251
|
Hattinger CM, Patrizio MP, Magagnoli F, Luppi S, Serra M. An update on emerging drugs in osteosarcoma: towards tailored therapies? Expert Opin Emerg Drugs 2019; 24:153-171. [PMID: 31401903 DOI: 10.1080/14728214.2019.1654455] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Current treatment of conventional and non-conventional high-grade osteosarcoma (HGOS) is based on the surgical removal of primary tumor and, when possible, of metastases and local reccurrence, together with systemic pre- and post-operative chemotherapy with drugs that have been used since decades. Areas covered: This review is intended to summarize the new agents and therapeutic strategies that are under clinical evaluation in HGOS, with the aim to increase the cure probability of this highly malignant bone tumor, which has not significantly improved during the last 30-40 years. The list of drugs, compounds and treatment modalities presented and discussed here has been generated by considering only those that are included in presently ongoing and recruiting clinical trials, or which have been completed in the last 2 years with reported results, on the basis of the information obtained from different and continuously updated databases. Expert opinion: Despite HGOS is a rare tumor, several clinical trials are presently evaluating different treatment strategies, which may hopefully positively impact on the outcome of patients who experience unfavorable prognosis when treated with conventional therapies.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Maria Pia Patrizio
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Federica Magagnoli
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Silvia Luppi
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Massimo Serra
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|
252
|
Palmerini E, Torricelli E, Cascinu S, Pierini M, De Paolis M, Donati D, Cesari M, Longhi A, Abate M, Paioli A, Setola E, Ferrari S. Is there a role for chemotherapy after local relapse in high-grade osteosarcoma? Pediatr Blood Cancer 2019; 66:e27792. [PMID: 31058424 DOI: 10.1002/pbc.27792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND High-grade bone osteosarcoma has a high relapse rate. The best treatment of local recurrence (LR) is under discussion. The aim of this study is to analyze LR patterns and factors prognostic for survival. METHODS LR diagnostic modality (clinical or imaging), pattern of recurrence, and post-LR survival (PLRS) were assessed. RESULTS Sixty-two patients were identified, with median age 21 years (range, 9-75 years), including 11 (18%) ≤15 years, 30 (48%) from 16 to 29 years; 21 (34%) were older. Patterns of relapse were LR only 58%, LR + distant metastases (DM) 42%. Seventy-nine percent of patients relapsed within 24 months, and diagnosis was clinical in 88%. LR treatment was surgery 85%, chemotherapy 55%, chemotherapy + surgery 45%. Surgical complete remission after LR (CR2) was achieved in 60% (LR 86%; LR + DM 23%). With a median follow-up of 43 months (range, 5-235 months), the five-year PLRS was 37%, significantly better for patients with longer LR-free interval (LRFI; ≤24 months 31% vs > 24 months 61.5%, P = 0.03), absence of DM (no DM 56% vs DM 11.5%, P = 0.0001), and achievement of CR2 (no CR2 0% vs CR2 58.5%, P = 0.0001). No difference was found according to age and chemotherapy (LR only: five-year PLRS: 53% without chemotherapy vs 58% with chemotherapy, P = 0.9; LR + DM: five-year PLRS: 25% without chemotherapy vs 9% with chemotherapy, P = 0.7). CONCLUSIONS Early relapse is detected by symptoms in 90% of cases and associated with worse outcome. The achievement of CR2, not age, is crucial for survival. For patients with LR only, better survival was demonstrated, as compared with DM, and no improvement with chemotherapy after surgery was found.
