251
|
Peng K, Liu H, Yan B, Meng XW, Song SY, Ji FH, Xia Z. Inhibition of cathepsin S attenuates myocardial ischemia/reperfusion injury by suppressing inflammation and apoptosis. J Cell Physiol 2020; 236:1309-1320. [PMID: 32657442 DOI: 10.1002/jcp.29938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury leads to high mortality and morbidity due to the incomplete understanding of the underlying mechanism and the consequent lack of effective therapy. The present study revealed and validated key candidate genes in relation to inflammation and apoptosis pathways underlying myocardial I/R injury. Cathepsin S was identified as the top hub protein based on the protein-protein interaction analysis, and, thus, its role during myocardial I/R injury was further investigated. Myocardial I/R in mice resulted in significantly increased levels of myocardial injury biomarkers (cardiac troponin I, lactic dehydrogenase, and creatinine kinase-MB) and inflammatory cytokines (interleukin-1β [IL-1β], IL-6, and tumor necrosis factor-α), elevated apoptosis rate, and upregulated protein expression of cleaved caspase-8, cleaved caspase-3, and cleaved poly ADP-ribose polymerase. These abovementioned changes were blocked by two different selective cathepsin S inhibitors, LY3000328 or MIV-247. Moreover, Kaplan-Meier survival plot showed that cathepsin S inhibition improved 21-day survival rate following myocardial I/R injury. This study demonstrated that the inhibition of cathepsin S alleviated myocardial I/R-induced injury by suppressing inflammation and apoptosis, which may be used in clinical applications of cardioprotection.
Collapse
Affiliation(s)
- Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, California
| | - Bin Yan
- Department of Intervention and Cell Therapy, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shao-Yong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengyuan Xia
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, California.,Department of Anesthesiology, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
252
|
Han Y, Sun W, Ren D, Zhang J, He Z, Fedorova J, Sun X, Han F, Li J. SIRT1 agonism modulates cardiac NLRP3 inflammasome through pyruvate dehydrogenase during ischemia and reperfusion. Redox Biol 2020; 34:101538. [PMID: 32325423 PMCID: PMC7176991 DOI: 10.1016/j.redox.2020.101538] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleotide-binding oligomerization domain-Like Receptor with a Pyrin domain 3 (NLRP3) inflammasome was emerged as a marker of metabolic dysregulation. We revealed that age-related Sirtuin-1 (SIRT1) modulates cardiac metabolism that medicated inflammatory response during ischemia and reperfusion (I/R) stress. We hypothesize that SIRT1 attenuates NLRP3 inflammasome-dependent inflammation and pyroptosis during myocardial I/R through metabolic modulation. C57BL/6J wild type (WT) mice, inducible cardiomyocyte specific SIRT1 knockout (icSIRT1 KO) and inducible cardiomyocyte specific PDH E1α knockout (icPDH E1α KO) mice were subjected to ligation and release of left anterior descending coronary artery for in vivo regional I/R models. The echocardiography measurement demonstrated that SIRT1 agonist SRT1720 (30 μg/g) improved cardiac systolic function during 45 min of ischemia and 6 h of reperfusion in C57BL/6J WT mice. The biochemical analysis showed that I/R triggered activation of cardiac pyruvate dehydrogenase (PDH), while SIRT1 agonist SRT1720 inhibited I/R-induced PDH activity and reduced production of reactive oxygen species (ROS) during myocardial I/R. Moreover, SRT1720 regulates PDH-related glucose oxidative metabolism to reduce NLRP3 inflammasome activation and pyroptosis in an Akt signaling dependent manner during I/R. Furthermore, an impaired Akt signaling was observed in icSIRT1 KO versus SIRT1fox/flox mice under I/R stress. Intriguingly, we observed lower levels of ROS generation, decreased NLRP3 levels and less pyroptosis occurred in the icPDH E1α KO versus PDH E1αflox/flox hearts during I/R. Taken together, the results indicate that SIRT1 agonism can inhibit activation of NLRP3 inflammasome via Akt-dependent metabolic regulation during ischemic insults by I/R.
