251
|
Holdorf HT, White HM. Effects of rumen-protected choline supplementation in Holstein dairy cows during electric heat blanket-induced heat stress. J Dairy Sci 2021; 104:9715-9725. [PMID: 34127269 DOI: 10.3168/jds.2020-19794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
Dairy cows experiencing heat stress (HS) attempt to thermoregulate through multiple mechanisms, such as reducing feed intake and milk production and altering blood flow to increase heat dissipation. Effects of choline on energy metabolism and immune function may yield it a viable nutritional intervention to mitigate negative effects of HS. The primary objective of this experiment was to determine if supplementation of rumen-protected choline during, or before and during, an increased heat load would ameliorate the negative effects of HS on production and immune status. Heat stress was induced via an electric heat blanket model with a 3-d baseline period and 7-d HS period for all cows. Multiparous mid-lactation (208 ± 31 days in milk) Holstein cows were fed the same basal herd diet, blocked by pre-experiment milk yield, and randomly assigned to receive one of the following: (1) no rumen-protected (RP) choline (n = 7); (2) RP choline (60 g/d) via top-dress during the HS period (n = 8); or (3) RP choline (60 g/d) via top-dress during the baseline and HS periods (n = 8). Imposing HS via electric heat blanket raised respiration rate with all cows surpassing the HS threshold of 60 breaths/min. The increase in respiration rate tended to be ameliorated with either schedule of RP choline supplementation. Milk yield tended to increase when RP choline was supplemented in both the baseline period and during HS. Supplementation of RP choline tended to reduce blood fatty acid and triglyceride and tended to increase the revised quantitative insulin sensitivity check index. The role of RP choline supplementation to partially ameliorate the effects of HS should be further explored as a potential nutritional strategy to mitigate the negative consequences of HS on health and production.
Collapse
Affiliation(s)
- H T Holdorf
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706
| | - H M White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison 53706.
| |
Collapse
|
252
|
Breast muscle and plasma metabolomics profile of broiler chickens exposed to chronic heat stress conditions. Animal 2021; 15:100275. [PMID: 34120075 DOI: 10.1016/j.animal.2021.100275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Understanding the variations of muscle and plasma metabolites in response to high environmental temperature can provide important information on the molecular mechanisms related to body energy homeostasis in heat-stressed broiler chickens. In this study, we investigated the effect of chronic heat stress conditions on the breast muscle (Pectoralis major) and plasma metabolomics profile of broiler chickens by means of an innovative, high-throughput analytical approach such as the proton nuclear magnetic resonance (1H NMR) spectrometry. A total of 300 Ross 308 male chicks were split into two experimental groups and raised in either thermoneutral conditions for the entire rearing cycle (0-41 days) (TNT group; six replicates of 25 birds/each) or exposed to chronic heat stress conditions (30 °C for 24 h/day) from 35 to 41 days (CHS group; six replicates of 25 birds/each). At processing (41 days), plasma and breast muscle samples were obtained from 12 birds/experimental group and then subjected to 1H NMR analysis. The reduction of BW and feed intake as well as the increase in rectal temperature and heterophil: lymphocyte ratio confirmed that our experimental model was able to stimulate a thermal stress response without significantly affecting mortality. The 1H NMR analysis revealed that a total of 26 and 19 molecules, mostly related to energy and protein metabolism as well as antioxidant response, showed significantly different concentrations respectively in the breast muscle and plasma in response to the thermal challenge. In conclusion, the results obtained in this study indicated that chronic heat stress significantly modulates the breast muscle and plasma metabolome in fast-growing broiler chickens, allowing to delineate potential metabolic changes that can have important implications in terms of body energy homeostasis, growth performance and product quality.
Collapse
|
253
|
Physiological and Behavioral Mechanisms of Thermoregulation in Mammals. Animals (Basel) 2021; 11:ani11061733. [PMID: 34200650 PMCID: PMC8227286 DOI: 10.3390/ani11061733] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
This review analyzes the main anatomical structures and neural pathways that allow the generation of autonomous and behavioral mechanisms that regulate body heat in mammals. The study of the hypothalamic neuromodulation of thermoregulation offers broad areas of opportunity with practical applications that are currently being strengthened by the availability of efficacious tools like infrared thermography (IRT). These areas could include the following: understanding the effect of climate change on behavior and productivity; analyzing the effects of exercise on animals involved in sporting activities; identifying the microvascular changes that occur in response to fear, pleasure, pain, and other situations that induce stress in animals; and examining thermoregulating behaviors. This research could contribute substantially to understanding the drastic modification of environments that have severe consequences for animals, such as loss of appetite, low productivity, neonatal hypothermia, and thermal shock, among others. Current knowledge of these physiological processes and complex anatomical structures, like the nervous systems and their close relation to mechanisms of thermoregulation, is still limited. The results of studies in fields like evolutionary neuroscience of thermoregulation show that we cannot yet objectively explain even processes that on the surface seem simple, including behavioral changes and the pathways and connections that trigger mechanisms like vasodilatation and panting. In addition, there is a need to clarify the connection between emotions and thermoregulation that increases the chances of survival of some organisms. An increasingly precise understanding of thermoregulation will allow us to design and apply practical methods in fields like animal science and clinical medicine without compromising levels of animal welfare. The results obtained should not only increase the chances of survival but also improve quality of life and animal production.
Collapse
|
254
|
Fang H, Kang L, Abbas Z, Hu L, Chen Y, Tan X, Wang Y, Xu Q. Identification of key Genes and Pathways Associated With Thermal Stress in Peripheral Blood Mononuclear Cells of Holstein Dairy Cattle. Front Genet 2021; 12:662080. [PMID: 34178029 PMCID: PMC8222911 DOI: 10.3389/fgene.2021.662080] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
The objectives of the present study were to identify key genes and biological pathways associated with thermal stress in Chinese Holstein dairy cattle. Hence, we constructed a cell-model, applied various molecular biology experimental techniques and bioinformatics analysis. A total of 55 candidate genes were screened from published literature and the IPA database to examine its regulation under cold (25°C) or heat (42°C) stress in PBMCs. We identified 29 (3 up-regulated and 26 down-regulated) and 41 (15 up-regulated and 26 down-regulated) significantly differentially expressed genes (DEGs) (fold change ≥ 1.2-fold and P < 0.05) after cold and heat stress treatments, respectively. Furthermore, bioinformatics analyses confirmed that major biological processes and pathways associated with thermal stress include protein folding and refolding, protein phosphorylation, transcription factor binding, immune effector process, negative regulation of cell proliferation, autophagy, apoptosis, protein processing in endoplasmic reticulum, estrogen signaling pathway, pathways related to cancer, PI3K- Akt signaling pathway, and MAPK signaling pathway. Based on validation at the cellular and individual levels, the mRNA expression of the HIF1A gene showed upregulation during cold stress and the EIF2A, HSPA1A, HSP90AA1, and HSF1 genes showed downregulation after heat exposure. The RT-qPCR and western blot results revealed that the HIF1A after cold stress and the EIF2A, HSPA1A, HSP90AA1, and HSF1 after heat stress had consistent trend changes at the cellular transcription and translation levels, suggesting as key genes associated with thermal stress response in Holstein dairy cattle. The cellular model established in this study with PBMCs provides a suitable platform to improve our understanding of thermal stress in dairy cattle. Moreover, this study provides an opportunity to develop simultaneously both high-yielding and thermotolerant Chinese Holstein cattle through marker-assisted selection.
Collapse
Affiliation(s)
- Hao Fang
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Ling Kang
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Zaheer Abbas
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yumei Chen
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Xiao Tan
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qing Xu
- Institute of Life Sciences and Bio-Engineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
255
|
Ghiyasi S, Nabizadeh H, Jazari MD, Soltanzadeh A, Heidari H, Fardi A, Movahed E. The effect of personal protective equipment on thermal stress: An experimental study on firefighters. Work 2021; 67:141-147. [PMID: 32955479 DOI: 10.3233/wor-203259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Various parameters can affect the performance of firefighters. Thermal stress in firefighters is one of the most important harmful factors, which causes impaired performance and subsequent occupational accidents. Therefore, this study aimed to evaluate the effect of personal protective equipment (PPE) on thermal stress in firefighters. MATERIALS AND METHODS This descriptive-analytical cross-sectional study was performed on 30 firefighters. Heart rate, metabolism and temperature parameters were measured with and without using PPE in a simulated standard chamber. Then, the two indices of predicted mean vote (PMV) and predicted percentage dissatisfied (PPD) were calculated. Data analysis was performed using SPSS version 22.0. RESULTS The results showed that PPE-induced weight directly increased heart rate and indirectly led to an increase in metabolism and temperature as well as significant changes in PMV and PPD indices (p < 0.001). In addition, our results showed that the effect of thermal resistance of clothing (Clo) on PMV and PPD indices was very high (p < 0.001). CONCLUSION The findings of the study indicated that heat stress in firefighters is influenced by PPE weight and thermal resistance of clothing. Therefore, cooling vests can be used to reduce the thermal stress induced by temperature rise resulted from metabolism, PPE weight and thermal resistance of clothing. Reduced thermal stress will lead to the cooling of body temperature to acceptable levels of PMV and PPD.
Collapse
Affiliation(s)
- Samira Ghiyasi
- Department of Environmental Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Nabizadeh
- Department of Occupational Safety & Health Engineering, Faculty of Health, Larestan University of Medical Sciences, Fars, Iran
| | - Milad Derakhshan Jazari
- Department of Occupational Safety & Hygiene Engineering, School of Public Health, Shiraz University of Medical Sciences and Health Services, Shiraz, Iran
| | - Ahmad Soltanzadeh
- Department of Occupational Safety & Health Engineering, Faculty of Health, Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Hamidreza Heidari
- Department of Occupational Safety & Health Engineering, Faculty of Health, Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Ali Fardi
- Department of Occupational Safety & Health Engineering, School of Public Health, Hamedan University of Medical Sciences and Health Services, Hamedan, Iran
| | - Elham Movahed
- Department of Environmental Engineering, Science and Research Branch, Islamic Azad University, Department of HSE, Tehran Sewerage Company, Tehran, Iran
| |
Collapse
|
256
|
Dos Santos MM, Souza-Junior JBF, Dantas MRT, de Macedo Costa LL. An updated review on cattle thermoregulation: physiological responses, biophysical mechanisms, and heat stress alleviation pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30471-30485. [PMID: 33895955 DOI: 10.1007/s11356-021-14077-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Heat stress is one of the main obstacles to achieving efficient cattle production systems, and it may have numerous adverse effects on cattle. As the planet undergoes climatic changes, which is predicted to raise the earth's average temperature by 1.5 °C between 2030 and 2052, its impact may trigger several stressful factors for livestock. Among these, an increase in core body temperature would trigger physiological imbalance, consequently affecting reproduction, animal health, and dry matter intake adversely. Core body temperature increase is commonly observed and poses challenges to livestock farmers. In cattle farming, thermal stress severely affects milk production and weight gain, and can compromise food security in the coming years. This review presents an updated approach to the physiological and thermoregulatory responses of cattle under various environmental conditions. Strategies for mitigating the harmful effects of heat stress on livestock are suggested as viable alternatives for the betterment of production systems.
Collapse
Affiliation(s)
- Mateus Medeiros Dos Santos
- Laboratory of Biometeorology and Environmental Biophysics, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil
| | | | - Maiko Roberto Tavares Dantas
- Laboratory of Biometeorology and Environmental Biophysics, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil
| | | |
Collapse
|
257
|
Effects of dietary 25-hydroxyvitamin D3 on the lactation performance, blood metabolites, antioxidant and immune function in dairy cows. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
258
|
Holden KG, Gangloff EJ, Gomez-Mancillas E, Hagerty K, Bronikowski AM. Surviving winter: Physiological regulation of energy balance in a temperate ectotherm entering and exiting brumation. Gen Comp Endocrinol 2021; 307:113758. [PMID: 33771532 DOI: 10.1016/j.ygcen.2021.113758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/24/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Characterizing the physiological response to prolonged cold exposure is essential for understanding the maintenance of long-term energy balance. As part of their natural life cycle, temperate ectotherms are often exposed to seasonal variation in temperatures, including extended periods of cold well below their activity range. Relatively little is known about variation in physiological responses as vertebrate ectotherms enter and exit brumation in response to sustained cold temperatures. We tested the influence of temperature on physiology before, during, and after a simulated brumation in the checkered garter snake (Thamnophis marcianus), a widespread ectothermic vertebrate. We tested for the relative effect of immediate temperature and physiological context (entering or exiting brumation) on hormones regulating energy balance, indicators of energy availability, and resting metabolic rate (V̇O2). Plasma corticosterone, glucose, and insulin, as well as immune cell heterophil: lymphocyte ratios responded to temperature, though they did so with different thermal response curves. Thermal sensitivity varied both among and within physiological measures depending on whether animals were going into or coming out of brumation. Additionally, V̇O2 was regulated beyond simple temperature-dependence, whereby post-brumation measures were depressed relative to pre-brumation measures at the same temperature. This pattern was characterized by a change in the temperature coefficient (Q10), with a larger pre-brumation Q10, suggesting reduced thermal sensitivity of metabolic rate following a period of extended cold exposure. The integrated physiological response presented here demonstrates not only temperature dependence across physiological axes, but seasonal variation in thermal responsiveness. Our results suggest that energy allocation decisions and hormonal regulation of underlying processes promote differing levels of thermal sensitivity when entering or exiting brumation.