Collapse
Affiliation(s)
| | - Elisa Torricelli
- Department of Oncology, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Cascinu
- Department of Oncology, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Michela Pierini
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Davide Donati
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marilena Cesari
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Longhi
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimo Abate
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Anna Paioli
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Setola
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Ferrari
- Chemotherapy Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
253
|
Roberts RD, Lizardo MM, Reed DR, Hingorani P, Glover J, Allen-Rhoades W, Fan T, Khanna C, Sweet-Cordero EA, Cash T, Bishop MW, Hegde M, Sertil AR, Koelsche C, Mirabello L, Malkin D, Sorensen PH, Meltzer PS, Janeway KA, Gorlick R, Crompton BD. Provocative questions in osteosarcoma basic and translational biology: A report from the Children's Oncology Group. Cancer 2019; 125:3514-3525. [PMID: 31355930 PMCID: PMC6948723 DOI: 10.1002/cncr.32351] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
Abstract
Patients who are diagnosed with osteosarcoma (OS) today receive the same therapy that patients have received over the last 4 decades. Extensive efforts to identify more effective or less toxic regimens have proved disappointing. As we enter a postgenomic era in which we now recognize OS not as a cancer of mutations but as one defined by p53 loss, chromosomal complexity, copy number alteration, and profound heterogeneity, emerging threads of discovery leave many hopeful that an improving understanding of biology will drive discoveries that improve clinical care. Under the organization of the Bone Tumor Biology Committee of the Children's Oncology Group, a team of clinicians and scientists sought to define the state of the science and to identify questions that, if answered, have the greatest potential to drive fundamental clinical advances. Having discussed these questions in a series of meetings, each led by invited experts, we distilled these conversations into a series of seven Provocative Questions. These include questions about the molecular events that trigger oncogenesis, the genomic and epigenomic drivers of disease, the biology of lung metastasis, research models that best predict clinical outcomes, and processes for translating findings into clinical trials. Here, we briefly present each Provocative Question, review the current scientific evidence, note the immediate opportunities, and speculate on the impact that answered questions might have on the field. We do so with an intent to provide a framework around which investigators can build programs and collaborations to tackle the hardest problems and to establish research priorities for those developing policies and providing funding.
Collapse
Affiliation(s)
- Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Michael M Lizardo
- Department of Molecular Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Damon R Reed
- Sarcoma Department, Chemical Biology and Molecular Medicine Program and Adolescent and Young Adult Oncology Program, Moffitt Cancer Center, Tampa, Florida
| | - Pooja Hingorani
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona
| | - Jason Glover
- Children's Cancer and Blood Disorders Program, Randall Children's Hospital, Portland, Oregon
| | - Wendy Allen-Rhoades
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital Cancer and Hematology Centers, Houston, Texas
| | - Timothy Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | - Chand Khanna
- Ethos Vet Health, Woburn, Massachusetts.,Ethos Discovery (501c3), Washington, DC
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Thomas Cash
- Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael W Bishop
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Aparna R Sertil
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | - Christian Koelsche
- Department of General Pathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Malkin
- Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Hematology/Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian D Crompton
- Dana-Farber Cancer Institute, Boston, and Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
254
|
Gardner HL, Sivaprakasam K, Briones N, Zismann V, Perdigones N, Drenner K, Facista S, Richholt R, Liang W, Aldrich J, Trent JM, Shields PG, Robinson N, Johnson J, Lana S, Houghton P, Fenger J, Lorch G, Janeway KA, London CA, Hendricks WPD. Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2. Commun Biol 2019; 2:266. [PMID: 31341965 PMCID: PMC6642146 DOI: 10.1038/s42003-019-0487-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
Osteosarcoma (OS) is a rare, metastatic, human adolescent cancer that also occurs in pet dogs. To define the genomic underpinnings of canine OS, we performed multi-platform analysis of OS tumors from 59 dogs, including whole genome sequencing (n = 24) and whole exome sequencing (WES; n = 13) of primary tumors and matched normal tissue, WES (n = 10) of matched primary/metastatic/normal samples and RNA sequencing (n = 54) of primary tumors. We found that canine OS recapitulates features of human OS including low point mutation burden (median 1.98 per Mb) with a trend towards higher burden in metastases, high structural complexity, frequent TP53 (71%), PI3K pathway (37%), and MAPK pathway mutations (17%), and low expression of immune-associated genes. We also identified novel features of canine OS including putatively inactivating somatic SETD2 (42%) and DMD (50%) aberrations. These findings set the stage for understanding OS development in dogs and humans, and establish genomic contexts for future comparative analyses.
