251
|
Luan B, Sun C. MiR-138-5p affects insulin resistance to regulate type 2 diabetes progression through inducing autophagy in HepG2 cells by regulating SIRT1. Nutr Res 2018; 59:90-98. [PMID: 30442237 DOI: 10.1016/j.nutres.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/28/2018] [Accepted: 05/06/2018] [Indexed: 01/22/2023]
Abstract
Insulin resistance (IR) is considered as a major factor of type 2 diabetes (T2D), which is seriously detrimental to human health. In our present study, we found that the expression of miR-138-5p was increased in the insulin-resistant HepG2 cells induced by TNF-α. Therefore, we hypothesized that miR-138-5p might play a regulatory role in the IR. To examine this hypothesis, HepG2 cells were transfected with miR-138-5p inhibitor. Silencing of miR-138-5p increased glucose uptake and glycogen synthesis of TNF-α-stimulated HepG2 cells and decreased glucose concentration in medium, suggesting that downregulation of miR-138-5p suppressed IR in HepG2 cells. Besides that, we found that sirtuin 1 (SIRT1) was the target gene of the miR-138-5p. Moreover, co-transfection with SIRT1-siRNA and miR-138-5p inhibitor suppressed glucose uptake and glycogen synthesis of HepG2 cells compared with miR-138-5p inhibitor-transfected group, indicating that downregulation of SIRT1 weakened the inhibitory effect of miR-138-5p inhibitor on IR. In addition, overexpressed SIRT1 increased Beclin1, LC3 II/I level, and the number of GFP-LC3 dots and decreased p62 level, whereas downregulation of SIRT1 had the opposite effects. Our results demonstrated that overexpressed SIRT1 activated autophagy in HepG2 cells. Moreover, we observed that 3-methyladenine (an inhibitor of autophagy) treatment decreased the high glucose uptake and glycogen synthesis of miR-138-5p inhibitor-transfected HepG2 cells, suggesting that the inhibition of autophagy abolished the inhibitory effect of miR-138-5p inhibitor on IR in HepG2 cells. Taken together, this study suggested that miR-138-5p contributed to the TNF-α-induced IR, possibly through inducing autophagy in HepG2 cells by regulating SIRT1. MiR-138-5p might be a potential and promising target for the treatment of IR.
Collapse
Affiliation(s)
- Bingguo Luan
- Department of Endocrinology and metabolism, Yantaishan Hospital of Yantai, Shandong, 264000, China.
| | - Caixia Sun
- Department of Endocrinology and metabolism, Yantaishan Hospital of Yantai, Shandong, 264000, China
| |
Collapse
|
252
|
Guelfi G, Cochetti G, Stefanetti V, Zampini D, Diverio S, Boni A, Mearini E. Next Generation Sequencing of urine exfoliated cells: an approach of prostate cancer microRNAs research. Sci Rep 2018; 8:7111. [PMID: 29740090 PMCID: PMC5940782 DOI: 10.1038/s41598-018-24236-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
There is emerging evidence that microRNAs (miRNAs) dysregulation is involved in the genesis and the progression of Prostate Cancer (PCa), thus potentially increasing their use in urological clinical practice. This is the first pilot study which utilizes Illumina Deep Sequencing to examine the entire miRNAs spectrum existent in urine exfoliated prostate cells (UEPCs) of PCa patients. A total of 11 male patients with histological diagnosis of PCa were enrolled in the present study. First-catch urine (30 mL) was collected following a prostate massage. Total RNA was extracted from urine and sequenced using an HiSeq2500 System (Illumina). QPCR assay was used to validate the highest NGS results in PCA patients and in age-matched, caucasian men. Remarkably, PCA let-7 family was down-regulated (P < 0.01), compared to the controls. The results of our study support the notion of a relatively high diagnostic value of miRNA family for PCa detection, especially in the let-7 family. The present research confirmed the potential use of miRNAs as non-invasive biomarkers in the diagnosis of PCa, potentially reducing the invasiveness of actual clinical strategy.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo n.4, 06126, Perugia, PG, Italy.
| | - Giovanni Cochetti
- Department of Surgical and Biomedical Sciences, Section of Urological, Andrological and Minimally invasive techniques, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, PG, Italy
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo n.4, 06126, Perugia, PG, Italy
| | - Danilo Zampini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo n.4, 06126, Perugia, PG, Italy
| | - Silvana Diverio
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo n.4, 06126, Perugia, PG, Italy
| | - Andrea Boni
- Department of Surgical and Biomedical Sciences, Section of Urological, Andrological and Minimally invasive techniques, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, PG, Italy
| | - Ettore Mearini
- Department of Surgical and Biomedical Sciences, Section of Urological, Andrological and Minimally invasive techniques, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, PG, Italy
| |
Collapse
|
253
|
Ong AL, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev 2018; 43:64-80. [PMID: 29476819 DOI: 10.1016/j.arr.2018.02.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/23/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
Abstract
Regulatory role of Sirtuin 1 (SIRT1), one of the most extensively studied members of its kind in histone deacetylase family in governing multiple cellular fates, is predominantly linked to p53 activity. SIRT1 deacetylates p53 in a NAD+-dependent manner to inhibit transcription activity of p53, in turn modulate pathways that are implicated in regulation of tissue homoeostasis and many disease states. In this review, we discuss the role of SIRT1-p53 pathway and its regulatory axis in the cellular events which are implicated in cellular aging, cancer and reprogramming. It is noteworthy that these cellular events share few common regulatory pathways, including SIRT1-p53-LDHA-Myc, miR-34a,-Let7 regulatory network, which forms a positive feedback loop that controls cell cycle, metabolism, proliferation, differentiation, epigenetics and many others. In the context of aging, SIRT1 expression is reduced as a protective mechanism against oncogenesis and for maintenance of tissue homeostasis. Interestingly, its activation in aged cells is evidenced in response to DNA damage to protect the cells from p53-dependent apoptosis or senescence, predispose these cells to neoplastic transformation. Importantly, the dual roles of SIRT1-p53 axis in aging and tumourigenesis, either as tumour suppressor or tumour promoter are determined by SIRT1 localisation and type of cells. Conceptualising the distinct similarity between tumorigenesis and cellular reprogramming, this review provides a perspective discussion on involvement of SIRT1 in improving efficiency in the induction and maintenance of pluripotent state. Further research in understanding the role of SIRT1-p53 pathway and their associated regulators and strategies to manipulate this regulatory axis very likely foster the development of therapeutics and strategies for treating cancer and aging-associated degenerative diseases.
Collapse
|
254
|
Han Y, Li H. miRNAs as biomarkers and for the early detection of non-small cell lung cancer (NSCLC). J Thorac Dis 2018; 10:3119-3131. [PMID: 29997981 DOI: 10.21037/jtd.2018.05.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lung cancer is the most frequently diagnosed cancer and the most common cause of cancer death globally, of which 85% is non-small cell lung cancer (NSCLC). Early detection of NSCLC is essential to identify potential individuals for radical cure. Although low-dose computed tomography (LDCT) is recommended as standard screening with a mortality reduction of 20%, it displays a high false positive rate that poses an issue of overdiagnosis. MicroRNAs (miRNAs) are a group of small non-coding RNAs acting as important regulators in post-transcriptional gene expression and have been studied for their extensive role as novel biomarkers in NSCLC. Herein, we discuss the miRNA biology, its role in cancer, the potential of biomarkers both in cancer and NSCLC, and promising current publications of diagnostic biomarkers for early detection in NSCLC, especially studies in order to complement LDCT screening.
