251
|
|
252
|
Abstract
The electron-transfer reactions of the photosynthetic reaction center are mystifying, as there are two possible transfer paths and no obvious reason for the electron to choose one over the other. Recent computational studies, although they use diverse assumptions, agree that the electrostatic field of the protein provides the determining factor.
Collapse
Affiliation(s)
- T Ichiye
- Department of Biochemistry/Biophysics, Washington State University, Pullman, 99164-4660, USA.
| |
Collapse
|
253
|
Goldsmith JO, Boxer SG. Rapid isolation of bacterial photosynthetic reaction centers with an engineered poly-histidine tag. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/0005-2728(96)00091-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
254
|
Drain CM, Kirmaier C, Medforth CJ, Nurco DJ, Smith KM, Holten D. Dynamic Photophysical Properties of Conformationally Distorted Nickel Porphyrins. 1. Nickel(II) Dodecaphenylporphyrin. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp960735j] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charles Michael Drain
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, and Department of Chemistry, University of California, Davis, California 95616
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, and Department of Chemistry, University of California, Davis, California 95616
| | - Craig J. Medforth
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, and Department of Chemistry, University of California, Davis, California 95616
| | - Daniel J. Nurco
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, and Department of Chemistry, University of California, Davis, California 95616
| | - Kevin M. Smith
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, and Department of Chemistry, University of California, Davis, California 95616
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, and Department of Chemistry, University of California, Davis, California 95616
| |
Collapse
|
255
|
Hochkoeppler A, Zannoni D, Ciurli S, Meyer TE, Cusanovich MA, Tollin G. Kinetics of photo-induced electron transfer from high-potential iron-sulfur protein to the photosynthetic reaction center of the purple phototroph Rhodoferax fermentans. Proc Natl Acad Sci U S A 1996; 93:6998-7002. [PMID: 8692932 PMCID: PMC38923 DOI: 10.1073/pnas.93.14.6998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The kinetics of photo-induced electrontransfer from high-potential iron-sulfur protein (HiPIP) to the photosynthetic reaction center (RC) of the purple phototroph Rhodoferarfermentans were studied. The rapid photooxidation of heme c-556 belonging to RC is followed, in the presence of HiPIP, by a slower reduction having a second-order rate constant of 4.8 x 10(7) M(-1) x s(-1). The limiting value of kobs at high HiPIP concentration is 95 s(-1). The amplitude of this slow process decreases with increasing HiPIP concentration. The amplitude of a faster phase, observed at 556 and 425 nm and involving heme c-556 reduction, increases proportionately. The rate constant of this fast phase, determined at 425 and 556 nm, is approximately 3 x 10(5) s(-1). This value is not dependent on HiPIP concentration, indicating that it is related to a first-order process. These observations are interpreted as evidence for the formation of a HiPIP-RC complex prior to the excitation flash, having a dissociation constant of -2.5 microM. The fast phase is absent at high ionic strength, indicating that the complex involves mainly electrostatic interactions. The ionic strength dependence of kobs for the slow phase yields a second-order rate constant at infinite ionic strength of 5.4 x 10(6) M(-1) x s(-1) and an electrostatic interaction energy of -2.1 kcal/mol (1 cal = 4.184 J). We conclude that Rhodoferar fermentans HiPIP is a very effective electron donor to the photosynthetic RC.
Collapse
|
256
|
Kristiansen K, Dahl SG. Molecular modeling of serotonin, ketanserin, ritanserin and their 5-HT2C receptor interactions. Eur J Pharmacol 1996; 306:195-210. [PMID: 8813633 DOI: 10.1016/0014-2999(96)00180-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Molecular modeling techniques were used to build a three-dimensional model of the rat 5-HT2C receptor, which was used to examine receptor interactions for protonated forms of serotonin, ketanserin and ritanserin. Molecular dynamics simulations which were started with the fluoro benzene moiety of ketanserin and ritanserin oriented towards the cytoplasmic side of the receptor model, produced the strongest antagonist-receptor interactions. The fluoro bezene ring(s) of the antagonists interacted strongly with aromatic residues in the receptor model, which predicts slightly different orientations and ligand-receptor interactions of ketanserin and ritanserin at a putative binding site. The model suggests that Asn333 (transmembrane helix 6) is involved in a hydrogen-bonding interaction with ketanserin, but not with ritanserin. The model also also suggests that the position corresponding to Cys362 (transmembrane helix 7) may be an important determinant for specifying 5-HT2A receptor selectivity in ketanserin binding.
