251
|
Storz MA, Ronco AL. Quantifying dietary acid load in U.S. cancer survivors: an exploratory study using NHANES data. BMC Nutr 2022; 8:43. [PMID: 35505426 PMCID: PMC9063047 DOI: 10.1186/s40795-022-00537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diet is an important determinant of systemic pH and acid-base regulation. A frequent consumption of acid-inducing foods (including processed meats and cheese) combined with a low intake of base-inducing foods (such as fruits, legumes and vegetables) increases Dietary Acid Load (DAL), which has been associated with an increased risk for certain cancers. DAL also appears to be of paramount importance in cancer survivors, in whom it was associated with increased mortality and poor overall physical health. Literature on DAL in cancer survivors, however, is scarce and limited to a few studies. METHODS Using cross-sectional data from the National Health and Nutrition Examination Surveys (NHANES), we sought to quantify DAL in U.S. cancer survivors and contrasted the results to the general population. DAL was estimated using established formulas (Potential Renal Acid Load (PRAL) and Net Endogenous Acid Production (NEAP)). RESULTS Our study comprised 19,413 participants, of which 1444 were self-reported cancer survivors. Almost 63% of cancer survivors were female (weighted proportion) with a mean age of 61.75 (0.51) years. DAL scores were consistently higher in cancer survivors (as compared to the general population) after adjustment for confounders in multivariate regression models. These differences, however, were not statistically significant (p = 0.506 for NEAPF, 0.768 for PRALR and 0.468 for NEAPR, respectively). Notably, DAL scores were positive throughout (> 0 mEq/d) in cancer survivors, suggesting an acidifying diet. Specific examples include mean PRALR scores > 11 mEq/d in cancer survivors aged 55 years and mean NEAPF scores > 50 mEq/d in cancer survivors aged 40-60 years). CONCLUSIONS The acidifying diet in this sample of cancer survivors warrants caution and requires further investigation. Comparably high DAL scores have been associated with adverse health outcomes and an increased mortality in previous studies in breast cancer survivors. Thus, increased awareness as well as additional clinical trials in this field are urgently warranted.
Collapse
Affiliation(s)
- Maximilian Andreas Storz
- Department of Internal Medicine II, Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Alvaro Luis Ronco
- Unit of Oncology and Radiotherapy, Pereira Rossell Women's Hospital, Bvard. Artigas 1590, 11600, Montevideo, Uruguay
- School of Medicine, CLAEH University, Prado and Salt Lake, 20100, Maldonado, Uruguay
- Biomedical Sciences Center, University of Montevideo, Puntas de Santiago 1604, 11500, Montevideo, Uruguay
| |
Collapse
|
252
|
Abstract
Acute kidney injury (AKI) is a serious and highly prevalent disease, yet only supportive treatment is available. Nicotinamide adenine dinucleotide (NAD+) is a cofactor necessary for adenosine triphosphate (ATP) production and cell survival. Changes in renal NAD+ biosynthesis and energy utilization are features of AKI. Targeting NAD+ as an AKI therapy shows promising potential. However, the pursuit of NAD+-based treatments requires deeper understanding of the unique drivers and effects of the NAD+ biosynthesis derangements that arise in AKI. This article summarizes the NAD+ biosynthesis alterations in the kidney in AKI, chronic disease, and aging. To enhance this understanding, we explore instances of NAD+ biosynthesis alterations outside the kidney in inflammation, pregnancy, and cancer. In doing so, we seek to highlight that the different NAD+ biosynthesis pathways are not interconvertible and propose that the way in which NAD+ is synthesized may be just as important as the NAD+ produced.
Collapse
Affiliation(s)
- Amanda J Clark
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, TX; Division of Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX
| | - Marie Christelle Saade
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, TX
| | - Samir M Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, TX; Department of Pharmacology, University of Texas Southwestern, Dallas, TX.
| |
Collapse
|
253
|
Tan H, Wang H, Ma J, Deng H, He Q, Chen Q, Zhang Q. Identification of human LDHC4 as a potential target for anticancer drug discovery. Acta Pharm Sin B 2022; 12:2348-2357. [PMID: 35646544 PMCID: PMC9136605 DOI: 10.1016/j.apsb.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
One of the distinct hallmarks of cancer cells is aerobic glycolysis (Warburg effect). Lactate dehydrogenase A (LDHA) is thought to play a key role in aerobic glycolysis and has been extensively studied, while lactate dehydrogenase C (LDHC), an isoform of LDHA, has received much less attention. Here we showed that human LDHC was significantly expressed in lung cancer tissues, overexpression of Ldhc in mice could promote tumor growth, and knock-down of LDHC could inhibit the proliferation of lung cancer A549 cells. We solved the first crystal structure of human LDHC4 and found that the active-site loop of LDHC4 adopted a distinct conformation compared to LDHA4 and lactate dehydrogenase B4 (LDHB4). Moreover, we found that (ethylamino) (oxo)acetic acid shows about 10 times selective inhibition against LDHC4 over LDHA4 and LDHB4. Our studies suggest that LDHC4 is a potential target for anticancer drug discovery and (ethylamino) (oxo)acetic acid provides a good start to develop lead compounds for selective drugs targeting LDHC4.
Collapse
|
254
|
Vieira AM, Silvestre OF, Silva BF, Ferreira CJ, Lopes I, Gomes AC, Espiña B, Sárria MP. pH-sensitive nanoliposomes for passive and CXCR-4-mediated marine yessotoxin delivery for cancer therapy. Nanomedicine (Lond) 2022; 17:717-739. [PMID: 35481356 DOI: 10.2217/nnm-2022-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Yessotoxin (YTX), a marine-derived drug, was encapsulated in PEGylated pH-sensitive nanoliposomes, covalently functionalized (strategy I) with SDF-1α and by nonspecific adsorption (strategy II), to actively target chemokine receptor CXCR-4. Methods: Cytotoxicity to normal human epithelial cells (HK-2) and prostate (PC-3) and breast (MCF-7) adenocarcinoma models, with different expression levels of CXCR-4, were tested. Results: Strategy II exerted the highest cytotoxicity toward cancer cells while protecting normal epithelia. Acid pH-induced fusion of nanoliposomes seemed to serve as a primary route of entry into MCF-7 cells but PC-3 data support an endocytic pathway for their internalization. Conclusion: This work describes an innovative hallmark in the current marine drug clinical pipeline, as the developed nanoliposomes are promising candidates in the design of groundbreaking marine flora-derived anticancer nanoagents.
Collapse
Affiliation(s)
- Ana Mg Vieira
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal.,Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal
| | - Oscar F Silvestre
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Bruno Fb Silva
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Celso Jo Ferreira
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal.,Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
| | - Ivo Lopes
- Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal
| | - Andreia C Gomes
- Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal.,Institute of Science & Innovation for Biosustainability (IB-S), University of Minho, Braga, 4710-057, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Marisa P Sárria
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| |
Collapse
|
255
|
Sun W, Wang D, Zu Y, Deng Y. Long noncoding RNA CASC7 is a novel regulator of glycolysis in oesophageal cancer via a miR-143-3p-mediated HK2 signalling pathway. Cell Death Dis 2022; 8:231. [PMID: 35474307 PMCID: PMC9043207 DOI: 10.1038/s41420-022-01028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Long noncoding RNAs have been proven to play a crucial role in many tumours. Here, we explored the role of the lncRNA cancer susceptibility candidate 7 (CASC7) in oesophageal cancer. LncRNA CASC7 was identified in our database analysis, and we found that it was significantly higher in oesophageal tumour tissue than in normal tissue and that high expression of lncRNA CASC7 predicted a poor prognosis. Furthermore, we verified through cell experiments that low expression of lncRNA CASC7 in oesophageal cancer cells significantly inhibited tumour proliferation, which could be explained by the effect of lncRNA CASC7 on aerobic glycolysis. Next, we found that the expression of CASC7 and hexokinase 2 (HK2) in oesophageal cancer was positively correlated in database analysis, and this conclusion was further verified in cell experiments. To determine the mechanism, we found that miR-143-3p can bind to both lncRNA CASC7 and HK2. In clinical specimens, we also found high expression of lncRNA CASC7 in tumours, and the expression levels of lncRNA CASC7 and HK2 were positively correlated. In conclusion, downregulating lncRNA CASC7 could inhibit tumour proliferation by reducing glycolysis through the miR-143-3p/HK2 axis.