Collapse
Affiliation(s)
- Yichao Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
255
|
Uddin A, Chakraborty S. Role of miRNAs in lung cancer. J Cell Physiol 2018. [PMID: 29676470 DOI: 10.1002/jcp.26607] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths all over the world, among both men and women, with an incidence of over 200,000 new cases per year coupled with a very high mortality rate. LC comprises of two major clinicopathological categories: small-cell (SCLC) and nonsmall-cell lung carcinoma (NSCLC). The microRNAs (miRNAs) are small noncoding RNAs, usually 18-25 nucleotides long, which repress protein translation through binding to complementary target mRNAs. The miRNAs regulate many biological processes including cell cycle regulation, cellular growth, proliferation, differentiation, apoptosis, metabolism, neuronal patterning, and aging. This review summarizes the role of miRNAs expression in LC. It also provides information about the miRNAs as biomarker and therapeutic target for lung cancer. Understanding the role of miRNAs in LC may provide insights into the diagnosis and treatment strategy for LC.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam, India
| | | |
Collapse
|
256
|
Ultimo S, Zauli G, Martelli AM, Vitale M, McCubrey JA, Capitani S, Neri LM. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases. Oncotarget 2018; 9:17220-17237. [PMID: 29682218 PMCID: PMC5908319 DOI: 10.18632/oncotarget.24991] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is a dynamic tissue with remarkable plasticity and its growth and regeneration are highly organized, with the activation of specific transcription factors, proliferative pathways and cytokines. The decline of skeletal muscle tissue with age, is one of the most important causes of functional loss of independence in older adults. Maintaining skeletal muscle function throughout the lifespan is a prerequisite for good health and independent living. Physical activity represents one of the most effective preventive agents for muscle decay in aging. Several studies have underlined the importance of microRNAs (miRNAs) in the control of myogenesis and of skeletal muscle regeneration and function. In this review, we reported an overview and recent advances about the role of miRNAs expressed in the skeletal muscle, miRNAs regulation by exercise in skeletal muscle, the consequences of different physical exercise training modalities in the skeletal muscle miRNA profile, their regulation under pathological conditions and the role of miRNAs in age-related muscle wasting. Specific miRNAs appear to be involved in response to different types of exercise and therefore to play an important role in muscle fiber identity and myofiber gene expression in adults and elder population. Understanding the roles and regulation of skeletal muscle miRNAs during muscle regeneration may result in new therapeutic approaches in aging or diseases with impaired muscle function or re-growth.
Collapse
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
257
|
Sonea L, Buse M, Gulei D, Onaciu A, Simon I, Braicu C, Berindan-Neagoe I. Decoding the Emerging Patterns Exhibited in Non-coding RNAs Characteristic of Lung Cancer with Regard to their Clinical Significance. Curr Genomics 2018; 19:258-278. [PMID: 29755289 PMCID: PMC5930448 DOI: 10.2174/1389202918666171005100124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/14/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Lung cancer continues to be the leading topic concerning global mortality rate caused by can-cer; it needs to be further investigated to reduce these dramatic unfavorable statistic data. Non-coding RNAs (ncRNAs) have been shown to be important cellular regulatory factors and the alteration of their expression levels has become correlated to extensive number of pathologies. Specifically, their expres-sion profiles are correlated with development and progression of lung cancer, generating great interest for further investigation. This review focuses on the complex role of non-coding RNAs, namely miR-NAs, piwi-interacting RNAs, small nucleolar RNAs, long non-coding RNAs and circular RNAs in the process of developing novel biomarkers for diagnostic and prognostic factors that can then be utilized for personalized therapies toward this devastating disease. To support the concept of personalized medi-cine, we will focus on the roles of miRNAs in lung cancer tumorigenesis, their use as diagnostic and prognostic biomarkers and their application for patient therapy.
Collapse
Affiliation(s)
- Laura Sonea
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihail Buse
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Onaciu
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioan Simon
- Surgery Department IV, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Surgery Department, Romanian Railway (CF) University Hospital, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuta" The Oncology Institute, Republicii Street, No. 34-36, 401015, Cluj-Napoca, Romania
| |
Collapse
|
258
|
The Roles of Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 in Cancer and Cancer Stem Cells. Stem Cells Int 2018; 2018:4217259. [PMID: 29736175 PMCID: PMC5874980 DOI: 10.1155/2018/4217259] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/12/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
RNA-binding proteins (RBPs) mediate the localization, stability, and translation of the target transcripts and fine-tune the physiological functions of the proteins encoded. The insulin-like growth factor (IGF) 2 mRNA-binding protein (IGF2BP, IMP) family comprises three RBPs, IGF2BP1, IGF2BP2, and IGF2BP3, capable of associating with IGF2 and other transcripts and mediating their processing. IGF2BP2 represents the least understood member of this family of RBPs; however, it has been reported to participate in a wide range of physiological processes, such as embryonic development, neuronal differentiation, and metabolism. Its dysregulation is associated with insulin resistance, diabetes, and carcinogenesis and may potentially be a powerful biomarker and candidate target for relevant diseases. This review summarizes the structural features, regulation, and functions of IGF2BP2 and their association with cancer and cancer stem cells.
Collapse
|
259
|
Porru M, Pompili L, Caruso C, Biroccio A, Leonetti C. Targeting KRAS in metastatic colorectal cancer: current strategies and emerging opportunities. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018. [PMID: 29534749 PMCID: PMC5850913 DOI: 10.1186/s13046-018-0719-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing drugs that target KRAS, the most frequently mutated oncogene in cancer, has not been successful despite much concerted efforts dedicated towards it in the last thirty years. Considering the key role this driver oncogene plays, the pharmacological drugging of KRAS remains a key challenge for cancer research. In this review, we highlight the emerging experimental strategies for blocking KRAS function and signaling and its direct targeting. We also report on the results in this field of research produced by our group.
Collapse
Affiliation(s)
- Manuela Porru
- UOSD SAFU, Regina Elena National Cancer Institute, Rome, Italy
| | - Luca Pompili
- UOSD SAFU, Regina Elena National Cancer Institute, Rome, Italy.,University of Tuscia, Viterbo, Italy
| | | | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome, Italy.
| | - Carlo Leonetti
- UOSD SAFU, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
260
|
Epigenetic versus Genetic Deregulation of the KEAP1/NRF2 Axis in Solid Tumors: Focus on Methylation and Noncoding RNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2492063. [PMID: 29643973 PMCID: PMC5872633 DOI: 10.1155/2018/2492063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Oxidative and electrophilic changes in cells are mainly coordinated by the KEAP1/NRF2 (Kelch-like erythroid-derived cap-n-collar homology- (ECH-) associated protein-1/nuclear factor (erythroid-derived 2)-like 2) axis. The physical interaction between these two proteins promotes the expression of several antioxidant defense genes in response to exogenous and endogenous insults. Recent studies demonstrated that KEAP1/NRF2 axis dysfunction is also strongly related to tumor progression and chemo- and radiotherapy resistance of cancer cells. In solid tumors, the KEAP1/NRF2 system is constitutively activated by the loss of KEAP1 or gain of NFE2L2 functions that leads to its nuclear accumulation and enhances the transcription of many cytoprotective genes. In addition to point mutations, epigenetic abnormalities, as aberrant promoter methylation, and microRNA (miRNA) and long noncoding RNA (lncRNA) deregulation were reported as emerging mechanisms of KEAP1/NRF2 axis modulation. This review will summarize the current knowledge about the epigenetic mechanisms that deregulate the KEAP1/NRF2 cascade in solid tumors and their potential usefulness as prognostic and predictive molecular markers.
Collapse
|
261
|
Association of BRCA1, ERCC1, RAP80, PKM2, RRM1, RRM2, TS, TSP1, and TXR1 mRNA expression levels between primary tumors and infiltrated regional lymph nodes in patients with resectable non-small cell lung cancer. THE PHARMACOGENOMICS JOURNAL 2018; 19:15-24. [PMID: 29472587 DOI: 10.1038/s41397-018-0013-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/02/2017] [Accepted: 12/04/2017] [Indexed: 12/23/2022]
Abstract
Differences in gene expression levels between the primary tumors (PTs) and matched regional lymph nodal metastases (LNs) in patients with totally excised non-small cell lung cancer (NSCLC) were explored. Microdissected formalin-fixed paraffin-embedded (FFPE) samples from (PT) and their matched infiltrated LNs, from 239 patients [183 (with matched PT and LNs samples)-case and 56 PT only samples-control cohorts] were analyzed for BRCA1, ERCC1, RAP80, PKM2, RRM1, RRM2, TS, TSP1, and TXR1 mRNA expression by quantitative real-time polymerase-chain reaction (PCR). Moderately positive correlation between the expression of each gene in the PT and the matched LNs was observed. Concordance rates between the PT and the LNs were: BRCA1 (67.7%), ERCC1 (68.4%), PKM2 (63.4%), RAP80 (68.8%), RRM1 (70.9%), RRM2 (69%), TS (72.9%), TSP1 (69.8%), TXR1 (63.7%). Expression levels and their differences were correlated with Relapse-Free Survival (RFS) and Overall Survival (OS). High BRCA1 PT in patients with squamous histology was associated with increased OS (p = 0.036). High TSP1 PT levels were shown to be the only independent prognostic factor for OS and RFS (p = 0.023 and p = 0.007). PKM2 low levels in both PT and matched LNs were associated with better OS irrespective of the underlying histology (p = 0.031). RRM1 discordant levels between PT and matched LNs were associated with worse OS in squamous tumors (p = 0.019) compared to patients with both low expression in PT and LN.TXR1 high levels in both PT and matched LNs were associated with better OS in patients with squamous tumors (p = 0.007).These findings indicate that there is different gene expression between PT and matched LNs which may affect the outcome in early NSCLC and therefore PT's molecular biology should not be the sole determinant for prognostication.