Collapse
Affiliation(s)
- K Kristiansen
- Department of Pharmacology, Institute of Medical Biology, University of Tromsö, Norway
| | | |
Collapse
|
257
|
Jentzen W, Turowska-Tyrk I, Scheidt WR, Shelnutt JA. Planar Solid-State and Solution Structures of (Porphinato)nickel(II) As Determined by X-ray Diffraction and Resonance Raman Spectroscopy. Inorg Chem 1996. [DOI: 10.1021/ic960157l] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Walter Jentzen
- Fuel Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0710, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, and Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131
| | - Ilona Turowska-Tyrk
- Fuel Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0710, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, and Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131
| | - W. Robert Scheidt
- Fuel Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0710, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, and Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131
| | - John A. Shelnutt
- Fuel Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0710, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, and Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
258
|
Cory MG, Zerner MC. Calculation of the Electron Affinities of the Chromophores Involved in Photosynthesis. J Am Chem Soc 1996. [DOI: 10.1021/ja952089s] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marshall G. Cory
- Contribution from the Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435
| | - Michael C. Zerner
- Contribution from the Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435
| |
Collapse
|
259
|
Stibrany RT, Vasudevan J, Knapp S, Potenza JA, Emge T, Schugar HJ. Two Modes of Self-Coordinating Edge-over-Edge Zn(II) Porphyrin Dimerization: A Structural and Spectroscopic Comparison. J Am Chem Soc 1996. [DOI: 10.1021/ja9536734] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert T. Stibrany
- Department of Chemistry, Rutgers The State University of New Jersey New Brunswick, New Jersey 08855
| | - Jayasree Vasudevan
- Department of Chemistry, Rutgers The State University of New Jersey New Brunswick, New Jersey 08855
| | - Spencer Knapp
- Department of Chemistry, Rutgers The State University of New Jersey New Brunswick, New Jersey 08855
| | - Joseph A. Potenza
- Department of Chemistry, Rutgers The State University of New Jersey New Brunswick, New Jersey 08855
| | - Tom Emge
- Department of Chemistry, Rutgers The State University of New Jersey New Brunswick, New Jersey 08855
| | - Harvey J. Schugar
- Department of Chemistry, Rutgers The State University of New Jersey New Brunswick, New Jersey 08855
| |
Collapse
|
260
|
Abstract
Peptides may be synthesized with sequences corresponding to putative transmembrane domains and/or pore-lining regions that are deduced from the primary structures of ion channel proteins. These can then be incorporated into lipid bilayer membranes for structural and functional studies. In addition to the ability to invoke ion channel activity, critical issues are the secondary structures adopted and the mode of assembly of these short transmembrane peptides in the reconstituted systems. The present review concentrates on results obtained with peptides from ligand-gated and voltage-gated ion channels, as well as proton-conducting channels. These are considered within the context of current molecular models and the limited data available on the structure of native ion channels and natural channel-forming peptides.