Collapse
Affiliation(s)
- Ying Han
- Cardiovascular Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Surgery, University of South Florida, Tampa, USA
| | - Weiju Sun
- Department of Surgery, University of South Florida, Tampa, USA; Cardiovascular Department, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, USA
| | - Jingwen Zhang
- Department of Surgery, University of South Florida, Tampa, USA
| | - Zhibin He
- Department of Surgery, University of South Florida, Tampa, USA
| | - Julia Fedorova
- Department of Surgery, University of South Florida, Tampa, USA
| | - Xiaodong Sun
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, USA
| | - Fang Han
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, USA
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, USA.
| |
Collapse
|
253
|
Abstract
The NLRP3 inflammasome may contribute to infarct development during acute cardiac ischemia-reperfusion (IR). Because infarct size strongly correlates with the degree of heart failure in the long term, therapies that reduce reperfusion injury are still needed as first primary care against heart failure development. Inhibition of the NLRP3 inflammasome is currently viewed as such a potential therapy. However, previous research studies directed at inhibition of various inflammatory pathways in acute cardiac IR injury were often disappointing. This is because inflammation is a double-edged sword, detrimental when hyperactive, but beneficial at lower activity, with activity critically dependent on time of reperfusion and cellular location. Moreover, several inflammatory mediators can also mediate cardioprotective signaling. It is reasonable that this also applies to the NLRP3 inflammasome, although current literature has mainly focused on its detrimental effects in the context of acute cardiac IR. Therefore, in this review, we focus on beneficial, cardioprotective properties of the NLRP3 inflammasome and its components NLRP3, ASC, and caspase-1. The results show that (1) NLRP3 deficiency prevents cardioprotection in isolated heart by ischemic preconditioning and in vivo heart by TLR2 activation, associated with impaired STAT3 or Akt signaling, respectively; (2) ASC deficiency also prevents in vivo TLR2-mediated protection; and (3) caspase-1 inhibition results in decreased infarction but impaired protection through the Akt pathway during mild ischemic insults. In conclusion, the NLRP3 inflammasome is not only detrimental, it can also be involved in cardioprotective signaling, thus fueling the future challenge to acquire a full understanding of NLRP3 inflammasome role in cardiac IR before embarking on clinical trials using NLRP3 inhibitors.
Collapse
|
254
|
Abstract
Acute myocardial infarction (AMI) is associated with the induction of a sterile inflammatory response that leads to further injury. The NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a macromolecular structure responsible for the inflammatory response to injury or infection. NLRP3 can sense intracellular danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is primed and triggered by locally released damage-associated molecular patterns and amplifies the inflammatory response and cell death through caspase-1 activation. Here, we examine the scientific evidence supporting a role for NLRP3 in AMI and the available strategies to inhibit the effects of the inflammasome. Our focus is on the beneficial effects seen in experimental models of AMI in preclinical animal models and the initial results of clinical trials.
Collapse
|
255
|
|
256
|
Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ Res 2020; 126:1260-1280. [PMID: 32324502 DOI: 10.1161/circresaha.120.315937] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intracellular sensing protein termed NLRP3 (for NACHT, LRR, and PYD domains-containing protein 3) forms a macromolecular structure called the NLRP3 inflammasome. The NLRP3 inflammasome plays a major role in inflammation, particularly in the production of IL (interleukin)-1β. IL-1β is the most studied of the IL-1 family of cytokines, including 11 members, among which are IL-1α and IL-18. Here, we summarize preclinical and clinical findings supporting the key pathogenetic role of the NLRP3 inflammasome and IL-1 cytokines in the formation, progression, and complications of atherosclerosis, in ischemic (acute myocardial infarction), and nonischemic injury to the myocardium (myocarditis) and the progression to heart failure. We also review the clinically available IL-1 inhibitors, although not currently approved for cardiovascular indications, and discuss other IL-1 inhibitors, not currently approved, as well as oral NLRP3 inflammasome inhibitors currently in clinical development. Canakinumab, IL-1β antibody, prevented the recurrence of ischemic events in patients with prior acute myocardial infarction in a large phase III clinical trial, including 10 061 patients world-wide. Phase II clinical trials show promising data with anakinra, recombinant IL-1 receptor antagonist, in patients with ST-segment-elevation acute myocardial infarction or heart failure with reduced ejection fraction. Anakinra also improved outcomes in patients with pericarditis, and it is now considered standard of care as second-line treatment for patients with recurrent/refractory pericarditis. Rilonacept, a soluble IL-1 receptor chimeric fusion protein neutralizing IL-1α and IL-1β, has also shown promising results in a phase II study in recurrent/refractory pericarditis. In conclusion, there is overwhelming evidence linking the NLRP3 inflammasome and the IL-1 cytokines with the pathogenesis of cardiovascular diseases. The future will likely include targeted inhibitors to block the IL-1 isoforms, and possibly oral NLRP3 inflammasome inhibitors, across a wide spectrum of cardiovascular diseases.