Collapse
Affiliation(s)
- Heather L. Gardner
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| | | | - Natalia Briones
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Victoria Zismann
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | | | - Kevin Drenner
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | | | - Ryan Richholt
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Winnie Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Jessica Aldrich
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Jeffrey M. Trent
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Peter G. Shields
- College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Nicholas Robinson
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536 USA
| | | | - Susan Lana
- Colorado State University, Fort Collins, CO 80525 USA
| | - Peter Houghton
- University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Joelle Fenger
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Gwendolen Lorch
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210 USA
| | | | - Cheryl A. London
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536 USA
| | | |
Collapse
|
255
|
Thoenen E, Curl A, Iwakuma T. TP53 in bone and soft tissue sarcomas. Pharmacol Ther 2019; 202:149-164. [PMID: 31276706 DOI: 10.1016/j.pharmthera.2019.06.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Genomic and functional study of existing and emerging sarcoma targets, such as fusion proteins, chromosomal aberrations, reduced tumor suppressor activity, and oncogenic drivers, is broadening our understanding of sarcomagenesis. Among these mechanisms, the tumor suppressor p53 (TP53) plays significant roles in the suppression of bone and soft tissue sarcoma progression. Although mutations in TP53 were thought to be relatively low in sarcomas, modern techniques including whole-genome sequencing have recently illuminated unappreciated alterations in TP53 in osteosarcoma. In addition, oncogenic gain-of-function activities of missense mutant p53 (mutp53) have been reported in sarcomas. Moreover, new targeting strategies for TP53 have been discovered: restoration of wild-type p53 (wtp53) activity through inhibition of TP53 negative regulators, reactivation of the wtp53 activity from mutp53, depletion of mutp53, and targeting of vulnerabilities in cells with TP53 deletions or mutations. These discoveries enable development of novel therapeutic strategies for therapy-resistant sarcomas. We have outlined nine bone and soft tissue sarcomas for which TP53 plays a crucial tumor suppressive role. These include osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma (RMS), leiomyosarcoma (LMS), synovial sarcoma, liposarcoma (LPS), angiosarcoma, and undifferentiated pleomorphic sarcoma (UPS).
Collapse
Affiliation(s)
- Elizabeth Thoenen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Amanda Curl
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Tomoo Iwakuma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Translational Laboratory Oncology Research, Children's Mercy Research Institute, Kansas City, MO 64108, USA.
| |
Collapse
|
256
|
Suehara Y, Alex D, Bowman A, Middha S, Zehir A, Chakravarty D, Wang L, Jour G, Nafa K, Hayashi T, Jungbluth AA, Frosina D, Slotkin E, Shukla N, Meyers P, Healey JH, Hameed M, Ladanyi M. Clinical Genomic Sequencing of Pediatric and Adult Osteosarcoma Reveals Distinct Molecular Subsets with Potentially Targetable Alterations. Clin Cancer Res 2019; 25:6346-6356. [PMID: 31175097 DOI: 10.1158/1078-0432.ccr-18-4032] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/25/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Although multimodal chemotherapy has improved outcomes for patients with osteosarcoma, the prognosis for patients who present with metastatic and/or recurrent disease remains poor. In this study, we sought to define how often clinical genomic sequencing of osteosarcoma samples could identify potentially actionable alterations.Experimental Design: We analyzed genomic data from 71 osteosarcoma samples from 66 pediatric and adult patients sequenced using MSK-IMPACT, a hybridization capture-based large panel next-generation sequencing assay. Potentially actionable genetic events were categorized according to the OncoKB precision oncology knowledge base, of which levels 1 to 3 were considered clinically actionable. RESULTS We found at least one potentially actionable alteration in 14 of 66 patients (21%), including amplification of CDK4 (n = 9, 14%: level 2B) and/or MDM2 (n = 9, 14%: level 3B), and somatic truncating mutations/deletions in BRCA2 (n = 3, 5%: level 2B) and PTCH1 (n = 1, level 3B). In addition, we observed mutually exclusive patterns of alterations suggesting distinct biological subsets defined by gains at 4q12 and 6p12-21. Specifically, potentially targetable gene amplifications at 4q12 involving KIT, KDR, and PDGFRA were identified in 13 of 66 patients (20%), which showed strong PDGFRA expression by IHC. In another largely nonoverlapping subset of 14 patients (24%) with gains at 6p12-21, VEGFA amplification was identified. CONCLUSIONS We found potentially clinically actionable alterations in approximately 21% of patients with osteosarcoma. In addition, at least 40% of patients have tumors harboring PDGFRA or VEGFA amplification, representing candidate subsets for clinical evaluation of additional therapeutic options. We propose a new genomically based algorithm for directing patients with osteosarcoma to clinical trial options.