Collapse
Affiliation(s)
- D Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Federal Republic of Germany
| |
Collapse
|
261
|
Guiles RD, Sarma S, DiGate RJ, Banville D, Basus VJ, Kuntz ID, Waskell L. Pseudocontact shifts used in the restraint of the solution structures of electron transfer complexes. NATURE STRUCTURAL BIOLOGY 1996; 3:333-9. [PMID: 8599759 DOI: 10.1038/nsb0496-333] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The geometry of the ferricytochrome b5-ferricytochrome c complex has been analysed using long-range interprotein paramagnetic dipolar shifts. Heteronuclear filtered NMR spectra of samples containing 15N-labelled cytochrome b5 in complex with unlabelled cytochrome c allowed unambiguous assessment of pseudocontact shifts relative to diamagnetic reference states. Because pseudocontact shifts can be observed for protons as much as 20 A from the paramagnetic centre, this approach allows study of electron transfer proteins in fast exchange. Our findings provide the first physical evidence confirming hypotheses presented in previous theoretical studies. This absence of certain predicted shifts that are expected based on the best fit to a static model of the complex suggests that cytochrome b5 is more dynamic in solution than in the crystal, in agreement with molecular dynamics simulations.
Collapse
Affiliation(s)
- R D Guiles
- Department of Pharmaceutical Sciences, University of Maryland at Baltimore, 21201, USA
| | | | | | | | | | | | | |
Collapse
|
262
|
Affiliation(s)
- H A Frank
- Department of Chemistry, University of Connecticut, Storrs 06269-3060, USA.
| | | |
Collapse
|
263
|
Woolf TB, Roux B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins 1996; 24:92-114. [PMID: 8628736 DOI: 10.1002/(sici)1097-0134(199601)24:1<92::aid-prot7>3.0.co;2-q] [Citation(s) in RCA: 237] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The microscopic details of lipid-protein interactions are examined using molecular dynamics simulations of the gramicidin A channel embedded in a fully hydrated dimyristoyl phosphatidylcholine (DMPC) bilayer. A novel construction protocol was used to assemble the initial configurations of the membrane protein complex for the simulations. Three hundred systems were constructed with different initial lipid placement and conformations. Seven systems were simulated with molecular dynamics. One system was simulated for a total of 600 psec, four were simulated for 300 psec, and two for 100 psec. Analysis of the resulting trajectories shows that the bulk solvent-membrane interface region is much broader than traditionally pictured in simplified continuum theories: its width is almost 15 angstroms. In addition, lipid-protein interactions are far more varied, both structurally and energetically, than is usually assumed: the total interaction energy between the gramicidin A and the individual lipids varies from 0 to -50 kcal/mol. The deuterium quadrupolar splittings of the lipid acyl chains calculated from the trajectories are in good agreement with experimental data. The lipid chains in direct contact with the GA are ordered but the effect is not uniform due to the irregular surface of the protein. Energy decompositions shows that the most energetically favorable interactions between lipid and protein involve nearly equal contributions from van der Waals and electrostatic interactions. The tryptophans, located near the bulk-membrane interface, appear to be particularly important in mediating both hydrogen bonding interactions with the lipid glycerol backbone and water and also in forming favorable van der Waals contacts with the hydrocarbon chains. In contrast, the interactions of the leucine residues with the lipids, also located near the interface, are dominated by van der Waals interactions with the hydrocarbon lipid chains.