Collapse
Affiliation(s)
- Kaitlyn G Holden
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA.
| | - Eric J Gangloff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA; Department of Zoology, Ohio Wesleyan University, Delaware, OH 43015, USA
| | | | - Kelsi Hagerty
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
259
|
Kim B, Reddy KE, Kim HR, Kim KH, Lee Y, Kim M, Ji SY, Lee SD, Jeong JY. Effects of recovery from short-term heat stress exposure on feed intake, plasma amino acid profiles, and metabolites in growing pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:531-544. [PMID: 34189503 PMCID: PMC8204004 DOI: 10.5187/jast.2021.e53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/20/2022]
Abstract
Heat stress (HS) damages health and decreases performance variables in pigs, and if severe enough, causes mortality. However, metabolic changes under HS and recovery following HS are poorly understood. Therefore, this study was aimed to expose the essential mechanisms by which growing pigs respond to HS and the temporal pattern of plasma concentrations (PC) of amino acids (AAs) and metabolites. Crossbred male growing pigs were penned separately and allowed to adapt to thermal-neutral (TN) conditions (20°C and 80% relative humidity; TN[-1D]). On the first day, all pigs were exposed to HS for 24 h (36°C and 60% relative humidity), then to TN conditions for 5 days (TN[2D] to TN[5D]). All pigs had ad libitum access to water and 3 kg feed twice daily. Rectal temperature (RT) and feed intake (FI) were determined daily. HS pigs had higher RT (40.72°C) and lower (50%) FI than TN(-1D) pigs (p < 0.01). The PC of indispensable (threonine, valine, and methionine) and dispensable (cysteine and tyrosine) AAs were higher (p < 0.05) in HS than TN(-1D) pigs and remained increased during recovery time. Nonprotein α-aminobutyric acid and β-alanine concentrations were higher (p < 0.05) in HS than TN(-1D) pigs. The metabolite concentration of creatinine was higher (p < 0.01) under HS treatment than other treatments, but that of alanine and leucine remained increased (p < 0.05) through 5 d of recovery. In summary, some major differences were found in plasma AA profiles and metabolites between HS- and TN-condition pigs. This indicates that the HS pigs were forced to alter their metabolism, and these results provide information about mechanisms of acute HS responses relative to the recovery time.
Collapse
Affiliation(s)
- Byeonghyeon Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Kondreddy Eswar Reddy
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hye Ran Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Yookyung Lee
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minji Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang Yun Ji
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sung Dae Lee
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Jin Young Jeong
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
260
|
Mayorga EJ, Horst EA, Goetz BM, Rodríguez-Jiménez S, Abeyta MA, Al-Qaisi M, Lei S, Rhoads RP, Selsby JT, Baumgard LH. Rapamycin administration during an acute heat stress challenge in growing pigs. J Anim Sci 2021; 99:6265784. [PMID: 33950189 DOI: 10.1093/jas/skab145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Study objectives were to determine the effects of rapamycin (Rapa) on biomarkers of metabolism and inflammation during acute heat stress (HS) in growing pigs. Crossbred barrows (n = 32; 63.5 ± 7.2 kg body weight [BW]) were blocked by initial BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and Rapa (n = 8; TNRapa), 3) HS control (n = 8; HSCon), or 4) HS and Rapa (n = 8; HSRapa). Following 6 d of acclimation to individual pens, pigs were enrolled in two experimental periods (P). During P1 (10 d), pigs were fed ad libitum and housed in TN conditions (21.3 ± 0.2°C). During P2 (24 h), HSCon and HSRapa pigs were exposed to constant HS (35.5 ± 0.4°C), while TNCon and TNRapa pigs remained in TN conditions. Rapamycin (0.15 mg/kg BW) was orally administered twice daily (0700 and 1800 hours) during both P1 and P2. HS increased rectal temperature and respiration rate compared to TN treatments (1.3°C and 87 breaths/min, respectively; P < 0.01). Feed intake (FI) markedly decreased in HS relative to TN treatments (64%; P < 0.01). Additionally, pigs exposed to HS lost BW (4 kg; P < 0.01), while TN pigs gained BW (0.7 kg; P < 0.01). Despite marked changes in phenotypic parameters caused by HS, circulating glucose and blood urea nitrogen did not differ among treatments (P > 0.10). However, the insulin:FI increased in HS relative to TN treatments (P = 0.04). Plasma nonesterified fatty acids (NEFA) increased in HS relative to TN treatments; although this difference was driven by increased NEFA in HSCon compared to TN and HSRapa pigs (P < 0.01). Overall, circulating white blood cells, lymphocytes, and monocytes decreased in HS compared to TN pigs (19%, 23%, and 33%, respectively; P ≤ 0.05). However, circulating neutrophils were similar across treatments (P > 0.31). The neutrophil-to-lymphocyte ratio (NLR) was increased in HS relative to TN pigs (P = 0.02); however, a tendency for reduced NLR was observed in HSRapa compared to HSCon pigs (21%; P = 0.06). Plasma C-reactive protein tended to differ across treatments (P = 0.06) and was increased in HSRapa relative to HSCon pigs (46%; P = 0.03). Circulating haptoglobin was similar between groups. In summary, pigs exposed to HS had altered phenotypic, metabolic, and leukocyte responses; however, Rapa administration had limited impact on outcomes measured herein.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Mohmmad Al-Qaisi
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Samantha Lei
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| |
Collapse
|
261
|
Horst EA, Kvidera SK, Baumgard LH. Invited review: The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas. J Dairy Sci 2021; 104:8380-8410. [PMID: 34053763 DOI: 10.3168/jds.2021-20330] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
The progression from gestation into lactation represents the transition period, and it is accompanied by marked physiological, metabolic, and inflammatory adjustments. The entire lactation and a cow's opportunity to have an additional lactation are heavily dependent on how successfully she adapts during the periparturient period. Additionally, a disproportionate amount of health care and culling occurs early following parturition. Thus, lactation maladaptation has been a heavily researched area of dairy science for more than 50 yr. It was traditionally thought that excessive adipose tissue mobilization in large part dictated transition period success. Further, the magnitude of hypocalcemia has also been assumed to partly control whether a cow effectively navigates the first few months of lactation. The canon became that adipose tissue released nonesterified fatty acids (NEFA) and the resulting hepatic-derived ketones coupled with hypocalcemia lead to immune suppression, which is responsible for transition disorders (e.g., mastitis, metritis, retained placenta, poor fertility). In other words, the dogma evolved that these metabolites and hypocalcemia were causal to transition cow problems and that large efforts should be enlisted to prevent increased NEFA, hyperketonemia, and subclinical hypocalcemia. However, despite intensive academic and industry focus, the periparturient period remains a large hurdle to animal welfare, farm profitability, and dairy sustainability. Thus, it stands to reason that there are alternative explanations to periparturient failures. Recently, it has become firmly established that immune activation and the ipso facto inflammatory response are a normal component of transition cow biology. The origin of immune activation likely stems from the mammary gland, tissue trauma during parturition, and the gastrointestinal tract. If inflammation becomes pathological, it reduces feed intake and causes hypocalcemia. Our tenet is that immune system utilization of glucose and its induction of hypophagia are responsible for the extensive increase in NEFA and ketones, and this explains why they (and the severity of hypocalcemia) are correlated with poor health, production, and reproduction outcomes. In this review, we argue that changes in circulating NEFA, ketones, and calcium are simply reflective of either (1) normal homeorhetic adjustments that healthy, high-producing cows use to prioritize milk synthesis or (2) the consequence of immune activation and its sequelae.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
262
|
Mayorga EJ, Kvidera SK, Horst EA, Al-Qaisi M, McCarthy CS, Abeyta MA, Lei S, Elsasser TH, Kahl S, Kiros TG, Baumgard LH. Effects of dietary live yeast supplementation on growth performance and biomarkers of metabolism and inflammation in heat-stressed and nutrient-restricted pigs. Transl Anim Sci 2021; 5:txab072. [PMID: 34189415 PMCID: PMC8223600 DOI: 10.1093/tas/txab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023] Open
Abstract
Study objectives were to determine the effects of dietary live yeast (Saccharomyces cerevisiae strain CNCM I-4407; ActisafHR+; 0.25g/kg of feed; Phileo by Lesaffre, Milwaukee, WI) on growth performance and biomarkers of metabolism and inflammation in heat-stressed and nutrient-restricted pigs. Crossbred barrows (n = 96; 79 ± 1 kg body weight [BW]) were blocked by initial BW and randomly assigned to one of six dietary-environmental treatments: 1) thermoneutral (TN) and fed ad libitum the control diet (TNCon), 2) TN and fed ad libitum a yeast containing diet (TNYeast), 3) TN and pair-fed (PF) the control diet (PFCon), 4) TN and PF the yeast containing diet (PFYeast), 5) heat stress (HS) and fed ad libitum the control diet (HSCon), or 6) HS and fed ad libitum the yeast diet (HSYeast). Following 5 d of acclimation to individual pens, pigs were enrolled in two experimental periods (P). During P1 (7 d), pigs were housed in TN conditions (20 °C) and fed their respective dietary treatments ad libitum. During P2 (28 d), HSCon and HSYeast pigs were fed ad libitum and exposed to progressive cyclical HS (28–33 °C) while TN and PF pigs remained in TN conditions and were fed ad libitum or PF to their HSCon and HSYeast counterparts. Pigs exposed to HS had an overall increase in rectal temperature, skin temperature, and respiration rate compared to TN pigs (0.3 °C, 5.5 °C, and 23 breaths per minute, respectively; P < 0.01). During P2, average daily feed intake (ADFI) decreased in HS compared to TN pigs (30%; P < 0.01). Average daily gain and final BW decreased in HS relative to TN pigs (P < 0.01); however, no differences in feed efficiency (G:F) were observed between HS and TN treatments (P > 0.16). A tendency for decreased ADFI and increased G:F was observed in TNYeast relative to TNCon pigs (P < 0.10). Circulating insulin was similar between HS and TN pigs (P > 0.42). Triiodothyronine and thyroxine levels decreased in HS compared to TN treatments (~19% and 20%, respectively; P < 0.05). Plasma tumor necrosis factor-alpha (TNF-α) did not differ across treatments (P > 0.57) but tended to decrease in HSYeast relative to HSCon pigs (P = 0.09). In summary, dietary live yeast did not affect body temperature indices or growth performance and had minimal effects on biomarkers of metabolism; however, it tended to improve G:F under TN conditions and tended to reduce the proinflammatory mediator TNF-α during HS. Further research on the potential role of dietary live yeast in pigs during HS or nutrient restriction scenarios is warranted.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Sara K Kvidera
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Mohmmad Al-Qaisi
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Carrie S McCarthy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Samantha Lei
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Theodore H Elsasser
- U.S. Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, USA
| | - Stanislaw Kahl
- U.S. Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705, USA
| | | | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
263
|
Schären M, Riefke B, Slopianka M, Keck M, Gruendemann S, Wichard J, Brunner N, Klein S, Snedec T, Theinert KB, Pietsch F, Rachidi F, Köller G, Bannert E, Spilke J, Starke A. Aspects of transition cow metabolomics-Part III: Alterations in the metabolome of liver and blood throughout the transition period in cows with different liver metabotypes. J Dairy Sci 2021; 104:9245-9262. [PMID: 34024605 DOI: 10.3168/jds.2020-19056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
The liver plays a central role in the postpartum (PP) energy metabolism of the transition dairy cow; however, studies describing the liver metabolome during this period were lacking. The aim of the presented study was therefore to compare the alterations in the liver and blood metabolome of transition dairy cows. For this purpose, an on-farm trial with 80 German Holstein cows (mean lactation number: 3.9; range: 2-9) was performed, with thorough documentation of clinical traits and clinical chemistry, as well as production data. Liver biopsies and blood samples were collected at d 14 (mean: 12 d, range: 1-26 d) antepartum (AP), d 7 (7, 4-13) and 28 (28, 23-34; mean, earliest-latest) PP for targeted mass spectroscopy-based metabolomics analysis using the AbsoluteIDQ p180 kit (Biocrates Life Sciences). Statistical analysis was performed using multivariate (partial least squares discriminant analysis) as well as univariate methods (linear mixed model). Multivariate data analysis of the liver metabolome revealed 3 different metabotypes (A = medium, B = minor, C = large alterations in the liver metabolome profile between AP and PP). In metabotype C, an increase of almost all acylcarnitines, lysophosphatidylcholines (lysoPC), sphingomyelins, and some phosphatidylcholines (PC, mainly at 7 d PP) was observed after calving. In contrast to metabotype C, the clinical data of the metabotype B animals indicated a higher PP lipomobilization and occurrence of transition cow diseases. The liver metabolome profile of these animals most likely mirrors a failure of adaptation to the PP state. This strong occurrence of metabotypes was much less pronounced in the blood metabolome. Additionally, differences in metabolic patterns were observed across the transition period when comparing liver and blood matrices (e.g., in different biogenic amines, acylcarnitines and sphingolipids). In summary, the blood samples at 7 d PP showed lower acylcarnitines and PC, with minor alterations and a heterogeneous pattern in AA, biogenic amines, and sphingomyelins compared with 14 d AP. In contrast to 7 d PP, the blood samples at 28 PP revealed an increase in several AA, lysoPC, PC, and sphingomyelins in comparison to the AP state, irrespective of the metabotype. In the liver biopsies metabotype B differed from metabotype C animals ante partum by following metabolites: higher α aminoadipic acid, lower AA, serotonin, taurine, and symmetric dimethylarginine levels, lower or higher concentrations of certain acylcarnitines (higher: C2, C3, C5, C4:1; lower: C12:1, C14:1-OH, C16:2), and lower lysoPC (a C16:0, C18:0, C20:3, C20:4) and hexose levels. In blood samples, fewer differences were observed, with lower serotonin, acylcarnitine C16:2, lysoPC (a C16:0, C17:0, C18:0 and C18:1), PC aa C38:0, and PC ae C42:2. The results show that the use of only the blood metabolome to assess liver metabolism may be hampered by the fact that blood profiles are influenced by the metabolism of many organs, and metabolomics analysis from liver biopsies is a more suitable method to identify distinct metabotypes. Future studies should investigate the stability and reproducibility of the metabotype and phenotypes observed, and the possible predictive value of the metabolites already differing AP between metabotype B and C.