Collapse
Affiliation(s)
- Antonio Abbate
- From the VCU Pauley Heart Center, Virginia Commonwealth University, Richmond (A.A., S.T., J.K.)
| | - Stefano Toldo
- From the VCU Pauley Heart Center, Virginia Commonwealth University, Richmond (A.A., S.T., J.K.)
| | - Carlo Marchetti
- Department of Pharmacotherapy and Outcome Sciences, School of Pharmacy, Richmond, VA (C.M., C.A.D.)
| | - Jordana Kron
- From the VCU Pauley Heart Center, Virginia Commonwealth University, Richmond (A.A., S.T., J.K.)
| | | | - Charles A Dinarello
- Department of Pharmacotherapy and Outcome Sciences, School of Pharmacy, Richmond, VA (C.M., C.A.D.)
| |
Collapse
|
257
|
Kiss A, Heber S, Kramer AM, Hackl M, Skalicky S, Hallström S, Podesser BK, Santer D. MicroRNA Expression Profile Changes after Cardiopulmonary Bypass and Ischemia/Reperfusion-Injury in a Porcine Model of Cardioplegic Arrest. Diagnostics (Basel) 2020; 10:diagnostics10040240. [PMID: 32326306 PMCID: PMC7236010 DOI: 10.3390/diagnostics10040240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Identification of microRNAs (miRNA) associated with cardiopulmonary bypass, cardiac arrest and subsequent myocardial ischemia/reperfusion may unravel novel therapeutic targets and biomarkers. The primary aim of the present study was to investigate the effects of cardiopulmonary bypass and temperature of cardioplegic arrest on myocardial miRNA profile in pigs' left ventricular tissue. We employed next-generation sequencing to analyse miRNA profiles in the following groups: (1) hearts were arrested with antegrade warm St Thomas Hospital No. 2 (STH2) cardioplegia (n = 5; STH2-warm, 37 °C) and (2) cold STH2 (n = 6; STH2-cold, 4 °C) cardioplegia. Sixty min of ischemia was followed by 60 min of on-pump reperfusion with an additional 90 min of off-pump reperfusion. In addition, two groups without cardiac arrest (off-pump and on-pump group; n = 3, respectively) served as additional controls. STH2-warm and STH2-cold cardioplegia revealed no hemodynamic differences. In contrast, coronary venous creatine kinase-myocardial band (CK-MB) levels were significantly lower in pigs receiving STH2-warm cardioplegia (p < 0.05). Principal component analysis revealed that cardiopulmonary bypass and cardioplegic arrest markedly affected miRNAs in left ventricular tissue. Accordingly, ssc-miR-122, ssc-miR-10a-5p, ssc-miR-193a-3p, ssc-miR-499-3p, ssc-miR-374a-5p, ssc-miR-345-5p, ssc-miR-142-3p, ssc-miR-424-5p, ssc-miR-545-3p, ssc-miR-30b-5p, ssc-miR-145-5p, ssc-miR-374b-5p and ssc-miR-139-3p were differently regulated by cardiopulmonary bypass (false discovery rate (FDR) < 0.05 versus off-pump group). However, only ssc-miR-451 was differently expressed between STH2-warm and STH2-cold (FDR < 0.05). These data demonstrate for the first time that cardiopulmonary bypass and temperature of cardioplegic solution affected the expression of miRNAs in left ventricular tissue. In conclusion, specific miRNAs are potential therapeutic targets for limiting ischemia-reperfusion injury in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (A.-M.K.); (D.S.)
| | - Stefan Heber
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Anne-Margarethe Kramer
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (A.-M.K.); (D.S.)
| | | | | | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (A.-M.K.); (D.S.)