Collapse
Affiliation(s)
- T B Woolf
- Membrane Transport Research Group (GRTM), Department of Physics, Université de Montréal, Canada
| | | |
Collapse
|
264
|
Konings WN, Kaback HR, Lolkema JS. Preface to volume 2 Transport processes in eukaryotic and prokaryotic organisms. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
265
|
Chapter 10 The lactose permease of Escherichia coli: Past, present and future. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
266
|
Davis JH, Auger M, Hodges RS. High resolution 1H nuclear magnetic resonance of a transmembrane peptide. Biophys J 1995; 69:1917-32. [PMID: 8580335 PMCID: PMC1236425 DOI: 10.1016/s0006-3495(95)80062-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although the strong 1H-1H dipolar interaction is known to result in severe homogeneous broadening of the 1H nuclear magnetic resonance (NMR) spectra of ordered systems, in the fluid phase of biological and model membranes the rapid, axially symmetric reorientation of the molecules about the local bilayer normal projects the dipolar interaction onto the motional symmetry axis. Because the linewidth then scales as (3 cos2 theta-1)/2, where theta is the angle between the local bilayer normal and the magnetic field, the dipolar broadening has been reduced to an "inhomogeneous" broadening by the rapid axial reorientation. It is then possible to obtain high resolution 1H-NMR spectra of membrane components by using magic angle spinning (MAS). Although the rapid axial reorientation effectively eliminates the homogeneous dipolar broadening, including that due to n = 0 rotational resonances, the linewidths observed in both lipids and peptides are dominated by low frequency motions. For small peptides the most likely slow motions are either a "wobble" or reorientation of the molecular diffusion axis relative to the local bilayer normal, or the reorientation of the local bilayer normal itself through surface undulations or lateral diffusion over the curved surface. These motions render the peptide 1H-NMR lines too broad to be observed at low spinning speeds. However, the linewidths due to these slow motions are very sensitive to spinning rate, so that at higher speeds the lines become readily visible. The synthetic amphiphilic peptide K2GL20K2A-amide (peptide-20) has been incorporated into bilayers of 1,2-di-d 27-myristoyl-sn-glycero-3-phosphocholine (DMPC-d54) and studied by high speed 1H-MAS-NMR. The linewidths observed for this transbilayer peptide, although too broad to be observable at spinning rates below -5 kHz, are reduced to 68 Hz at a spinning speed of 14 kHz (at 500C). Further improvements in spinning speed and modifications in sample composition designed to reduce the effectiveness of the slow motions responsible for the linewidth should result in significant further reduction in peptide linewidths. With this technique, there is now the potential for the use of 1H-MAS-NMR for the study of conformation, folding, and dynamics of small membrane peptides and protein fragments.
Collapse
Affiliation(s)
- J H Davis
- Department of Physics, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
267
|
Gentemann S, Medforth CJ, Ema T, Nelson NY, Smith KM, Fajer J, Holten D. Unusual picosecond 1(π, π∗) deactivation of ruffled nonplanar porphyrins. Chem Phys Lett 1995. [DOI: 10.1016/0009-2614(95)01030-d] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
268
|
Three-dimensional crystallization of the light-harvesting complex from Mantoniella squamata (Prasinophyceae) requires an adequate purification procedure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00085-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
269
|
Palaniappan V, Bocian DF. Resonance Raman characterization of H(M200)L mutant reaction centers from Rhodobacter capsulatus. Effects of heterodimer formation on the structural and electronic properties of the cofactors. Biochemistry 1995; 34:11106-16. [PMID: 7669768 DOI: 10.1021/bi00035a016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Resonance Raman (RR) spectra are reported for photosynthetic reactions centers (RCs) from the H(M200)L mutant of Rhodobacter capsulatus. In this mutant, the histidine residue which ligates the M-side bacteriochlorophyll (BCh) of the special pair primary donor (P) of wild-type RCs is replaced by a noncoordinating leucine. This results in the formation of a heterodimer primary donor (D) in which a bacteriopheophytin (BPh) replaces the M-side BCh. The RR data for the H(M200)L mutant were acquired at a large number of excitation wavelengths which span the B, Qx, and Qy absorption bands of the various bacteriochlorin cofactors in the RC. For comparison, spectra were also acquired for wild-type RCs at the same excitation wavelengths. The RR data obtained for the mutant indicate that heterodimer formation induces a variety of changes in the structural and electronic properties of the cofactors in the RC. These perturbations extend beyond the primary donor and include one of the two accessory BChs. Collectively, the RR studies indicate the following: (1) The structure of the single BCh cofactor in D [DL(BCh)] is different from