Collapse
|
262
|
Li Z, Chen Y, Hu S, Zhang J, Wu J, Ren W, Shao N, Ying X. Integrative analysis of protein-coding and non-coding RNAs identifies clinically relevant subtypes of clear cell renal cell carcinoma. Oncotarget 2018; 7:82671-82685. [PMID: 27705920 PMCID: PMC5347723 DOI: 10.18632/oncotarget.12340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
Protein-coding genes and non-coding RNAs cooperate mutually in cells. Integrative analysis of protein-coding and non-coding RNAs may facilitate characterizing tumor heterogeneity. We introduced integrated consensus clustering (ICC) method to integrate mRNA, miRNA and lncRNA expression profiles of 431 primary clear cell renal cell carcinomas (ccRCCs). We identified one RCC subgroup easily misdiagnosed as ccRCC in clinic and four robust ccRCC subtypes associated with distinct clinicopathologic and molecular features. In subtype R1, AMPK signaling pathway is significantly upregulated, which may improve the oncologic-metabolic shift and partially account for its best prognosis. Subtype R2 has more chromosomal abnormities, higher expression of cell cycle genes and less expression of genes in various metabolism pathways, which may explain its more aggressive characteristic and the worst prognosis. Moreover, much more miRNAs and lncRNAs are significantly upregulated in R2 and R4 respectively, suggesting more important roles of miRNAs in R2 and lncRNAs in R4. Triple-color co-expression network analysis identified 28 differentially expressed modules, indicating the importance of cooperative regulation of mRNAs, miRNAs and lncRNAs in ccRCC. This study establishes an integrated transcriptomic classification which may contribute to understanding the heterogeneity and implicating the treatment of ccRCC.
Collapse
Affiliation(s)
- Zongcheng Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,Translational Medicine Center of Stem Cells, 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yaowen Chen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,Department of Obstetrics and Gynecology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian 350025, China
| | - Shuofeng Hu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jian Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jiaqi Wu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Wu Ren
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jilin University, Changchun 130021, China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaomin Ying
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
263
|
Lin28B promotes Müller glial cell de-differentiation and proliferation in the regenerative rat retinas. Oncotarget 2018; 7:49368-49383. [PMID: 27384999 PMCID: PMC5226514 DOI: 10.18632/oncotarget.10343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 01/21/2023] Open
Abstract
Retinal regeneration and repair are severely impeded in higher mammalian animals. Although Müller cells can be activated and show some characteristics of progenitor cells when injured or under pathological conditions, they quickly form gliosis scars. Unfortunately, the basic mechanisms that impede retinal regeneration remain unknown. We studied retinas from Royal College of Surgeon (RCS) rats and found that let-7 family molecules, let-7e and let-7i, were significantly overexpressed in Müller cells of degenerative retinas. It demonstrated that down-regulation of the RNA binding protein Lin28B was one of the key factors leading to the overexpression of let-7e and let-7i. Lin28B ectopic expression in the Müller cells suppressed overexpression of let-7e and let-7i, stimulated and mobilized Müller glia de-differentiation, proliferation, promoted neuronal commitment, and inhibited glial fate acquisition of de-differentiated Müller cells. ERG recordings revealed that the amplitudes of a-wave and b-wave were improved significantly after Lin28B was delivered into the subretinal space of RCS rats. In summary, down-regulation of Lin28B as well as up-regulation of let-7e and let-7i may be the main factors that impede Müller cell de-differentiation and proliferation in the retina of RCS rats.
Collapse
|
264
|
Xiao S, Zhang W, Manley NR. Thymic epithelial cell-derived signals control B progenitor formation and proliferation in the thymus by regulating Let-7 and Arid3a. PLoS One 2018; 13:e0193188. [PMID: 29462197 PMCID: PMC5819816 DOI: 10.1371/journal.pone.0193188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 01/27/2023] Open
Abstract
The postnatal thymus is an efficient microenvironment for T cell specification and differentiation. B cells are also present in the thymus and have been recently shown to impact T cell selection, however, the mechanisms controlling B cell development in the thymus are largely unknown. In Foxn1lacZ mutant mice, down-regulation of Foxn1 expression in thymic epithelial cells beginning 1 week after birth caused a dramatic reduction of T progenitors and an increase of B cell progenitors. This time point is coincident with the switch from fetal to adult-type hematopoietic stem cells (HSCs), which is regulated by the Lin28-Let7 system. We hypothesize that the thymic environment might regulate this process to suppress fetal-type B cell development in the thymus. In this study we show that in the Foxn1lacZ thymus, although the down-regulation of Lin28 in thymocytes was normal, up-regulation of Let-7 was impaired. The failure to up-regulate Let-7 caused a transient increase of Arid3a in B precursors, which is known to promote fetal-type B cell fate. Over-expression of Lin28a in HSCs also reduced Let-7 and promoted Arid3a expression in BM and thymic B progenitors, increasing B cell production in the thymus. The level of Let-7 in thymic B progenitors was up regulated by in vitro co-culture with IL15, Vitamin-D3, and retinoic acid, thus down-regulating Arid3a to promote B cell differentiation. All of these signals were produced in thymic epithelial cells (TECs) related to Let-7 expression in thymic B progenitors, and down-regulated in Foxn1lacZ mutants. Our data show that signals provided by TEC control thymic B cell development by up-regulating Let-7, suppressing Arid3a expression in intrathymic progenitor B cells to limit their proliferation during the neonatal to adult transition.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| | - Wen Zhang
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| | - Nancy R. Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
265
|
Grijalvo S, Alagia A, Jorge AF, Eritja R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes (Basel) 2018; 9:E74. [PMID: 29415514 PMCID: PMC5852570 DOI: 10.3390/genes9020074] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Adele Alagia
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Andreia F Jorge
- Coimbra Chemistry Centre, (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
266
|
Shi H, Fu Q, Li S, Hu X, Tian R, Yao G, Zhao H, Wang J. Bta-miR-2411 attenuates bovine viral diarrhea virus replication via directly suppressing Pelota protein in Madin-Darby bovine kidney cells. Vet Microbiol 2018; 215:43-48. [DOI: 10.1016/j.vetmic.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 01/11/2023]
|
267
|
Xu F, Luo L, Shi H, He X, Lei Y, Tang J, He D, Qiao Z, Wang K. Label-free and sensitive microRNA detection based on a target recycling amplification-integrated superlong poly(thymine)-hosted copper nanoparticle strategy. Anal Chim Acta 2018; 1010:54-61. [PMID: 29447671 DOI: 10.1016/j.aca.2018.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 11/17/2022]
Abstract
Poly(thymine)-hosted copper nanoparticles (poly T-CuNPs) have emerged as a promising label-free fluorophore for bioanalysis, but its application in RNA-related studies is still rarely explored. Herein, by utilizing duplex-specific nuclease (DSN) as a convertor to integrate target recycling mechanism into terminal deoxynucleotidyl transferase (TdT)-mediated superlong poly T-CuNPs platform, a specific and sensitive method for microRNA detection has been developed. In this strategy, a 3'-phosphorylated DNA probe can hybridize with target RNA and then be cut by DSN to produce 3'-hydroxylated fragments, which can be further tailed by TdT with superlong poly T for fluorescent CuNPs synthesis. As proof of concept, an analysis of let-7d was achieved with a good linear correlation between 20 and 1000 pM (R2 = 0.9965) and a detection limit of 20 pM. Moreover, both homologous and heterologous microRNAs were also effectively discriminated. This strategy might pave a brand-new way for designing label-free and sensitive microRNA assays.
