (Abeta) oligomerization has been linked to the pathogenesis of Alzheimer's disease. Previously, we demonstrated that progressive paralysis induced by expression of human Abeta(1-42) in transgenic Caenorhabditis elegans was alleviated by Abeta oligomer inhibitors Ginkgo biloba extract and its constituents [Wu, Y., Wu, Z., Butko, P., Christen, Y., Lambert, M.P., Klein, W.L., Link, C.D., Luo, Y., 2006. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J. Neurosci. 26(50): 13102-13113]. In this study, we apply a protective heat shock to the transgenic C. elegans and demonstrate: (1) a delay in paralysis, (2) increased expression of small heat shock protein HSP16.2, and (3) significant reduction of Abeta oligomers in a heat shock time-dependent manner. These results suggest that transient heat shock lessens Abeta toxicity by diminishing Abeta oligomerization, which provides a link between up regulation of endogenous chaperone proteins and protection against Abeta proteotoxicity in vivo.
Collapse
Affiliation(s)
- Yanjue Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
- Department of Neurology, Kennedy Krieger Research Institute and Johns Hopkins University School of Medicine. Baltimore, MD. 21205
| | - Zhiming Cao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - William L. Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Yuan Luo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
- Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
273
|
Poon PC, Kuo TH, Linford NJ, Roman G, Pletcher SD. Carbon dioxide sensing modulates lifespan and physiology in Drosophila. PLoS Biol 2010; 8:e1000356. [PMID: 20422037 PMCID: PMC2857880 DOI: 10.1371/journal.pbio.1000356] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 03/08/2010] [Indexed: 01/22/2023] Open
Abstract
For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions. Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved. To date, sensory manipulations shown to impact Drosophila aging have involved general loss of function or manipulation of complex stimuli. We therefore know little about the specific inputs, sensors, or associated neural circuits that affect these life and death decisions. We find that a specialized population of olfactory neurons that express receptor Gr63a (a component of the olfactory receptor for gaseous phase CO(2)) affects fly lifespan and physiology. Gr63a loss of function leads to extended lifespan, increased fat deposition, and enhanced resistance to some (but not all) environmental stresses. Furthermore, we find that the reduced lifespan that accompanies exposure to odors from live yeast is dependent on Gr63a. Together these data implicate a specific sensory cue (CO(2)) and its associated receptor as having the ability to modulate fly lifespan and alter organism stress response and physiology. Because Gr63a is expressed in a well-defined population of neurons, future work may now be directed at dissecting more complex neurosensory and neuroendocrine circuits that modulate aging in Drosophila.
Collapse
Affiliation(s)
- Peter C. Poon
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tsung-Han Kuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nancy J. Linford
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregg Roman
- Biology and Biochemistry Department, University of Houston, Houston, Texas, United States of America
| | - Scott D. Pletcher
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
274
|
Healy TM, Tymchuk WE, Osborne EJ, Schulte PM. Heat shock response of killifish (Fundulus heteroclitus): candidate gene and heterologous microarray approaches. Physiol Genomics 2010; 41:171-84. [PMID: 20103695 DOI: 10.1152/physiolgenomics.00209.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Northern and southern subspecies of the Atlantic killifish, Fundulus heteroclitus, differ in maximal thermal tolerance. To determine whether these subspecies also differ in their heat shock response (HSR), we exposed 20°C acclimated killifish to a 2 h heat shock at 34°C and examined gene expression in fish from both subspecies during heat shock and recovery using real-time quantitative PCR and a heterologous cDNA microarray designed for salmonid fishes. The heat shock proteins Hsp70-1, hsp27, and hsp30 were upregulated to a greater extent in the high temperature-tolerant southern subspecies than in the less tolerant northern subspecies, whereas hsp70-2 (which showed the largest upregulation of all the heat shock proteins) in both gill and muscle and hsp90α in muscle was upregulated to a greater extent in northern than in southern fish. These data demonstrate that differences in the HSR between subspecies cannot be due to changes in a single global regulator but must occur via gene-specific mechanisms. They also suggest that the role, if any, of hsps in establishing thermal tolerance is complex and varies from gene to gene. Heterologous microarray hybridization provided interpretable gene expression signatures, detecting differential regulation of genes known to be involved in the heat shock response in other species. Under control conditions, a variety of genes were differentially expressed in muscle between subspecies that suggest differences in muscle fiber type and could relate to previously observed differences between subspecies in the thermal sensitivity of swimming performance and metabolism.