- Correspondence: ; Tel.: +43-1-40400-52210
| | - David Santer
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (A.-M.K.); (D.S.)
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
258
|
Mourouzis K, Oikonomou E, Siasos G, Tsalamadris S, Vogiatzi G, Antonopoulos A, Fountoulakis P, Goliopoulou A, Papaioannou S, Tousoulis D. Pro-inflammatory Cytokines in Acute Coronary Syndromes. Curr Pharm Des 2020; 26:4624-4647. [PMID: 32282296 DOI: 10.2174/1381612826666200413082353] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over the last decades, the role of inflammation and immune system activation in the initiation and progression of coronary artery disease (CAD) has been established. OBJECTIVES The study aimed to present the interplay between cytokines and their actions preceding and shortly after ACS. METHODS We searched in a systemic manner the most relevant articles to the topic of inflammation, cytokines, vulnerable plaque and myocardial infarction in MEDLINE, COCHRANE and EMBASE databases. RESULTS Different classes of cytokines (intereleukin [IL]-1 family, Tumor necrosis factor-alpha (TNF-α) family, chemokines, adipokines, interferons) are implicated in the entire process leading to destabilization of the atherosclerotic plaque, and consequently, to the incidence of myocardial infarction. Especially IL-1 and TNF-α family are involved in inflammatory cell accumulation, vulnerable plaque formation, platelet aggregation, cardiomyocyte apoptosis and adverse remodeling following the myocardial infarction. Several cytokines such as IL-6, adiponectin, interferon-γ, appear with significant prognostic value in ACS patients. Thus, research interest focuses on the modulation of inflammation in ACS to improve clinical outcomes. CONCLUSION Understanding the unique characteristics that accompany each cytokine-cytokine receptor interaction could illuminate the signaling pathways involved in plaque destabilization and indicate future treatment strategies to improve cardiovascular prognosis in ACS patients.
Collapse
Affiliation(s)
- Konstantinos Mourouzis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Sotiris Tsalamadris
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgia Vogiatzi
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexios Antonopoulos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Petros Fountoulakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Athina Goliopoulou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Spyridon Papaioannou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
259
|
Bonaventura A, Vecchié A, Abbate A, Montecucco F. Neutrophil Extracellular Traps and Cardiovascular Diseases: An Update. Cells 2020; 9:231. [PMID: 31963447 PMCID: PMC7016588 DOI: 10.3390/cells9010231] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are formed by decondensed chromatin, histones, and neutrophil granular proteins and have a role in entrapping microbial pathogens. NETs, however, have pro-thrombotic properties by stimulating fibrin deposition, and increased NET levels correlate with larger infarct size and predict major adverse cardiovascular (CV) events. NETs have been involved also in the pathogenesis of diabetes, as high glucose levels were found to induce NETosis. Accordingly, NETs have been described as drivers of diabetic complications, such as diabetic wound and diabetic retinopathy. Inflammasomes are macromolecular structures involved in the release of pro-inflammatory mediators, such as interleukin-1, which is a key mediator in CV diseases. A crosstalk between the inflammasome and NETs is known for some rheumatologic diseases, while this link is still under investigation and not completely understood in CV diseases. In this review, we summarized the most recent updates about the role of NETs in acute myocardial infarction and metabolic diseases and provided an overview on the relationship between NET and inflammasome activities in rheumatologic diseases, speculating a possible link between these two entities also in CV diseases.
Collapse
Affiliation(s)
- Aldo Bonaventura
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1200 E Marshall St, Richmond, VA 23298, USA; (A.V.); (A.A.)
