251
|
|
252
|
Cai C, Dickinson D, Li L, Masuko S, Suflita M, Schultz V, Nelson SD, Bhaskar U, Liu J, Linhardt RJ. Fluorous-assisted chemoenzymatic synthesis of heparan sulfate oligosaccharides. Org Lett 2014; 16:2240-3. [PMID: 24697306 PMCID: PMC3998769 DOI: 10.1021/ol500738g] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Indexed: 12/23/2022]
Abstract
The chemoenzymatic synthesis of heparan sulfate tetrasaccharide (1) and hexasaccharide (2) with a fluorous tag attached at the reducing end is reported. The fluorous tert-butyl dicarbonate ((F)Boc) tag did not interfere with enzymatic recognition for both elongation and specific sulfation, and flash purification was performed by standard fluorous solid-phase extraction (FSPE). Based on an (F)Boc attached disaccharide as acceptor, a series of partial N-sulfated, 6-O-sulfated heparan sulfate oligosaccharides were successfully synthesized employing fluorous techniques.
Collapse
Affiliation(s)
- Chao Cai
- Department of Chemistry
and Chemical Biology, Department of Biology, and Departments of Chemical
and Biological Engineering and Biomedical Engineering, Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Demetria
M. Dickinson
- Department of Chemistry
and Chemical Biology, Department of Biology, and Departments of Chemical
and Biological Engineering and Biomedical Engineering, Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Lingyun Li
- Department of Chemistry
and Chemical Biology, Department of Biology, and Departments of Chemical
and Biological Engineering and Biomedical Engineering, Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sayaka Masuko
- Department of Chemistry
and Chemical Biology, Department of Biology, and Departments of Chemical
and Biological Engineering and Biomedical Engineering, Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Matt Suflita
- Department of Chemistry
and Chemical Biology, Department of Biology, and Departments of Chemical
and Biological Engineering and Biomedical Engineering, Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Victor Schultz
- Department of Chemistry
and Chemical Biology, Department of Biology, and Departments of Chemical
and Biological Engineering and Biomedical Engineering, Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Shawn D. Nelson
- Department of Chemistry
and Chemical Biology, Department of Biology, and Departments of Chemical
and Biological Engineering and Biomedical Engineering, Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ujjwal Bhaskar
- Department of Chemistry
and Chemical Biology, Department of Biology, and Departments of Chemical
and Biological Engineering and Biomedical Engineering, Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Liu
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Robert J. Linhardt
- Department of Chemistry
and Chemical Biology, Department of Biology, and Departments of Chemical
and Biological Engineering and Biomedical Engineering, Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
253
|
Eriksson M, Serna S, Maglinao M, Schlegel MK, Seeberger PH, Reichardt NC, Lepenies B. Biological evaluation of multivalent lewis X-MGL-1 interactions. Chembiochem 2014; 15:844-51. [PMID: 24616167 DOI: 10.1002/cbic.201300764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Indexed: 02/03/2023]
Abstract
Myeloid C-type lectin receptors (CLRs) expressed by antigen-presenting cells are pattern-recognition receptors involved in the recognition of pathogens as well as of self-antigens. The interaction of carbohydrate ligands with a CLR can trigger immune responses. Although several CLR ligands are known, there is limited insight into CLR targeting by carbohydrate ligands. The weak affinity of lectin-carbohydrate interactions often renders multivalent carbohydrate presentation necessary. Here, we have analyzed the impact of multivalent presentation of the trisaccharide Lewis X (Le(X) ) epitope on its interaction with the CLR macrophage galactose-type lectin-1 (MGL-1). Glycan arrays, including N-glycan structures with terminal Le(X) , were prepared by enzymatic extension of immobilized synthetic core structures with two recombinant glycosyltransferases. Incubation of arrays with an MGL-1-hFc fusion protein showed up to tenfold increased binding to multiantennary N-glycans displaying Le(X) structures, compared to monovalent Le(X) trisaccharide. Multivalent presentation of Le(X) on the model antigen ovalbumin (OVA) led to increased cytokine production in a dendritic cell /T cell coculture system. Furthermore, immunization of mice with Le(X) -OVA conjugates modulated cytokine production and the humoral response, compared to OVA alone. This study provides insights into how multivalent carbohydrate-lectin interactions can be exploited to modulate immune responses.