Collapse
Affiliation(s)
- Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Dao Wang
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
256
|
Tamai S, Ichinose T, Tsutsui T, Tanaka S, Garaeva F, Sabit H, Nakada M. Tumor Microenvironment in Glioma Invasion. Brain Sci 2022; 12:brainsci12040505. [PMID: 35448036 PMCID: PMC9031400 DOI: 10.3390/brainsci12040505] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
A major malignant trait of gliomas is their remarkable infiltration capacity. When glioma develops, the tumor cells have already reached the distant part. Therefore, complete removal of the glioma is impossible. Recently, research on the involvement of the tumor microenvironment in glioma invasion has advanced. Local hypoxia triggers cell migration as an environmental factor. The transcription factor hypoxia-inducible factor (HIF) -1α, produced in tumor cells under hypoxia, promotes the transcription of various invasion related molecules. The extracellular matrix surrounding tumors is degraded by proteases secreted by tumor cells and simultaneously replaced by an extracellular matrix that promotes infiltration. Astrocytes and microglia become tumor-associated astrocytes and glioma-associated macrophages/microglia, respectively, in relation to tumor cells. These cells also promote glioma invasion. Interactions between glioma cells actively promote infiltration of each other. Surgery, chemotherapy, and radiation therapy transform the microenvironment, allowing glioma cells to invade. These findings indicate that the tumor microenvironment may be a target for glioma invasion. On the other hand, because the living body actively promotes tumor infiltration in response to the tumor, it is necessary to reconsider whether the invasion itself is friend or foe to the brain.
Collapse
|
257
|
Dong X, Brahma RK, Fang C, Yao SQ. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 2022; 13:4239-4269. [PMID: 35509461 PMCID: PMC9006903 DOI: 10.1039/d2sc01003h] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Small-molecule prodrugs have become the main toolbox to improve the unfavorable physicochemical properties of potential therapeutic compounds in contemporary anti-cancer drug development. Many approved small-molecule prodrugs, however, still face key challenges in their pharmacokinetic (PK) and pharmacodynamic (PD) properties, thus severely restricting their further clinical applications. Self-assembled prodrugs thus emerged as they could take advantage of key benefits in both prodrug design and nanomedicine, so as to maximize drug loading, reduce premature leakage, and improve PK/PD parameters and targeting ability. Notably, temporally and spatially controlled release of drugs at cancerous sites could be achieved by encoding various activable linkers that are sensitive to chemical or biological stimuli in the tumor microenvironment (TME). In this review, we have comprehensively summarized the recent progress made in the development of single/multiple-stimulus-responsive self-assembled prodrugs for mono- and combinatorial therapy. A special focus was placed on various prodrug conjugation strategies (polymer-drug conjugates, drug-drug conjugates, etc.) that facilitated the engineering of self-assembled prodrugs, and various linker chemistries that enabled selective controlled release of active drugs at tumor sites. Furthermore, some polymeric nano-prodrugs that entered clinical trials have also been elaborated here. Finally, we have discussed the bottlenecks in the field of prodrug nanoassembly and offered potential solutions to overcome them. We believe that this review will provide a comprehensive reference for the rational design of effective prodrug nanoassemblies that have clinic translation potential.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Pharmacy, School of Medicine, Shanghai University Shanghai 200444 China
| | - Rajeev K Brahma
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| | - Chao Fang
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
258
|
Liu J, Hu X, Feng L, Lin Y, Liang S, Zhu Z, Shi S, Dong C. Carbonic anhydrase IX-targeted H-APBC nanosystem combined with phototherapy facilitates the efficacy of PI3K/mTOR inhibitor and resists HIF-1α-dependent tumor hypoxia adaptation. J Nanobiotechnology 2022; 20:187. [PMID: 35413842 PMCID: PMC9004111 DOI: 10.1186/s12951-022-01394-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Non-redundant properties such as hypoxia and acidosis promote tumor metabolic adaptation and limit anti-cancer therapies. The key to the adaptation of tumor cells to hypoxia is the transcriptional and stable expression of hypoxia-inducible factor-1 alpha (HIF-1α). The phosphorylation-activated tumorigenic signal PI3K/AKT/mTOR advances the production of downstream HIF-1α to adapt to tumor hypoxia. Studies have elucidated that acid favors inhibition of mTOR signal. Nonetheless, carbonic anhydrase IX (CAIX), overexpressed on membranes of hypoxia tumor cells with pH-regulatory effects, attenuates intracellular acidity, which is unfavorable for mTOR inhibition. Herein, a drug delivery nanoplatform equipped with dual PI3K/mTOR inhibitor Dactolisib (NVP-BEZ235, BEZ235) and CAIX inhibitor 4‐(2‐aminoethyl) benzene sulfonamide (ABS) was designed to mitigate hypoxic adaptation and improve breast cancer treatment. Results ABS and PEG-NH2 were successfully modified on the surface of hollow polydopamine (HPDA), while BEZ235 and Chlorin e6 (Ce6) were effectively loaded with the interior of HPDA to form HPDA-ABS/PEG-BEZ235/Ce6 (H-APBC) nanoparticles. The release of BEZ235 from H-APBC in acid microenvironment could mitigate PI3K/mTOR signal and resist HIF-1α-dependent tumor hypoxia adaptation. More importantly, ABS modified on the surface of H-APBC could augment intracellular acids and enhances the mTOR inhibition. The nanoplatform combined with phototherapy inhibited orthotopic breast cancer growth while reducing spontaneous lung metastasis, angiogenesis, based on altering the microenvironment adapted to hypoxia and extracellular acidosis. Conclusion Taken together, compared with free BEZ235 and ABS, the nanoplatform exhibited remarkable anti-tumor efficiency, reduced hypoxia adaptation, mitigated off-tumor toxicity of BEZ235 and solved the limited bioavailability of BEZ235 caused by weak solubility. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01394-w.
Collapse
Affiliation(s)
- Jie Liu
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Xiaochun Hu
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Lei Feng
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yun Lin
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shujing Liang
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Zhounan Zhu
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shuo Shi
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
259
|
Wu TC, Liao CY, Lu WC, Chang CR, Tsai FY, Jiang SS, Chen TH, Lin KMC, Chen LT, Chang WSW. Identification of distinct slow mode of reversible adaptation of pancreatic ductal adenocarcinoma to the prolonged acidic pH microenvironment. J Exp Clin Cancer Res 2022; 41:137. [PMID: 35410237 PMCID: PMC8996570 DOI: 10.1186/s13046-022-02329-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic neoplasm with high metastatic potential and poor clinical outcome. Like other solid tumors, PDAC in the early stages is often asymptomatic, and grows very slowly under a distinct acidic pHe (extracellular pH) microenvironment. However, most previous studies have only reported the fate of cancerous cells upon cursory exposure to acidic pHe conditions. Little is known about how solid tumors-such as the lethal PDAC originating within the pancreatic duct-acinar system that secretes alkaline fluids-evolve to withstand and adapt to the prolonged acidotic microenvironmental stress. METHODS Representative PDAC cells were exposed to various biologically relevant periods of extracellular acidity. The time effects of acidic pHe stress were determined with respect to tumor cell proliferation, phenotypic regulation, autophagic control, metabolic plasticity, mitochondrial network dynamics, and metastatic potentials. RESULTS Unlike previous short-term analyses, we found that the acidosis-mediated autophagy occurred mainly as an early stress response but not for later adaptation to microenvironmental acidification. Rather, PDAC cells use a distinct and lengthy process of reversible adaptive plasticity centered on the early fast and later slow mitochondrial network dynamics and metabolic adjustment. This regulates their acute responses and chronic adaptations to the acidic pHe microenvironment. A more malignant state with increased migratory and invasive potentials in long-term acidosis-adapted PDAC cells was obtained with key regulatory molecules being closely related to overall patient survival. Finally, the identification of 34 acidic pHe-related genes could be potential targets for the development of diagnosis and treatment against PDAC. CONCLUSIONS Our study offers a novel mechanism of early rapid response and late reversible adaptation of PDAC cells to the stress of extracellular acidosis. The presence of this distinctive yet slow mode of machinery fills an important knowledge gap in how solid tumor cells sense, respond, reprogram, and ultimately adapt to the persistent microenvironmental acidification.
Collapse
Affiliation(s)
- Tzu-Chin Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Chien-Yu Liao
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Wei-Chien Lu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Chuang-Rung Chang
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu, 300044 Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Tsung-Hsien Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, 350401 Taiwan
- Current address: Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, 60002 Taiwan
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, 350401 Taiwan
| | - Wun-Shaing Wayne Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, 350401 Taiwan
| |
Collapse
|
260
|
Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022; 12:855019. [PMID: 35392227 PMCID: PMC8980858 DOI: 10.3389/fonc.2022.855019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of the tumor microenvironment presents significant challenges to cancer therapy, while providing opportunities for targeted drug delivery. Using characteristic signals of the tumor microenvironment, various stimuli-responsive drug delivery systems can be constructed for targeted drug delivery to tumor sites. Among these, the pH is frequently utilized, owing to the pH of the tumor microenvironment being lower than that of blood and healthy tissues. pH-responsive polymer carriers can improve the efficiency of drug delivery in vivo, allow targeted drug delivery, and reduce adverse drug reactions, enabling multifunctional and personalized treatment. pH-responsive polymers have gained increasing interest due to their advantageous properties and potential for applicability in tumor therapy. In this review, recent advances in, and common applications of, pH-responsive polymer nanomaterials for drug delivery in cancer therapy are summarized, with a focus on the different types of pH-responsive polymers. Moreover, the challenges and future applications in this field are prospected.