Collapse
Affiliation(s)
- M Schären
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany.
| | - B Riefke
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - M Slopianka
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - M Keck
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - S Gruendemann
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - J Wichard
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - N Brunner
- Bayer Animal Health GmbH, 51373 Leverkusen, Germany
| | - S Klein
- Bayer Animal Health GmbH, 51373 Leverkusen, Germany
| | - T Snedec
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - K B Theinert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - F Pietsch
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - F Rachidi
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - G Köller
- Laboratory of Large Animal Clinics, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - E Bannert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - J Spilke
- Biometrics and Informatics in Agriculture Group, Institute of Agricultural and Nutritional Sciences, Martin-Luther University, Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 4, 06108 Halle (Saale), Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| |
Collapse
|
264
|
Yasoob TB, Yu D, Khalid AR, Zhang Z, Zhu X, Saad HM, Hang S. Oral administration of Moringa oleifera leaf powder relieves oxidative stress, modulates mucosal immune response and cecal microbiota after exposure to heat stress in New Zealand White rabbits. J Anim Sci Biotechnol 2021; 12:66. [PMID: 33975652 PMCID: PMC8114525 DOI: 10.1186/s40104-021-00586-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Background Heat stress (HS) disrupts the gut barrier allowing the uptake of lipopolysaccharide (LPS) and leads to an inflammatory response and changes in gut microbiota composition. Moringa oleifera leaf powder (MOLP) has been proposed to combat HS, yet its alleviate role is currently under investigation. The current study investigated the effects of chronic HS and MOLP supplementation on changes in redox status and immune response of cecal mucosa along with alteration in cecal microbiota. Methods A total of 21 young New Zealand White (NZW) rabbits (male) about 32 weeks old (mean body weight of 3318 ± 171 g) reared on a commercial pelleted diet were employed; divided into three groups (n = 7): control (CON, 25 °C), heat stress (HS, 35 °C for 7 h daily), and HS supplemented orally with MOLP (HSM, 35 °C) at 200 mg/kg body weight per day for 4 weeks. Results The results demonstrated that MOLP supplementation increased organ index of cecal tissue compared with the HS group (P > 0.05). Levels of malonaldehyde (MDA) and activity of superoxide dismutase (SOD) as well as lactate dehydrogenase (LDH) were reduced in the cecal mucosa of the HSM group compared with the HS group. MOLP downregulated the contents of cecal mucosa LPS, several inflammatory markers (TNF-α/IL-1α/IL-1β), and myeloperoxidase (MPO) in the HSM group (P < 0.05). Secretory immunoglobulin A (SIgA) was increased in the HSM group compared with the HS group (P < 0.05). The transcriptome of cecal mucosa showed that MOLP reduced gene expression relative to several immune factors, including IL-10, IFNG, and RLA, whereas both HS and MOLP increased the gene expression of fat digestion and absorption pathway, including APOA1, FABP1, FABP2, MTTP, and LOC100344166, compared to the CON group (P < 0.001). At the phylum level, the relative abundance of Proteobacteria was increased by HS, while Actinobacteria was significantly increased by HSM compared to other groups (P < 0.05). At genus level, Papillibacter was higher in abundance in HSM groups compared to CON and HS groups (P < 0.05). Higher butyrate concentrations were observed in the HSM group than HS and CON groups (P < 0.05). Conclusion In conclusion, HS in growing rabbits resulted in alteration of cecal microbiota at phyla level as well as increased oxidative stress and expression of mucosal inflammatory genes. Whereas, oral MOLP supplementation elevated the relative weight of cecum, affected their immunological and cecal micro-ecosystem function by improving antioxidant status and down-regulating mucosal tissue inflammatory response. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00586-y.
Collapse
Affiliation(s)
- Talat Bilal Yasoob
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Defu Yu
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Abdur Rauf Khalid
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Livestock and Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Zhen Zhang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaofeng Zhu
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Heba M Saad
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suqin Hang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China. .,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
265
|
Early Heat Exposure Effects on Proteomic Changes of the Broiler Liver under Acute Heat Stress. Animals (Basel) 2021; 11:ani11051338. [PMID: 34066761 PMCID: PMC8151403 DOI: 10.3390/ani11051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Early heat exposure have been studied in the poultry industry as a method of reducing heat stress (HS) on poultry. However, the results of each study are inconsistent, and it has not been confirmed which mechanisms reduce HS by early heat exposure. Therefore, we tried to confirm the relaxation mechanism through proteomic analysis after applying early and acute heat exposure to broilers. The broilers were divided into three treatments, followed by CC (control group), CH (acute HS at the 35th day), and HH (early heat exposure at the fifth day and acute HS at the 35th day. Liver samples were collected and analyzed for proteomics and functional analysis. Proteins related to various functions, such as carbohydrate metabolism, fatty acid metabolism, energy metabolism, and the oxidation–reduction process, which were dramatically changed by acute HS, and were alleviated similar to the control group by early heat exposure. Through these results, the mechanism by which early heat exposure induces homeostasis during acute HS, and the possibility of the early heat exposure as a method of reducing HS were confirmed. Abstract As environmental temperatures continue to rise, heat stress (HS) is having a negative effect on the livestock industry. In order to solve this problem, many studies have been conducted to reduce HS. Among them, early heat exposure has been suggested as a method for reducing HS in poultry. In this study, we analyzed proteomics and tried to identify the metabolic mechanisms of early heat exposure on acute HS. A total of 48 chicks were separated into three groups: CC (control groups raised at optimum temperature), CH (raised with CC but exposed acute HS at the 35th day), and HH (raised with CC but exposed early heat at the fifth day and acute HS at the 35th day). After the whole period, liver samples were collected for proteomic analysis. A total of 97 differentially expressed proteins were identified by acute HS. Of these, 62 proteins recovered their expression levels by early heat exposure. We used these 62 proteins to determine the protective effects of early heat exposure. Of the various protein-related terms, we focused on the oxidative phosphorylation, fatty acid metabolism, carbohydrate metabolism, and energy production metabolism. Our findings suggest the possibility of early heat exposure effects in acute HS that may be useful in breeding or management techniques for producing broilers with high heat resistance.
Collapse
|
266
|
Schmitz-Esser S. The Rumen Epithelial Microbiota: Possible Gatekeepers of the Rumen Epithelium and Its Potential Contributions to Epithelial Barrier Function and Animal Health and Performance. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ruminants are characterized by their unique mode of digesting cellulose-rich plant material in their forestomach, the rumen, which is densely populated by diverse microorganisms that are crucial for the breakdown of plant material. Among ruminal microbial communities, the microorganisms in the rumen fluid or attached to feed particles have attracted considerable research interest. However, comparatively less is known about the microorganisms attached to the rumen epithelium. Generally, the tissue lining the gastrointestinal tract serves the dual role of absorbing nutrients while preventing the infiltration of unwanted compounds and molecules as well as microorganisms. The rumen epithelium fulfills critical physiological functions for the ruminant host in energy absorption, metabolism, and nutrient transport. Essential host metabolites, such as short-chain fatty acids, ammonia, urea, and minerals, are exchanged across the rumen wall, thereby exposing the rumen epithelial microbiota to these nutrients. The integrity of the gastrointestinal barrier is central to animal health and productivity. The integrity of the rumen epithelium can be compromised by high ruminal microbial fermentation activity resulting in decreased rumen pH or by stress conditions such as heat stress or feed restriction. It is important to keep in mind that feeding strategies in cattle have changed over the last decades in favor of energy- and nutrient-rich concentrates instead of fiber-rich forages. These dietary shifts support high milk yields and growth rates but raised concerns regarding a possibly compromised rumen function. This paper will provide an overview of the composition of rumen epithelial microbial communities under physiological and disease conditions and will provide insights into the knowledge about the function and in situ activity of rumen epithelial microorganisms and their relevance for animal health and production. Given that an impaired intestinal barrier will negatively affect economically significant phenotypes, a better understanding of rumen wall microbiota is urgently needed.
Collapse
|
267
|
Protein and Amino Acid Metabolism in Poultry during and after Heat Stress: A Review. Animals (Basel) 2021; 11:ani11041167. [PMID: 33921616 PMCID: PMC8074156 DOI: 10.3390/ani11041167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
This review examined the influence of environmental heat stress, a concern facing modern broiler producers, on protein metabolism and broiler performance, as well as the physiological mechanisms that activate and control or minimize the detrimental impacts of stress. In addition, available scientific papers that focused on amino acids (AA) digestibility under stress conditions were analyzed. Furthermore, AA supplementation, a good strategy to enhance broiler thermotolerance, amelioration, or stress control, by keeping stress at optimal levels rather than its elimination, plays an important role in the success of poultry breeding. Poultry maintain homeothermy, and their response to heat stress is mainly due to elevated ambient temperature and the failure of effective heat loss, which causes a considerable negative economic impact on the poultry industry worldwide. Reduced feed intake, typically observed during heat stress, was the primary driver for meat production loss. However, accumulating evidence indicates that heat stress influences poultry metabolism and endocrine profiles independently of reduced feed intake. In conclusion, high ambient temperatures significantly reduced dietary AA intake, which in turn reduced protein deposition and growth in broilers. Further studies are required to determine the quantity of the AA needed in warm and hot climates and to introduce genetic tools for animal breeding associated with the heat stress in chickens.
Collapse
|
268
|
Adverse Effects of Heat Stress on the Intestinal Integrity and Function of Pigs and the Mitigation Capacity of Dietary Antioxidants: A Review. Animals (Basel) 2021; 11:ani11041135. [PMID: 33921090 PMCID: PMC8071411 DOI: 10.3390/ani11041135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) significantly affects the performance of pigs by its induced stressors such as inflammation, hypoxia and oxidative stress (OS), which mightily strain the intestinal integrity and function of pigs. As heat stress progresses, several mechanisms in the intestinal epithelium involved in the absorption of nutrients and its protective functions are altered. Changes in these mechanisms are mainly driven by cellular oxidative stress, which promotes disruption of intestinal homeostasis, leading to intestinal permeability, emphasizing intestinal histology and morphology with little possibility of recovering even after exposure to HS. Identification and understanding of these altered mechanisms are crucial for providing appropriate intervention strategies. Therefore, it is this papers' objective to review the important components for intestinal integrity that are negatively affected by HS and its induced stressors. With due consideration to the amelioration of such effects through nutritional intervention, this work will also look into the capability of dietary antioxidants in mitigating such adverse effects and maintaining the intestine's integrity and function upon the pigs' exposure to high environmental temperature.
Collapse
|
269
|
Sejian V, Silpa MV, Reshma Nair MR, Devaraj C, Krishnan G, Bagath M, Chauhan SS, Suganthi RU, Fonseca VFC, König S, Gaughan JB, Dunshea FR, Bhatta R. Heat Stress and Goat Welfare: Adaptation and Production Considerations. Animals (Basel) 2021; 11:ani11041021. [PMID: 33916619 PMCID: PMC8065958 DOI: 10.3390/ani11041021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
This review attempted to collate and synthesize information on goat welfare and production constraints during heat stress exposure. Among the farm animals, goats arguably are considered the best-suited animals to survive in tropical climates. Heat stress was found to negatively influence growth, milk and meat production and compromised the immune response, thereby significantly reducing goats' welfare under extensive conditions and transportation. Although considered extremely adapted to tropical climates, their production can be compromised to cope with heat stress. Therefore, information on goat adaptation and production performance during heat exposure could help assess their welfare. Such information would be valuable as the farming communities are often struggling in their efforts to assess animal welfare, especially in tropical regions. Broadly three aspects must be considered to ensure appropriate welfare in goats, and these include (i) housing and environment; (ii) breeding and genetics and (iii) handling and transport. Apart from these, there are a few other negative welfare factors in goat rearing, which differ across the production system being followed. Such negative practices are predominant in extensive systems and include nutritional stress, limited supply of good quality water, climatic extremes, parasitic infestation and lameness, culminating in low production, reproduction and high mortality rates. Broadly two types of methodologies are available to assess welfare in goats in these systems: (i) animal-based measures include behavioral measurements, health and production records and disease symptoms; (ii) resources based and management-based measures include stocking density, manpower, housing conditions and health plans. Goat welfare could be assessed based on several indicators covering behavioral, physical, physiological and productive responses. The important indicators of goat welfare include agonistic behavior, vocalization, skin temperature, body condition score (BCS), hair coat conditions, rectal temperature, respiration rate, heart rate, sweating, reduced growth, reduced milk production and reduced reproductive efficiency. There are also different approaches available by which the welfare of goats could be assessed, such as naturalistic, functional and subjective approaches. Thus, assessing welfare in goats at every production stage is a prerequisite for ensuring appropriate production in this all-important species to guarantee optimum returns to the marginal and subsistence farmers.