Collapse
Affiliation(s)
- Magdalena Eriksson
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam (Germany); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin (Germany)
| | | | | | | | | | | | | |
Collapse
|
254
|
Roychoudhury R, Pohl NLB. Synthesis of fluorous photolabile aldehyde and carbamate and alkyl carbamate protecting groups for carbohydrate-associated amines. Org Lett 2014; 16:1156-9. [PMID: 24512452 PMCID: PMC3993871 DOI: 10.1021/ol500023y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Two
new fluorous photolabile-protecting groups (FNBC and FNB) and
a new base-labile protecting group (FOC) for the masking of amines
are reported. The protecting groups survive a wide range of common
reaction conditions used in oligosaccharide synthesis and render the
attached molecules amenable to fluorous solid-phase extraction (FSPE).
A glycosyl acceptor containing the FNB group is shown to be useful
in the synthesis of carbohydrates tagged with free deactivated secondary
amines.
Collapse
Affiliation(s)
- Rajarshi Roychoudhury
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | |
Collapse
|
255
|
Palma AS, Feizi T, Childs RA, Chai W, Liu Y. The neoglycolipid (NGL)-based oligosaccharide microarray system poised to decipher the meta-glycome. Curr Opin Chem Biol 2014; 18:87-94. [PMID: 24508828 DOI: 10.1016/j.cbpa.2014.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 01/01/2023]
Abstract
The neoglycolipid (NGL) technology is the basis of a state-of-the-art oligosaccharide microarray system. The NGL-based microarray system in the Glycosciences Laboratory Imperial College London (http://www3.imperial.ac.uk/glycosciences) is one of the two leading platforms for glycan microarrays, being offered for screening analyses to the broad biomedical community. Highlighted in this review are the sensitivity of the analysis system and, coupled with mass spectrometry, the provision for generating 'designer' microarrays from glycomes to identify novel ligands of biological relevance. Among recent applications are assignments of ligands for apicomplexan parasites, pandemic 2009 influenza virus, polyoma and reoviruses, an innate immune receptor against fungal pathogens, Dectin-1, and a novel protein of the endoplasmic reticulum, malectin; also the characterization of an elusive cancer-associated antigen. Some other contemporary advances in glycolipid-containing arrays and microarrays are also discussed.
Collapse
Affiliation(s)
- Angelina S Palma
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom; REQUIMTE/CQFB, Faculty of Science and Technology, New University of Lisbon, Caparica, Portugal.
| | - Ten Feizi
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom.
| | - Robert A Childs
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom
| | - Wengang Chai
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom
| | - Yan Liu
- The Glycosciences Laboratory, Department of Medicine, Imperial College London, United Kingdom.
| |
Collapse
|
256
|
Song X, Heimburg-Molinaro J, Cummings RD, Smith DF. Chemistry of natural glycan microarrays. Curr Opin Chem Biol 2014; 18:70-7. [PMID: 24487062 DOI: 10.1016/j.cbpa.2014.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 12/16/2022]
Abstract
Glycan microarrays have become indispensable tools for studying protein-glycan interactions. Along with chemo-enzymatic synthesis, glycans isolated from natural sources have played important roles in array development and will continue to be a major source of glycans. N-glycans and O-glycans from glycoproteins, and glycans from glycosphingolipids (GSLs) can be released from corresponding glycoconjugates with relatively mature methods, although isolation of large numbers and quantities of glycans is still very challenging. Glycosylphosphatidylinositol (GPI) anchors and glycosaminoglycans (GAGs) are less represented on current glycan microarrays. Glycan microarray development has been greatly facilitated by bifunctional fluorescent linkers, which can be applied in a 'Shotgun Glycomics' approach to incorporate isolated natural glycans. Glycan presentation on microarrays may affect glycan binding by GBPs, often through multivalent recognition by the GBP.
Collapse
Affiliation(s)
- Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States.
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|
257
|
Adaptive immune activation: glycosylation does matter. Nat Chem Biol 2014; 9:776-84. [PMID: 24231619 DOI: 10.1038/nchembio.1403] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class I and II are glycoproteins that can present antigenic peptides at the cell surface for recognition and activation of circulating T lymphocytes. Here, the importance of the modification of protein antigens by glycans on cellular uptake, proteolytic processing, presentation by MHC and subsequent T-cell priming is reviewed. Antigen glycosylation is important for a number of diseases and vaccine design. All of the key proteins involved in antigen recognition and the orchestration of downstream effector functions are glycosylated. The influence of protein glycosylation on immune function and disease is covered.