Collapse
Affiliation(s)
- Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
261
|
Li Z, Ding Y, Liu J, Wang J, Mo F, Wang Y, Chen-Mayfield TJ, Sondel PM, Hong S, Hu Q. Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat Commun 2022; 13:1845. [PMID: 35387972 PMCID: PMC8987059 DOI: 10.1038/s41467-022-29388-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Immunosuppressive cells residing in the tumor microenvironment, especially tumor associated macrophages (TAMs), hinder the infiltration and activation of T cells, limiting the anti-cancer outcomes of immune checkpoint blockade. Here, we report a biocompatible alginate-based hydrogel loaded with Pexidartinib (PLX)-encapsulated nanoparticles that gradually release PLX at the tumor site to block colony-stimulating factor 1 receptors (CSF1R) for depleting TAMs. The controlled TAM depletion creates a favorable milieu for facilitating local and systemic delivery of anti-programmed cell death protein 1 (aPD-1) antibody-conjugated platelets to inhibit post-surgery tumor recurrence. The tumor immunosuppressive microenvironment is also reprogrammed by TAM elimination, further promoting the infiltration of T cells into tumor tissues. Moreover, the inflammatory environment after surgery could trigger the activation of platelets to facilitate the release of aPD-1 accompanied with platelet-derived microparticles binding to PD-1 receptors for re-activating T cells. All these results collectively indicate that the immunotherapeutic efficacy against tumor recurrence of both local and systemic administration of aPD-1 antibody-conjugated platelets could be strengthened by local depletion of TAMs through the hydrogel reservoir. Increased density of tumor associated macrophages has been correlated with tumor recurrence following surgery. Here the authors design an alginate-based hydrogel encapsulating anti-PD-1-conjugated platelets and nanoparticles loaded with the macrophage-depleting CSF-1R inhibitor pexidartinib, showing inhibition of post-surgery tumor recurrence in preclinical models.
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yingyue Ding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jun Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jianxin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Paul M Sondel
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA. .,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
262
|
Park J, Cho HG, Park J, Lee G, Kim HS, Paeng K, Song S, Park G, Ock CY, Chae YK. Artificial Intelligence-Powered Hematoxylin and Eosin Analyzer Reveals Distinct Immunologic and Mutational Profiles among Immune Phenotypes in Non-Small-Cell Lung Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:701-711. [PMID: 35339231 DOI: 10.1016/j.ajpath.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The tumor microenvironment can be classified into three immune phenotypes: inflamed, immune excluded, and immune-desert. Immunotherapy efficacy has been shown to vary by phenotype; yet, the mechanisms are poorly understood and demand further investigation. This study unveils the mechanisms using an artificial intelligence-powered software called Lunit SCOPE. Artificial intelligence was used to classify 965 samples of non-small-cell lung carcinoma from The Cancer Genome Atlas into the three immune phenotypes. The immune and mutational profiles that shape each phenotype using xCell, gene set enrichment analysis with RNA-sequencing data, and cBioportal were described. In the inflamed subtype, which showed higher cytolytic score, the enriched pathways were generally associated with immune response and immune-related cell types were highly expressed. In the immune excluded subtype, enriched glycolysis, fatty acid, and cholesterol metabolism pathways were observed. The KRAS mutation, BRAF mutation, and MET splicing variant were mostly observed in the inflamed subtype. The two prominent mutations found in the immune excluded subtype were EGFR and PIK3CA mutations. This study is the first to report the distinct immunologic and mutational landscapes of immune phenotypes, and demonstrates the biological relevance of the classification. In light of these findings, the study offers insights into potential treatment options tailored to each immune phenotype.
Collapse
Affiliation(s)
- Jonghanne Park
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hyung-Gyo Cho
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jewel Park
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Grace Lee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hye Sung Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | - Young Kwang Chae
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.
| |
Collapse
|
263
|
Jiang M, Liu Y, Dong Y, Wang K, Yuan Y. Bioorthogonal chemistry and illumination controlled programmed size-changeable nanomedicine for synergistic photodynamic and hypoxia-activated therapy. Biomaterials 2022; 284:121480. [DOI: 10.1016/j.biomaterials.2022.121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022]
|
264
|
Li Z, Mao L, Yu B, Liu H, Zhang Q, Bian Z, Zhang X, Liao W, Sun S. GB7 acetate, a galbulimima alkaloid from Galbulimima belgraveana, possesses anticancer effects in colorectal cancer cells. J Pharm Anal 2022; 12:339-349. [PMID: 35582406 PMCID: PMC9091789 DOI: 10.1016/j.jpha.2021.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
GB7 acetate is a galbulimima alkaloid obtained from Galbulimima belgraveana. However, information regarding its structure, biological activities, and related mechanisms is not entirely available. A series of spectroscopic analyses, structural degradation, interconversion, and crystallography were performed to identify the structure of GB7 acetate. The MTT assay was applied to measure cell proliferation on human colorectal cancer HCT 116 cells. The expressions of the related proteins were measured by Western blotting. Transmission electron microscopy (TEM), acridine orange (AO) and monodansylcadaverine (MDC) staining were used to detect the presence of autophagic vesicles and autolysosomes. A transwell assay was performed to demonstrate metastatic capabilities. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) assays were performed to determine the mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis activity of HCT 116 cells. The data showed that GB7 acetate suppressed the proliferation and colony-forming ability of HCT 116 cells. Pretreatment with GB7 acetate significantly induced the formation of autophagic vesicles and autolysosomes. GB7 acetate upregulated the expressions of LC3 and Thr172 phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase α (p-AMPKα), which are key elements of autophagy. In addition, GB7 acetate suppressed the metastatic capabilities of HCT 116 cells. Additionally, the production of matrix metallo-proteinase-2 (MMP-2) and MMP-9 was reduced, whereas the expression of E-cadherin (E-cad) was upregulated. Furthermore, GB7 acetate significantly reduced mitochondrial OXPHOS and glycolysis. In conclusion, the structure of the novel Galbulimima alkaloid GB7 acetate was identified. GB7 acetate was shown to have anti-proliferative, pro-autophagic, anti-metastatic, and anti-metabolite capabilities in HCT 116 cells. This study might provide new insights into cancer treatment efficacy and cancer chemoprevention.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Huahuan Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyu Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhongbo Bian
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xudong Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Suxia Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
265
|
Goswami KK, Banerjee S, Bose A, Baral R. Lactic acid in alternative polarization and function of macrophages in tumor microenvironment. Hum Immunol 2022; 83:409-417. [PMID: 35300874 DOI: 10.1016/j.humimm.2022.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
In developing tumor, macrophages are one major immune infiltrate that not only contributes in shaping up of tumor microenvironment (TME) but also have the potential of determining the fate of tumor in terms of its progression. Phenotypic plasticity of macrophages primarily channelizes them to alternative (M2) form of tumor associated macrophages (TAM) in the TME. One of the key tumor derived components that plays a crucial role in TAM polarization from M1 to M2 form is lactic acid and has prominent role in progression of malignancy. The role of lactic acid as signalling molecule as well as an immunomodulator has recently been recognized. This review focuses on the mechanism and signalling that are involved in lactic acid induced M2 polarization and possible therapeutic strategies for regulating lactic acidosis in TME.
Collapse
Affiliation(s)
- Kuntal Kanti Goswami
- Department of Microbiology, Asutosh College, 92, S. P. Mukherjee Road, Kolkata 700026, India.
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
266
|
Li Y, Chen Z, Gu L, Duan Z, Pan D, Xu Z, Gong Q, Li Y, Zhu H, Luo K. Anticancer nanomedicines harnessing tumor microenvironmental components. Expert Opin Drug Deliv 2022; 19:337-354. [PMID: 35244503 DOI: 10.1080/17425247.2022.2050211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small-molecular drugs are extensively used in cancer therapy, while they have issues of nonspecific distribution and consequent side effects. Nanomedicines that incorporate chemotherapeutic drugs have been developed to enhance the therapeutic efficacy of these drugs and reduce their side effects. One of the promising strategies is to prepare nanomedicines by harnessing the unique tumor microenvironment (TME). AREAS COVERED The TME contains numerous cell types that specifically express specific antibodies on the surface including tumor vascular endothelial cells, tumor-associated adipocytes, tumor-associated fibroblasts, tumor-associated immune cells and cancer stem cells. The physicochemical environment is characterized with a low pH, hypoxia, and a high redox potential resulting from tumor-specific metabolism. The intelligent nanomedicines can be categorized into two groups: the first group which is rapidly responsive to extracellular chemical/biological factors in the TME and the second one which actively and/or specifically targets cellular components in the TME. EXPERT OPINION In this paper, we review recent progress of nanomedicines by harnessing the TME and illustrate the principles and advantages of different strategies for designing nanomedicines, which are of great significance for exploring novel nanomedicines or translating current nanomedicines into clinical practice. We will discuss the challenges and prospects of preparing nanomedicines to utilize or alter the TME for achieving effective, safe anticancer treatment.