Collapse
Affiliation(s)
- Fengzhou Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Lan Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Zhenzhen Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, China.
| |
Collapse
|
268
|
Ding Y, Wang ZC, Zheng Y, Hu Z, Li Y, Luo DF, Wang SY. C-Myc functions as a competing endogenous RNA in acute promyelocytic leukemia. Oncotarget 2018; 7:56422-56430. [PMID: 27486764 PMCID: PMC5302924 DOI: 10.18632/oncotarget.10896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
Recent reports have described a new post-transcriptional regulation that RNA transcripts can crosstalk with each other by competing for their common microRNAs. These RNA transcripts termed competing endogenous RNAs (ceRNAs) regulate the distribution of miRNAs on their targets. One corollary from ceRNA interaction is that chromosomal translocation in acute promyelocytic leukemia (APL) would perturb ceRNA regulation due to altered expression of 3'UTRs. In our study, we demonstrate that expression of PML/RARα, the APL-associated fusion oncogene is repressed by c-Myc mRNA transcript independent of protein-coding function but dependent upon microRNA. Attenuation of c-Myc transcript results in PML/RARα-degraded cellular phenotypes in APL cells, but these Myc reduction-associated cell phenotypes are sufficient to abrogate in a microRNA dependent manner. We also show that let-7 microRNA family members promote differentiation of All-Trans-Retinoic Acid (ATRA)-induced NB4 cells and their activities are affected by expression levels of both c-Myc and PML/RARα through altering miRNA targets. These results indicate that c-Myc mRNA represses PML/RARα expression via altering the distribution of let-7 miRNAs on their targets. Our findings reveal a previously unrecognized role of c-Myc as a potential ceRNA for PML/RARα in APL.
Collapse
Affiliation(s)
- Ye Ding
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Ze-Chuan Wang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Yi Zheng
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Zheng Hu
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Yang Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Dong-Feng Luo
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China
| | - Shao-Yuan Wang
- Union Clinical Medical College, Fujian Medical University, Fuzhou, P.R. China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
269
|
Wang Z, Lin S, Zhang J, Xu Z, Xiang Y, Yao H, Ge L, Xie D, Kung HF, Lu G, Poon WS, Liu Q, Lin MCM. Loss of MYC and E-box3 binding contributes to defective MYC-mediated transcriptional suppression of human MC-let-7a-1~let-7d in glioblastoma. Oncotarget 2018; 7:56266-56278. [PMID: 27409345 PMCID: PMC5302913 DOI: 10.18632/oncotarget.10517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
Previously, we reported that MYC oncoprotein down-regulates the transcription of human MC-let-7a-1~let-7d microRNA cluster in hepatocarcinoma (HCC). Surprisingly, in silico analysis indicated that let-7 miRNA expression levels are not reduced in glioblastoma (GBM). Here we investigated the molecular basis of this differential expression. Using human GBM U87 and U251 cells, we first demonstrated that forced over-expression of MYC indeed could not down-regulate the expression of human MC-let-7a-1~let-7d microRNA cluster in GBM. Furthermore, analysis of MC-let-7a-1~let-7d promoter in GBM indicated that MYC failed to inhibit the promoter activity. Pearson's correlation and Linear Regression analysis using the expression data from GSE55092 (HCC) and GSE4290 (GBM) demonstrated a converse relationship of MC-let-7a-1~let-7d and MYC only in HCC but not in GBM. To understand the underlying mechanisms, we examined whether MYC could bind to the non-canonical E-box 3 located in the promoter of MC-let-7a-1~let-7d. Results from both chromatin immune-precipitation (ChIP) and super-shift assays clearly demonstrated the loss of MYC and E-box 3 binding in GBM, suggesting for the first time that a defective MYC and E-box3 binding in GBM is responsible for the differential MYC mediated transcriptional inhibition of MC-let-7a-1~let-7d and potentially other tumor suppressors. MYC and let-7 are key oncoprotein and tumor suppressor, respectively. Understanding the molecular mechanisms of their regulations will provide new insight and have important implications in the therapeutics of GBM as well as other cancers.
Collapse
Affiliation(s)
- Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Sheng Lin
- Laboratory of Medical Genetics, Shenzhen Research Institute of Population and Family Planning, Shenzhen, China
| | - Ji Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhenhua Xu
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Yu Xiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hong Yao
- Jiangsu Key Laboratory of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, China
| | - Lei Ge
- Department of Gastrointestinal Surgery, Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hsiang-Fu Kung
- School of Biomedical Science, and State Key Laboratory in Oncology in South China, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gang Lu
- Brain Tumor Centre and Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Wai Sang Poon
- Brain Tumor Centre and Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Marie Chia-Mi Lin
- Shenzhen Key Laboratory of Translational Medicine of Tumor, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
270
|
Qiang J, Cui YT, Tao FY, Bao WJ, He J, Li XH, Xu P, Sun LY. Physiological response and microRNA expression profiles in head kidney of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to acute cold stress. Sci Rep 2018; 8:172. [PMID: 29317697 PMCID: PMC5760732 DOI: 10.1038/s41598-017-18512-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
Cold stress has a serious impact on the overwintering survival and yield of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Understanding the physiological and molecular regulation mechanisms of low-temperature adaptation is necessary to help breed new tolerant strains. The semi-lethal low temperature of juvenile GIFT at 96 h was determined as 9.4 °C. We constructed and sequenced two small RNA libraries from head kidney tissues, one for the control (CO) group and one for the 9.4 °C-stressed (LTS) group, and identified 1736 and 1481 known microRNAs (miRNAs), and 164 and 152 novel miRNAs in the CO and LTS libraries, respectively. We verify the expression of nine up-regulated miRNAs and eight down-regulation miRNAs by qRT-PCR, and found their expression patterns were consistent with the sequencing results. We found that cold stress may have produced dysregulation of free radical and lipid metabolism, decreased superoxide dismutase activity, reduced respiratory burst and phagocytic activity of macrophages, increased malondialdehyde content, and adversely affected the physiological adaptation of GIFT, eventually leading to death. This study revealed interactions among miRNAs and signal regulated pathways in GIFT under cold stress that may help to understand the pathways involved in cold resistance.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China.,Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Yan T Cui
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China.,Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Fan Y Tao
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Wen J Bao
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Xia H Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China. .,Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China.
| | - Lan Y Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| |
Collapse
|
271
|
Fabbri M. MicroRNAs and miRceptors: a new mechanism of action for intercellular communication. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160486. [PMID: 29158315 PMCID: PMC5717440 DOI: 10.1098/rstb.2016.0486] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2017] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs (ncRNAs) that control the expression of target genes by modulating (usually inhibiting) their translation into proteins. This 'traditional' mechanism of action of miRs has been recently challenged by new discoveries pointing towards a role of miRs as 'hormones', capable of binding to proteic receptors (miRceptors) and triggering their downstream signalling pathways. These findings harbour particular significance within the tumour microenvironment (TME), defined as the variety of non-cancerous cells surrounding cancer cells, but are relevant also for other diseases. In recent years it has become clearer that the TME does not passively assist the growth of cancer cells but contributes to its biology. Some of the mediators of the intercellular communication between cancer cells and TME are miRs shuttled within exosomes, a subtype of cellular released extracellular vesicles. This article will highlight the most recent findings on the biological implications of miR-miRceptor interactions for the biology of the TME and other diseases, and will provide some perspectives on the future development of this fascinating research.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Muller Fabbri
- Department of Pediatrics, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children's Center for Cancer and Blood Diseases and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
272
|
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world. Despite significant advances in the early detection and treatment of the disease, the prognosis remains poor, with an overall 5-year survival rate ranging from 15% to 20%. This poor prognosis results largely from early micrometastatic spread of cancer cells to nearby lymph nodes or tissues and partially from early recurrence after curative surgical resection. Recently, precision medicines that target potential oncogenic driver mutations have been approved to treat lung cancer. However, some lung cancer patients do not have targetable mutations, and many patients develop resistance to targeted therapy. Tumor heterogeneity and mutational density are also challenges in treating lung cancer, which underscores the need for developing alternative therapeutic strategies for treating lung cancer. Epigenetic therapy may circumvent the problems of tumor heterogeneity and drug resistance by affecting the expression of several hundred target genes. This review highlights precision medicine using an innovative approach of epigenetic priming prior to conventional standard therapy or targeted cancer therapy in lung cancer.