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV 6, 16132 Genoa, Italy
| | - Alessandra Vecchié
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1200 E Marshall St, Richmond, VA 23298, USA; (A.V.); (A.A.)
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV 6, 16132 Genoa, Italy
| | - Antonio Abbate
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, 1200 E Marshall St, Richmond, VA 23298, USA; (A.V.); (A.A.)
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino Genova—Italian Cardiovascular Network, Largo R. Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
260
|
Kar S, Shahshahan HR, Hackfort BT, Yadav SK, Yadav R, Kambis TN, Lefer DJ, Mishra PK. Exercise Training Promotes Cardiac Hydrogen Sulfide Biosynthesis and Mitigates Pyroptosis to Prevent High-Fat Diet-Induced Diabetic Cardiomyopathy. Antioxidants (Basel) 2019; 8:antiox8120638. [PMID: 31835893 PMCID: PMC6943713 DOI: 10.3390/antiox8120638] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
Obesity increases the risk of developing diabetes and subsequently, diabetic cardiomyopathy (DMCM). Reduced cardioprotective antioxidant hydrogen sulfide (H2S) and increased inflammatory cell death via pyroptosis contribute to adverse cardiac remodeling and DMCM. Although exercise training (EX) has cardioprotective effects, it is unclear whether EX mitigates obesity-induced DMCM by increasing H₂S biosynthesis and mitigating pyroptosis in the heart. C57BL6 mice were fed a high-fat diet (HFD) while undergoing treadmill EX for 20 weeks. HFD mice developed obesity, hyperglycemia, and insulin resistance, which were reduced by EX. Left ventricle pressure-volume measurement revealed that obese mice developed reduced diastolic function with preserved ejection fraction, which was improved by EX. Cardiac dysfunction was accompanied by increased cardiac pyroptosis signaling, structural remodeling, and metabolic remodeling, indicated by accumulation of lipid droplets in the heart. Notably, EX increased cardiac H₂S concentration and expression of H₂S biosynthesis enzymes. HFD-induced obesity led to features of type 2 diabetes (T2DM), and subsequently DMCM. EX during the HFD regimen prevented the development of DMCM, possibly by promoting H₂S-mediated cardioprotection and alleviating pyroptosis. This is the first report of EX modulating H₂S and pyroptotic signaling in the heart.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (H.R.S.); (B.T.H.); (S.K.Y.); (R.Y.); (T.N.K.)
| | - Hamid R. Shahshahan
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (H.R.S.); (B.T.H.); (S.K.Y.); (R.Y.); (T.N.K.)
| | - Bryan T. Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (H.R.S.); (B.T.H.); (S.K.Y.); (R.Y.); (T.N.K.)
| | - Santosh K. Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (H.R.S.); (B.T.H.); (S.K.Y.); (R.Y.); (T.N.K.)
| | - Roopali Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (H.R.S.); (B.T.H.); (S.K.Y.); (R.Y.); (T.N.K.)
| | - Tyler N. Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (H.R.S.); (B.T.H.); (S.K.Y.); (R.Y.); (T.N.K.)
| | - David J. Lefer
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Paras K. Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (H.R.S.); (B.T.H.); (S.K.Y.); (R.Y.); (T.N.K.)