Collapse
Affiliation(s)
- Timothy M. Healy
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wendy E. Tymchuk
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward J. Osborne
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Patricia M. Schulte
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
275
|
A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. Genetics 2010; 184:1165-79. [PMID: 20100940 DOI: 10.1534/genetics.109.112516] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Protein aggregates are a common pathological feature of most neurodegenerative diseases (NDs). Understanding their formation and regulation will help clarify their controversial roles in disease pathogenesis. To date, there have been few systematic studies of aggregates formation in Drosophila, a model organism that has been applied extensively in modeling NDs and screening for toxicity modifiers. We generated transgenic fly lines that express enhanced-GFP-tagged mutant Huntingtin (Htt) fragments with different lengths of polyglutamine (polyQ) tract and showed that these Htt mutants develop protein aggregates in a polyQ-length- and age-dependent manner in Drosophila. To identify central regulators of protein aggregation, we further generated stable Drosophila cell lines expressing these Htt mutants and also established a cell-based quantitative assay that allows automated measurement of aggregates within cells. We then performed a genomewide RNA interference screen for regulators of mutant Htt aggregation and isolated 126 genes involved in diverse cellular processes. Interestingly, although our screen focused only on mutant Htt aggregation, several of the identified candidates were known previously as toxicity modifiers of NDs. Moreover, modulating the in vivo activity of hsp110 (CG6603) or tra1, two hits from the screen, affects neurodegeneration in a dose-dependent manner in a Drosophila model of Huntington's disease. Thus, other aggregates regulators isolated in our screen may identify additional genes involved in the protein-folding pathway and neurotoxicity.
Collapse
|
276
|
Gidalevitz T, Kikis EA, Morimoto RI. A cellular perspective on conformational disease: the role of genetic background and proteostasis networks. Curr Opin Struct Biol 2010; 20:23-32. [PMID: 20053547 DOI: 10.1016/j.sbi.2009.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/27/2009] [Indexed: 12/12/2022]
Abstract
The inherently error-prone nature of protein biosynthesis and turnover leads to a constant flux of destabilized proteins. Genetic mutations in conformational disease-associated proteins, as well as exposure to acute and chronic proteotoxic stresses, further increase the load of misfolded protein on the proteostasis network. During aging, this leads to enhanced instability of the proteome, failure to buffer destabilizing genetic mutations or polymorphisms, and cellular decline. The combination of cell-type-specific differences in the buffering capacity of the proteostasis network and destabilizing polymorphisms in the genetic background may account for some of the cell-type specificity observed in disease, even when the predominant disease-associated protein is widely expressed.
Collapse
Affiliation(s)
- Tali Gidalevitz
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | |
Collapse
|
277
|
Kikis EA, Gidalevitz T, Morimoto RI. Protein homeostasis in models of aging and age-related conformational disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:138-59. [PMID: 20886762 PMCID: PMC3402352 DOI: 10.1007/978-1-4419-7002-2_11] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The stability of the proteome is crucial to the health of the cell, and contributes significantly to the lifespan of the organism. Aging and many age-related diseases have in common the expression of misfolded and damaged proteins. The chronic expression of damaged proteins during disease can have devastating consequences on protein homeostasis (proteostasis), resulting in disruption ofnumerous biological processes. This chapter discusses our current understanding of the various contributors to protein misfolding, and the mechanisms by which misfolding, and accompanied aggregation/toxicity, is accelerated by stress and aging. Invertebrate models have been instrumental in studying the processes related to aggregation and toxicity of disease-associated proteins and how dysregulation ofproteostasis leads to neurodegenerative diseases of aging.
Collapse
Affiliation(s)
| | | | - Richard I. Morimoto
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University; Rice Institute for Biomedical Research; Evanston, IL 60208-3500, USA
| |
Collapse
|
278
|
Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A 2009; 106:14914-9. [PMID: 19706382 DOI: 10.1073/pnas.0902882106] [Citation(s) in RCA: 524] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.