Collapse
Affiliation(s)
- Veerasamy Sejian
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
- Correspondence:
| | - Mullakkalparambil V. Silpa
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, 35390 Gießen, Germany;
| | - Mini R. Reshma Nair
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
- Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara 680656, India
| | - Chinnasamy Devaraj
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
| | - Govindan Krishnan
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
| | - Madiajagan Bagath
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
| | - Surinder S. Chauhan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (S.S.C.); (F.R.D.)
| | - Rajendran U. Suganthi
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
| | - Vinicius F. C. Fonseca
- Innovation Group of Biometeorology and Animal Welfare, Animal Science Department, Universidade Federal da Paraíba, Areia 58397-000, Brazil;
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, 35390 Gießen, Germany;
| | - John B. Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (S.S.C.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Raghavendra Bhatta
- Centre for Climate Resilient Animal Adaptation Studies, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore 560030, India; (M.V.S.); (M.R.R.N.); (C.D.); (G.K.); (M.B.); (R.U.S.); (R.B.)
| |
Collapse
|
270
|
Kim B, Kim HR, Kim KH, Ji SY, Kim M, Lee Y, Lee SD, Jeong JY. Effects of acute heat stress on salivary metabolites in growing pigs: an analysis using nuclear magnetic resonance-based metabolomics profiling. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:319-331. [PMID: 33987607 PMCID: PMC8071736 DOI: 10.5187/jast.2021.e23] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Heat stress (HS) causes adverse impacts on pig production and health. A potential
biomarker of HS is required to predict its occurrence and thereby better manage
pigs under HS. Information about the saliva metabolome in heat-stressed pigs is
limited. Therefore, this study was aimed to investigate the effects of acute HS
on the saliva metabolome and identify metabolites that could be used as
potential biomarkers. Growing pigs (n = 6, 3 boars, and 3 gilts) were raised in
a thermal neutral (TN; 25°C) environment for a 5-d adaptation period
(CON). After adaptation, the pigs were first exposed to HS (30°C; HS30)
and then exposed to higher HS (33°C; HS33) for 24 h. Saliva was collected
after adaptation, first HS, and second HS, respectively, for metabolomic
analysis using 1H-nuclear magnetic resonance spectroscopy. Four
metabolites had significantly variable importance in the projection (VIP
> 1; p < 0.05) different levels in TN compared to
HS groups from all genders (boars and gilts). However, sex-specific
characteristics affected metabolites (glutamate and leucine) by showing the
opposite results, indicating that HS was less severe in females than in males. A
decrease in creatine levels in males and an increase in creatine phosphate
levels in females would have contributed to a protective effect from protein
degradation by muscle damage. The results showed that HS led to an alteration in
metabolites related to energy and protein. Protection from muscle damage may be
attributed to the alteration in protein-related metabolites. However,
energy-related metabolites showed opposing results according to sex-specific
characteristics, such as sex hormone levels and subcutaneous fat layer. This
study had shown that saliva samples could be used as a noninvasive method to
evaluate heat-stressed pigs. And the results in this study could be contributed
to the development of a diagnostic tool as a noninvasive biomarker for managing
heat-stressed pigs.
Collapse
Affiliation(s)
- Byeonghyeon Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hye Ran Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ki Hyun Kim
- Animal Welfare Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang Yun Ji
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minji Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Yookyung Lee
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sung Dae Lee
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Jin Young Jeong
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
271
|
Patra AK, Kar I. Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:211-247. [PMID: 33987600 PMCID: PMC8071753 DOI: 10.5187/jast.2021.e48] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
Livestock species experience several stresses, particularly weaning,
transportation, overproduction, crowding, temperature, and diseases in their
life. Heat stress (HS) is one of the most stressors, which is encountered in
livestock production systems throughout the world, especially in the tropical
regions and is likely to be intensified due to global rise in environmental
temperature. The gut has emerged as one of the major target organs affected by
HS. The alpha- and beta-diversity of gut microbiota composition are altered due
to heat exposure to animals with greater colonization of pathogenic microbiota
groups. HS also induces several changes in the gut including damages of
microstructures of the mucosal epithelia, increased oxidative insults, reduced
immunity, and increased permeability of the gut to toxins and pathogens.
Vulnerability of the intestinal barrier integrity leads to invasion of
pathogenic microbes and translocation of antigens to the blood circulations,
which ultimately may cause systematic inflammations and immune responses.
Moreover, digestion of nutrients in the guts may be impaired due to reduced
enzymatic activity in the digesta, reduced surface areas for absorption and
injury to the mucosal structure and altered expressions of the nutrient
transport proteins and genes. The systematic hormonal changes due to HS along
with alterations in immune and inflammatory responses often cause reduced feed
intake and production performance in livestock and poultry. The altered
microbiome likely orchestrates to the hosts for various relevant biological
phenomena occurring in the body, but the exact mechanisms how functional
communications occur between the microbiota and HS responses are yet to be
elucidated. This review aims to discuss the effects of HS on microbiota
composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity,
and barrier integrity in the gut, and production performance of farm animals
along with the dietary ameliorations of HS. Also, this review attempts to
explain the mechanisms how these biological responses are affected by HS.
Collapse
Affiliation(s)
- Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal 700037, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal 700037, India
| |
Collapse
|
272
|
Abdel-Moneim AME, Shehata AM, Khidr RE, Paswan VK, Ibrahim NS, El-Ghoul AA, Aldhumri SA, Gabr SA, Mesalam NM, Elbaz AM, Elsayed MA, Wakwak MM, Ebeid TA. Nutritional manipulation to combat heat stress in poultry - A comprehensive review. J Therm Biol 2021; 98:102915. [PMID: 34016342 DOI: 10.1016/j.jtherbio.2021.102915] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Global warming and climate change adversely affect livestock and poultry production sectors under tropical and subtropical conditions. Heat stress is amongst the most significant stressors influencing poultry productivity in hot climate regions, causing substantial economic losses in poultry industry. These economic losses are speculated to increase in the coming years with the rise of global temperature. Moreover, modern poultry strains are more susceptible to high ambient temperature. Heat stress has negative effects on physiological response, growth performance and laying performance, which appeared in the form of reducing feed consumption, body weight gain, egg production, feed efficiency, meat quality, egg quality and immune response. Numerous practical procedures were used to ameliorate the negative impacts of increased temperature; among them the dietary manipulation, which gains a great concern in different regions around the world. These nutritional manipulations are feed additives (natural antioxidants, minerals, electrolytes, phytobiotics, probiotics, fat, and protein), feed restriction, feed form, drinking cold water and others. However, in the large scale of poultry industry, only a few of these strategies are commonly used. The current review article deliberates the different practical applications of useful nutritional manipulations to mitigate the heat load in poultry. The documented information will be useful to poultry producers to improve the general health status and productivity of heat-stressed birds via enhancing stress tolerance, oxidative status and immune response, and thereby provide recommendations to minimize production losses due to heat stress in particular under the growing global warming crisis.
Collapse
Affiliation(s)
- Abdel-Moneim Eid Abdel-Moneim
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt; Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | - Vinod K Paswan
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nashaat S Ibrahim
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | - Abdelkawy A El-Ghoul
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Sami Ali Aldhumri
- Department of Biology, Khurmah University College, Taif University, Saudi Arabia
| | - Salah A Gabr
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt; Department of Biology, Khurmah University College, Taif University, Saudi Arabia
| | - Noura M Mesalam
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | | | - Mohamed A Elsayed
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | - Magda M Wakwak
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt
| | - Tarek A Ebeid
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
273
|
Guo Z, Gao S, Ouyang J, Ma L, Bu D. Impacts of Heat Stress-Induced Oxidative Stress on the Milk Protein Biosynthesis of Dairy Cows. Animals (Basel) 2021; 11:726. [PMID: 33800015 PMCID: PMC8001837 DOI: 10.3390/ani11030726] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Heat stress (HS) is one of the most important factors posing harm to the economic wellbeing of dairy industries, as it reduces milk yield as well as milk protein content. Recent studies suggest that HS participates in the induction of tissue oxidative stress (OS), as elevated levels of reactive oxygen species (ROS) and mitochondrial dysfunction were observed in dairy cows exposed to hot conditions. The OS induced by HS likely contributes to the reduction in milk protein content, since insulin resistance and apoptosis are promoted by OS and are negatively associated with the synthesis of milk proteins. The apoptosis in the mammary gland directly decreases the amount of mammary epithelial cells, while the insulin resistance affects the regulation of insulin on mTOR pathways. To alleviate OS damages, strategies including antioxidants supplementation have been adopted, but caution needs to be applied as an inappropriate supplement with antioxidants can be harmful. Furthermore, the complete mechanisms by which HS induces OS and OS influences milk protein synthesis are still unclear and further investigation is needed.
Collapse
Affiliation(s)
- Zitai Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (S.G.)
| | - Shengtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (S.G.)
| | - Jialiang Ouyang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (S.G.)
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (S.G.)
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing 100193, China
| |
Collapse
|
274
|
Jo JH, Ghassemi Nejad J, Peng DQ, Kim HR, Kim SH, Lee HG. Characterization of Short-Term Heat Stress in Holstein Dairy Cows Using Altered Indicators of Metabolomics, Blood Parameters, Milk MicroRNA-216 and Characteristics. Animals (Basel) 2021; 11:ani11030722. [PMID: 33800868 PMCID: PMC8000480 DOI: 10.3390/ani11030722] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In this study, we characterize the influence of short-term (4 days) heat stress on Holstein cows during early lactation. The use of indicators, such as production performance, physiological variables, blood parameters, micro-RNA expression, and metabolomes, in heat-stressed cows during early lactation—which is a high-stress phase—may provide insights into how to deal with the level of damage to dairy cows, through appropriate nutritional and management strategies. We identify that short-term heat stress has a negative effect, to some extent, on feed and water intake, rectal temperature, heart rate, blood hematology and metabolites, milk characteristics, miRNA expression in milk, and metabolomics in blood. Abstract This study aims to characterize the influence of short-term heat stress (HS; 4 day) in early lactating Holstein dairy cows, in terms of triggering blood metabolomics and parameters, milk yield and composition, and milk microRNA expression. Eight cows (milk yield = 30 ± 1.5 kg/day, parity = 1.09 ± 0.05) were homogeneously housed in environmentally controlled chambers, assigned into two groups with respect to the temperature humidity index (THI) at two distinct levels: approximately ~71 (low-temperature, low-humidity; LTLH) and ~86 (high-temperature, high-humidity; HTHH). Average feed intake (FI) dropped about 10 kg in the HTHH group, compared with the LTLH group (p = 0.001), whereas water intake was only numerically higher (p = 0.183) in the HTHH group than in the LTLH group. Physiological parameters, including rectal temperature (p = 0.001) and heart rate (p = 0.038), were significantly higher in the HTHH group than in the LTLH group. Plasma cortisol and haptoglobin were higher (p < 0.05) in the HTHH group, compared to the LTLH group. Milk yield, milk fat yield, 3.5% fat-corrected milk (FCM), and energy-corrected milk (ECM) were lower (p < 0.05) in the HTHH group than in the LTLH group. Higher relative expression of milk miRNA-216 was observed in the HTHH group (p < 0.05). Valine, isoleucine, methionine, phenylalanine, tyrosine, tryptophan, lactic acid, 3-phenylpropionic acid, 1,5-anhydro-D-sorbitol, myo-inositol, and urea were decreased (p < 0.05). These results suggest that early lactating cows are more vulnerable to short-term (4 day) high THI levels—that is, HTHH conditions—compared with LTLH, considering the enormous negative effects observed in measured blood metabolomics and parameters, milk yield and compositions, and milk miRNA-216 expression.
Collapse
Affiliation(s)
- Jang-Hoon Jo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea; (J.-H.J.); (J.G.N.); (D.-Q.P.)
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea; (J.-H.J.); (J.G.N.); (D.-Q.P.)
| | - Dong-Qiao Peng
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea; (J.-H.J.); (J.G.N.); (D.-Q.P.)
| | - Hye-Ran Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (H.-R.K.); (S.-H.K.)
| | - Sang-Ho Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (H.-R.K.); (S.-H.K.)
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea; (J.-H.J.); (J.G.N.); (D.-Q.P.)
- Correspondence: ; Tel.: +82-02-450-0523
| |
Collapse
|
275
|
Rudolph TE, Mayorga EJ, Roths M, Rhoads RP, Baumgard LH, Selsby JT. The effect of Mitoquinol (MitoQ) on heat stressed skeletal muscle from pigs, and a potential confounding effect of biological sex. J Therm Biol 2021; 97:102900. [PMID: 33863453 DOI: 10.1016/j.jtherbio.2021.102900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 01/23/2023]
Abstract
Heat stress (HS) poses a major threat to human health and agricultural production. Oxidative stress and mitochondrial dysfunction appear to play key roles in muscle injury caused by HS. We hypothesized that mitoquinol (MitoQ), would alleviate oxidative stress and cellular dysfunction in skeletal muscle during HS. To address this, crossbred barrows (male pigs) were treated with placebo or MitoQ (40 mg/d) and were then exposed to thermoneutral (TN; 20 °C) or HS (35 °C) conditions for 24 h. Pigs were euthanized following the environmental challenge and the red portion of the semitendinosus (STR) was collected for analysis. Unexpectedly, malondialdehyde concentration, an oxidative stress marker, was similar between environmental and supplement treatments. Heat stress decreased LC3A/B-I (p < 0.05) and increased the ratio of LC3A/B-II/I (p < 0.05), while p62 was similar among groups suggesting increased degradation of autophagosomes during HS. These outcomes were in disagreement with our previous results in muscle from gilts (female pigs). To probe the impact of biological sex on HS-mediated injury in skeletal muscle, we compared STR from these barrows to archived STR from gilts subjected to a similar environmental intervention. We confirmed our previous findings of HS-mediated dysfunction in muscle from gilts but not barrows. These data also raise the possibility that muscle from gilts is more susceptible to environment-induced hyperthermia than muscle from barrows.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
276
|
Soares S, Reis R, Dias A. Fatores de influência sobre o desempenho reprodutivo em vacas leiteiras. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-11689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O objetivo deste estudo foi avaliar os efeitos das estações do parto e da inseminação, da retenção de placenta, da natimortalidade e da ordem de parto sobre o desempenho reprodutivo de vacas leiteiras. Utilizou-se a regressão logística, em que as variáveis dependentes foram concepção à primeira inseminação pós-parto e percentual de vacas prenhes no rebanho aos 100, 150 ou 200 DEL e as variáveis independentes foram a estação do parto e a estação da inseminação, a retenção de placenta, a natimortalidade e a ordem de parto. A estação do parto e a estação da inseminação influenciaram o desempenho reprodutivo, reduzindo a fertilidade das vacas nas estações quentes do ano. O atraso na primeira inseminação aumentou a concepção na primeira inseminação, mas reduziu o percentual de vacas prenhes ao longo da lactação. O desempenho reprodutivo da vaca leiteira foi afetado por vários fatores, relacionados à vaca, ao ambiente e ao manejo a ela imposto.