that of either of the two BChs in P. However, DL(BCh) is more similar to PL than to PM. The PM cofactor is conformationally more distorted than either PL or DL(BCh). (2) The structure of the BPh cofactor in D [DM(BPh)] is similar to that of the other two BPhs in the RC. However, the frequency of the C9-keto carbonyl mode of DM(BPh) is anomalously low (1678 cm-1), as is also the case for PM. The vibrational characteristics of the C9-keto carbonyl vibrations of DM(BPh)/PM versus DL(BCh)/PL are consistent the notion that dielectric effects govern the frequency of the mode and that the effective dielectric constant is different on the L- versus M-sides of the primary donor. (3) Heterodimer formation perturbs the structural and electronic properties of one of the two accessory BChs (most likely BChL) in the RC. These perturbations are manifested as upshifts in the ring skeletal-mode frequencies and a blue-shift in the Qx absorption band (from 600 to 580 nm). The fact that heterodimer formation perturbs one of the accessory BChs suggests that global structural rearrangements occur in the protein matrix when the ligand to a cofactor in the primary donor is removed. (4) For both the H(M200)L mutant and wild-type RCs, oxidation of the primary donor significantly affects the RR cross section of the carotenoid.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V Palaniappan
- Department of Chemistry, University of California, Riverside 92521-0403, USA
| | | |
Collapse
|
270
|
Abstract
AbstractRecoverin is a Ca2+-binding protein found primarily in vertebrate photoreceptors. The proposed physiological function of recoverin is based on the finding that recoverin inhibits light-stimulated phosphorylation of rhodopsin. Recoverin interacts with rod outer segment membranes in a Ca2+-dependent manner. This interaction requires N-terminal acylation of recoverin. Four types of fatty acids have been detected on the N-terminus of recoverin, but the functional significance of this heterogeneous acylation is not yet clear.
Collapse
|
271
|
Future directions for rhodopsin structure and function studies. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractNMR (nuclear magnetic resonance) may be useful for determining the structure of retinal and its environment in rhodopsin, but not for determining the complete protein structure. Aggregation and low yield of fragments of rhodopsin may make them difficult to study by NMR. A long-term multidisciplinary attack on rhodopsin structure is required.
Collapse
|
272
|
More answers about cGMP-gated channels pose more questions. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractOur understanding of the molecular properties and cellular role of cGMP-gated channels in outer segments of vertebrate photo-receptors has come from over a decade of studies which have continuously altered and refined ideas about these channels. Further examination of this current view may lead to future surprises and further refine the understanding of cGMP-gated channels.
Collapse
|
273
|
Cyclic nucleotides as regulators of light-adaptation in photoreceptors. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCyclic nucleotides can regulate the sensitivity of retinal rods to light through phosducin. The phosphorylation state of phosducin determines the amount of G available for activation by Rho*. Phosducin phosphorylation is regulated by cyclic nucleotides through their activation of cAMP-dependent protein kinase. The regulation of phosphodiesterase activity by the noncatalytic cGMP binding sites as well as Ca2+/calmodulin dependent regulation of cGMP binding to the cation channel are also discussed.
Collapse
|
274
|
Long term potentiation and CaM-sensitive adenylyl cyclase: Long-term prospects. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe type I CaM-sensitive adenylyl cyclase is in a position to integrate signals from multiple inputs, consistent with the requirements for mediating long term potentiation (LTP). Biochemical and genetic evidence supports the idea that this enzyme plays an important role inc LTP. However, more work is needed before we will be certain of the role that CaM-sensitive adenylyl cyclases play in LTP.
Collapse
|
275
|
Modulation of the cGMP-gated channel by calcium. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCalcium acting through calmodulin has been shown to regulate the affinity of cyclic nucleotide-gated channels expressed in cell lines. But is calmodulin the Ca-sensor that normally regulates these channels?
Collapse
|
276
|
How many light adaptation mechanisms are there? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe generally positive response to our target article indicates that most of the commentators accept our contention that light adaptation consists of multiple and possibly redundant mechanisms. The commentaries fall into three general categories. The first deals with putative mechanisms that we chose not to emphasize. The second is a more extended discussion of the role of calcium in adaptation. Finally, additional aspects of cGMP involvement in adaptation are considered. We discuss each of these points in turn.