Collapse
Affiliation(s)
- Yinggang Li
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhonglan Chen
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyu Duan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuping Xu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Youping Li
- Chinese Evidence-Based Medicine Centre, Cochrane China Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Laboratory of Stem Cell Biology, Department of Cardiology, Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
267
|
Jin Z, Yue Q, Duan W, Sui A, Zhao B, Deng Y, Zhai Y, Zhang Y, Sun T, Zhang G, Han L, Mao Y, Yu J, Zhang X, Li C. Intelligent SERS Navigation System Guiding Brain Tumor Surgery by Intraoperatively Delineating the Metabolic Acidosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104935. [PMID: 35023300 PMCID: PMC8895125 DOI: 10.1002/advs.202104935] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Surgeons face challenges in intraoperatively defining margin of brain tumors due to its infiltrative nature. Extracellular acidosis caused by metabolic reprogramming of cancer cells is a reliable marker for tumor infiltrative regions. Although the acidic margin-guided surgery shows promise in improving surgical prognosis, its clinical transition is delayed by having the exogenous probes approved by the drug supervision authority. Here, an intelligent surface-enhanced Raman scattering (SERS) navigation system delineating glioma acidic margins without administration of exogenous probes is reported. With assistance of this system, the metabolites at the tumor cutting edges can be nondestructively transferred within a water droplet to a SERS chip with pH sensitivity. Homemade deep learning model automatically processes the Raman spectra collected from the SERS chip and delineates the pH map of tumor resection bed with increased speed. Acidity correlated cancer cell density and proliferation level are demonstrated in tumor cutting edges of animal models and excised tissues from glioma patients. The overall survival of animal models post the SERS system guided surgery is significantly increased in comparison to the conventional strategy used in clinical practice. This SERS system holds the promise in accelerating clinical transition of acidic margin-guided surgery for solid tumors with infiltrative nature.
Collapse
Affiliation(s)
- Ziyi Jin
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - Qi Yue
- Department of neurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Wenjia Duan
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - An Sui
- School of Information Science and TechnologyFudan UniversityShanghai200438China
| | - Botao Zhao
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Yinhui Deng
- School of Information Science and TechnologyFudan UniversityShanghai200438China
| | - Yuting Zhai
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - Guang‐Ping Zhang
- School of Physics and ElectronicsShandong Normal UniversityJinan250358China
| | - Limei Han
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - Ying Mao
- Department of neurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Jinhua Yu
- School of Information Science and TechnologyFudan UniversityShanghai200438China
| | - Xiao‐Yong Zhang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
- MOE Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceMOE Frontiers Center for Brain ScienceShanghaiChina
| | - Cong Li
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
268
|
Engineering T cells to survive and thrive in the hostile tumor microenvironment. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2021.100360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
269
|
Sztandera K, Gorzkiewicz M, Bątal M, Arkhipova V, Knauer N, Sánchez-Nieves J, de la Mata FJ, Gómez R, Apartsin E, Klajnert-Maculewicz B. Triazine–Carbosilane Dendrimersomes Enhance Cellular Uptake and Phototoxic Activity of Rose Bengal in Basal Cell Skin Carcinoma Cells. Int J Nanomedicine 2022; 17:1139-1154. [PMID: 35321027 PMCID: PMC8935628 DOI: 10.2147/ijn.s352349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Background The search for new formulations for photodynamic therapy is intended to improve the outcome of skin cancer treatment using significantly reduced doses of photosensitizer, thereby avoiding side effects. The incorporation of photosensitizers into nanoassemblies is a versatile way to increase the efficiency and specificity of drug delivery into target cells. Herein, we report the loading of rose bengal into vesicle-like constructs of amphiphilic triazine-carbosilane dendrons (dendrimersomes) as well as biophysical and in vitro characterization of this novel nanosystem. Methods Using established protocol and analytical and spectroscopy techniques we were able to synthesized dendrons with strictly designed properties. Engaging biophysical methods (hydrodynamic diameter and zeta potential measurements, analysis of spectral properties, transmission electron microscopy) we confirmed assembling of our nanosystem. A set of in vitro techniques was used for determination ROS generation, (ABDA and H2DCFDA probes), cell viability (MTT assay) and cellular uptake (flow cytometry and confocal microscopy). Results Encapsulation of rose bengal inside dendrimersomes enhances cellular uptake, intracellular ROS production and concequently, the phototoxicity of this photosensitizer. Conclusion Triazine-carbosilane dendrimersomes show high capacity as drug carriers for anticancer photodynamic therapy.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| | - Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Mateusz Bątal
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
| | - Valeria Arkhipova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Nadezhda Knauer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia
- Clinic for Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Javier Sánchez-Nieves
- Departamento de Química Orgánica y Química Inorgánica, UAH-IQAR, Alcalá de Henares, 28805, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Fco Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica, UAH-IQAR, Alcalá de Henares, 28805, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, 28034, Spain
| | - Rafael Gómez
- Departamento de Química Orgánica y Química Inorgánica, UAH-IQAR, Alcalá de Henares, 28805, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, 28034, Spain
| | - Evgeny Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
- Laboratoire de Chimie de Coordination CNRS, Toulouse, 31077, France
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-236, Poland
- Correspondence: Barbara Klajnert-Maculewicz, Department of General Biophysics, Pomorska 141/143, Łódź, 90-236, Poland, Tel +48 42 635 44 29, Fax +48 42 635 4474, Email
| |
Collapse
|
270
|
Cess CG, Finley SD. Multiscale modeling of tumor adaption and invasion following anti‐angiogenic therapy. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2022. [DOI: 10.1002/cso2.1032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Colin G. Cess
- Department of Biomedical Engineering University of Southern California Los Angeles California USA
| | - Stacey D. Finley
- Department of Biomedical Engineering University of Southern California Los Angeles California USA
- Department of Quantitative and Computational Biology University of Southern California Los Angeles California USA
- Mork Family Department of Chemical Engineering and Materials Science University of Southern California Los Angeles California USA
| |
Collapse
|
271
|
Steffens Reinhardt L, Moira Morás A, Gustavo Henn J, Ricardo Arantes P, Bernardes Ferro M, Braganhol E, Oliveira de Souza P, de Oliveira Merib J, Ramos Borges G, Silveira Dalanhol C, Cox Holanda de Barros Dias M, Nugent M, Jaqueline Moura D. Nek1-inhibitor and temozolomide-loaded microfibers as a co-therapy strategy for glioblastoma treatment. Int J Pharm 2022; 617:121584. [PMID: 35202726 DOI: 10.1016/j.ijpharm.2022.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
Malignant glioblastoma (GB) is the predominant primary brain tumour in adults, but despite the efforts towards novel therapies, the median survival of GB patients has not significantly improved in the last decades. Therefore, localised approaches that treat GB straight into the tumour site provide an alternative to enhance chemotherapy bioavailability and efficacy, reducing systemic toxicity. Likewise, the discovery of protein targets, such as the NIMA-related kinase 1 (Nek1), which was previously shown to be associated with temozolomide (TMZ) resistance in GB, has stimulated the clinical development of target therapy approaches to treat GB patients. In this study, we report an electrospun polyvinyl alcohol (PVA) microfiber (MF) brain-implant prepared for the controlled release of Nek1 protein inhibitor (iNek1) and TMZ or TMZ-loaded nanoparticles. The formulations revealed adequate stability and drug loading, which prolonged the drugs' release allowing a sustained exposure of the GB cells to the treatment and enhancing the drugs' therapeutic effects. TMZ-loaded MF provided the highest concentration of TMZ within the brain of tumour-bearing rats, and it was statistically significant when compared to TMZ via intraperitoneal (IP). All animals treated with either co-therapy formulation (TMZ + iNek1 MF or TMZ nanoparticles + iNek1 MF) survived until the endpoint (60 days), whereas the Blank MF (drug-unloaded), TMZ MF and TMZ IP-treated rats' median survival was found to be 16, 31 and 25 days, respectively. The tumour/brain area ratio of the rats implanted with either MF co-therapy was found to be reduced by 5-fold when compared to Blank MF-implanted rats. Taken together, our results strongly suggest that Nek1 is an important GB oncotarget and the inhibition of Nek1's activity significantly decreases GB cells' viability and tumour size when combined with TMZ treatment.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Biosciences Graduation Course, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Ana Moira Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Biosciences Graduation Course, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Jeferson Gustavo Henn
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Biosciences Graduation Course, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Matheus Bernardes Ferro
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Elizandra Braganhol
- Biosciences Graduation Course, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | | - Michael Nugent
- Materials Research Institute, TUS, Athlone, Co. Westmeath, Ireland.