Collapse
|
279
|
Abstract
Protein function is regulated by the proteostasis network (PN) [Balch, W.E., Morimoto, R.I., Dillin, A. and Kelly, J.W. (2008) Adapting proteostasis for disease intervention. Science 319, 916-919], an integrated biological system that generates and protects the protein fold. The composition of the PN is regulated by signaling pathways including the unfolded protein response (UPR), the heat-shock response (HSR), the ubiquitin proteasome system (UPS) and epigenetic programs. Mismanagement of protein folding and function during membrane trafficking through the exocytic and endocytic pathways of eukaryotic cells by the PN is responsible for a wide range of diseases that include, among others, lysosomal storage diseases, myelination diseases, cystic fibrosis, systemic amyloidoses such as light chain myeloma, and neurodegenerative diseases including Alzheimer's. Toxicity from misfolding can be cell autonomous (affect the producing cell) or cell non-autonomous (affect a non-producing cell) or both, and have either a loss-of-function or gain-of-toxic function phenotype. Herein, we review the role of the PN and its regulatory transcriptional circuitry likely to be operational in managing the protein fold and function during membrane trafficking. We emphasize the enabling principle of a 'proteostasis boundary (PB)' [Powers, E.T., Morimoto, R.T., Dillin, A., Kelly, J.W., and Balch, W.E. (2009) Biochemical and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959-991]. The PB is defined by the combined effects of the kinetics and thermodynamics of folding and the kinetics of misfolding, which are linked to the variable and adjustable PN capacity found different cell types. Differences in the PN account for the versatility of protein folding and function in health, and the cellular and tissue response to mutation and environmental challenges in disease. We discuss how manipulation of the folding energetics or the PB through metabolites and pharmacological intervention provides multiple routes for restoration of biological function in trafficking disease.
Collapse
Affiliation(s)
- Darren M. Hutt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Evan T. Powers
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
- the Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037
| | - William E. Balch
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
- the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
280
|
Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78:959-91. [PMID: 19298183 DOI: 10.1146/annurev.biochem.052308.114844] [Citation(s) in RCA: 868] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many diseases appear to be caused by the misregulation of protein maintenance. Such diseases of protein homeostasis, or "proteostasis," include loss-of-function diseases (cystic fibrosis) and gain-of-toxic-function diseases (Alzheimer's, Parkinson's, and Huntington's disease). Proteostasis is maintained by the proteostasis network, which comprises pathways that control protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation. The decreased ability of the proteostasis network to cope with inherited misfolding-prone proteins, aging, and/or metabolic/environmental stress appears to trigger or exacerbate proteostasis diseases. Herein, we review recent evidence supporting the principle that proteostasis is influenced both by an adjustable proteostasis network capacity and protein folding energetics, which together determine the balance between folding efficiency, misfolding, protein degradation, and aggregation. We review how small molecules can enhance proteostasis by binding to and stabilizing specific proteins (pharmacologic chaperones) or by increasing the proteostasis network capacity (proteostasis regulators). We propose that such therapeutic strategies, including combination therapies, represent a new approach for treating a range of diverse human maladies.
Collapse
Affiliation(s)
- Evan T Powers
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
281
|
Abstract
Heat-shock proteins (Hsps) are increasingly being implicated in aging phenotypes and control of life span across species. They are targets of the conserved heat-shock factor and insulin/IGF1-like signaling pathways that affect life span and aging phenotypes. Hsps are expressed in tissue-specific and disease-specific patterns during aging, and their level of expression and induction by stress correlates with and, in some instances, predicts life span. In model organisms, Hsps have been shown to increase life span and ameliorate aging-associated proteotoxicity. Finally, Hsps have emerged as key components in regulating aging-related cellular phenotypes, including cell senescence, apoptosis and cancer. The Hsps, therefore, provide a metric of individual stress and aging and are potential targets for interventions in aging and aging-related diseases.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA.