Collapse
Affiliation(s)
| | - R.B. Reis
- Universidade Federal de Minas Gerais, Brazil
| | | |
Collapse
|
277
|
Sharma S, Chaudhary P, Sandhir R, Bharadwaj A, Gupta RK, Khatri R, Bajaj AC, Baburaj TP, Kumar S, Pal MS, Reddy PK, Kumar B. Heat-induced endoplasmic reticulum stress in soleus and gastrocnemius muscles and differential response to UPR pathway in rats. Cell Stress Chaperones 2021; 26:323-339. [PMID: 33210173 PMCID: PMC7925797 DOI: 10.1007/s12192-020-01178-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the differential response of oxidative (soleus) and glycolytic (gastrocnemius) muscles to heat-induced endoplasmic reticulum (ER) stress. It was hypothesized that due to compositional and functional differences, both muscles respond differently to acute heat stress. To address this, male Sprague Dawley rats (12/group) were subjected to thermoneutral (25 °C) or heat stress (42 °C) conditions for 1 h. Soleus and gastrocnemius muscles were removed for analysis post-exposure. A significant increase in body temperature and free radical generation was observed in both the muscles following heat exposure. This further caused a significant increase in protein carbonyl content, AOPP, and lipid peroxidation in heat-stressed muscles. These changes were more pronounced in heat-stressed soleus compared to the gastrocnemius muscle. Accumulation of unfolded, denatured proteins results in ER stress, causing activation of unfolded protein response (UPR) pathway. The expressions of UPR transducers were significantly higher in soleus as compared to the gastrocnemius muscle. A significant elevation in resting intracellular calcium ion was also observed in heat-stressed soleus muscle. Overloading of cells with misfolded proteins in soleus muscle activated ER-induced apoptosis as indicated by significant upregulation of C/EBP homologous protein and Caspase12. The study provides a detailed mechanistic representation of the differential response of muscles toward UPR under heat stress. Data suggests that soleus majorly being an oxidative muscle is more prone to heat stress-induced insult indicated by enhanced apoptosis. This study may aid in devising mitigation strategies to improve muscle performance under heat stress.
Collapse
Affiliation(s)
- Shivani Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
- Department of Biochemistry, Panjab University, sector 25, Chandigarh, India
| | - Pooja Chaudhary
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India.
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, sector 25, Chandigarh, India
| | - Abhishek Bharadwaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Rajinder K Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Rahul Khatri
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Amir Chand Bajaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - T P Baburaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Sachin Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - M S Pal
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Prasanna K Reddy
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, 110054, India
| |
Collapse
|
278
|
Yin C, Tang S, Liu L, Cao A, Xie J, Zhang H. Effects of Bile Acids on Growth Performance and Lipid Metabolism during Chronic Heat Stress in Broiler Chickens. Animals (Basel) 2021; 11:ani11030630. [PMID: 33673472 PMCID: PMC7997420 DOI: 10.3390/ani11030630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The negative impacts of heat stress (HS) on growth performance and lipid metabolism have been reported, but there are still no effective nutritional strategies to alleviate heat stress. Bile acids are new for their antioxidative properties and regulatory effect on lipid metabolism. This study was carried out to evaluate the growth performance and lipid metabolism in chickens under heat stress when fed with bile acid supplements in their diet. The results showed that mild heat stress (32 °C) induced hepatic lipogenic gene (hepatic SREBP-1c) expressions and lipid deposition, without obvious tissue damage in broilers. Dietary supplementation of bile acid could decrease hepatic lipid deposition without affecting endogenous bile acid biosynthesis. Therefore, bile acid supplements can benefit broiler chickens during high ambient temperatures, serving as a new nutritional strategy against heat stress. Abstract This study aimed to investigate whether dietary bile acid (BA) supplements can improve growth performance and lipid metabolism in heat-stressed broiler chickens. A total of 288 Arbor Acres broilers were blocked by BW and then randomly allocated into 4 treatments at 21 days of age. Birds reared under 32 °C had a higher cloacal temperature (p = 0.01), faster respiratory rate (p < 0.001), and a greatly reduced average daily feed intake (ADFI, p = 0.016), average daily gain (ADG, p = 0.006), final body weight (FBW, p = 0.008), and feed conversion rate (FCR, p = 0.004). In heat stress (HS) birds, the breast muscle rate (p = 0.006) and pH 24 h postmortem (p = 0.065) were lower, and the shear force was higher (p = 0.027). Dietary BA supplements tended to increase the breast muscle rate (p = 0.075) without affecting the growth performance and serum lipids (p > 0.05). Serum total bile acid (TBA) was roughly duplicated after BA supplements (p = 0.001). In the liver, total cholesterol was lower (p = 0.046), and triglycerides were higher (p = 0.04) in the HS birds, whereas the expression of SREBP-1c showed an increasing trend (p = 0.06). In contrast, dietary BA decreased triglycerides and the expressions of hepatic SREBP-1c and FAS in the liver (p < 0.05). In summary, mild HS causes hepatic lipid accumulation without obvious tissue damages, whereas BA has positive effects on relieving abnormal lipid metabolism, indicating that BA as a nutritional strategy has a certain potential in alleviating HS.
Collapse
Affiliation(s)
- Chang Yin
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Shanlong Tang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Lei Liu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| | - Aizhi Cao
- Shandong Longchang Animal Health Care Co., Ltd., Jinan 251100, China;
| | - Jingjing Xie
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
- Correspondence:
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (S.T.); (L.L.); (H.Z.)
| |
Collapse
|
279
|
Endocrine Signals Altered by Heat Stress Impact Dairy Cow Mammary Cellular Processes at Different Stages of the Dry Period. Animals (Basel) 2021; 11:ani11020563. [PMID: 33669991 PMCID: PMC7930950 DOI: 10.3390/ani11020563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Late-gestation heat stress increases blood prolactin and decreases oestrogen concentrations in dry cows. These hormonal alterations may disturb mammary gland remodelling during the dry period, thereby being potentially responsible for the observed production impairments during the subsequent lactation. This project aimed to better understand the molecular mechanisms underlying subsequent impairments in mammary performance after dry period heat stress. For this, we studied the expression of genes encompassing prolactin and oestrogen pathways and key cellular process pathways under different thermal environments and in vitro hormonal milieus. The results of this study revealed that late-gestation heat stress impacted the expression of genes in the mammary gland involved in key cellular processes occurring during the dry period. Furthermore, our results indicated that these modifications are in part modulated by alterations of oestrogen and prolactin signalling. Abstract Hormonal alterations occurring under late gestation heat stress may disturb mammary gland remodelling, resulting in a reduced milk yield during the subsequent lactation. We investigated the effects of an altered endocrine environment on mammary gene expression at different stages of the dry period. Mammary gland biopsies from in vivo-cooled (CL) or heat-stressed (HT) cows were collected at d 3 and 35 relative to dry-off and divided into explants. Explants were incubated in vitro for 24 h in one of three media: Basal: no prolactin or estrogen; CL-mimic: Basal + low prolactin + high 17β-estradiol, or HT-mimic: Basal + high prolactin + low 17β-estradiol. Real time qPCR was used to quantify gene expression. We established that late-gestation heat stress changes the expression of prolactin and oestrogen receptors, downregulates genes involved in apoptosis, autophagy and proliferation at d 3 and upregulates genes related to those cellular processes at d 35. Moreover, compared with in vivo treatments, we showed that the expression of fewer genes was impacted by in vitro treatments which aimed to mimic the hormonal response of cows exposed to a different environment. Further research will continue to uncover the mechanisms behind the production impairments caused by late-gestation heat stress.
Collapse
|
280
|
Selenium alleviates the negative effect of heat stress on myogenic differentiation of C2C12 cells with the response of selenogenome. J Therm Biol 2021; 97:102874. [PMID: 33863438 DOI: 10.1016/j.jtherbio.2021.102874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
With the globe warming, heat stress (HS) has frequently affected animal production. Selenium (Se) is an essential trace element for animals and exerts most of its biological functions through selenoproteins. We previously demonstrated that the damage to C2C12 cells by HS accompanied with the response of selenoprotein encoding genes and proteins. The objective of this study was to investigate whether selenium supplementation (sodium selenite, SS and selenomethionine, SeMet) could alleviate the negative effect of heat stress on the differentiation of C2C12 cells, and interpret the potential corresponding selenoproteins response. The differentiated cells were cultured for 4 and 8 days under different condition: at 37 °C, 41.5 °C and 41.5 °C with 0.5 μmol Se/L SS or SeMet, and the HSP70, cell apoptosis, selenoproteins and cell differentiation-related gene or protein were detected. The result showed that HS up-regulated (P < 0.05) mRNA and protein levels of HSP70 and gene expression of AMPKα1 and AMPKα2, and down-regulated (P < 0.05) mRNA or protein levels of MYOGENIN and MYOD. Meanwhile, up to 15 and 17 selenoprotein genes expression were significantly changed response to 4-and 8-days HS challenge, respectively. Relative to the HS group, SS and SeMet supplementation down-regulated the mRNA and protein abundance of HSP70 to different degrees, and partly recovered (P < 0.05) the mRNA or protein abundance of MYOGENIN and MYOD at 4th and 8th day. Especially, 16 and 10 selenoprotein genes expression in cells affected by HS were altered by SS and SeMet supplementation, respectively. Both SS and SeMet supplementation modestly increased (P < 0.05) protein levels of GPX1 and SELENON in cells under HS. In summary, Se supplementation partly alleviated the negative impact of HS on myogenic differentiation of C2C12 cells and the process may associate with the alternation of selenoprotein expression pattern, and SeMet exhibits better effect than SS.
Collapse
|
281
|
Abstract
Temperature is an important environmental factor governing the ability of organisms to grow, survive and reproduce. Thermal performance curves (TPCs), with some caveats, are useful for charting the relationship between body temperature and some measure of performance in ectotherms, and provide a standardized set of characteristics for interspecific comparisons. Endotherms, however, have a more complicated relationship with environmental temperature, as endothermy leads to a decoupling of body temperature from external temperature through use of metabolic heat production, large changes in insulation and variable rates of evaporative heat loss. This has impeded our ability to model endothermic performance in relation to environmental temperature as well as to readily compare performance between species. In this Commentary, we compare the strengths and weaknesses of potential TPC analogues (including other useful proxies for linking performance to temperature) in endotherms and suggest several ways forward in the comparative ecophysiology of endotherms. Our goal is to provide a common language with which ecologists and physiologists can evaluate the effects of temperature on performance. Key directions for improving our understanding of endotherm thermoregulatory physiology include a comparative approach to the study of the level and precision of body temperature, measuring performance directly over a range of body temperatures and building comprehensive mechanistic models of endotherm responses to environmental temperatures. We believe the answer to the question posed in the title could be 'yes', but only if 'performance' is well defined and understood in relation to body temperature variation, and the costs and benefits of endothermy are specifically modelled.
Collapse
Affiliation(s)
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
282
|
Hamzaoui S, Caja G, Such X, Albanell E, Salama AAK. Effect of Soybean Oil Supplementation on Milk Production, Digestibility, and Metabolism in Dairy Goats under Thermoneutral and Heat Stress Conditions. Animals (Basel) 2021; 11:ani11020350. [PMID: 33573331 PMCID: PMC7911429 DOI: 10.3390/ani11020350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Heat stress (HS) not only reduces milk yield but also depresses its contents of fat and protein, which might negatively impact cheese making. Dietary supplementation with soybean oil (SBO) could increase milk fat and improve milk fatty acid (FA) profiles in dairy goats. In the present study dairy goats were exposed to thermoneutral (TN; 15 to 20 °C) or HS (12 h/d at 37 °C and 12 h/d at 30 °C) conditions. In each ambient temperature, goats were fed a control diet (CON) or the same diet supplemented with SBO. Goats in HS suffered depressed feed intake and milk production, but they had greater digestibility coefficients compared to TN goats. Regardless of the HS treatment, goats supplemented with SBO produced milk with greater contents of fat, monounsaturated FA, and conjugated linoleic acid, without any negative effects on milk protein content. In conclusion, dietary supplementation with soybean oil was a useful strategy to increase milk fat and improve its fatty acid profile. Both TN and HS goats responded to soybean oil supplementation similarly since the interaction between soybean oil supplementation and temperature treatment was not significant. Abstract In a previous work, we observed that heat-stressed goats suffer reductions in milk yield and its contents of fat and protein. Supplementation with soybean oil (SBO) may be a useful strategy to enhance milk quality. In total, eight multiparous Murciano–Granadina dairy goats (42.8 ± 1.3 kg body weight; 99 ± 1 days of lactation) were used in a replicated 4 × 4 Latin square design with four periods; 21 d each (14 d adaptation, 5 d for measurements and 2 d transition between periods). Goats were allocated to one of four treatments in a 2 × 2 factorial arrangement. Factors were no oil (CON) or 4% of soybean oil (SBO), and controlled thermal neutral (TN; 15 to 20 °C) or heat stress (HS; 12 h/d at 37 °C and 12 h/d at 30 °C) conditions. This resulted in four treatment combinations: TN-CON, TN-SBO, HS-CON, and HS-SBO. Compared to TN, HS goats experienced lower (p < 0.05) feed intake, body weight, N retention, milk yield, and milk protein and lactose contents. However, goats in HS conditions had greater (p < 0.05) digestibility coefficients (+5.1, +5.2, +4.6, +7.0, and +8.9 points for dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber, respectively) than TN goats. The response to SBO had the same magnitude in TN and HS conditions. Supplementation with SBO had no effects on feed intake, milk yield, or milk protein content. However, SBO supplementation increased (p < 0.05) blood non-esterified fatty acids by 50%, milk fat by 29%, and conjugated linoleic acid by 360%. In conclusion, feeding 4% SBO to dairy goats was a useful strategy to increase milk fat and conjugated linoleic acid without any negative effects on intake, milk yield, or milk protein content. These beneficial effects were obtained regardless goats were in TN or HS conditions.