Collapse
|
277
|
Gene therapy, regulatory mechanisms, and protein function in vision. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractHereditary retinal degeneration due to mutations in visual genes may be amenable to therapeutic interventions that modulate, either positively or negatively, the amount of protein product. Some of the proteins involved in phototransduction are rapidly moved by a lightdependent mechanism between the inner segment and the outer segment in rod photoreceptor cells, and this phenomenon is important in phototransduction.
Collapse
|
278
|
A novel protein family of neuronal modulators. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA number of proteins homologous to recoverin have been identified in the brains of the several vertebrate species. The brainderived members originally contain four EF-hand domains, but NH2- terminal domain is aberrant. Many of these proteins inhibited light-induced rhodopsin phosphorylation at high [Ca2+], suggesting that the brain-derived members may act as a Ca2+-sensitive modulator of receptor phosphorylation, as recoverin does.
Collapse
|
279
|
The structure of rhodopsin and mechanisms of visual adaptation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractRapidly advancing studies on rhodopsin have focused on new strategies for crystallization of this integral membrane protein for x-ray analysis and on alternative methods for structural determination from nuclear magnetic resonance data. Functional studies of the interactions between the apoprotein and its chromophore have clarified the role of the chromophore in deactivation of opsin and in photoactivation of the pigment.
Collapse
|
280
|
Crucial steps in photoreceptor adaptation: Regulation of phosphodiesterase and guanylate cyclase activities and Ca 2+-buffering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis commentary discusses the balance of phosphodiesterase and guanylate cyclase activities in vertebrate photoreceptors at moderate light intensities. The rate of cGMP hydrolysis and synthesis seem to equal each other. Ca2+ as regulator of both enzyme activities is also effectively buffered in photoreceptor cells by cytoplasmic buffer components.
Collapse
|
281
|
The atomic structure of visual rhodopsin: How and when? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStrong arguments are presented by Hargrave suggesting that the crystallization of visual rhodopsin for high resolution analysis by X-ray crystallography or electron microscopy is feasible. However, the effort needed to achieve this goal will most likely exceed the resources of a single laboratory and a concerted approach to the research is necessary.
Collapse
|
282
|
Molecular insights gained from covalently tethering cGMP to the ligand-binding sites of retinal rod cGMP-gated channels. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA photoaffinity analog of cGMP has been used to biochemically identify a new ligand-binding subunit of the retinal rod cGMP-activated ion channel, as well as amino acids in contact with cGMP in the original subunit. Covalent tethering of this probe to channels in excised menbrane patches has revealed a functional heteogeneity in the ligand-binding sites that may arise from the two biochemically identified subunits.
Collapse
|
283
|
Abstract
Conventional protein kinase Cs have two conserved regulatory domains, C1 and C2, shared by many other membrane-interacting proteins. The structures of a C1 and a C2 domain provide insights into how they function.
Collapse
Affiliation(s)
- A C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla 92093-0640, USA
| |
Collapse
|
284
|
Abstract
AbstractRecent findings emphasize the complexity, both genetic and functional, of the manifold genes and mutations causing inherited retinal degeneration in humans. Knowledge of the genetic bases of these diseases can contribute to design of rational therapy, as well as elucidating the function of each gene product in normal visual processes.
Collapse
|
285
|
Channel structure and divalent cation regulation of phototransduction. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe identification of additional subunits of the cGMP-gated cation channel suggests exciting questions about their regulatory roles and about structure/functional relationships. How do the different subunits interact? How is the complex assembled into the plasma membrane? Divalent cations have been implicated in the regulation of adaptation. One often overlooked cation is magnesium. Could this ion play a role in phototransduction?
Collapse
|
286
|
Structure of the cGMP-gated channel. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003939x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe subunit structure of the cGMP-gated cation channel of rod photoreceptors is rapidly being defined, and in the process the mode of regulation by Ca2+-calmodulin unraveled. Intriguingly, early results suggest that additional subunits of unknown function are associated with the channel and remain to be identified.