Collapse
Affiliation(s)
- Dongho Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea. .,Samsung Medical Center, Research Institute for Future Medicine, Seoul, South Korea.
| |
Collapse
|
273
|
Wang Y, Zhou J, Chen Y, Wang C, Wu E, Fu L, Xie C. Quantification of distinct let-7 microRNA family members by a modified stem-loop RT-qPCR. Mol Med Rep 2017; 17:3690-3696. [PMID: 29257343 PMCID: PMC5802175 DOI: 10.3892/mmr.2017.8297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/04/2017] [Indexed: 11/18/2022] Open
Abstract
Lethal-7 (let-7) microRNA (miRNA) serves a pivotal role in a number of physiological processes and is associated with the occurrence and development of multiple disorders such as cancer. The present study aimed to use a newly developed stem-loop strategy for reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to distinguish let-7 miRNA family members that differ by as little as a single nucleotide. For the miRNAs comprising 16 identical nucleotides at the 5′-end, different stem-loop RT primers were designed and used in RT-qPCR to assess the expression profiles of a panel of let-7 family member miRNAs in human glioblastoma U87 cells. Amplification efficiency was evaluated through correlation analysis between total RNA input and the quantification threshold values. Melting curve profiles were measured to estimate the amplification specificity of the improved stem-loop RT-qPCR compared with those of the poly(A)-tailing method. In addition, the discrimination ability of the modified stem-loop method was examined. Compared with poly(A) tailing, the modified stem-loop RT method was able to specifically reverse transcribe the diverse let-7 miRNA family members followed by accurate quantification, with a theoretical amplification efficiency of ~100%. This modified stem-loop method was able to distinguish miRNAs with a single base difference. This innovative method may be used in the clinical detection of let-7 expression levels in a variety of tumour samples, and may provide valuable data for disease diagnosis and prognostic evaluation. In addition, this method may offer a new avenue for developing particular stem-loop approaches in measuring other miRNAs with little discrepancy.
Collapse
Affiliation(s)
- Yilin Wang
- Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jianwen Zhou
- Department of Pathology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yanlian Chen
- Key Laboratory of Gene Engineering of The Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat‑sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Chunhua Wang
- Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Enyin Wu
- Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Liang Fu
- Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chen Xie
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
274
|
Kim M, Kogan N, Slack FJ. Cis-acting elements in its 3' UTR mediate post-transcriptional regulation of KRAS. Oncotarget 2017; 7:11770-84. [PMID: 26930719 PMCID: PMC4914247 DOI: 10.18632/oncotarget.7599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/17/2016] [Indexed: 11/25/2022] Open
Abstract
Multiple RNA-binding proteins and non-coding RNAs, such as microRNAs (miRNAs), are involved in post-transcriptional gene regulation through recognition motifs in the 3' untranslated region (UTR) of their target genes. The KRAS gene encodes a key signaling protein, and its messenger RNA (mRNA) contains an exceptionally long 3' UTR; this suggests that it may be subject to a highly complex set of regulatory processes. However, 3' UTR-dependent regulation of KRAS expression has not been explored in detail. Using extensive deletion and mutational analyses combined with luciferase reporter assays, we have identified inhibitory and stabilizing cis-acting regions within the KRAS 3' UTR that may interact with miRNAs and RNA-binding proteins, such as HuR. Particularly, we have identified an AU-rich 49-nt fragment in the KRAS 3' UTR that is required for KRAS 3' UTR reporter repression. This element contains a miR-185 complementary element, and we show that overexpression of miR-185 represses endogenous KRAS mRNA and protein in vitro. In addition, we have identified another 49-nt fragment that is required to promote KRAS 3' UTR reporter expression. These findings indicate that multiple cis-regulatory motifs in the 3' UTR of KRAS finely modulate its expression, and sequence alterations within a binding motif may disrupt the precise functions of trans-regulatory factors, potentially leading to aberrant KRAS expression.
Collapse
Affiliation(s)
- Minlee Kim
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Institute for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Nicole Kogan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Current address: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Frank J Slack
- Institute for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
275
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
276
|
Feng X, He D, Shan G, Tao J, Chen Y. Integrated analysis of mRNA and miRNA expression profiles in Ptychobarbus dipogon and Schizothorax oconnori , insight into genetic mechanisms of high altitude adaptation in the schizothoracine fishes. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
277
|
Choi SW, Lee JY, Kang KS. miRNAs in stem cell aging and age-related disease. Mech Ageing Dev 2017; 168:20-29. [DOI: 10.1016/j.mad.2017.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
|
278
|
Singla H, Ludhiadch A, Kaur RP, Chander H, Kumar V, Munshi A. Recent advances in HER2 positive breast cancer epigenetics: Susceptibility and therapeutic strategies. Eur J Med Chem 2017; 142:316-327. [DOI: 10.1016/j.ejmech.2017.07.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
|
279
|
Yang W, Ma J, Zhou W, Zhou X, Cao B, Zhang H, Zhao Q, Fan D, Hong L. Molecular mechanisms and clinical implications of miRNAs in drug resistance of esophageal cancer. Expert Rev Gastroenterol Hepatol 2017; 11:1151-1163. [PMID: 28838272 DOI: 10.1080/17474124.2017.1372189] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With the increasing incidence of esophageal cancer, drug resistance is becoming a major obstacle to successful cancer therapy since chemotherapy is regarded as a curative approach to inhibit cancer cell proliferation. Despite the great progress in anticancer treatment achieved during the last decades, the mechanisms of multidrug resistance have not been completely elucidated. Recently, accumulating studies and pre-clinical reports highlighted the role of miRNAs in the drug resistance of esophageal cancer. Areas covered: In this review, we mainly summarized the current advances of miRNAs in esophageal cancer and the mechanisms underlying drug resistance. We also reviewed the potential role of miRNAs as biomarkers for predicting drug response and prognosis. Finally, we envisaged the future orientation and challenges in translating the existing knowledge of drug resistance related miRNAs into clinical applications. Expert commentary: Based on the current knowledge of certain miRNAs, we believe that miRNAs would be helpful to overcome the drug resistance and provide personalized treatment for patients with esophageal cancer. The aims of this study were to provide a comprehensive summary on the emerging role of miRNAs in the drug resistance of esophageal cancer and attract broad attention of more researchers on this field.
Collapse
Affiliation(s)
- Wanli Yang
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Hongwei Zhang
- c Department of Digestive Surgery , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Qingchuan Zhao
- c Department of Digestive Surgery , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Daiming Fan
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Liu Hong
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
280
|
MiR-34a regulates mitochondrial content and fat ectopic deposition induced by resistin through the AMPK/PPARα pathway in HepG2 cells. Int J Biochem Cell Biol 2017; 94:133-145. [PMID: 29197627 DOI: 10.1016/j.biocel.2017.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Resistin is an adipocyte-derived cytokine and was named for its role in the development of insulin resistance. Increased serum resistin levels are also associated with steatohepatitis and non-alcoholic fatty liver disease. In a previous study, resistin was observed to reduce mitochondrial content and upregulate miR-34a significantly in the liver. In this study, male C57BL/6 mice were injected with agomir-34a or control agomir, and HepG2 cells were transfected with miR-34a mimics or inhibitors to assess their role in resistin-induced fat deposition. The overexpression of miR-34a increased liver and HepG2 cell TAG content, decreased mitochondrial content, changed mitochondrial morphology and impaired mitochondrial function. In contrast, a miR-34a inhibitor significantly restored the TAG content and mitochondrial transmembrane potential. A study of transcriptional regulation revealed that C/EBPβ is essential for upregulating miR-34a by resistin. Furthermore, miR-34a inhibited the PPARα signaling pathway by binding to sites in the 3'UTR of AdipoR2 genes and the AMPK pathway. Consequently, this increased the fat content and decreased the mitochondrial content in HepG2 cells. This paper reveals a novel mechanism for mitochondrial regulation, which suggests that normal mitochondrial content and function is crucial for lipid metabolism in the liver.