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
272
|
Radiometal-Based PET/MRI Contrast Agents for Sensing Tumor Extracellular pH. BIOSENSORS 2022; 12:bios12020134. [PMID: 35200394 PMCID: PMC8870419 DOI: 10.3390/bios12020134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/03/2023]
Abstract
Acidosis is a useful biomarker for tumor diagnoses and for evaluating early response to anti-cancer treatments. Despite these useful applications, there are few methods for non-invasively measuring tumor extracellular pH, and none are routinely used in clinics. Responsive MRI contrast agents have been developed, and they undergo a change in MRI signal with pH. However, these signal changes are concentration-dependent, and it is difficult to accurately measure the concentration of an MRI contrast agent in vivo. PET/MRI provides a unique opportunity to overcome this concentration dependence issue by using the PET component to report on the concentration of the pH-responsive MRI agent. Herein, we synthesized PET/MRI co-agents based on the design of a pH-dependent MRI agent, and we have correlated pH with the r1 relaxivity of the MRI co-agent. We have also developed a procedure that uses PET radioactivity measurements and MRI R1 relaxation rate measurements to determine the r1 relaxivity of the MRI co-agent, which can then be used to estimate pH. This simultaneous PET/MRI procedure accurately measured pH in solution, with a precision that depended on the concentration of the MRI co-agent. We used our procedure to measure extracellular pH in a subcutaneous flank model of MIA PaCa-2 pancreatic cancer. Although the PET co-agents were stable in serum, post-imaging studies showed evidence that the PET co-agents were degraded in vivo. These results showed that tumor acidosis can be evaluated with simultaneous PET/MRI, although improvements are needed to more precisely measure MRI R1 relaxation rates, and ensure the in vivo stability of the agents.
Collapse
|
273
|
Yin H, Jin Z, Duan W, Han B, Han L, Li C. Emergence of Responsive Surface-Enhanced Raman Scattering Probes for Imaging Tumor-Associated Metabolites. Adv Healthc Mater 2022; 11:e2200030. [PMID: 35182455 DOI: 10.1002/adhm.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/03/2022] [Indexed: 11/11/2022]
Abstract
As a core hallmark of cancer, metabolic reprogramming alters the metabolic networks of cancer cells to meet their insatiable appetite for energy and nutrient. Tumor-associated metabolites, the products of metabolic reprogramming, are valuable in evaluating tumor occurrence and progress timely and accurately because their concentration variations usually happen earlier than the aberrances demonstrated in tissue structure and function. As an optical spectroscopic technique, surface-enhanced Raman scattering (SERS) offers advantages in imaging tumor-associated metabolites, including ultrahigh sensitivity, high specificity, multiplexing capacity, and uncompromised signal intensity. This review first highlights recent advances in the development of stimuli-responsive SERS probes. Then the mechanisms leading to the responsive SERS signal triggered by tumor metabolites are summarized. Furthermore, biomedical applications of these responsive SERS probes, such as the image-guided tumor surgery and liquid biopsy examination for tumor molecular typing, are summarized. Finally, the challenges and prospects of the responsive SERS probes for clinical translation are also discussed.
Collapse
Affiliation(s)
- Hang Yin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Ziyi Jin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Wenjia Duan
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Bing Han
- Minhang Hospital Fudan University Xinsong Road 170 Shanghai 201100 China
| | - Limei Han
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Cong Li
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
274
|
Jia Q, Zhang R, Wang Y, Yan H, Li Z, Feng Y, Ji Y, Yang Z, Yang Y, Pu K, Wang Z. A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy. Sci Bull (Beijing) 2022; 67:288-298. [PMID: 36546078 DOI: 10.1016/j.scib.2021.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023]
Abstract
Dysregulated energy metabolism has recently been recognized as an emerging hallmark of cancer. Tumor cells, which are characterized by abnormal glycolysis, exhibit a lower extracellular pH (6.5-7.0) than normal tissues (7.2-7.4), providing a promising target for tumor-specific imaging and therapy. However, most pH-sensitive materials are unable to distinguish such a subtle pH difference owing to their wide and continuous pH-responsive range. In this study, we developed an efficient strategy for the fabrication of a tumor metabolic acidity-activatable calcium phosphate (CaP) fluorescent probe (termed MACaP9). Unlike traditional CaP-based biomedical nanomaterials, which only work within more acidic organelles, such as endosomes and lysosomes (pH 4.0-6.0), MACaP9 could not only specifically respond to the tumor extra-cellular pH but also rapidly convert pH variations into a distinct fluorescence signal to visually distinguish tumor from normal tissues. The superior sensitivity and specificity of MACaP9 enabled high-contrast visualization of a broad range of tumors, as well as small tumor lesions.
Collapse
Affiliation(s)
- Qian Jia
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Ruili Zhang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yongdong Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Haohao Yan
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zheng Li
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yanbin Feng
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yu Ji
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zuo Yang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Zhongliang Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China; Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China.
| |
Collapse
|
275
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
276
|
Doxorubicin-Loaded Metal-Organic Framework Nanoparticles as Acid-Activatable Hydroxyl Radical Nanogenerators for Enhanced Chemo/Chemodynamic Synergistic Therapy. MATERIALS 2022; 15:ma15031096. [PMID: 35161041 PMCID: PMC8838206 DOI: 10.3390/ma15031096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/04/2023]
Abstract
Doxorubicin (DOX) is a widely used first-line antitumor agent; however, acquired drug resistance and side effects have become the main challenges to effective cancer therapy. Herein, DOX is loaded into iron-rich metal–organic framework/tannic acid (TA) nanocomplex to form a tumor-targeting and acid-activatable drug delivery system (MOF/TA-DOX, MTD). Under the acidic tumor microenvironment, MTD simultaneously releases DOX and ferrous ion (Fe2+) accompanied by degradation. Apart from the chemotherapeutic effect, DOX elevates the intracellular H2O2 levels through cascade reactions, which will be beneficial to the Fenton reaction between the Fe2+ and H2O2, to persistently produce hydroxyl radicals (•OH). Thus, MTD efficiently mediates chemodynamic therapy (CDT) and remarkably enhances the sensitivity of chemotherapy. More encouragingly, the cancer cell killing efficiency of MTD is up to ~86% even at the ultralow equivalent concentration of DOX (2.26 µg/mL), while the viability of normal cells remained >88% at the same concentration of MTD. Taken together, MTD is expected to serve as drug-delivery nanoplatforms and •OH nanogenerators for improving chemo/chemodynamic synergistic therapy and reducing the toxic side effects.
Collapse
|
277
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
278
|
Frankman ZD, Jiang L, Schroeder JA, Zohar Y. Application of Microfluidic Systems for Breast Cancer Research. MICROMACHINES 2022; 13:152. [PMID: 35208277 PMCID: PMC8877872 DOI: 10.3390/mi13020152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Cancer is a disease in which cells in the body grow out of control; breast cancer is the most common cancer in women in the United States. Due to early screening and advancements in therapeutic interventions, deaths from breast cancer have declined over time, although breast cancer remains the second leading cause of cancer death among women. Most deaths are due to metastasis, as cancer cells from the primary tumor in the breast form secondary tumors in remote sites in distant organs. Over many years, the basic biological mechanisms of breast cancer initiation and progression, as well as the subsequent metastatic cascade, have been studied using cell cultures and animal models. These models, although extremely useful for delineating cellular mechanisms, are poor predictors of physiological responses, primarily due to lack of proper microenvironments. In the last decade, microfluidics has emerged as a technology that could lead to a paradigm shift in breast cancer research. With the introduction of the organ-on-a-chip concept, microfluidic-based systems have been developed to reconstitute the dominant functions of several organs. These systems enable the construction of 3D cellular co-cultures mimicking in vivo tissue-level microenvironments, including that of breast cancer. Several reviews have been presented focusing on breast cancer formation, growth and metastasis, including invasion, intravasation, and extravasation. In this review, realizing that breast cancer can recur decades following post-treatment disease-free survival, we expand the discussion to account for microfluidic applications in the important areas of breast cancer detection, dormancy, and therapeutic development. It appears that, in the future, the role of microfluidics will only increase in the effort to eradicate breast cancer.
Collapse
Affiliation(s)
- Zachary D. Frankman
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Joyce A. Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
279
|
Kim AR, Choi SJ, Park J, Kwon M, Chowdhury T, Yu HJ, Kim S, Kang H, Kim KM, Park SH, Park CK, Shin EC. Spatial immune heterogeneity of hypoxia-induced exhausted features in high-grade glioma. Oncoimmunology 2022; 11:2026019. [PMID: 35036078 PMCID: PMC8757477 DOI: 10.1080/2162402x.2022.2026019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tumor immune microenvironment (TIME) in high-grade glioma (HGG) exhibits high spatial heterogeneity. Though the tumor core and peripheral regions have different biological features, the cause of this spatial heterogeneity has not been clearly elucidated. Here, we examined the spatial heterogeneity of HGG using core and peripheral regions obtained separately from the patients with HGG. We analyzed infiltrating immune cells by flow cytometry from 34 patients with HGG and the transcriptomes by RNA-seq analysis from 18 patients with HGG. Peripheral region-infiltrating immune cells were in vitro cultured in hypoxic conditions and their immunophenotypes analyzed. We analyzed whether the frequencies of exhausted CD8+ T cells and immunosuppressive cells in the core or peripheral regions are associated with the survival of patients with HGG. We found that terminally exhausted CD8+ T cells and immunosuppressive cells, including regulatory T (TREG) cells and M2 tumor-associated macrophages (TAMs), are more enriched in the core regions than the peripheral regions. Terminally exhausted and immunosuppressive profiles in the core region significantly correlated with the hypoxia signature, which was enriched in the core region. Importantly, in vitro culture of peripheral region-infiltrating immune cells in hypoxic conditions resulted in an increase in terminally exhausted CD8+ T cells, CTLA-4+ TREG cells, and M2 TAMs. Finally, we found that a high frequency of PD-1+CTLA-4+CD8+ T cells in the core regions was significantly associated with decreased progression-free survival of patients with HGG. The hypoxic condition in the core region of HGG directly induces an immunosuppressive TIME, which is associated with patient survival.