| |
Collapse
|
282
|
Swindell WR. Heat shock proteins in long-lived worms and mice with insulin/insulin-like signaling mutations. Aging (Albany NY) 2009; 1:573-7. [PMID: 20157538 PMCID: PMC2806032 DOI: 10.18632/aging.100058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/14/2009] [Indexed: 11/25/2022]
Abstract
Heat shock
proteins (HSPs) have proven to be effective tools for extending
invertebrate lifespan, and inC. elegans daf-2 mutants,
longevity resulting from loss of insulin / insulin-like signals is at least
partly dependent upon elevated HSP expression. In mice, inhibition of the
orthologous growth hormone / insulin-like growth factor I (GH / IGF-I)
pathway has similar pro-longevity effects. A recent study, however,
suggests that loss of GH / IGF-I signals in long-lived mice does not
broadly elevate HSP expression, but in fact decreases HSP expression in
many tissue types, such as liver and kidney. The contribution of chaperones
to the longevity of long-lived mice with altered GH / IGF-I signals may therefore
differ from that described in C. elegans daf-2 mutants. This result,
in combination with other recent findings, underscores the possibility that
systemic overexpression of chaperones will have dissimilar effects on
longevity in vertebrate and invertebrate systems.
Collapse
Affiliation(s)
- William R Swindell
- University of Michigan, Departments of Pathology and Geriatrics, Ann Arbor MI 48109, USA.
| |
Collapse
|
283
|
Lee SJ, Kenyon C. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr Biol 2009; 19:715-22. [PMID: 19375320 PMCID: PMC2868911 DOI: 10.1016/j.cub.2009.03.041] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND Many ectotherms, including C. elegans, have shorter life spans at high temperature than at low temperature. High temperature is generally thought to increase the "rate of living" simply by increasing chemical reaction rates. In this study, we questioned this view and asked whether the temperature dependence of life span is subject to active regulation. RESULTS We show that thermosensory neurons play a regulatory role in the temperature dependence of life span. Surprisingly, inhibiting the function of thermosensory neurons by mutation or laser ablation causes animals to have even shorter life spans at warm temperature. Thermosensory mutations shorten life span by decreasing expression of daf-9, a gene required for the synthesis of ligands that inhibit the DAF-12, a nuclear hormone receptor. The short life span of thermosensory mutants at warm temperature is completely suppressed by a daf-12(-) mutation. CONCLUSIONS Our data suggest that thermosensory neurons affect life span at warm temperature by changing the activity of a steroid-signaling pathway that affects longevity. We propose that this thermosensory system allows C. elegans to reduce the effect that warm temperature would otherwise have on processes that affect aging, something that warm-blooded animals do by controlling temperature itself.
Collapse
Affiliation(s)
- Seung-Jae Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
284
|
Jager M, Deechongkit S, Koepf EK, Nguyen H, Gao J, Powers ET, Gruebele M, Kelly JW. Understanding the mechanism of beta-sheet folding from a chemical and biological perspective. Biopolymers 2009; 90:751-8. [PMID: 18844292 DOI: 10.1002/bip.21101] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perturbing the structure of the Pin1 WW domain, a 34-residue protein comprised of three beta-strands and two intervening loops has provided significant insight into the structural and energetic basis of beta-sheet folding. We will review our current perspective on how structure acquisition is influenced by the sequence, which determines local conformational propensities and mediates the hydrophobic effect, hydrogen bonding, and analogous intramolecular interactions. We have utilized both traditional site-directed mutagenesis and backbone mutagenesis approaches to alter the primary structure of this beta-sheet protein. Traditional site-directed mutagenesis experiments are excellent for altering side-chain structure, whereas amide-to-ester backbone mutagenesis experiments modify backbone-backbone hydrogen bonding capacity. The transition state structure associated with the folding of the Pin1 WW domain features a partially H-bonded, near-native reverse turn secondary structure in loop 1 that has little influence on thermodynamic stability. The thermodynamic stability of the Pin1 WW domain is largely determined by the formation of a small hydrophobic core and by the formation of desolvated backbone-backbone H-bonds enveloped by this hydrophobic core. Loop 1 engineering to the consensus five-residue beta-bulge-turn found in most WW domains or a four-residue beta-turn found in most beta-hairpins accelerates folding substantially relative to the six-residue turn found in the wild type Pin1 WW domain. Furthermore, the more efficient five- and four-residue reverse turns now contribute to the stability of the three-stranded beta-sheet. These insights have allowed the design of Pin1 WW domains that fold at rates that approach the theoretical speed limit of folding.