Collapse
|
281
|
Brás A, Rodrigues AS, Gomes B, Rueff J. Down syndrome and microRNAs. Biomed Rep 2017; 8:11-16. [PMID: 29403643 DOI: 10.3892/br.2017.1019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 12/27/2022] Open
Abstract
In recent years numerous studies have indicated the importance of microRNAs (miRNA/miRs) in human pathology. Down syndrome (DS) is the most prevalent survivable chromosomal disorder and is attributed to trisomy 21 and the subsequent alteration of the dosage of genes located on this chromosome. A number of miRNAs are overexpressed in down syndrome, including miR-155, miR-802, miR- 125b-2, let-7c and miR-99a. This overexpression may contribute to the neuropathology, congenital heart defects, leukemia and low rate of solid tumor development observed in patients with DS. MiRNAs located on other chromosomes and with associated target genes on or off chromosome 21 may also be involved in the DS phenotype. In the present review, an overview of miRNAs and the haploinsufficiency and protein translation of specific miRNA targets in DS are discussed. This aimed to aid understanding of the pathogenesis of DS, and may contribute to the development of novel strategies for the prevention and treatment of the pathologies of DS.
Collapse
Affiliation(s)
- Aldina Brás
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - António S Rodrigues
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Bruno Gomes
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|
282
|
Hassan N, Zhao JT, Sidhu SB. The role of microRNAs in the pathophysiology of adrenal tumors. Mol Cell Endocrinol 2017; 456:36-43. [PMID: 28007658 DOI: 10.1016/j.mce.2016.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression in a sequence-specific manner. Due to its association with an assortment of diseases, miRNAs have been extensively studied in the last decade. In this review, the current understanding of the role of miRNAs in the pathophysiology of adrenal tumors is discussed. The recent contributions of high-throughput miRNA profiling studies have identified miRNAs that have functional and molecular roles in adrenal tumorigenesis. With respect to the biological heterogeneity of adrenal tumors and the limitations of the current treatments, an improved understanding of miRNAs may hold potential diagnostic and therapeutic value to facilitate better clinical management.
Collapse
Affiliation(s)
- Nunki Hassan
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Australia
| | - Jing Ting Zhao
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Australia
| | - Stan B Sidhu
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia; Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Australia; University of Sydney Endocrine Surgery Unit, Royal North Shore Hospital, Sydney, St Leonards, Sydney, NSW, Australia.
| |
Collapse
|
283
|
Jiang K, Zhang M, Li F, Li D, Sun G, Liu X, Li H, Han R, Jiang R, Li Z, Kang X, Yan F. Study on the role of gga-miRNA-200a in regulating cell differentiation and proliferation of chicken breast muscle by targeting Grb2. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1400465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Keren Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Meng Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Fang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| |
Collapse
|
284
|
Yi JT, Chen TT, Huo J, Chu X. Nanoscale Zeolitic Imidazolate Framework-8 for Ratiometric Fluorescence Imaging of MicroRNA in Living Cells. Anal Chem 2017; 89:12351-12359. [DOI: 10.1021/acs.analchem.7b03369] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jin-Tao Yi
- State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ting-Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jia Huo
- State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
285
|
Wu N, Fesler A, Liu H, Ju J. Development of novel miR-129 mimics with enhanced efficacy to eliminate chemoresistant colon cancer stem cells. Oncotarget 2017; 9:8887-8897. [PMID: 29507661 PMCID: PMC5823633 DOI: 10.18632/oncotarget.22322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022] Open
Abstract
Background Resistance to 5-Fluorouracil (5-FU) based chemotherapy is the major reason for failure of treating patients with advanced colorectal cancer. Materials and methods In this study, we developed a novel miR-129 mimic with potent efficacy in eliminating resistant colon cancer stem cells both in vitro and in vivo. We integrated 5-FU into miR-129 by replacing Uracil (U) to generate 5-FU-miR-129 mimics (Mimic-1). Results Mimic-1 is a strong therapeutic candidate with a number of unique features. Mimic-1 can be delivered to cancer cells without any transfection reagents (e.g. lipids, viral vector, nanoparticles). Mimic-1 is more potent at inhibiting cell proliferation and inducing cell cycle arrest at G1 phase than native miR-129 and the other mimics tested, while retaining target specificity. Mimic-1 prevents colon cancer metastasis in vivo without toxicity. Conclusion This represents a significant advancement in the development of a nontoxic and highly potent miRNA based cancer therapeutics and establishes a foundation for further developing Mimic-1 as a novel anti-cancer therapeutic for treating colorectal cancer.
Collapse
Affiliation(s)
- Ning Wu
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY, USA.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Andrew Fesler
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hua Liu
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jingfang Ju
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
286
|
Xin X, Pei X, Yang X, Lv Y, Zhang L, He W, Yin L. Rod-Shaped Active Drug Particles Enable Efficient and Safe Gene Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700324. [PMID: 29201626 PMCID: PMC5700648 DOI: 10.1002/advs.201700324] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/30/2017] [Indexed: 05/28/2023]
Abstract
Efficient microRNAs (miRNA) delivery into cells is a promising strategy for disease therapy, but is a major challenge because the available conventional nonviral vectors have significant drawbacks. In particular, after these vectors are entrapped in lysosomes, the escape efficiency of genes from lysosomes into the cytosol is less than 2%. Here, a novel approach for lethal-7a (let-7a) replacement therapy using rod-shaped active pure drug nanoparticles (≈130 nm in length, PNPs) with a dramatically high drug-loading of ≈300% as vectors is reported. Importantly, unlike other vectors, the developed PNPs/let-7a complexes (≈178 nm, CNPs) can enter cells and bypass the lysosomal route to localize to the cytosol, achieving efficient intracellular delivery of let-7a and a 50% reduction in expression of the target protein (KRAS). Also, CNPs prolong the t1/2 of blood circulation by ≈threefold and increase tumor accumulation by ≈1.5-2-fold, resulting in significantly improved antitumor efficacies. Additionally, no damage to normal organs is observed following systemic injection of CNPs. In conclusion, rod-shaped active PNPs enable efficient and safe delivery of miRNA with synergistic treatment for disease. This nanoplatform would also offer a viable strategy for the potent delivery of proteins and peptides in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaofei Xin
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Xue Pei
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Xin Yang
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Yaqi Lv
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Li Zhang
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Wei He
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Lifang Yin
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
- Key Laboratory of Druggability of BiopharmaceuticsChina Pharmaceutical UniversityNanjing210009P. R. China
| |
Collapse
|
287
|
Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat Commun 2017; 8:1189. [PMID: 29084942 PMCID: PMC5662751 DOI: 10.1038/s41467-017-01126-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/18/2017] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence about the presence and the activity of the miRISC in the nucleus of mammalian cells. Here, we show by quantitative proteomic analysis that Ago2 interacts with the nucleoplasmic protein Sfpq in an RNA-dependent fashion. By a combination of HITS-CLIP and transcriptomic analyses, we demonstrate that Sfpq directly controls the miRNA targeting of a subset of binding sites by local binding. Sfpq modulates miRNA targeting in both nucleoplasm and cytoplasm, indicating a nucleoplasmic commitment of Sfpq-target mRNAs that globally influences miRNA modes of action. Mechanistically, Sfpq binds to a sizeable set of long 3′UTRs forming aggregates to optimize miRNA positioning/recruitment at selected binding sites, including let-7a binding to Lin28A 3′UTR. Our results extend the miRNA-mediated post-transcriptional gene silencing into the nucleoplasm and indicate that an Sfpq-dependent strategy for controlling miRNA activity takes place in cells, contributing to the complexity of miRNA-dependent gene expression control. MicroRNAs have been best characterized for their functions in the cytoplasm; however, there is growing evidence of a nuclear localized role. Here, the authors identify Sfpq as an Ago2-interacting protein that modulates miRNA activity in both the nucleus and cytoplasm.