Collapse
Affiliation(s)
- A-Reum Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Junsik Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Minsuk Kwon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tamrin Chowdhury
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeon Jong Yu
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sojin Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ho Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung-Min Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,The Center for Epidemic Preparedness, KAIST Institute, Daejeon, Republic of Korea
| |
Collapse
|
280
|
Li S, Huo F, Yin C. Progress in the past five years of small organic molecule dyes for tumor microenvironment imaging. Chem Commun (Camb) 2022; 58:12642-12652. [DOI: 10.1039/d2cc04975a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tumor microenvironment (TME) is the survival environment for tumor cell proliferation and metastasis in deep tissues.
Collapse
Affiliation(s)
- Sha Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
281
|
Neira JL, Araujo-Abad S, Cámara-Artigas A, Rizzuti B, Abian O, Giudici AM, Velazquez-Campoy A, de Juan Romero C. Biochemical and biophysical characterization of PADI4 supports its involvement in cancer. Arch Biochem Biophys 2022; 717:109125. [DOI: 10.1016/j.abb.2022.109125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
282
|
Walsh JJ, Hyder F. Extracellular pH Mapping as Therapeutic Readout of Drug Delivery in Glioblastoma. Methods Mol Biol 2022; 2394:515-536. [PMID: 35094344 DOI: 10.1007/978-1-0716-1811-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An acidic extracellular space is a hallmark of the tumor microenvironment. Acidosis has been postulated to promote the aggressive and invasive characteristics of tumors and also inhibit the therapeutic response, particularly in the context of novel immunotherapies. Therefore, methods to quantitatively measure the extracellular pH (pHe) are needed. Here we describe a magnetic resonance spectroscopic imaging (MRSI) technique termed Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which uses the pH-dependent chemical shifts of nonexchangeable protons of lanthanide-based contrast agents to generate quantitative spatial pHe maps. We assess this method in the context of evaluating the acidic pHe and therapeutic response in glioblastoma in rodents, where normalization of the pHe upon therapy can serve as a quantitative readout of successful drug delivery to the tumor.
Collapse
Affiliation(s)
- John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| |
Collapse
|
283
|
Barbosa AI, Rebelo R, Reis RL, Correlo VM. Biosensors Advances: Contributions to Cancer Diagnostics and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:259-273. [DOI: 10.1007/978-3-031-04039-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
284
|
Choubey P, Kaur H, Bansal K. Modulation of DNA/RNA Methylation Signaling Mediating Metabolic Homeostasis in Cancer. Subcell Biochem 2022; 100:201-237. [PMID: 36301496 DOI: 10.1007/978-3-031-07634-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nucleic acid methylation is a fundamental epigenetic mechanism that impinges upon several cellular attributes, including metabolism and energy production. The dysregulation of deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) methylation can lead to metabolic rewiring in the cell, which in turn facilitates tumor development. Here, we review the current knowledge on the interplay between DNA/RNA methylation and metabolic programs in cancer cells. We also discuss the mechanistic role of these pathways in tumor development and progression.
Collapse
Affiliation(s)
- Pallawi Choubey
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India
| | - Harshdeep Kaur
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India
| | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India.
| |
Collapse
|
285
|
The role of tumor acidification in aggressiveness, cell dissemination and treatment resistance of oral squamous cell carcinoma. Life Sci 2022; 288:120163. [PMID: 34822797 DOI: 10.1016/j.lfs.2021.120163] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
AIMS To investigate the role of tumor acidification in cell behavior, migration, and treatment resistance of oral squamous cell carcinoma (OSCC). MAIN METHODS The SCC4 and SCC25 cell lines were exposed to acidified (pH 6.8) cell culture medium for 7 days. Alternatively, a long-term acidosis was induced for 21 days. In addition, to mimic dynamic pH fluctuation of the tumor microenvironment, cells were reconditioned to neutral pH after experimental acidosis. This study assessed cell proliferation and viability by sulforhodamine B and flow cytometry. Individual and collective cell migration was analyzed by wound healing, time lapse, and transwell assays. Modifications of cell phenotype, EMT induction and stemness potential were investigated by qRT-PCR, western blot, and immunofluorescence. Finally, resistance to chemo- and radiotherapy of OSCC when exposed to acidified environmental conditions (pH 6.8) was determined. KEY FINDINGS The exposure to an acidic microenvironment caused an initial reduction of OSCC cells viability, followed by an adaptation process. Acidic adapted cells acquired a mesenchymal-like phenotype along with increased migration and motility indexes. Moreover, tumoral extracellular acidity was capable to induce cellular stemness and to increase chemo- and radioresistance of oral cancer cells. SIGNIFICANCE In summary, the results showed that the acidic microenvironment leads to a more aggressive and treatment resistant OSCC cell population.
Collapse
|
286
|
Kombala CJ, Kotrotsou A, Schuler FW, de la Cerda J, Ma JC, Zhang S, Pagel MD. Development of a Nanoscale Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent That Measures pH. ACS NANO 2021; 15:20678-20688. [PMID: 34870957 PMCID: PMC11847439 DOI: 10.1021/acsnano.1c10107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AcidoCEST MRI can measure the extracellular pH (pHe) of the tumor microenvironment in mouse models of human cancers and in patients who have cancer. However, chemical exchange saturation transfer (CEST) is an insensitive magnetic resonance imaging (MRI) contrast mechanism, requiring a high concentration of small-molecule agent to be delivered to the tumor. Herein, we developed a nanoscale CEST agent that can measure pH using acidoCEST MRI, which may decrease the requirement for high delivery concentrations of agent. We also developed a monomer agent for comparison to the polymer. After optimizing CEST experimental conditions, we determined that the polymer agent could be used during acidoCEST MRI studies at 125-fold and 488-fold lower concentration than the monomer agent and iopamidol, respectively. We also determined that both agents can measure pH with negligible dependence on temperature. However, pH measurements with both agents were dependent on concentration, which may be due to concentration-dependent changes in hydrogen bonding and/or steric hindrance. We performed in vivo acidoCEST MRI studies using the three agents to study a xenograft MDA-MB-231 model of mammary carcinoma. The tumor pHe measurements were 6.33 ± 0.12, 6.70 ± 0.15, and 6.85 ± 0.15 units with iopamidol, the monomer agent, and polymer agent, respectively. The higher pHe measurements with the monomer and polymer agents were attributed to the concentration dependence of these agents. This study demonstrated that nanoscale agents have merit for CEST MRI studies, but consideration should be given to the dependence of CEST contrast on the concentration of these agents.
Collapse
Affiliation(s)
- Chathuri J Kombala
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Aikaterini Kotrotsou
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - F William Schuler
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jorge de la Cerda
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jacqueline C Ma
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Shu Zhang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Mark D Pagel
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| |
Collapse
|
287
|
Tang P, Qu W, Wu D, Chen S, Liu M, Chen W, Ai Q, Tang H, Zhou H. Identifying and Validating an Acidosis-Related Signature Associated with Prognosis and Tumor Immune Infiltration Characteristics in Pancreatic Carcinoma. J Immunol Res 2021; 2021:3821055. [PMID: 34993253 PMCID: PMC8727107 DOI: 10.1155/2021/3821055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Acidosis in the tumor microenvironment (TME) is involved in tumor immune dysfunction and tumor progression. We attempted to develop an acidosis-related index (ARI) signature to improve the prognostic prediction of pancreatic carcinoma (PC). METHODS Differential gene expression analyses of two public datasets (GSE152345 and GSE62452) from the Gene Expression Omnibus database were performed to identify the acidosis-related genes. The Cancer Genome Atlas-pancreatic carcinoma (TCGA-PAAD) cohort in the TCGA database was set as the discovery dataset. Univariate Cox regression and the Kaplan-Meier method were applied to screen for prognostic genes. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish the optimal model. The tumor immune infiltrating pattern was characterized by the single-sample gene set enrichment analysis (ssGSEA) method, and the prediction of immunotherapy responsiveness was conducted using the tumor immune dysfunction and exclusion (TIDE) algorithm. RESULTS We identified 133 acidosis-related genes, of which 37 were identified as prognostic genes by univariate Cox analysis in combination with the Kaplan-Meier method (p values of both methods < 0.05). An acidosis-related signature involving seven genes (ARNTL2, DKK1, CEP55, CTSV, MYEOV, DSG2, and GBP2) was developed in TCGA-PAAD and further validated in GSE62452. Patients in the acidosis-related high-risk group consistently showed poorer survival outcomes than those in the low-risk group. The 5-year AUCs (areas under the curve) for survival prediction were 0.738 for TCGA-PAAD and 0.889 for GSE62452, suggesting excellent performance. The low-risk group in TCGA-PAAD showed a higher abundance of CD8+ T cells and activated natural killer cells and was predicted to possess an elevated proportion of immunotherapeutic responders compared with the high-risk counterpart. CONCLUSIONS We developed a reliable acidosis-related signature that showed excellent performance in prognostic prediction and correlated with tumor immune infiltration, providing a new direction for prognostic evaluation and immunotherapy management in PC.