Collapse
|
283
|
Heat Stress Reduces Metabolic Rate While Increasing Respiratory Exchange Ratio in Growing Pigs. Animals (Basel) 2021; 11:ani11010215. [PMID: 33477278 PMCID: PMC7830201 DOI: 10.3390/ani11010215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/19/2023] Open
Abstract
Heat stress (HS) diminishes animal production, reducing muscle growth and increasing adiposity, especially in swine. Excess heat creates a metabolic phenotype with limited lipid oxidation that relies on aerobic and anaerobic glycolysis as a predominant means of energy production, potentially reducing metabolic rate. To evaluate the effects of HS on substrate utilization and energy expenditure, crossbred barrows (15.2 ± 2.4 kg) were acclimatized for 5 days (22 °C), then treated with 5 days of TN (thermal neutral, 22 °C, n = 8) or HS (35 °C, n = 8). Pigs were fed ad libitum and monitored for respiratory rate (RR) and rectal temperature. Daily energy expenditure (DEE) and respiratory exchange ratio (RER, CO2:O2) were evaluated fasted in an enclosed chamber through indirect calorimetry. Muscle biopsies were obtained from the longissimus dorsi pre/post. HS increased temperature (39.2 ± 0.1 vs. 39.6 ± 0.1 °C, p < 0.01) and RER (0.91 ± 0.02 vs. 1.02 ± 0.02 VCO2:VO2, p < 0.01), but decreased DEE/BW (68.8 ± 1.7 vs. 49.7 ± 4.8 kcal/day/kg, p < 0.01) relative to TN. Weight gain (p = 0.80) and feed intake (p = 0.84) did not differ between HS and TN groups. HS decreased muscle metabolic flexibility (~33%, p = 0.01), but increased leucine oxidation (~35%, p = 0.02) compared to baseline values. These data demonstrate that HS disrupts substrate regulation and energy expenditure in growing pigs.
Collapse
|
284
|
Abstract
Chromium (Cr) is a common element in the Earth’s crust. It may exist in different oxidation states, Cr(0), Cr(III) and Cr(VI), with Cr(III) and Cr(VI) being relatively stable and largely predominant. Chromium’s peculiarity is that its behavior relies on its valence state. Cr(III) is a trace element in humans and plays a major role in glucose and fat metabolism. The beneficial effects of Cr(III) in obesity and types 2 diabetes are known. It has been long considered an essential element, but now it has been reclassified as a nutritional supplement. On the other hand, Cr(VI) is a human carcinogen and exposure to it occurs both in occupational and environmental contexts. It induces also epigenetic effects on DNA, histone tails and microRNA; its toxicity seems to be related to its higher mobility in soil and swifter penetration through cell membranes than Cr(III). The microorganisms Acinetobacter sp. Cr1 and Pseudomonas sp. Cr13 have been suggested as a promising agent for bioremediation of Cr(VI). This review intends to underline the important role of Cr(III) for human health and the dangerousness of Cr(VI) as a toxic element. The dual and opposing roles of this metal make it particularly interesting. An overview of the recent literature is reported in support.
Collapse
|
285
|
Aljarbou WA, England EM, Velleman SG, Reed KM, Strasburg GM. Phosphorylation state of pyruvate dehydrogenase and metabolite levels in turkey skeletal muscle in normal and pale, soft, exudative meats. Br Poult Sci 2021; 62:379-386. [PMID: 33225715 DOI: 10.1080/00071668.2020.1855629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. Turkey production has increased dramatically as genetic selection has succeeded in increasing body weight and muscle yield to fulfil increasing consumer demand. However, producing fast-growing, heavily muscled birds is linked to increased heat stress susceptibility and can result in pale, soft, exudative (PSE) meat. Previous studies indicated that pyruvate dehydrogenase kinase 4 (PDK4) is significantly reduced in PSE samples, suggesting this as a candidate gene associated with the development of this problem.2. The objective of this study was to determine whether pre-market thermal challenge results in PSE meat as a result of differential expression of PDK4. Two genetic lines of turkeys were used in this study; the Randombred Control Line 2 (RBC2) and a commercial line. Turkeys were exposed to a pre-market thermal challenge of 12 h at 35°C followed by 12 h at 27°C for 5 d. Birds were slaughtered and processed according to industry standards. Pectoralis major samples were categorised as PSE or normal based on marinade uptake and cook loss indicators. In the first experiment, the relative expression of pyruvate dehydrogenase (PDH) and the phosphorylation state of PDH in normal and PSE turkey meat were analysed by western blotting. In the second experiment, the same samples were used to measure metabolite levels at 5 min post-mortem, comparing the normal to the PSE samples.3. The results of the first experiment showed that PSE samples had significantly lower total PDH (P = 0.029) compared to normal meat. However, there was no significant difference in the degree of phosphorylation of sites 1, 2 or 3. In the second experiment, there were no significant differences in glycogen, lactate, glycolytic potential or ATP when comparing PSE to control samples.4. These results suggested that a reduction in PDK4 expression alone does not explain the development of PSE meat.
Collapse
Affiliation(s)
- W A Aljarbou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.,Executive Department of Monitoring and Risk Assessment, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - E M England
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - S G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH, USA
| | - K M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - G M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
286
|
Recce S, Huber E, Notaro US, Rodríguez FM, Ortega HH, Rey F, Signorini ML, Salvetti NR. Association between heat stress during intrauterine development and the calving-to-conception and calving-to-first-service intervals in Holstein cows. Theriogenology 2021; 162:95-104. [PMID: 33453575 DOI: 10.1016/j.theriogenology.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/04/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
Heat stress has been widely studied in relation to its effects on the production and reproduction of dairy cattle. However, the long-term effects of heat stress during intrauterine development on adult cows have been scarcely considered. Thus, the aim of this study was to evaluate possible changes in the reproductive performance of Holstein cows gestated under different values of the Temperature-Humidity Index (THI) during their intrauterine development. Data collected from a database of reproductive and productive records of 10,790 Holstein cows from the central region of Argentina and the THI data from the agrometeorological station of the Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Rafaela, Santa Fe, Argentina, were used. The gestation of the cows evaluated was divided into trimesters, in which the highest THI cycles (sum of three or more consecutive days of exposure to a THI ≥72 during each trimester) and number of days with a THI ≥ 72 were calculated. The calving-to-conception and calving-to-first-service intervals of the cows evaluated were considered as reproductive variables associated with their first lactation. Generalized Linear Mixed Models were used, considering the cow's dairy farm as a random factor within the model. The exposure of the animals to environments with a THI ≥72 during the first trimester of gestation had a negative impact on the reproductive efficiency parameters analyzed. The results obtained indicate that the exposure of pregnant females to high THI values has a long-term impact on their daughters, which may contribute to a decrease in their reproductive performance, possibly through inherited epigenetic characteristics that remain in later generations through fetal programming.
Collapse
Affiliation(s)
- Sebastián Recce
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina; Cátedra de Genética Veterinaria y Mejoramiento Animal. Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Emilia Huber
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Ulises S Notaro
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Fernanda M Rodríguez
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Hugo H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Florencia Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Marcelo L Signorini
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Nacional de Tecnología Agropecuaria EEA Rafaela, Rafaela, Argentina
| | - Natalia R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| |
Collapse
|
287
|
Sousa dos Santos L, Reis Furtado Campos PH, Cândido da Silva W, Veira AM, Fraga AZ, Caetano RP, Hauschild L. Performance and carcass composition of pigs from two sire lines are affected differently by ambient temperature. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Differences among breeds or lines of pigs in terms of growth and carcass characteristics may be affected by rearing environment (genetic × environment interaction).
Aims
The present study compared the growth performance and carcass composition of pigs from two sire lines reared under constant thermoneutral (22°C; TN) or high ambient temperature (33°C; HT) conditions.
Methods
Hampshire (HAM) and synthetic-cross (SYN) castrated male pigs (n = 12 per group; 32.0 ± 2.0 kg) were kept in individual pens at either 22°C (TN) or 33°C (HT) for 55 days (two experimental phases: 0–27 and 28–55 days) following an adaptation period of 7 days. Throughout the experimental period, growth performance and body composition (by dual-energy X-ray absorptiometry on Days 27 and 55) were assessed, and a range of other measurements (serum parameters and physiological responses), which were divided into four measurement groups, was taken on 9 days.
Key results
Irrespective of genetic line (G), the pigs in the HT treatment had lower average daily feed intake values (P < 0.001, by 29% and 41%) than did the pigs in the TN treatment during both experimental phases (0–27 and 28–55 days). During the second growth phase, the average daily gain of the SYN pigs in the HT treatment was reduced by 50%, whereas that of the HAM pigs was reduced by 24% (P < 0.05 for G × ambient temperature (AT)). On Days 27 and 55, pig bodyweight was lower (P < 0.05) in the HT treatment than in the TN treatment. On Day 27, a G × AT interaction was detected for backfat thickness (P < 0.05); among the SYN pigs, the value of this trait was lower (16%; P < 0.05) in the HT treatment than in the TN treatment, while for the HAM pigs, it was not influenced by treatment type.
Conclusion
Despite progeny from both genetic lines being affected negatively by high AT, the purebred HAM pigs were less affected by the high AT conditions than were the pigs from the synthetic line.
Implication
The present findings suggest that individual farm conditions and AT are among the most important factors to consider before implementing a G.
Collapse
|
288
|
McCormick JJ, Dokladny K, Moseley PL, Kenny GP. Autophagy and heat: a potential role for heat therapy to improve autophagic function in health and disease. J Appl Physiol (1985) 2021; 130:1-9. [DOI: 10.1152/japplphysiol.00542.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a crucial cell survival mechanism that involves the degradation and recycling of old or damaged organelles and proteins to maintain cellular homeostasis. Impairments in autophagy are central to the pathogenesis of many conditions including metabolic and neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, and aging. Although various pharmacological agents may be able to stimulate autophagic function, to our knowledge, few interventions exist that have been deemed safe and effective in humans. An emerging body of evidence suggests that targeting the autophagic pathway via passive heating (heat therapy) may stimulate autophagic function. Therefore, the primary focus of the present review is to analyze the mechanisms in which passive heating induces autophagy as defined by in vitro and in vivo (animal and human) models. Our secondary focus is to examine the implications of utilizing passive heating to restore dysfunctional autophagy in chronic disease and aging. Finally, we discuss potential therapeutic strategies to implement passive heating to stimulate autophagic function in humans.