- Correspondence: ; Tel.: +1-402-559-8524; Fax: +1-402-559-4438
| |
Collapse
|
261
|
Lin J, Lin H, Ma C, Dong F, Hu Y, Li H. MiR-149 Aggravates Pyroptosis in Myocardial Ischemia-Reperfusion Damage via Silencing FoxO3. Med Sci Monit 2019; 25:8733-8743. [PMID: 31741467 PMCID: PMC6880628 DOI: 10.12659/msm.918410] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), which modulate the expression of their target genes, are commonly involved in stimulating and adjusting of many processes that result in cardiovascular diseases, contain cardiac ischemia/reperfusion (I/R) damage. However, the expression and role of miR-149 in pyroptosis mediated myocardial I/R damage remains unclear. MATERIAL AND METHODS Real-time polymerase chain reaction was performed to measure the miR-149 and FoxO3 expression in I/R stimulated H9C2 cells. The cell proliferation, pyroptosis-related inflammatory genes in I/R-treated H9C2 cells transfected miR-149 mimics or miR-149 inhibitor were both explored. We predicted and confirmed miR-149 targets by using bioinformatics analyses and luciferase reporter assay. In addition, the potential relationship between miR-149 and FoxO3 in pyroptosis from I/R treated H9C2 cells was analyzed. RESULTS Our results showed that miR-149 was upregulated, while FoxO3 was downregulated in I/R stimulated H9C2 cells. Over-expression of miR-149 inhibited cell viability and promote pyroptosis, however, down-expression of miR-149 had an opposite effect in I/R treated H9C2 cells. Furthermore, miR-149 could negatively regulate FoxO3 expression by binding 3'UTR, whereas silencing of FoxO3 attenuated the effect of miR-149-mimics on cell proliferation and pyroptosis in I/R treated H9C2 cells. CONCLUSIONS Our study found that miR-149 played a critical role in pyroptosis during cardiac I/R injury, and thus, might provide a novel therapeutic target.
Collapse
Affiliation(s)
- Jie Lin
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guandong, China (mainland)
| | - Haihuan Lin
- Laboratory Medicine Humboldt University, Charité University Medicine, Berlin, China (mainland)
| | - Chao Ma
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine, Berlin, China (mainland)
| | - Fengquan Dong
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guandong, China (mainland)
| | - Yingchun Hu
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guandong, China (mainland)
| | - Haiying Li
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guandong, China (mainland)
| |
Collapse
|
262
|
Suetomi T, Miyamoto S, Brown JH. Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. Am J Physiol Heart Circ Physiol 2019; 317:H877-H890. [PMID: 31441689 PMCID: PMC6879920 DOI: 10.1152/ajpheart.00223.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
There is substantial evidence that chronic heart failure in humans and in animal models is associated with inflammation. Ischemic interventions such as myocardial infarction lead to necrotic cell death and release of damage associated molecular patterns, factors that signal cell damage and induce expression of proinflammatory chemokines and cytokines. It has recently become evident that nonischemic interventions are also associated with increases in inflammatory genes and immune cell accumulation in the heart and that these contribute to fibrosis and ventricular dysfunction. How proinflammatory responses are elicited in nonischemic heart disease which is not, at least initially, associated with cell death is a critical unanswered question. In this review we provide evidence supporting the hypothesis that cardiomyocytes are an initiating site of inflammatory gene expression in response to nonischemic stress. Furthermore we discuss the role of the multifunctional Ca2+/calmodulin-regulated kinase, CaMKIIδ, as a transducer of stress signals to nuclear factor-κB activation, expression of proinflammatory cytokines and chemokines, and priming and activation of the NOD-like pyrin domain-containing protein 3 (NLRP3) inflammasome in cardiomyocytes. We summarize recent evidence that subsequent macrophage recruitment, fibrosis and contractile dysfunction induced by angiotensin II infusion or transverse aortic constriction are ameliorated by blockade of CaMKII, of monocyte chemoattractant protein-1/C-C chemokine receptor type 2 signaling, or of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Takeshi Suetomi
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, La Jolla, California
| |
Collapse
|
263
|
|
264
|
Gastrodin ameliorates microvascular reperfusion injury-induced pyroptosis by regulating the NLRP3/caspase-1 pathway. J Physiol Biochem 2019; 75:531-547. [PMID: 31440987 DOI: 10.1007/s13105-019-00702-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Inflammation is a pivotal feature of myocardial reperfusion-induced microvascular injury and dysfunction. However, the molecular mechanisms by which myocardial reperfusion triggered inflammation remain incurable. The NLRP3 inflammasome is a key intracellular sensor that detection of cellular stress to activation of caspase-1, and consequent IL-1β maturation and pyroptotic cell death. Here, we showed that NLRP3 inflammasome played a key role in myocardial reperfusion-induced microvascular injury. We observed NLRP3 inflammasome activation and pyroptosis in both cardiac microvascular endothelial cells and myocardial I/R animal model. Gastrodin, an effective monomeric component extracted from the herb Gastrodia elata BIume, blocked cardiac microvascular endothelial cell pyroptosis via inhibiting NLRP3/caspase-1 pathway. Gastrodin also reduced interleukin-1β (IL-1β) production in vivo and in vitro. Furthermore, gastrodin treatment attenuated infarct size and inflammatory cells infiltration and increased capillary formation. Gastrodin is thus a potential therapeutic for NLRP3-associated inflammatory disease.