Collapse
|
287
|
Linking genotypes with phenotypes in human retinal degenerations: Implications for future research and treatment. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAlthough undoubtedly it will be incomplete by the time it is published, the target article by Daiger et al. organizes mutations in genes that produce retinal degenerations in humans into categories of clinically relevant phenotypes. Such classifications should help us understand the link between altered photoreceptor cell proteins and subsequent cell death, and they may yield insight into methods for preventing consequent blindness.
Collapse
|
288
|
Genetic and clinical heterogeneity in tapetal retinal dystrophies. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003925x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractLarge scale DNA-mutation screening in patients with hereditary retinal diseases greatly enhances our knowledge about retinal function and diseases. Scientists, clinicians, patients, and families involved with retinal disorders may directly benefit from these developments. However, certain aspects of this expanding knowledge, such as the correlation between genotype and phenotype, may be much more complicated than we expect at present.
Collapse
|
289
|
The determination of rhodopsin structure may require alternative approaches. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe structure of rhodopsin is a subject of intense interest. Solving the structure by traditional methods has proved exceedingly challenging. It may therefore be useful to confront the problem by a combination of alternate techniques. These include FTIR (Fourier transform infrared spectroscopy) and AFM (atomic force microscopy) on the intact protein. Furthermore, additional insights may be gained through structural investigations of discrete rhodopsin domains.
Collapse
|
290
|
Na-Ca + K exchanger and Ca 2+ homeostasis in retinal rod outer segments: Inactivation of the Ca 2+ efflux mode and possible involvement of intracellular Ca 2+ stores in Ca 2+ homeostasis. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractInactivation of the Ca2+ extrusion mode of the retinal rod Na- Ca + K exchanger is suggested to be the mechanism that prevents lowering of cytosolic free Ca2+ to < 1 nM when rod cells are saturated for a prolonged time under bright light conditions. Under these conditions, Ca2+ fluxes across disk membranes can contribute significantly to Ca2+ homeostasis in rods.
Collapse
|
291
|
Nuclear magnetic resonance studies on the structure and function of rhodopsin. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMagic angle spinning (MAS) NMR methods provide a means of obtaining high resolution structural data on rhodopsin and its photoin termediates. Current work has focused on the structure of the retinal chromophore and its interactions with surrounding protein charges. The recent development of MAS NMR methods for measuring internuclear distances with a resolution of ∼0.2 will complement diffraction methods for addressing key mechanistic questions.
Collapse
|
292
|
Glutamate accumulation in the photoreceptor-presumed final common path of photoreceptor cell death. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGenetic abnormalities of three factors related to the photoreceptor mechanism have been reported in both animal models and humans. Apoptotic mechanism has also been suggested as a final common pathway of photoreceptor cell death. Our findings of increased level of glutamate in photoreceptor cells in rds mice suggest that amino acid might mediate between these two pathological mechanisms.
Collapse
|
293
|
Unique lipids and unique properties of retinal proteins. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAmino-terminal heteroacylation has been identified in retinal proteins including recoverin and α subunit of G-protein, transducin. The tissue-specific modification seems to mediate not only a proteinmembrane interaction but also a specific protein-protein interaction. The mechanism generating the heterogeneity and its physiological role are still unclear, but an interesting idea for the latter postulates a fine regulation of the signal transduction pathway by distinct N-acyl groups.
Collapse
|
294
|
Further insight into the structural and regulatory properties of the cGMP-gated channel. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRecent studies from several different laboratories have provided further insight into structure-function relationships of cyclic nucleotide-gated channel and in particular the cCMPgated channel of rod photoreceptors. Site-directed mutagenesis and rod-olfactory chimeria constructs have defined important amino acids and peptide segments of the channel that are important in ion blockage, ligand specificity, and gating properties. Molecular cloning studies have indicated that cyclic nucleotide-gated channels consist of two subunits that are required to reproduce the properties of the native channels. Biochemical analysis of the cGMP-gated channel of rodcells have indicated that the 240 kDa protein that co-purifies with the 63 kDa channel subunit contains both the previously cloned second subunit of the channel and a glutamic acid-rich protein. The regulatory properties of the cGMP-gated channel from rod cells has also been studied in more detail. Studies indicate that the beta subunit of the cGMP-gated channel of rod cells contains the binding site for calmodulin. Interaction of calmodulin with the channel alters the apparent affinity of the channel for cGMP in all in vitro systems that have been studied. The significance of these recent studies are discussed in relation to the commentaries on the target article.