Collapse
Affiliation(s)
- Pingfei Tang
- Department of Digestive Diseases, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Weiming Qu
- Department of Digestive Diseases, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Dajun Wu
- Department of Digestive Diseases, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Shihua Chen
- Department of Digestive Diseases, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Minji Liu
- Department of Digestive Diseases, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Weishun Chen
- Department of Digestive Diseases, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Qiongjia Ai
- Department of Digestive Diseases, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Haijuan Tang
- Department of Digestive Diseases, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| | - Hongbing Zhou
- Department of Digestive Diseases, Zhuzhou Central Hospital, The Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
288
|
Kombala CJ, Lokugama SD, Kotrotsou A, Li T, Pollard AC, Pagel MD. Simultaneous Evaluations of pH and Enzyme Activity with a CEST MRI Contrast Agent. ACS Sens 2021; 6:4535-4544. [PMID: 34856102 PMCID: PMC11936461 DOI: 10.1021/acssensors.1c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extracellular tumor microenvironment of many solid tumors has high acidosis and high protease activity. Simultaneously assessing both characteristics may improve diagnostic evaluations of aggressive tumors and the effects of anticancer treatments. Noninvasive imaging methods have previously been developed that measure extracellular pH or can detect enzyme activity using chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI). Herein, we developed a single-hybrid CEST agent that can simultaneously measure pH and evaluate protease activity using a combination of dual-power acidoCEST MRI and catalyCEST MRI. Our agent showed CEST signals at 9.2 ppm from a salicylic acid moiety and at 5.0 ppm from an aryl amide. The CEST signal at 9.2 ppm could be measured after selective saturation was applied at 1 and 4 μT, and these measurements could be used with a ratiometric analysis to determine pH. The CEST signal at 5.0 ppm from the aryl amide disappeared after the agent was treated with cathepsin B, while the CEST signal at 9.2 ppm remained, indicating that the agent could detect protease activity through the amide bond cleavage. Michaelis-Menten kinetics studies with catalyCEST MRI demonstrated that the binding affinity (as shown with the Michaelis constant KM), the catalytic turnover rate (kcat), and catalytic efficiency (kcat/KM) were each higher for cathepsin B at lower pH. The kcat rates measured with catalyCEST MRI were lower than the comparable rates measured with liquid chromatography-mass spectrometry (LC-MS), which reflected a limitation of inherently noisy and relatively insensitive CEST MRI analyses. Although this level of precision limited catalyCEST MRI to semiquantitative evaluations, these semiquantitative assessments of high and low protease activity still had value by demonstrating that high acidosis and high protease activity can be used as synergistic, multiparametric biomarkers.
Collapse
Affiliation(s)
- Chathuri J Kombala
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sanjaya D Lokugama
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Aikaterini Kotrotsou
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Tianzhe Li
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Alyssa C Pollard
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Mark D Pagel
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| |
Collapse
|
289
|
Schaefer KG, Grau B, Moore N, Mingarro I, King GM, Barrera FN. Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax. Faraday Discuss 2021; 232:114-130. [PMID: 34549736 PMCID: PMC8712456 DOI: 10.1039/d0fd00070a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intrinsic apoptosis is orchestrated by a group of proteins that mediate the coordinated disruption of mitochondrial membranes. Bax is a multi-domain protein that, upon activation, disrupts the integrity of the mitochondrial outer membrane by forming pores. We strategically introduced glutamic acids into a short sequence of the Bax protein that constitutively creates membrane pores. The resulting BaxE5 peptide efficiently permeabilizes membranes at acidic pH, showing low permeabilization at neutral pH. Atomic force microscopy (AFM) imaging showed that at acidic pH BaxE5 established several membrane remodeling modalities that progressively disturbed the integrity of the lipid bilayer. The AFM data offers vistas on the membrane disruption process, which starts with pore formation and progresses through localized exposure of membrane monolayers leading to stable and small (height ∼ 16 Å) lipid-peptide complexes. The different types of membrane morphology observed in the presence of BaxE5 suggest that the peptide can establish different types of membrane interactions. BaxE5 adopts a rare unstructured conformation when bound to membranes, which might facilitate the dynamic transition between those different states, and then promote membrane digestion.
Collapse
Affiliation(s)
- Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| | - Brayan Grau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46100 Burjassot, Spain
| | - Nicolas Moore
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
| | - Ismael Mingarro
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, E-46100 Burjassot, Spain
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
290
|
Yu X, Xue L, Zhao J, Zhao S, Wu D, Liu HY. Non-Cationic RGD-Containing Protein Nanocarrier for Tumor-Targeted siRNA Delivery. Pharmaceutics 2021; 13:pharmaceutics13122182. [PMID: 34959463 PMCID: PMC8703291 DOI: 10.3390/pharmaceutics13122182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the recent successes in siRNA therapeutics, targeted delivery beyond the liver remains the major hurdle for the widespread application of siRNA in vivo. Current cationic liposome or polymer-based delivery agents are restricted to the liver and suffer from off-target effects, poor clearance, low serum stability, and high toxicity. In this study, we genetically engineered a non-cationic non-viral tumor-targeted universal siRNA nanocarrier (MW 26 KDa). This protein nanocarrier consists of three function domains: a dsRNA binding domain (dsRBD) (from human protein kinase R) for any siRNA binding, 18-histidine for endosome escape, and two RGD peptides at the N- and C-termini for targeting tumor and tumor neovasculature. We showed that cloned dual-RGD-dsRBD-18his (dual-RGD) protein protects siRNA against RNases, induces effective siRNA endosomal escape, specifically targets integrin αvβ3 expressing cells in vitro, and homes siRNA to tumors in vivo. The delivered siRNA leads to target gene knockdown in the cell lines and tumor xenografts with low toxicity. This multifunctional and biomimetic siRNA carrier is biodegradable, has low toxicity, is suitable for mass production by fermentation, and is serum stable, holding great potential to provide a widely applicable siRNA carrier for tumor-targeted siRNA delivery.
Collapse
Affiliation(s)
- Xiaolin Yu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
| | - Lu Xue
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
- Department of Pediatrics Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China; (J.Z.); (S.Z.)
| | - Shuhua Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, China; (J.Z.); (S.Z.)
| | - Daqing Wu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Hong Yan Liu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (X.Y.); (L.X.); (D.W.)
- Dotquant LLC, CoMotion Labs at University of Washington, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-503-956-5302
| |
Collapse
|
291
|
Mundi MS, Mohamed Elfadil O, Patel I, Patel J, Hurt RT. Ketogenic diet and cancer: Fad or fabulous? JPEN J Parenter Enteral Nutr 2021; 45:26-32. [PMID: 34897736 DOI: 10.1002/jpen.2226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/06/2021] [Accepted: 07/17/2021] [Indexed: 12/31/2022]
Abstract
As the prevalence of smoking continues to decline, dietary factors are rapidly becoming the leading preventable cause of disease. Diet and obesity are also leading to a shift in cancer prevalence with increases noted in breast, liver, pancreas, and uterine cancers. Once cancer is detected, obesity is also associated with poorer outcomes with therapy as well as higher morbidity and mortality. Key factors are associated with the link between obesity and cancer including chronic inflammation, change in sex hormones, alteration in insulin-IGF-1 axis, alteration in adipokines, as well as cancer stem cells that are derived from adipose tissue. Because of these associations, a great deal of effort is being placed in implementing lifestyle changes that mitigate obesity-associated factors that contribute to development of cancer, reduce side effects of treatment, and improve survival. Ketogenic diet is emerging as an attractive option in countering obesity-related tumor-promoting factors, as it is associated with weight loss as well as a reduction in insulin resistance and inflammation. Ketogenic diet can also deprive cancer cells of glucose, a fuel source that is predominantly used by many cancer lines through aerobic glycolysis in the setting of dysregulated mitochondria. Current manuscript reviews the theoretical benefits for use of ketogenic diet in cancer as well as the data available from clinical trials.