Collapse
|
265
|
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, Kar S, Su S, Higa JK, Kawasaki NK, Matsui T. Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol 2019; 317:H891-H922. [PMID: 31418596 DOI: 10.1152/ajpheart.00259.2019] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell death is a fundamental process in cardiac pathologies. Recent studies have revealed multiple forms of cell death, and several of them have been demonstrated to underlie adverse cardiac remodeling and heart failure. With the expansion in the area of myocardial cell death and increasing concerns over rigor and reproducibility, it is important and timely to set a guideline for the best practices of evaluating myocardial cell death. There are six major forms of regulated cell death observed in cardiac pathologies, namely apoptosis, necroptosis, mitochondrial-mediated necrosis, pyroptosis, ferroptosis, and autophagic cell death. In this article, we describe the best methods to identify, measure, and evaluate these modes of myocardial cell death. In addition, we discuss the limitations of currently practiced myocardial cell death mechanisms.
Collapse
Affiliation(s)
- Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University of Bratislava, Bratislava, Slovakia
| | - Joseph A Hill
- Departments of Medicine (Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christopher P Baines
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James M Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Masafumi Takahashi
- Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Antonio Abbate
- Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia
| | - Hande C Piristine
- Department of Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi Su
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jason K Higa
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Nicholas K Kawasaki
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Takashi Matsui
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
266
|
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019; 135:182-197. [PMID: 30849489 PMCID: PMC6503659 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ted Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
267
|
Potere N, Del Buono MG, Mauro AG, Abbate A, Toldo S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front Cardiovasc Med 2019; 6:51. [PMID: 31080804 PMCID: PMC6497734 DOI: 10.3389/fcvm.2019.00051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to myocardial cell death and ensuing sterile inflammatory response, which represents an attempt to clear cellular debris and promote cardiac repair. However, an overwhelming, unopposed or unresolved inflammatory response following AMI leads to further injury, worse remodeling and heart failure (HF). Additional therapies are therefore warranted to blunt the inflammatory response associated with ischemia and reperfusion and prevent long-term adverse events. Low-density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous endocytic cell surface receptor with the ability to recognize a wide range of structurally and functionally diverse ligands. LRP1 transduces multiple intracellular signal pathways regulating the inflammatory reaction, tissue remodeling and cell survival after organ injury. In preclinical studies, activation of LRP1-mediated signaling in the heart with non-selective and selective LRP1 agonists is linked with a powerful cardioprotective effect, reducing infarct size and cardiac dysfunction after AMI. The data from early phase clinical studies with plasma-derived α1-antitrypsin (AAT), an endogenous LRP1 agonist, and SP16 peptide, a synthetic LRP1 agonist, support the translational value of LRP1 as a novel therapeutic target in AMI. In this review, we will summarize the cellular and molecular bases of LRP1 functions in modulating the inflammatory reaction and the reparative process after injury in various peripheral tissues, and discuss recent evidences implicating LRP1 in myocardial inflammation and infarct healing.