Collapse
Affiliation(s)
- James J. McCormick
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Karol Dokladny
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico
| | - Pope L. Moseley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
289
|
Wu QJ, Liu ZH, Jiao C, Cheng BY, Li SW, Ma Y, Wang YQ, Wang Y. Effects of Glutamine on Lymphocyte Proliferation and Intestinal Mucosal Immune Response in Heat-Stressed Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2019-1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- QJ Wu
- Henan University of Science and Technology, PR China
| | - ZH Liu
- Henan University of Science and Technology, PR China
| | - C Jiao
- Henan University of Science and Technology, PR China
| | - BY Cheng
- Henan University of Science and Technology, PR China
| | - SW Li
- Henan University of Science and Technology, PR China
| | - Y Ma
- Henan University of Science and Technology, PR China
| | - YQ Wang
- Henan University of Science and Technology, PR China
| | - Y Wang
- Henan University of Science and Technology, PR China
| |
Collapse
|
290
|
Opgenorth J, Abuajamieh M, Horst EA, Kvidera SK, Johnson JS, Mayorga EJ, Sanz-Fernandez MV, Al-Qaisi MA, DeFrain JM, Kleinschmit DH, Gorden PJ, Baumgard LH. The effects of zinc amino acid complex on biomarkers of gut integrity, inflammation, and metabolism in heat-stressed ruminants. J Dairy Sci 2020; 104:2410-2421. [PMID: 33358164 DOI: 10.3168/jds.2020-18909] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022]
Abstract
Study objectives were to evaluate the effects of replacing 40 mg/kg of dietary Zn from Zn sulfate (ZS) with Zn amino acid complex (ZA; Zinpro Corporation, Eden Prairie, MN) on inflammation and intestinal integrity in heat-stressed and pair-fed (PF) ruminants. Forty Holstein steers (173.6 ± 4.9 kg) were randomly assigned to 1 of 5 dietary-environmental treatments: (1) thermoneutral (TN) ad libitum with 75 mg/kg of dry matter (DM) ZS (ZSCON); (2) TN pair-fed with 75 mg/kg DM ZS (ZSPF); (3) TN pair-fed with 40 mg/kg DM ZA and 35 mg/kg DM ZS (ZAPF); (4) heat stress (HS) ad libitum with 75 mg/kg DM ZS (ZSHS); and (5) HS ad libitum 40 mg/kg DM ZA and 35 mg/kg DM ZS (ZAHS). Before study initiation, calves were fed their respective diets for 21 d. Following the pre-feeding phase, steers were transferred into environmental chambers and were subjected to 2 successive experimental periods. During period 1 (5 d), all steers were fed their respective diets ad libitum and housed in TN conditions (20.2 ± 1.4°C, 30.4 ± 4.3% relative humidity). During period 2 (6 d), ZSHS and ZAHS steers were exposed to cyclical HS conditions (27.1 ± 1.5°C to 35.0 ± 2.9°C, 19.3 ± 3.5% relative humidity), whereas the ZSCON, ZSPF, and ZAPF steers remained in TN conditions and were fed ad libitum or pair-fed relative to their ZSHS and ZAHS counterparts. Overall, steers exposed to HS had markedly increased rectal temperature (0.83°C), respiration rate (26 breaths per min), and skin temperature (8.00°C) relative to TN treatments. Rectal temperature from ZAHS steers was decreased (0.24°C) on d 4 to 6 of HS relative to ZSHS steers. Regardless of diet, HS decreased DMI (18%) relative to ZSCON steers. Circulating glucose from HS and PF steers decreased (16%) relative to ZSCON steers. Heat stress and nutrient restriction increased circulating nonesterified fatty acids 2- and 3-fold, respectively, compared with ZSCON steers. Serum amyloid A increased ~2-fold in PF relative to ZSCON and HS steers. We detected no treatment effect on blood pH; however, ZAHS steers had increased HCO3 relative to ZSHS. Relative to ZSHS, ZAHS steers had increased jejunum villi height (25%), a tendency for increased ileum villi height (9%), and decreased duodenal villi width (16%). In summary, ZA supplementation has some beneficial effects on thermal indices, intestinal architecture characteristics, and biomarkers of leaky gut in heat-stressed steers, indicative of an ameliorated heat load, and thus may be a nutritional strategy to minimize negative consequences of HS.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Abuajamieh
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - J S Johnson
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - M A Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | | | | | - P J Gorden
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
291
|
Hamzaoui S, Caja G, Such X, Albanell E, Salama AAK. Milk Production and Energetic Metabolism of Heat-Stressed Dairy Goats Supplemented with Propylene Glycol. Animals (Basel) 2020; 10:ani10122449. [PMID: 33371268 PMCID: PMC7766538 DOI: 10.3390/ani10122449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/21/2023] Open
Abstract
Heat-stressed dairy animals increase their reliance on glucose. This elevated glucose demand is partially met by increasing the conversion of glucogenic amino acids (AA) in the liver. Propylene glycol (PG) is a glucogenic precursor and was not tested in dairy goats under thermoneutral (TN) and heat stress (HS) conditions simultaneously. We hypothesize that if HS-goats are fed with PG, they would get more glucose and consequently spare more glucogenic AA for milk protein synthesis rather than gluconeogenesis. Eight multiparous dairy goats (40.8 ± 1.1 kg body weight; 84 ± 1 days in milk) were used in a replicated 4 × 4 Latin square design of 4 periods; 21 d each (14 d adaptation, 5 d for measurements, and 2 d of transition). Goats were allocated to one of 4 treatments in a 2 × 2 factorial arrangement. Factors were control (CO) without PG or 5% of PG, and thermoneutral (TN; 15 to 20 °C) or heat stress (HS; 12 h/d at 37 °C and 12 h/d at 30 °C) conditions. Feed intake, rectal temperature, respiratory rate, milk yield, milk composition, and blood metabolites were measured. Compared to TN, HS goats had lower (p < 0.01) feed intake (-34%), fat-corrected milk (-15%), and milk fat (-15%). Heat-stressed goats also tended (p < 0.10) to produce milk with lower protein (-11%) and lactose (-4%) contents. Propylene glycol increased blood glucose (+7%; p < 0.05), blood insulin (+37%; p < 0.10), and body weight gain (+68%; p < 0.05), but decreased feed intake (-9%; p < 0.10) and milk fat content (-23%; p < 0.01). Furthermore, blood non-esterified fatty acids (-49%) and β-hydroxybutyrate (-32%) decreased (p < 0.05) by PG. In conclusion, supplementation of heat-stressed dairy goats with propylene glycol caused milk fat depression syndrome, but reduced body weight loss that is typically observed under HS conditions. Supplementation with lower doses of PG would avoid the reduced feed intake and milk fat depression, but this should be tested.
Collapse
|
292
|
Freitas Silveira RM, Ferreira J, Busanello M, Maria de Vasconcelos A, Jannuzzi Valente FL, Evangelista Façanha DA. Relationship between thermal environment and morphophysiological, performance and carcass traits of Brahman bulls raised on tropical pasture: A canonical approach to a set of indicators. J Therm Biol 2020; 96:102814. [PMID: 33627260 DOI: 10.1016/j.jtherbio.2020.102814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/09/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to understand and discuss the relationships of the thermal environment, morphophysiological response, performance, and carcass traits of Brahman bulls from weaning at 18 months exposed to grazing conditions based on the physiological and evolutionary rationale behind the different proposals for the thermal adaptation of zebu cattle. Fifty-three uncastrated and clinically healthy bulls with birth and weaning weight of 34.0 ± 3.32 kg and 215.5 ± 44.75 kg, respectively, were evaluated. Fifteen canonical correlations were estimated, but only six were significant: thermal environment × thermoregulatory responses (rc = 0.4635; P = 0.0413); thermal environment × performance (rc = 0.4338; P = 0.0218); thermoregulatory responses × performance (rc = 0.5119; P = 0.0071); hair coat characteristics × performance (rc = 0.4939; P = 0.0273); hormone × carcass traits (rc = 0.5408; P = 0.0698); and performance × carcass traits (rc = 0.9644; P < 0.0001). Thermal environment, thermoregulatory responses and hair coat morphology influence of 18.81%, 21.49% and 24.40%, respectively, were found in the performance. We also concluded that (i) rectal temperature (RT) is a homoeothermic indicator; (ii) sweating rate (SR) is an important heat dissipation mechanism to explain the adaptation of zebu animals in the tropics and is related to weight at 550 days (W550); (iii) coat morphology, especially length (HL), diameter (HD) and hair density (ND) are related to animal performance; and (iv) hormonal profile, mainly T4, influences the carcass traits (yield, weight, subcutaneous fat and marble meat).
Collapse
Affiliation(s)
| | - Josiel Ferreira
- Federal Rural University of the Semi-arid Region (UFERSA), Department of Animal Science, 59625900, Mossoró, RN, Brazil
| | - Marcos Busanello
- College of Agriculture "Luiz de Queiroz" /University of São Paulo (ESALQ/USP), Department of Animal Science and Pastures, 13418900, Piracicaba, SP, Brazil
| | | | | | | |
Collapse
|
293
|
Seyed Almoosavi SMM, Ghoorchi T, Naserian AA, Khanaki H, Drackley JK, Ghaffari MH. Effects of late-gestation heat stress independent of reduced feed intake on colostrum, metabolism at calving, and milk yield in early lactation of dairy cows. J Dairy Sci 2020; 104:1744-1758. [PMID: 33309378 DOI: 10.3168/jds.2020-19115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
The objective of this study was to differentiate the effects of acute heat stress (HS) from those of decreased dry matter intake (DMI) during the prepartum period on metabolism, colostrum, and subsequent production of dairy cows. Holstein dairy cows (n = 30) with similar parity and body weight were randomly assigned to 1 of 3 treatments on 45 d before calving: (1) cooled (CL, n = 10) conditions with ad libitum feed intake, (2) HS conditions with ad libitum feed intake (n = 10), and (3) pair-fed cooled (CLPF, n = 10) with reduced DMI similar to the HS group while housed under cooled conditions. The reduction in the amount of feed offered to the CLPF cows was calculated daily as the percentage decrease from the average DMI of HS cows relative to the CL cows. For CLPF and CL cows, barns provided shade, sprinklers, and fans, whereas the HS cows were provided only with shade. Cows in all groups received individually the same total mixed ration. Cows were dried off 60 d before the expected calving. Cows in the HS group and, by design, the CLPF cows had reduced DMI (~20%) during the experiment. Heat stress decreased gestation length, first colostrum yield, and calf birth weight compared with CL and CLPF cows. Milk yield decreased 21% (5 kg) in the HS and 8% (2 kg) in CLPF cows, indicating that reduced feed intake during late gestation accounted for 60% of the total reduced milk yield. The CLPF cows exhibited an elevated NEFA concentration compared with the CL and HS cows. The HS cows had a greater mRNA abundance of HSP70 in the peripheral blood leukocytes at 21 d prepartum compared with the other groups. At calving, the mRNA abundance of HSP70 was greater in HS cows, followed by CLPF, compared with the CL cows. In conclusion, HS during the late gestation period caused metabolism and production differences, which were only partially attributed to reduced feed intake in dairy cows.
Collapse
Affiliation(s)
- S M M Seyed Almoosavi
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan 49138-15739, Iran.
| | - T Ghoorchi
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan 49138-15739, Iran
| | - A A Naserian
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad 91779-48978, Iran
| | - H Khanaki
- Faculty of Veterinary and Agricultural Sciences, Dookie Campus, The University of Melbourne, Victoria 3647, Australia
| | - J K Drackley
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
294
|
Coloma-García W, Mehaba N, Such X, Caja G, Salama AAK. Effects of Cold Exposure on Some Physiological, Productive, and Metabolic Variables in Lactating Dairy Goats. Animals (Basel) 2020; 10:ani10122383. [PMID: 33322635 PMCID: PMC7764343 DOI: 10.3390/ani10122383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary In the current study the impact of cold temperatures (CT; −3 to 6 °C) on milk production and metabolism was evaluated in dairy goats. Compared to goats in thermoneutral conditions (TN; 15 to 20 °C), CT goats produced lower amounts of milk, but their milk contained more fat and protein. Consequently, the yield of energy-corrected milk did not vary between TN and CT goats. Additionally, feed intake did not vary between treatments. The CT goats mobilized body fat reserves to spare glucose and cover the increased needs for heat production under low temperatures. In conclusion, CT goats produced lower milk yield, but their milk contained greater fat and protein compared to TN goats. Furthermore, cold temperatures induced metabolic changes that included body fat mobilization without changes in blood insulin values. Abstract Low winter temperatures in some regions have a negative impact on animal performance, behavior, and welfare. The objective of this study was to evaluate some physiological, metabolic, and lactational responses of dairy goats exposed to cold temperatures for 3 weeks. Eight Murciano-Granadina dairy goats (41.8 kg body weight, 70 days in milk, and 2.13 kg/day milk) were used from mid-January to mid-March. Goats were divided into 2 balanced groups and used in a crossover design with 2 treatments in 2 periods (21 days each, 14 days adaptation and 7 days for measurements). After the first period, goats were switched to the opposite treatment. The treatments included 2 different controlled climatic conditions with different temperature-humidity index (THI) values. The treatments were: thermoneutral conditions (TN; 15 to 20 °C, 45% humidity, THI = 58 to 65), and cold temperature (CT; −3 to 6 °C, 63% humidity, THI = 33 to 46). Goats were fed ad libitum a total mixed ration (70% forage and 30% concentrate) and water was freely available. Goats were milked at 0800 and 1700 h. Dry matter intake, water consumption, rectal temperature, and respiratory rate were recorded daily (days 15 to 21). Body weight was recorded at the start and end of each period. Milk samples for composition were collected on 2 consecutive days (days 20 and 21). Insulin, glucose, non-esterified fatty acids (NEFA), ß-hydroxybutyrate (BHB), cholesterol, and triglycerides were measured in blood on d 21. Compared to TN goats, CT goats had similar feed intake, but lower water consumption (−22 ± 3%), respiratory rate (−5 ± 0.8 breaths/min), and rectal temperature (−0.71 ± 0.26 °C). Milk yield decreased by 13 ± 3% in CT goats, but their milk contained more fat (+13 ± 4%) and protein (+14 ± 5%), and consequently the energy-corrected milk did not vary between TN and CT goats. The CT goats lost 0.64 kg of body weight, whereas TN goats gained 2.54 kg in 21 days. Blood insulin and cholesterol levels were not affected by CT. However, values of blood glucose, NEFA, hematocrit, and hemoglobin increased or tended to increase by CT, whereas BHB and triglycerides decreased. Overall, CT goats produced less but concentrated milk compared to TN goats. Despite similar feed intake and blood insulin levels CT goats had increased blood glucose and NEFA levels. The tendency of increased blood NEFA indicates that CT goats mobilized body fat reserves to cover the extra energy needed for heat production under cold conditions.
Collapse
Affiliation(s)
- Wellington Coloma-García
- Facultad de Medicina Veterinaria, Universidad Agraria del Ecuador (UAE), Guayaquil 090114, Ecuador;
| | - Nabil Mehaba
- Tests and Trials Ltd., Ignacio Luzán, 24, 22400 Monzón, Spain;
| | - Xavier Such
- Grupo de Investigación de Rumiantes (G2R), Departamento de Ciencia Animal y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (X.S.); (G.C.)
| | - Gerardo Caja
- Grupo de Investigación de Rumiantes (G2R), Departamento de Ciencia Animal y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (X.S.); (G.C.)
| | - Ahmed A. K. Salama
- Grupo de Investigación de Rumiantes (G2R), Departamento de Ciencia Animal y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (X.S.); (G.C.)