Collapse
|
288
|
Zhou Q, Huang SX, Zhang F, Li SJ, Liu C, Xi YY, Wang L, Wang X, He QQ, Sun CC, Li DJ. MicroRNAs: A novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif 2017; 50. [PMID: 28990243 DOI: 10.1111/cpr.12394] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer is still one of the most serious causes of cancer-related deaths all over the world. MicroRNAs (miRNAs) are defined as small non-coding RNAs which could play a pivotal role in post-transcriptional regulation of gene expression. Increasing evidence demonstrated dysregulation of miRNA expression associates with the development and progression of NSCLC. AIMS To emphasize a variety of tissue-specific miRNAs, circulating miRNAs and miRNA-derived exosomes could be used as potential diagnostic and therapeutic biomarkers in NSCLC patients. MATERIALS & METHODS In the current review, we paid attention to the significant discoveries of preclinical and clinical studies, which performed on tissue-specific miRNA, circulating miRNA and exosomal miRNA. The related studies were obtained through a systematic search of Pubmed, Web of Science, Embase. RESULTS A variety of tissue-specific miRNAs and circulating miRNAs with high sensitivity and specificity which could be used as potential diagnostic and therapeutic biomarkers in NSCLC patients. In addition, we emphasize that the miRNA-derived exosomes become novel diagnostic biomarkers potentially in these patients with NSCLC. CONCLUSION MiRNAs have emerged as non-coding RNAs, which have potential to be candidates for the diagnosis and therapy of NSCLC.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Shao-Xin Huang
- Department of Social Medicine and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - Feng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Shu-Jun Li
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, 430022, Hubei, China
| | - Cong Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yong-Yong Xi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Liang Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xin Wang
- Department of Social Medicine and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qi-Qiang He
- Department of School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
289
|
Castro D, Moreira M, Gouveia AM, Pozza DH, De Mello RA. MicroRNAs in lung cancer. Oncotarget 2017; 8:81679-81685. [PMID: 29113423 PMCID: PMC5655318 DOI: 10.18632/oncotarget.20955] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/26/2017] [Indexed: 01/03/2023] Open
Abstract
Lung cancer (LC) is a serious public health problem responsible for the majority of cancer deaths and comorbidities in developed countries. Tobacco smoking is considered the main risk factor for LC; however, only a few smokers will be affected by this cancer. Current screening methods are focused on identifying the early stages of this malignancy. Thus, new data concerning the roles of microRNA alterations in inflammation, epithelial-mesenchymal transition and lung disease have increased hope about LC pathogenesis, diagnosis, treatment and prognosis. MicroRNA mechanisms include angiogenesis promotion, cell cycle regulation by modulating cellular proliferation and apoptosis, and migration and invasion inhibition. In this context, this manuscript reviews the current information about many important microRNAs as they relate to the initiation and progression of LC.
Collapse
Affiliation(s)
- Diana Castro
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Márcia Moreira
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alexandra Monteiro Gouveia
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Cellular and Molecular Biology (IBMC), Institute for Health Innovation, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Daniel Humberto Pozza
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Ramon Andrade De Mello
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
- Department of Medicine, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
290
|
MiR-199a-5p and let-7c cooperatively inhibit migration and invasion by targeting MAP4K3 in hepatocellular carcinoma. Oncotarget 2017; 8:13666-13677. [PMID: 28099144 PMCID: PMC5355128 DOI: 10.18632/oncotarget.14623] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a high recurrence rate, and patients exhibit poor survival mainly because intrahepatic metastasis is common. We previously reported that let-7c down-regulation is significantly associated with poor differentiation level in HCC. In the present study, we demonstrate that miR-199a-5p and let-7c are frequently down-regulated in HCC cells and tissues, and low expression of miR-199a-5p is correlated with tumor size, liver envelope invasion. Furthermore, miR-199a-5p and let-7c cooperatively inhibit HCC cell migration and invasion in vitro. MAP4K3 is identified as the direct target of miR-199a-5p and let-7c and this regulation is further confirmed by luciferase reporter assays and Western blotting. In addition, MAP4K3 functions as a metastasis promoter since the results demonstrate that MAP4K3 could promote HCC cell migration and invasion. We also find that miR-199a-5p and let-7c increase the sensitivity of HCC cells to sorafenib.
Collapse
|
291
|
Wang L, Li M, Zhou Y, Zhao Y. MicroRNA Let-7g Directly Targets Forkhead Box C2 (FOXC2) to Modulate Bone Metastasis in Breast Cancer. Open Med (Wars) 2017; 12:157-162. [PMID: 28894844 PMCID: PMC5588756 DOI: 10.1515/med-2017-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/08/2017] [Indexed: 12/24/2022] Open
Abstract
Aberrantly expressed microRNAs have been implicated in lots of cancers. Reduced amounts of let-7g have been found in breast cancer tissues. The function of let-7g in bone metastasis of breast cancer remains poorly understood. This study is to explore the significance of let-7g and its novel target gene in bone metastasis of breast cancer. The expression of let-7g or forkhead box C2 (FOXC2) was measured in human clinical breast cancer tissues with bone metastasis by using quantitative real-time Polymerase Chain Reaction (qRT-PCR). After transfection with let-7g or anti-let-7g in breast cancer cell linesMDA-MB-231or SK-BR3, qRT-PCR and Western blot were done to test the levels of let-7g and FOXC2. The effect of anti-let-7g and/ or FOXC2 RNA interference (RNAi) on cell migration in breast cancer cells was evaluated by using wound healing assay. Clinically, qRT-PCR showed that FOXC2 levels were higher in breast cancer tissues with bone metastasis than those in their noncancerous counterparts. Let-7g was showed to be negatively correlated with FOXC2 in human breast cancer samples with bone metastasis. We found that enforced expression of let-7g reduced levels of FOXC2 protein by using Western blot in MDA-MB-231 cells. Conversely, anti-let-7g enhanced levels of FOXC2 in SK-BR3 cells. In terms of function, anti-let-7g accelerated migration of SK-BR3 cells. Interestingly, FOXC2 RNAi abrogated anti-let-7g-mediated migration in breast cancer cells. Thus, we conclude that let-7g suppresses cell migration through targeting FOXC2 in breast cancer. Our finding provides a new perspective for understanding the mechanism of bone metastasis in breast cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical University, Xi'an710077, China
| | - Ming Li
- The Second Department of Geriatrics, Ninth Hospital of Xi'an, Xi'an710054, China
| | - Yongxin Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical University, Xi'an710077, China
| | - Yu Zhao
- Department of Orthopaedics, Ninth Hospital of Xi'an, Xi'an710054, China
| |
Collapse
|
292
|
Wang Y, Lau C, Lu J. Target-initiated labeling for the dual-amplified detection of multiple microRNAs. Anal Chim Acta 2017; 992:76-84. [PMID: 29054152 DOI: 10.1016/j.aca.2017.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/21/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Herein we exploited a novel target-initiated labeling strategy for the multiplex detection of microRNAs (miRNAs) by coupling duplex-specific nuclease (DSN) with terminal deoxynucleotidyl transferase (TdT). In the presence of target miRNA, the immobilized and 3'-blocked capture probes hybridized with target and thus the formed DNA-RNA hybrid was recognized by DSN. DSN mediated the digestion of 3'-phosphated capture probes (CPs) in the hybrids and synchronously target was released and recycled for another round of hybridization and cleavage. The cleaved CP fragments with a free 3'-OH were then elongated and labeled with multiple biotin-dUTP nucleotides by TdT. Fluorescence reporter streptavidin-phycoerythin was finally added to react with the immobilized biotins and render fluorescence signals. This dual-amplification labeling strategy was successfully demonstrated to sensitively detect multiple miRNAs, taking advantage of DSN-mediated target recycling and TdT-catalyzed multiple signal modification with analysis by a commercial Luminex xMAP array platform. Our experimental results showed the simultaneous quantitative measurement of three sequence-specific miRNAs at concentrations from 1 pM to 2.5 nM. Attempts were also made to directly detect miRNAs in total RNA extracted from cancer cells. The dual-amplification labeling strategy reported here shows a great potential for the development of a method for the multiplexed, sensitive, selective, and simple analysis of multiple miRNAs in tissues or cells for biomedical research and clinical early diagnosis.