Collapse
|
258
|
Cummings RD, Pierce JM. The challenge and promise of glycomics. CHEMISTRY & BIOLOGY 2014; 21:1-15. [PMID: 24439204 PMCID: PMC3955176 DOI: 10.1016/j.chembiol.2013.12.010] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 01/22/2023]
Abstract
Glycomics is a broad and emerging scientific discipline focused on defining the structures and functional roles of glycans in biological systems. The staggering complexity of the glycome, minimally defined as the repertoire of glycans expressed in a cell or organism, has resulted in many challenges that must be overcome; these are being addressed by new advances in mass spectrometry as well as by the expansion of genetic and cell biology studies. Conversely, identifying the specific glycan recognition determinants of glycan-binding proteins by employing the new technology of glycan microarrays is providing insights into how glycans function in recognition and signaling within an organism and with microbes and pathogens. The promises of a more complete knowledge of glycomes are immense in that glycan modifications of intracellular and extracellular proteins have critical functions in almost all biological pathways.
Collapse
Affiliation(s)
- Richard D Cummings
- Department of Biochemistry, Emory Glycomics Center, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | - J Michael Pierce
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
259
|
Chien WT, Liang CF, Yu CC, Lin CH, Li SP, Primadona I, Chen YJ, Mong KKT, Lin CC. Sequential one-pot enzymatic synthesis of oligo-N-acetyllactosamine and its multi-sialylated extensions. Chem Commun (Camb) 2014; 50:5786-9. [DOI: 10.1039/c4cc01227e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple and efficient protocol for the preparative-scale synthesis of various lengths of oligo-N-acetyllactosamine (oligo-LacNAc) and its multi-sialylated extensions.
Collapse
Affiliation(s)
- Wei-Ting Chien
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
| | - Chien-Fu Liang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
| | - Chien-Hung Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
| | - Si-Peng Li
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
| | - Indah Primadona
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
- Institute of Chemistry
- Academia Sinica
| | - Yu-Ju Chen
- Institute of Chemistry
- Academia Sinica
- Taipei 11529, Taiwan
- Genomic Research Center
- Academia Sinica
| | - Kwok Kong T. Mong
- Applied Chemistry Department
- National Chiao Tung University
- Hsinchu 30010, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu, Taiwan
- Genomic Research Center
- Academia Sinica
| |
Collapse
|
260
|
Xolin A, Stévenin A, Pucheault M, Norsikian S, Boyer FD, Beau JM. Glycosylation with N-acetyl glycosamine donors using catalytic iron(iii) triflate: from microwave batch chemistry to a scalable continuous-flow process. Org Chem Front 2014. [DOI: 10.1039/c4qo00183d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient glycosylation reactions of peracetylated β-d-N-acetyl glycosamines are described using catalytic iron(iii) triflate under microwave conditions or in a continuous flow process.
Collapse
Affiliation(s)
- Amandine Xolin
- Centre de Recherche de Gif
- Institut de Chimie des Substances Naturelles
- CNRS
- F-91198 Gif-sur-Yvette, France
| | - Arnaud Stévenin
- Centre de Recherche de Gif
- Institut de Chimie des Substances Naturelles
- CNRS
- F-91198 Gif-sur-Yvette, France
| | - Mathieu Pucheault
- Institut des Sciences Moléculaires
- UMR 5255 Bâtiment A11
- F-33405 Talence, France
| | - Stéphanie Norsikian
- Centre de Recherche de Gif
- Institut de Chimie des Substances Naturelles
- CNRS
- F-91198 Gif-sur-Yvette, France
| | - François-Didier Boyer
- Centre de Recherche de Gif
- Institut de Chimie des Substances Naturelles
- CNRS
- F-91198 Gif-sur-Yvette, France
- Institut Jean-Pierre Bourgin
| | - Jean-Marie Beau
- Centre de Recherche de Gif
- Institut de Chimie des Substances Naturelles
- CNRS
- F-91198 Gif-sur-Yvette, France
- Université Paris-Sud and CNRS
| |
Collapse
|
261
|
Noble GT, Craven FL, Segarra-Maset MD, Martínez JER, Šardzík R, Flitsch SL, Webb SJ. Sialylation of lactosyl lipids in membrane microdomains byT. cruzi trans-sialidase. Org Biomol Chem 2014; 12:9272-8. [DOI: 10.1039/c4ob01852d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SolubleT. cruzi trans-sialidase transformed a synthetic lactosyl glycolipid in microdomains more slowly than the same substrate dispersed across the bilayer surface, producing phospholipid vesicles with a Neu5Ac(α2-3)Gal(β1-4)Glc “glycocalyx”.