- Correspondence:
| |
Collapse
|
295
|
Valadez-García KM, Avendaño-Reyes L, Díaz-Molina R, Mellado M, Meza-Herrera CA, Correa-Calderón A, Macías-Cruz U. Free ferulic acid supplementation of heat-stressed hair ewe lambs: Oxidative status, feedlot performance, carcass traits and meat quality. Meat Sci 2020; 173:108395. [PMID: 33316708 DOI: 10.1016/j.meatsci.2020.108395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Twenty-two Katahdin × Dorper ewe lambs (average weight = 23.5 ± 2.8 kg) were individually housed during a 40-d feeding study and then slaughtered to evaluate effects of free ferulic acid (FA; 0 and 250 mg/kg of feed) on oxidative status, feedlot growth, carcass and non-carcass traits, wholesale cut yields and meat quality under heat stress conditions. Overall feeding FA decreased protein oxidation without affecting oxidative stress index, while growth rate and feed efficiency increased only in the hottest period (i.e., 28 to 45 °C). The FA supplementation increased kidney-pelvic-heart and mesenteric fat deposition, as well as yields of forequarter, shoulder, ribs, loin, and breast and flank, but decreased yields of hindquarter, neck, plain loin and leg. Carcass characteristics and meat quality were unaffected by FA. Overall, FA supplementation of heat-stressed hair ewe lambs enhanced feedlot performance under extreme heat stress and increased internal fat reserves, while changing muscle mass deposition, possibly because it prevented protein oxidation.
Collapse
Affiliation(s)
- Karen Mariela Valadez-García
- Universidad Autónoma de Baja California, Instituto de Ciencias Agrícolas, Valle de Mexicali, Baja California 21705, Mexico
| | - Leonel Avendaño-Reyes
- Universidad Autónoma de Baja California, Instituto de Ciencias Agrícolas, Valle de Mexicali, Baja California 21705, Mexico
| | - Raúl Díaz-Molina
- Universidad Autónoma de Baja California, Facultad de Medicina, Mexicali, Baja California, Mexico
| | - Miguel Mellado
- Universidad Autónoma Agraria Antonio Narro, Departamento de Nutrición, Saltillo, Coahuila 25315, Mexico
| | | | - Abelardo Correa-Calderón
- Universidad Autónoma de Baja California, Instituto de Ciencias Agrícolas, Valle de Mexicali, Baja California 21705, Mexico
| | - Ulises Macías-Cruz
- Universidad Autónoma de Baja California, Instituto de Ciencias Agrícolas, Valle de Mexicali, Baja California 21705, Mexico.
| |
Collapse
|
296
|
Shade or unshaded effects on body composition of growing Afshari lambs during summer. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
297
|
Serviento AM, Labussière E, Castex M, Renaudeau D. Effect of heat stress and feeding management on growth performance and physiological responses of finishing pigs. J Anim Sci 2020; 98:skaa387. [PMID: 33277651 PMCID: PMC7772945 DOI: 10.1093/jas/skaa387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 01/24/2023] Open
Abstract
This study aimed to determine whether pig responses to heat stress (HS) were directly due to heat exposure (regardless of feeding level and pattern) or were indirectly due to the reduction of feed intake (FI) and to determine if increasing feeding frequency (splitting heat increments) can improve pig response to HS. A total of 48 pigs (66.1 ± 1.7 kg) were allocated to four groups in three replicates. After 7 d in thermoneutral (TN) conditions (22 °C; period 1 [P1; day -7 to -1]), pigs were placed in either TN or HS (32 °C) conditions for 20 d (period 2 [P2; day 0 to 19]). The diet was provided either ad libitum (AL; 2 distributions/d) or pair-fed (PF8; 8 distributions/d) using HS-AL pigs as the reference group. Thus, the four experimental groups were TN-AL, HS-AL, TN-PF8, and HS-PF8. The daily ration of PF8 pigs was distributed at every 90-min intervals from 0900 to 1930 hours. Data were analyzed using the PROC MIXED procedure with replicate (n = 3), experimental group (n = 4), and their interactions as fixed effects, and the REPEATED statement was used for repeated measures data. Pigs had a similar average daily feed intake (ADFI) during P1 (P > 0.05). In P2, HS-AL and PF8 pigs had lower ADFI (-19%), average daily gain (-25%), and final body weight (-6.1 kg) than TN-AL pigs (P < 0.01). TN-AL pigs had thicker backfat than TN-PF8 pigs (P < 0.05), while the HS pigs had intermediate results. HS pigs had a higher perirenal fat percentage based on the contrast analysis between PF8 pigs (P < 0.05). Thermoregulatory responses of pigs increased with HS exposure but did not differ between HS or between TN groups (P > 0.05). For TN pigs, variation in muscle temperature (Tmuscle) depended on feeding and physical activity, while for HS pigs, Tmuscle gradually increased throughout the day. The Tmuscle of PF8 pigs increased with each additional meal but plateaued earlier for HS-PF8 than TN-PF8 pigs; an increase in Tmuscle per meal was also lower in HS-PF8 than TN-PF8 (P < 0.05). Exposure to HS decreased plasma T3 and T4 (P < 0.05) and increased plasma creatinine (P < 0.05). Between the PF8 groups, HS pigs also had a transient increase in plasma insulin on day 8 (P < 0.05). The effect of HS on FI decreased the growth rate of pigs but there are heat-induced effects, such as altered physiological responses, which might explain the direct HS effects seen in other literature especially in terms of increased adiposity. The increased feed provision frequency in the present study did not improve the HS response of pigs.
Collapse
Affiliation(s)
- Aira Maye Serviento
- PEGASE, INRAE, Institut Agro, Saint-Gilles, France
- Lallemand Animal Nutrition, Lallemand SAS Blagnac, France
| | | | - Mathieu Castex
- Lallemand Animal Nutrition, Lallemand SAS Blagnac, France
| | | |
Collapse
|
298
|
Briggs NG, Brennan KM, Funnell BJ, Nicholls GT, Schoonmaker JP. Use of aspirin to intentionally induce gastrointestinal tract barrier dysfunction in feedlot cattle. J Anim Sci 2020; 98:5894892. [PMID: 32815992 DOI: 10.1093/jas/skaa264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/12/2020] [Indexed: 11/12/2022] Open
Abstract
Stress negatively affects the gastrointestinal tract (GIT) barrier function, resulting in compromised animal health. A deeper understanding of how diet and stress impacts the GIT barrier function in feedlot cattle is needed. Aspirin decreases mucus production and mucosal repair in the GIT and could be used as a model for GIT barrier dysfunction research. The objective of this study was to evaluate the effectiveness of aspirin to induce GIT barrier dysfunction in beef cattle. In experiment 1, sixteen crossbred heifers (425.0 ± 8.6 kg) were allotted to 0, 50, 100, or 200 mg/kg body weight (BW) aspirin doses based on BW. Experiment 1 consisted of two periods separated by 4 wk where four heifers per treatment received the same aspirin dose during each period. Heifers were fed a 49.4% corn silage and 50.6% concentrate diet. The 200 mg/kg BW aspirin treatment was dosed as a 100 mg/kg BW aspirin oral bolus 36 and 24 h prior to Cr-ethylenediaminetetraacetic acid (EDTA) dosing (1 liter; 180 mM). The 50 and 100 mg/kg BW aspirin treatments were dosed as an oral bolus 24 h prior to Cr-EDTA dosing. Urine was collected every 3 h for 48 h and analyzed for Cr. Serum was collected at 0 and 48 h and analyzed for lipopolysaccharide-binding protein (LBP), interleukin-6, serum amyloid A (SAA), haptoglobin, and aspartate aminotransferase. In experiment 2, sixteen crossbred steers (576.0 ± 14.2 kg) fed a similar diet were allotted by BW to the 0 and 200 mg/kg BW aspirin treatments (eight steers/treatment) and were slaughtered 24 h after the last dose. Jejunal tissues were collected, and claudin (CLDN) 1, 2, and 3, occludin, and zonula occludens tight junction messenger ribonucleic acid (mRNA) expression was determined. Data were analyzed using the MIXED procedure of SAS. Urinary Cr excretion increased linearly at hours 3, 6, 9, and 12 (P ≤ 0.04) as aspirin dose increased from 0 to 200 mg/kg. Aspirin linearly increased Cr absorption (P = 0.02) and elimination (P = 0.04) rates and linearly decreased mean retention time of Cr (P = 0.02). Aspirin increased SAA (P = 0.04) and tended to increase LBP (P = 0.09) in serum but did not affect any other serum inflammatory marker (P ≥ 0.19). Aspirin tended to increase jejunal CLDN-1 mRNA expression (P = 0.10) but did not affect the mRNA expression of other genes regulating tight junction function (P ≥ 0.20). Results from this study indicate that aspirin disrupts the GIT barrier function in beef cattle and has a potential as a model in GIT permeability research.
Collapse
Affiliation(s)
- Nathan G Briggs
- Department of Animal Science, Purdue University, West Lafayette, IN
| | | | - Bethany J Funnell
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN
| | | | | |
Collapse
|
299
|
Heat Stress Increases In Vitro Hindgut Fermentation of Distinct Substrates in Iberian Pigs. Animals (Basel) 2020; 10:ani10112173. [PMID: 33233357 PMCID: PMC7700622 DOI: 10.3390/ani10112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Heat stress is a major concern in pig production in summer, as pigs have a limited number of functional sweat glands to transfer body heat. Above 25 °C pigs are out of their comfort zone and mechanisms such as decreasing feed intake or diverting blood from the internal organs to the skin are triggered. Intestinal microbiota is also affected by high ambient temperature but the consequences on fermentation capacity are poorly known. Short-chain fatty acids are the end-products of bacterial metabolism of carbohydrates and protein mainly in the hindgut and, in addition to being a source of energy, they have beneficial effects on immune status and health. An understanding of the effects of heat stress on intestinal fermentation could help to develop strategies mitigating intestinal disorders. We used an in vitro method to assess gas and short-chain fatty acid production, utilizing as inoculum feces from Iberian pigs fed a commercial diet for 28 days under neutral (20 °C) or heat stress (30 °C) conditions. Four substrates with dissimilar fermentation characteristics were incubated in vitro with fecal inoculum for 24 h. Chronic heat stress increased in vitro production of short-chain fatty acids, suggesting a modification of intestinal microbiota activity. Abstract Heat stress reduces the feed intake and growth of pigs. We hypothesized that heat stress affects the intestinal fermentation capacity of pigs. Sixteen Iberian pigs (44 ± 1.0 kg) were randomly assigned to one of two treatments (eight pigs/treatment) for 4 weeks—heat stress (HS; 30 °C) ad libitum or thermoneutral (TN; 20 °C) pair feeding. Frozen rectum contents were used as inocula for 24 h in vitro incubations in which a mixture of starches, citrus pectin, inulin from chicory, and cellulose were the substrates. Cellulose was poorly degraded, whereas pectin and the mixture of starches were the most fermentable substrates according to total short-chain fatty acid (SCFA) production. The mixture of starches and inulin produced the greatest amount of gas. For all substrates, heat stress enhanced gas production (8%, p = 0.001), total SCFA production (16%, p = 0.001), and the production of acetate and propionate (12% and 42%, respectively; p = 0.001). The increased isoacid production (33%, p = 0.001) and ammonia concentration (12%, p = 0.001) may indicate protein fermentation under heat stress. In conclusion, the in vitro intestinal fermentation capacity of pigs under heat stress was increased compared to thermoneutral conditions, which may indicate an adaptive response to heat stress.
Collapse
|
300
|
Mehaba N, Coloma-Garcia W, Such X, Caja G, Salama AAK. Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes. J Dairy Sci 2020; 104:1099-1110. [PMID: 33162098 DOI: 10.3168/jds.2020-18943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022]
Abstract
Heat stress (HS) has a significant economic impact on the global dairy industry. However, the mechanisms by which HS negatively affects metabolism and milk synthesis in dairy ewes are not well defined. This study evaluated the production and metabolic variables in dairy ewes under controlled HS conditions. Eight Lacaune ewes (75.5 ± 3.2 kg of body weight; 165 ± 4 d of lactation; 2.31 ± 0.04 kg of milk per day) were submitted to thermoneutral (TN) or HS conditions in a crossover design (2 periods, 21 d each, 6-d transition). Conditions (day-night, 12-12 h; relative humidity; temperature-humidity index, THI) were: TN (15-20°C; 50 ± 5%; THI = 59-65) and HS (28-35°C; 45 ± 5%; THI = 75-83). Ewes were fed ad libitum and milked twice daily. Rectal temperature, respiratory rate, feed intake, water consumption, and milk yield were recorded daily. Milk and blood samples were collected weekly. Additionally, TN and HS ewes were exposed to glucose tolerance test, insulin tolerance test, and epinephrine challenge. Heat stress reduced feed intake (-11%), and increased rectal temperature (+0.77°C), respiratory rate (+90 breaths/min), and water consumption (+28%). Despite the reduced feed intake, HS ewes produced similar milk to TN ewes, but their milk contained lower fat (-1.7 points) and protein (-0.86 points). Further, HS milk tended to contain more somatic cells (+0.23 log points). Blood creatinine was greater in HS compared with TN, but no differences in blood glucose, nonesterified fatty acids, or urea were detected. When glucose was infused, TN and HS had similar insulin response, but higher glucose response (+85%) was detected in HS ewes. Epinephrine infusion resulted in lower nonesterified fatty acids response (-215%) in HS than TN ewes. Overall, HS decreased feed intake, but milk production was not affected. Heat stress caused metabolic adaptations that included increased body muscle degradation and reduced adipose tissue mobilization. These adaptations allowed ewes to spare glucose and to avoid reductions in milk yield.
Collapse
Affiliation(s)
- Nabil Mehaba
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Wellington Coloma-Garcia
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Such
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Gerardo Caja
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Ahmed A K Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|