Collapse
Affiliation(s)
- Yinan Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Choiwan Lau
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
293
|
Panda AC, Grammatikakis I, Kim KM, De S, Martindale JL, Munk R, Yang X, Abdelmohsen K, Gorospe M. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 2017; 45:4021-4035. [PMID: 27928058 PMCID: PMC5397146 DOI: 10.1093/nar/gkw1201] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022] Open
Abstract
Using RNA sequencing (RNA-Seq), we compared the expression patterns of circular RNAs in proliferating (early-passage) and senescent (late-passage) human diploid WI-38 fibroblasts. Among the differentially expressed senescence-associated circRNAs (which we termed ‘SAC-RNAs’), we identified CircPVT1, generated by circularization of an exon of the PVT1 gene, as a circular RNA showing markedly reduced levels in senescent fibroblasts. Reducing CircPVT1 levels in proliferating fibroblasts triggered senescence, as determined by a rise in senescence-associated β-galactosidase activity, higher abundance of CDKN1A/P21 and TP53, and reduced cell proliferation. Although several microRNAs were predicted to bind CircPVT1, only let-7 was found enriched after pulldown of endogenous CircPVT1, suggesting that CircPVT1 might selectively modulate let-7 activity and hence expression of let-7-regulated mRNAs. Reporter analysis revealed that CircPVT1 decreased the cellular pool of available let-7, and antagonizing endogenous let-7 triggered cell proliferation. Importantly, silencing CircPVT1 promoted cell senescence and reversed the proliferative phenotype observed after let-7 function was impaired. Consequently, the levels of several proliferative proteins that prevent senescence, such as IGF2BP1, KRAS and HMGA2, encoded by let-7 target mRNAs, were reduced by silencing CircPVT1. Our findings indicate that the SAC-RNA CircPVT1, elevated in dividing cells and reduced in senescent cells, sequesters let-7 to enable a proliferative phenotype.
Collapse
Affiliation(s)
- Amaresh C Panda
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ioannis Grammatikakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
294
|
Qiang J, Bao WJ, Tao FY, He J, Li XH, Xu P, Sun LY. The expression profiles of miRNA-mRNA of early response in genetically improved farmed tilapia (Oreochromis niloticus) liver by acute heat stress. Sci Rep 2017; 7:8705. [PMID: 28821885 PMCID: PMC5562739 DOI: 10.1038/s41598-017-09264-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Genetically improved farmed tilapia (GIFT, Oreochromis niloticus) are commercially important fish that are cultured in China. GIFT are highly susceptible to diseases when exposed to high temperatures in summer. Better understanding the GIFT regulatory response to heat stress will not only help in determining the relationship between heat stress signalling pathways and adaption mechanisms, but will also contribute to breeding new high-temperature tolerant strains of GIFT. In this study, we built control (28 °C) and heat-treated (37.5 °C) groups, and extracted RNA from the liver tissues for high-throughput next-generation sequencing to study the miRNA and mRNA expression profiles. We identified 28 differentially expressed (DE) miRNAs and 744 DE mRNAs between the control and heat-treated groups and annotated them using the KEGG database. A total of 38 target genes were predicted for 21 of the DE miRNAs, including 64 negative miRNA-mRNA interactions. We verified 15 DE miRNA-mRNA pairs and 16 other DE mRNAs by quantitative real-time PCR. Important regulatory pathways involved in the early response of GIFT to heat stress included organism system, metabolism, and diseases. Our findings will facilitate the understanding of regulatory pathways affected by acute heat stress, which will help to better prevent heat damage to GIFT.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Wen J Bao
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Fan Y Tao
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Xia H Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China.
| | - Lan Y Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Centre, Chinese Academy of Fishery Sciences, 9 Shanshui East Road, Wuxi, Jiangsu, 214081, China
| |
Collapse
|
295
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
296
|
Yerukala Sathipati S, Ho SY. Identifying the miRNA signature associated with survival time in patients with lung adenocarcinoma using miRNA expression profiles. Sci Rep 2017; 7:7507. [PMID: 28790336 PMCID: PMC5548864 DOI: 10.1038/s41598-017-07739-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022] Open
Abstract
Lung adenocarcinoma is a multifactorial disease. MicroRNA (miRNA) expression profiles are extensively used for discovering potential theranostic biomarkers of lung cancer. This work proposes an optimized support vector regression (SVR) method called SVR-LUAD to simultaneously identify a set of miRNAs referred to the miRNA signature for estimating the survival time of lung adenocarcinoma patients using their miRNA expression profiles. SVR-LUAD uses an inheritable bi-objective combinatorial genetic algorithm to identify a small set of informative miRNAs cooperating with SVR by maximizing estimation accuracy. SVR-LUAD identified 18 out of 332 miRNAs using 10-fold cross-validation and achieved a correlation coefficient of 0.88 ± 0.01 and mean absolute error of 0.56 ± 0.03 year between real and estimated survival time. SVR-LUAD performs well compared to some well-recognized regression methods. The miRNA signature consists of the 18 miRNAs which strongly correlates with lung adenocarcinoma: hsa-let-7f-1, hsa-miR-16-1, hsa-miR-152, hsa-miR-217, hsa-miR-18a, hsa-miR-193b, hsa-miR-3136, hsa-let-7g, hsa-miR-155, hsa-miR-3199-1, hsa-miR-219-2, hsa-miR-1254, hsa-miR-1291, hsa-miR-192, hsa-miR-3653, hsa-miR-3934, hsa-miR-342, and hsa-miR-141. Gene ontology annotation and pathway analysis of the miRNA signature revealed its biological significance in cancer and cellular pathways. This miRNA signature could aid in the development of novel therapeutic approaches to the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
297
|
Markopoulos GS, Roupakia E, Tokamani M, Chavdoula E, Hatziapostolou M, Polytarchou C, Marcu KB, Papavassiliou AG, Sandaltzopoulos R, Kolettas E. A step-by-step microRNA guide to cancer development and metastasis. Cell Oncol (Dordr) 2017; 40:303-339. [DOI: 10.1007/s13402-017-0341-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 01/17/2023] Open
|
298
|
Wells AC, Daniels KA, Angelou CC, Fagerberg E, Burnside AS, Markstein M, Alfandari D, Welsh RM, Pobezinskaya EL, Pobezinsky LA. Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells. eLife 2017; 6. [PMID: 28737488 PMCID: PMC5550279 DOI: 10.7554/elife.26398] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022] Open
Abstract
The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses. DOI:http://dx.doi.org/10.7554/eLife.26398.001
Collapse
Affiliation(s)
- Alexandria C Wells
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Keith A Daniels
- Department of Pathology, University of Massachusetts Medical School, Worcester, United States
| | - Constance C Angelou
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Eric Fagerberg
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Amy S Burnside
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Michele Markstein
- Department of Biology, University of Massachusetts, Amherst, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, United States
| | - Elena L Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| |
Collapse
|
299
|
Ni J, Bucci J, Chang L, Malouf D, Graham P, Li Y. Targeting MicroRNAs in Prostate Cancer Radiotherapy. Theranostics 2017; 7:3243-3259. [PMID: 28900507 PMCID: PMC5595129 DOI: 10.7150/thno.19934] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most important treatment options for localized early-stage or advanced-stage prostate cancer (CaP). Radioresistance (relapse after radiotherapy) is a major challenge for the current radiotherapy. There is great interest in investigating mechanisms of radioresistance and developing novel treatment strategies to overcome radioresistance. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level, participating in numerous physiological and pathological processes including cancer invasion, progression, metastasis and therapeutic resistance. Emerging evidence indicates that miRNAs play a critical role in the modulation of key cellular pathways that mediate response to radiation, influencing the radiosensitivity of the cancer cells through interplaying with other biological processes such as cell cycle checkpoints, apoptosis, autophagy, epithelial-mesenchymal transition and cancer stem cells. Here, we summarize several important miRNAs in CaP radiation response and then discuss the regulation of the major signalling pathways and biological processes by miRNAs in CaP radiotherapy. Finally, we emphasize on microRNAs as potential predictive biomarkers and/or therapeutic targets to improve CaP radiosensitivity.
Collapse
|
300
|
Abstract
The development of intrinsic or acquired resistance to chemotherapeutic agents used in the treatment of various human cancers is a major obstacle for the successful abolishment of cancer. The accumulated efforts in the understanding the exact mechanisms of development of multidrug resistance (MDR) have led to the introduction of several unique and common mechanisms. Recent studies demonstrate the regulatory role of small noncoding RNA or miRNA in the several parts of cancer biology. Practically all aspects of cell physiology under normal and disease conditions are reported to be controlled by miRNAs. In this review, we discuss how the miRNA profile is changed upon MDR development and the pivotal regulatory role played by miRNAs in overcoming resistance to chemotherapeutic agents. It is hoped that further studies will support the use of these differentially expressed miRNAs as prognostic and predictive markers, as well as novel therapeutic targets to overcome resistance in ovarian cancer.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Fattahi
- Faculty of Advanced Medical Sciences, Department of Reproductive Biology, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|