Collapse
|
295
|
Unsolved issues in S-modulin/recoverin study. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractS-Modulin is a frog homolog of recoverin. The function and the underlying mechanism of the action of these proteins are now understood in general. However, there remain some unsolved issues including; two distinct effects of S-modulin; Ca2+-dependent binding of S-modulin to membranes and a possible target protein; S-modulin-like proteins in other neurons. These issues are considered in this commentary.
Collapse
|
296
|
Mechanisms of photoreceptor degenerations. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe candidate gene approach has identified many causes of photoreceptor rod cell death in retinitis pigmentosa. Some mutations lead to increased cyclicGMP concentrations in rods. Rod photoreceptors are also particularly susceptible to some mutations in housekeeping genes. Although many more cases of macular degeneration than retinitis pigmentosa occur each year, there is much less known about both genetic and sporadic forms of this disease.
Collapse
|
297
|
Reduced cytoplasmic calcium concentration may be both necessary and sufficient for photoreceptor light adaptation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractLight adaptation is modulated almost exclusively by changes in intracellular Ca2+ concentration, and other Ca2+-independent mechanisms are likely to play only a minor role. Changes in Ca2+i may be not only necessary for light adaptation to take place but sufficient to cause it.
Collapse
|
298
|
The genetic kaleidoscope of vision. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractSite-specific phenotypic effects of the 73 known alleles in the rhodopsin gene that cause retinal degeneration are difficult to interpret because most alleles are documented in only one case or one family, which means variation in effects could actually arise from interactions with other loci. However, sample sizes necessary to detect epistatic interaction may place an answer to this question beyond our grasp.
Collapse
|
299
|
Evidence that the type I adenylyl cyclase may be important for neuroplasticity: Mutant mice deficient in the gene for type I adenylyl cyclase show altered behavior and LTP. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003956x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe regulatory properties of the neurospecific, type I adenylyl cyclase and its distribution within brain have suggested that this enzyme may be important for neuroplasticity. To address this issue, the murine, Ca2+ -stimulated adenylyl cyclase (type I), was inactivated by targeted mutagenesis. Ca2+ -stimulated adenylyl cyclase activity was reduced 40% to 60% in the hippocampus, neocortex, and cerebellum. Long term potentiation in the CA1 region of the hippocampus from mutants was perturbed relative to controls. Both the initial slope and maxim um extent of changes in synaptic response were reduced. Although mutant mice learned to find a hidden platform normally in the Morris water task, they did not display a preference for the region where the platform had been when it was removed. The behavioral phenotype of these mice is very similar to that exhibited by mice which have been surgically lesioned in the hippocampus. These results indicate that disruption of the gene for the type I adenylyl cyclase produces changes in spatial memory and indicate that the cAMP signal transduction pathway may play an important role for synaptic plasticity.
Collapse
|
300
|
Calcium/calmodulin-sensitive adenylyl cyclase as an example of a molecular associative integrator. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractEvidence suggests that the Ca2+/calmodulin-sensitive adenylyl cyclase may play a key role in neural plasticity and learning in Aplysia, Drosophila, and mammals. This dually-regulated enzyme has been proposed as a possible site of stimulus convergence during associative learning. This commentary discusses the evidence that is required to demonstrate that a protein in a second messenger cascade actually functions as a molecular site of associative integration. It also addresses the issue of how a dually-regulated protein could contribute to the temporal pairing requirements of classical conditioning: that relationship between stimuli display both temporal contiguity and predictability.
Collapse
|