Collapse
Affiliation(s)
- Yoshiyuki Suehara
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Deepu Alex
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anita Bowman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sumit Middha
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Debyani Chakravarty
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lu Wang
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - George Jour
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Khedoudja Nafa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Denise Frosina
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
257
|
Guimaraes-Young A, Feddersen CR, Dupuy AJ. Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Front Oncol 2019; 9:611. [PMID: 31338332 PMCID: PMC6629774 DOI: 10.3389/fonc.2019.00611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon insertional mutagenesis system offers a streamlined approach to identify genetic drivers of cancer. With a relatively random insertion profile, SB is uniquely positioned for conducting unbiased forward genetic screens. Indeed, SB mouse models of cancer have revealed insights into the genetics of tumorigenesis. In this review, we highlight experiments that have exploited the SB system to interrogate the genetics of cancer in distinct biological contexts. We also propose experimental designs that could further our understanding of the relationship between tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Amy Guimaraes-Young
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
258
|
Ma H, Seebacher NA, Hornicek FJ, Duan Z. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in osteosarcoma. EBioMedicine 2018; 39:182-193. [PMID: 30579871 PMCID: PMC6355967 DOI: 10.1016/j.ebiom.2018.12.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background Cyclin-dependent protein kinase 9 (CDK9) has been shown to play an important role in the pathogenesis of malignant tumors. However, the expression and function of CDK9 remain unknown in osteosarcomas. The purpose of this study is to assess the expression, function and clinical prognostic relationship of CDK9 in osteosarcomas. Methods A tissue microarray of 70 patient specimens was analyzed by immunohistochemistry to measure CDK9 expression, which was further investigated for correlation with patient clinical characteristics. CDK9 expression in osteosarcoma cell lines and patient tissues was also evaluated by Western blotting. CDK9-specific siRNA and the CDK9 inhibitor were applied to determine the effect of CDK9 inhibition on osteosarcoma cell proliferation and anti-apoptotic activity. The clonogenicity and migration activity were also examined using clonogenic and wound healing assays. A 3D cell culture model was performed to mimic the in vivo osteosarcoma environment to further validate the effect of CDK9 inhibition on osteosarcoma cells. Findings We demonstrated that higher CDK9-expression is associated with significantly shortened patient survival by immunohistochemistry. Expression of CDK9 is inversely correlated to the percent of tumor necrosis post-neoadjuvant chemotherapy, which is the most important predictive factor of disease outcome for osteosarcoma patients. Knockdown of CDK9 with siRNA and inhibition of CDK9 activity with inhibitor decreased cell proliferation and induced apoptosis in osteosarcoma. Interpretation High expression of CDK9 is an independent predictor of poor prognosis in osteosarcoma patients. Our results suggest that CDK9 is a novel prognostic marker and a promising therapeutic target for osteosarcomas.
Collapse
Affiliation(s)
- Hangzhan Ma
- Department of Orthopaedics, Panyu Hospital of Chinese Medicine, Guangzhou, Guangdong 511400, China; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|