Collapse
Affiliation(s)
- Gavin T. Noble
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | - Faye L. Craven
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | | | | | - Robert Šardzík
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | - Simon J. Webb
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| |
Collapse
|
262
|
|
263
|
Mohanrao R, Asokan A, Sureshan KM. Bio-inspired synthesis of rare and unnatural carbohydrates and cyclitols through strain driven epimerization. Chem Commun (Camb) 2014; 50:6707-10. [DOI: 10.1039/c4cc00868e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bio-inspired isomerization of carbohydrates and cyclitols to their rare and unnatural isomers, through strain-driven epimerization of trans-ketals to cis-ketals, is introduced.
Collapse
Affiliation(s)
- Raja Mohanrao
- School of Chemistry
- Indian Institute of Science Education and Research
- Thiruvananthapuram
- Thiruvananthapuram-695016, India
| | - Aromal Asokan
- School of Chemistry
- Indian Institute of Science Education and Research
- Thiruvananthapuram
- Thiruvananthapuram-695016, India
| | - Kana M. Sureshan
- School of Chemistry
- Indian Institute of Science Education and Research
- Thiruvananthapuram
- Thiruvananthapuram-695016, India
| |
Collapse
|
264
|
Lowary TL. Context and complexity: The next big thing in synthetic glycobiology. Curr Opin Chem Biol 2013; 17:990-6. [DOI: 10.1016/j.cbpa.2013.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
265
|
Hemagglutinin receptor specificity and structural analyses of respiratory droplet-transmissible H5N1 viruses. J Virol 2013; 88:768-73. [PMID: 24173215 DOI: 10.1128/jvi.02690-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two ferret-adapted H5N1 viruses capable of respiratory droplet transmission have been reported with mutations in the hemagglutinin receptor-binding site and stalk domains. Glycan microarray analysis reveals that both viruses exhibit a strong shift toward binding to "human-type" α2-6 sialosides but with notable differences in fine specificity. Crystal structure analysis further shows that the stalk mutation causes no obvious perturbation of the receptor-binding pocket, consistent with its impact on hemagglutinin stability without affecting receptor specificity.
Collapse
|
266
|
Ichimiya T, Nishihara S, Takase-Yoden S, Kida H, Aoki-Kinoshita K. Frequent glycan structure mining of influenza virus data revealed a sulfated glycan motif that increased viral infection. Bioinformatics 2013; 30:706-11. [DOI: 10.1093/bioinformatics/btt573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
267
|
Shivatare SS, Chang SH, Tsai TI, Ren CT, Chuang HY, Hsu L, Lin CW, Li ST, Wu CY, Wong CH. Efficient convergent synthesis of bi-, tri-, and tetra-antennary complex type N-glycans and their HIV-1 antigenicity. J Am Chem Soc 2013; 135:15382-91. [PMID: 24032650 DOI: 10.1021/ja409097c] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structural diversity of glycoproteins often comes from post-translational glycosylation with heterogeneous N-glycans. Understanding the complexity of glycans related to various biochemical processes demands a well-defined synthetic sugar library. We report herein a unified convergent strategy for the rapid production of bi-, tri-, and tetra-antennary complex type N-glycans with and without terminal N-acetylneuraminic acid residues connected via the α-2,6 or α-2,3 linkages. Moreover, using sialyltransferases to install sialic acid can minimize synthetic steps through the use of shared intermediates to simplify the complicated procedures associated with conventional sialic acid chemistry. Furthermore, these synthetic complex oligosaccharides were compiled to create a glycan array for the profiling of HIV-1 broadly neutralizing antibodies PG9 and PG16 that were isolated from HIV infected donors. From the study of antibody PG16, we identified potential natural and unnatural glycan ligands, which may facilitate the design of carbohydrate-based immunogens and hasten the HIV vaccine development.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Genomics Research Center, Academia Sinica , 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Eisenstein M. Constructing complicated carbohydrates. Nat Methods 2013; 10:932. [DOI: 10.1038/nmeth.2677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
269
|
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
270
|
Johnston R. Asymmetrical glycans synthesized in lab. Nature 2013. [DOI: 10.1038/nature.2013.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|