Collapse
Affiliation(s)
- Marcus Jager
- Department of Chemistry, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
285
|
Prahlad V, Morimoto RI. Integrating the stress response: lessons for neurodegenerative diseases from C. elegans. Trends Cell Biol 2009; 19:52-61. [PMID: 19112021 PMCID: PMC4843516 DOI: 10.1016/j.tcb.2008.11.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/26/2008] [Accepted: 11/28/2008] [Indexed: 12/21/2022]
Abstract
All cells possess surveillance and homeostatic mechanisms to adjust protein biogenesis to the demands of growth, differentiation, ageing and environmental stress. However, under certain circumstances, these mechanisms fail to adequately respond to proteotoxic imbalances and result in the accumulation of misfolded proteins. In humans, this can lead to neurodegeneration and other protein conformational diseases. To protect itself, the cell employs highly conserved stress responses and chaperone networks to maintain protein-folding homeostasis (proteostasis). Although the regulation of stress responses, such as the heat-shock response, and of proteostasis have been widely considered to be cell autonomous, recent studies using Caenorhabditis elegans have shown that these processes are regulated by neuronal signaling and endocrine pathways and integrated into other functions of the organism. The hierarchical control of the cellular proteostasis machinery affords insight into the organization of stress regulatory networks in multicellular organisms and offers novel targets for the treatment of human protein conformational diseases.
Collapse
Affiliation(s)
- Veena Prahlad
- Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
286
|
Abstract
When the supply of environmental nutrients is limited, multicellular animals can make both physiological and behavioral changes so as to cope with nutrient starvation. Although physiological and behavioral effects of starvation are well known, the mechanisms by which animals sense starvation systemically remain elusive. Furthermore, what constituent of food is sensed and how it modulates starvation response is still poorly understood. In this study, we use a starvation-hypersensitive mutant to identify molecules and mechanisms that modulate starvation signaling. We found that specific amino acids could suppress the starvation-induced death of gpb-2 mutants, and that MGL-1 and MGL-2, Caenorhabditis elegans homologs of metabotropic glutamate receptors, were involved. MGL-1 and MGL-2 acted in AIY and AIB neurons, respectively. Treatment with leucine suppressed starvation-induced stress resistance and life span extension in wild-type worms, and mutation of mgl-1 and mgl-2 abolished these effects of leucine. Taken together, our results suggest that metabotropic glutamate receptor homologs in AIY and AIB neuron may modulate a systemic starvation response, and that C. elegans senses specific amino acids as an anti-hunger signal.
Collapse
Affiliation(s)
- Chanhee Kang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
287
|
Podrabsky JE. NEURONAL CONTROL OF CELLULAR HEAT SHOCK RESPONSE IN NEMATODES. J Exp Biol 2008. [DOI: 10.1242/jeb.011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
288
|
Abstract
This annual review focuses on invertebrate model organisms, which shed light on new mechanisms in aging and provide excellent systems for in-depth analysis. This year, the first quantitative estimate of evolutionary conservation of genetic effects on lifespan has pointed to the key importance of genes involved in protein synthesis, a finding confirmed and extended by experimental work. Work in Caenorhabditis elegans and Drosophila has highlighted the importance of phase 2 detoxification in extension of lifespan by reduced insulin/Igf-like signalling. Thorough characterization of systems for dietary restriction in C. elegans is starting to show differences in the mechanisms by which these interventions extend lifespan and has revealed a requirement for autophagy. The response to heat shock in C. elegans turns out to be systemic, and mediated by sensory neurons, with potentially interesting implications for the response of lifespan to temperature. Work in Escherichia coli and yeast has revealed a role for retention of aggregated proteins in the parent in the rejuvenation of offspring while, as in C. elegans, removal of the germ line in Drosophila turns out to extend lifespan. Aging research has suffered the loss of a great scientific leader, Seymour Benzer, and his trail-blazing work on aging and neurodegeneration is highlighted.
Collapse
|
289
|
Flight MH. Beating the heat. Nat Rev Neurosci 2008. [DOI: 10.1038/nrn2419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|