Collapse
Affiliation(s)
- Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Osman Mohamed Elfadil
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Ishani Patel
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jalpan Patel
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan T Hurt
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA.,Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
292
|
I.p.-injected cationic liposomes are retained and accumulate in peritoneally disseminated tumors. J Control Release 2021; 341:524-532. [PMID: 34896447 DOI: 10.1016/j.jconrel.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/26/2021] [Accepted: 12/04/2021] [Indexed: 12/17/2022]
Abstract
Intraperitoneal (i.p) chemotherapy is an attractive approach to treat peritoneally disseminated cancers by delivering therapeutic agents directly to the peritoneal cavity where some disseminated tumors are located. Cationic liposomes (CLs) have been used as a viable delivery carrier for i.p. chemotherapy to improve the peritoneal retention of anticancer agents. However, there are no reports on the fate of CLs following i.p. administration to the peritoneal cavity in the presence of disseminated tumors. We prepared a tumor xenograft murine model of peritoneally disseminated gastric cancer by i.p. inoculation of human gastric cancer cells and followed the fate of either CLs or PEGylated CLs (PEG-CLs) after i.p. injection in the model. I.p.-injected CLs were retained in peritoneal cavity for at least 3 days post-injection as a result of clustering with ascites fluid proteins, mainly albumin, while i.p. PEG-CLs was rapidly cleared from the peritoneal cavity to the circulation within 3 h post-injection. Importantly, i.p. CLs efficiently accumulated in the targeted disseminated tumor cells, but not in other abdominal organs including liver, spleen, and kidney. The tumor selectivity upon i.p. administration of CLs may be associated with the lymphatic drainage system. A lipoplex formulation composed of CLs with short hairpin RNA (shRNA) against luciferase, a model therapeutic agent, suppressed luciferase activity in peritoneally disseminated tumors by 80%, with no cytokine secretion in serum. This suggests that i.p. CLs can efficiently deliver a therapeutic agent to peritoneally disseminated tumors with few systemic adverse events. These results suggest that i.p. treatment with CLs or non-PEGylated lipoplexes may be a promising approach for the treatment of peritoneally disseminated cancers through their ability to selectively deliver therapeutic agents to i.p. target sites with minimal systemic adverse events.
Collapse
|
293
|
Nishimura SN, Nishida K, Tanaka M. A β-hairpin peptide with pH-controlled affinity for tumor cells. Chem Commun (Camb) 2021; 58:505-508. [PMID: 34874387 DOI: 10.1039/d1cc06218b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Considering that the pH in the tumor microenvironment is dysregulated, we designed a β-hairpin peptide (SSRFEWEFESSDPRGDPSSRFEWEFESS). The configuration of the peptide switched from a flexible linear to a rigid loop structure under weakly acidic conditions. The peptide internalized by tumor cells increased significantly under weakly acidic conditions.
Collapse
Affiliation(s)
- Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
294
|
Servidei T, Lucchetti D, Navarra P, Sgambato A, Riccardi R, Ruggiero A. Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers (Basel) 2021; 13:6100. [PMID: 34885210 PMCID: PMC8657076 DOI: 10.3390/cancers13236100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.
Collapse
Affiliation(s)
- Tiziana Servidei
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Donatella Lucchetti
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Alessandro Sgambato
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Riccardo Riccardi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| |
Collapse
|
295
|
Batool Z, Hu G, Xinyue H, Wu Y, Fu X, Cai Z, Huang X, Ma M. A comprehensive review on functional properties of preserved eggs as an excellent food ingredient with anti-inflammatory and anti-cancer aspects. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
296
|
Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021; 10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Indexed: 12/15/2022]
Abstract
In the field of tumor imaging and therapy, the aggregation-caused quenching (ACQ) effect of fluorescent dyes at high concentration is a great challenge. In this regard, the aggregation-induced emission luminogens (AIEgens) show great potential, since AIEgens effectively overcome the ACQ effect and have better fluorescence quantum yield, photobleaching resistance, and photosensitivity. Polyethylene glycol (PEG)-polymer is the most commonly used carrier to prepare nanoparticles (NPs). The advantage of PEGylation is that it can greatly prolong the metabolic half-life and reduce immunogenicity and toxicity. Considering that the hydrophobicity of most AIEgens hinders their application in organisms, the use of PEG-polymer encapsulation is an effective strategy to overcome this obstacle. Importantly, bioactive functional groups can be modified on PEG-polymers to enhance the biological effect of NPs. The combination of powerful AIEgens and PEG-polymers provides a new strategy for tumor imaging and therapy, which is promising for clinical application.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology 1095 Jiefang Avenue Wuhan 430032 China
| | - Xiaoqi Dong
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology 1095 Jiefang Avenue Wuhan 430032 China
| |
Collapse
|
297
|
|
298
|
Lombardi AF, Wong JH, High R, Ma Y, Jerban S, Tang Q, Du J, Frost P, Pagel MD, Chang EY. AcidoCEST MRI Evaluates the Bone Microenvironment in Multiple Myeloma. Mol Imaging Biol 2021; 23:865-873. [PMID: 33939066 PMCID: PMC8563482 DOI: 10.1007/s11307-021-01611-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE Multiple myeloma (MM) is an incurable disease of malignant plasma cells in the bone marrow (BM). Adaptive responses to hypoxia may be an essential element in MM progression and drug resistance. This metabolic adaptation involves a decrease in extracellular pH (pHe), and it depends on the upregulation of glucose transporters (GLUTs) that is common in hypoxia and in cancer cells. CEST MRI is an imaging technique that assesses pHe indirectly by the exchange rate of magnetic saturation transfer between labile protons on a solute and water. Thus, this study aimed to determine the feasibility of acidoCEST MRI for pHe measurement using an orthotopic mouse model of MM compared with GLUT1 immunofluorescence staining as a reference. PROCEDURES Orthotopic BM engrafted MM xenografts were established in NSG/NOD mice using the human RPMI8226 myeloma cell line. AcidoCEST MRI was performed approximately 6 weeks after intravenous challenge, before and after intravenous administration of iopamidol. BM pHe values were generated via fitting the CEST spectrum with the Bloch-McConnell equations. Samples were decalcified, sectioned, and immunostained for GLUT1 expression. Pearson's correlation was used to assess the relationship between pHe and [H3O+] versus GLUT1 expression. RESULTS Ten mice underwent acidoCEST MRI followed by immunofluorescent histologic analysis. A strong negative correlation was seen between pHe versus GLUT1 expression (r = - 0.75, p < 0.001). After transformation of pH to [H3O+], a strong positive correlation between [H3O+] and GLUT1 expression was observed (r = 0.8, p < 0.001). CONCLUSIONS AcidoCEST MRI can measure the extracellular pH of bone marrow affected by multiple myeloma. In this MM orthotopic mouse model, pHe measured by acidoCEST MRI showed strong correlations with the metabolic phenotype of BM tumor assessed by immunofluorescent histological assessment of GLUT1 overexpression.
Collapse
Affiliation(s)
- Alecio F Lombardi
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, CA, 92161, San Diego, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jonathan H Wong
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, CA, 92161, San Diego, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Rachel High
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, CA, 92161, San Diego, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, CA, 92161, San Diego, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Saeed Jerban
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, CA, 92161, San Diego, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Qingbo Tang
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, CA, 92161, San Diego, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jiang Du
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, CA, 92161, San Diego, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Patrick Frost
- Research Service, Greater Los Angeles Veteran Administration Healthcare System, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Mark D Pagel
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Y Chang
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, CA, 92161, San Diego, USA.
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
299
|
Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 2021; 18:751-772. [PMID: 34326502 DOI: 10.1038/s41571-021-00539-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.
Collapse
|
300
|
Kaur J, Bhattacharyya S. Cancer Stem Cells: Metabolic Characterization for Targeted Cancer Therapy. Front Oncol 2021; 11:756888. [PMID: 34804950 PMCID: PMC8602811 DOI: 10.3389/fonc.2021.756888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/18/2021] [Indexed: 02/02/2023] Open
Abstract
The subpopulation of cancer stem cells (CSCs) within tumor bulk are known for tumor recurrence and metastasis. CSCs show intrinsic resistance to conventional therapies and phenotypic plasticity within the tumor, which make these a difficult target for conventional therapies. CSCs have different metabolic phenotypes based on their needs as compared to the bulk cancer cells. CSCs show metabolic plasticity and constantly alter their metabolic state between glycolysis and oxidative metabolism (OXPHOS) to adapt to scarcity of nutrients and therapeutic stress. The metabolic characteristics of CSCs are distinct compared to non-CSCs and thus provide an opportunity to devise more effective strategies to target CSCs. Mechanism for metabolic switch in CSCs is still unravelled, however existing evidence suggests that tumor microenvironment affects the metabolic phenotype of cancer cells. Understanding CSCs metabolism may help in discovering new and effective clinical targets to prevent cancer relapse and metastasis. This review summarises the current knowledge of CSCs metabolism and highlights the potential targeted treatment strategies.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|