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Adolfo Gabriele Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
268
|
Potere N, Del Buono MG, Niccoli G, Crea F, Toldo S, Abbate A. Developing LRP1 Agonists into a Therapeutic Strategy in Acute Myocardial Infarction. Int J Mol Sci 2019; 20:E544. [PMID: 30696029 PMCID: PMC6387161 DOI: 10.3390/ijms20030544] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Cardioprotection refers to a strategy aimed at enhancing survival pathways in the injured yet salvageable myocardium following ischemia-reperfusion. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor that can be targeted following reperfusion, to induce a cardioprotective signaling through the activation of the reperfusion injury salvage kinase (RISK) pathway. The data from preclinical studies with non-selective and selective LRP1 agonists are promising, showing a large therapeutic window for intervention to reduce infarct size after ischemia-reperfusion. A pilot clinical trial with plasma derived α1-antitrypsin (AAT), a naturally occurring LRP1 agonist, supports the translational value of LRP1 as a novel therapeutic target for cardioprotection. A phase I study with a selective LRP1 agonist has been completed showing no toxicity. These findings may open the way to early phase clinical studies with pharmacologic LRP1 activation in patients with acute myocardial infarction (AMI).
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Unit of Cardiovascular Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy.
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Giampaolo Niccoli
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
269
|
Zhu H, Santo A, Jia Z, Robert Li Y. GPx4 in Bacterial Infection and Polymicrobial Sepsis: Involvement of Ferroptosis and Pyroptosis. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2019; 7:154-160. [PMID: 31106276 DOI: 10.20455/ros.2019.835] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While it is well known that bacterial infection is the predominant cause of sepsis, the molecular pathophysiology of this clinical syndrome remains ill-defined. In this Research Highlights article, we discuss the recent research findings regarding a protective role for glutathione peroxidase-4 (GPx4) in bacterial infection and polymicrobial sepsis via modulating ferroptosis and pyroptosis, two novel modes of regulated cell death. It is suggested that GPx4, being a requisite gateway to both ferroptosis and pyroptosis, may serve as a critical molecular target for developing effective drugs for controlling infection and sepsis.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Physiology and Pathophysiology, Campbell University Medical School, Buies Creek, NC 27506, USA
| | - Arben Santo
- Department of Pathology, EVCOM, Virginia Tech CRC, Blacksburg, VA 24060, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina College of Arts and Sciences, Greensboro, NC 27412, USA.,Department of Pharmacology, Campbell University Medical School, Buies Creek, NC 27506, USA.,Department of Pharmaceutical Sciences, Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC 27506, USA
| | - Y Robert Li
- Department of Biology, University of North Carolina College of Arts and Sciences, Greensboro, NC 27412, USA.,Department of Pharmacology, Campbell University Medical School, Buies Creek, NC 27506, USA.,Department of Pharmaceutical Sciences, Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC 27506, USA.,Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
270
|
Jia C, Chen H, Zhang J, Zhou K, Zhuge Y, Niu C, Qiu J, Rong X, Shi Z, Xiao J, Shi Y, Chu M. Role of pyroptosis in cardiovascular diseases. Int Immunopharmacol 2018; 67:311-318. [PMID: 30572256 DOI: 10.1016/j.intimp.2018.12.028] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/02/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
Abstract
Pyroptosis is a form of programmed necrosis, and is morphologically and mechanistically unique form of programmed cell death compared to others, such as apoptosis and autophagic cell death. More specifically, pyroptosis features gasdermin family-mediated membrane pore formation and subsequent cell lysis, as well as release of pro-inflammatory intracellular contents including IL-1β, IL-18 and HMGB1. Mechanistically, pyroptosis is driven by two main signaling pathways - one mediated by caspase-1 and the other by caspase-4/5/11. Recent studies show that pyroptosis is implicated in several cardiovascular diseases. In this review, we summarize recent scientific discoveries of pyroptosis's involvement in atherosclerosis, myocardial infarction, diabetic cardiomyopathy, reperfusion injury and myocarditis. We also organized new and emerging evidence suggesting that pyroptosis signaling pathways may be potential therapeutic targets in cardiovascular diseases.
Collapse
Affiliation(s)
- Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huanwen Chen
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jian Zhang
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yingzhi Zhuge
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jianxin Qiu
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xing Rong
- Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhewei Shi
- Department of Cardiology, Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Jian Xiao
- Pharmacology, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yong Shi
- Comprehensive Breast Health Center, Department of Thyroid and Breast Surgery, Lishui People's Hospital, The Six Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, China.
| | - Maoping Chu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Children's Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|