251
|
Bari A, Robbins TW. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog Neurobiol 2013; 108:44-79. [DOI: 10.1016/j.pneurobio.2013.06.005] [Citation(s) in RCA: 1193] [Impact Index Per Article: 99.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/24/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022]
|
252
|
Olvera-Cortés ME, Gutiérrez-Guzmán BE, López-Loeza E, Hernández-Pérez JJ, López-Vázquez MÁ. Serotonergic modulation of hippocampal theta activity in relation to hippocampal information processing. Exp Brain Res 2013; 230:407-26. [DOI: 10.1007/s00221-013-3679-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
253
|
Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proc Natl Acad Sci U S A 2013; 110:14795-800. [PMID: 23959880 DOI: 10.1073/pnas.1310845110] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The periaqueductal gray (PAG) and amygdala are known to be important for defensive responses, and many contemporary fear-conditioning models present the PAG as downstream of the amygdala, directing the appropriate behavior (i.e., freezing or fleeing). However, empirical studies of this circuitry are inconsistent and warrant further examination. Hence, the present study investigated the functional relationship between the PAG and amygdala in two different settings, fear conditioning and naturalistic foraging, in rats. In fear conditioning, electrical stimulation of the dorsal PAG (dPAG) produced unconditional responses (URs) composed of brief activity bursts followed by freezing and 22-kHz ultrasonic vocalization. In contrast, stimulation of ventral PAG and the basolateral amygdalar complex (BLA) evoked freezing and/or ultrasonic vocalization. Whereas dPAG stimulation served as an effective unconditional stimulus for fear conditioning to tone and context conditional stimuli, neither ventral PAG nor BLA stimulation supported fear conditioning. The conditioning effect of dPAG, however, was abolished by inactivation of the BLA. In a foraging task, dPAG and BLA stimulation evoked only fleeing toward the nest. Amygdalar lesion/inactivation blocked the UR of dPAG stimulation, but dPAG lesions did not block the UR of BLA stimulation. Furthermore, in vivo recordings demonstrated that electrical priming of the dPAG can modulate plasticity of subiculum-BLA synapses, providing additional evidence that the amygdala is downstream of the dPAG. These results suggest that the dPAG conveys unconditional stimulus information to the BLA, which directs both innate and learned fear responses, and that brain stimulation-evoked behaviors are modulated by context.
Collapse
|
254
|
Macoveanu J, Rowe JB, Hornboll B, Elliott R, Paulson OB, Knudsen GM, Siebner HR. Playing it safe but losing anyway--serotonergic signaling of negative outcomes in dorsomedial prefrontal cortex in the context of risk-aversion. Eur Neuropsychopharmacol 2013; 23:919-30. [PMID: 23051938 PMCID: PMC4606974 DOI: 10.1016/j.euroneuro.2012.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/18/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
Risk avoidance is an important determinant of human behavior. The neurotransmitter serotonin has been implicated in processing negative outcomes caused by risky decisions. However, it is unclear whether serotonin provides a neurobiological link between making a risk aversive decision and the response to a negative outcome. Using pharmacological fMRI, we manipulated the availability of serotonin in healthy volunteers while performing a gambling task. The same group of participants was studied in three fMRI sessions: (i) during intravenous administration of the SSRI citalopram to increase the serotonergic tone, (ii) after acute tryptophan depletion (ATD) to reduce central serotonin levels, or (iii) without interventions. ATD and citalopram had opposite effects on outcome related activity in dorsomedial prefrontal cortex (dmPFC) and amygdala. Relative to the control condition, ATD increased and citalopram decreased the neural response to negative outcomes in dmPFC. Conversely, ATD decreased and citalopram increased the neural response to negative outcomes in left amygdala. Critically, these pharmacological effects were restricted to negative outcomes that were caused by low-risk decisions and led to a high missed reward. ATD and citalopram did not alter the neural response to positive outcomes in dmPFC, but relative to ATD, citalopram produced a bilateral increase in the amygdala response to large wins caused by high-risk choices. The results show a selective involvement of the serotonergic system in neocortical processing of negative outcomes resulting from risk-averse decisions, thereby linking risk aversion and processing of negative outcomes in goal-directed behaviors.
Collapse
Affiliation(s)
- Julian Macoveanu
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark.
| | | | | | | | | | | | | |
Collapse
|
255
|
Maximino C, Puty B, Benzecry R, Araújo J, Lima MG, de Jesus Oliveira Batista E, Renata de Matos Oliveira K, Crespo-Lopez ME, Herculano AM. Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 2013; 71:83-97. [DOI: 10.1016/j.neuropharm.2013.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
|
256
|
Tõru I, Maron E, Raag M, Vasar V, Nutt DJ, Shlik J. The effect of 6-week treatment with escitalopram on CCK-4 challenge: a placebo-controlled study in CCK-4-sensitive healthy volunteers. Eur Neuropsychopharmacol 2013; 23:645-52. [PMID: 22939006 DOI: 10.1016/j.euroneuro.2012.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/16/2012] [Accepted: 08/07/2012] [Indexed: 10/27/2022]
Abstract
Cholecystokinin-tetrapeptide (CCK-4)-induced panic attacks are reportedly attenuated by effective treatment with antipanic antidepressants in patients with panic disorder, but in healthy volunteers such effects are not well studied. The aim of this study was to assess the effect of 6-week treatment with an SSRI escitalopram on CCK-4-induced symptoms in healthy volunteers, who previously responded with a panic attack to CCK-4 challenge. A total of 18 healthy subjects (10 males and eight females, mean age 22.5 ± 5.8) received a 6-week treatment with escitalopram (10 mg/day) and placebo followed by CCK-4 challenge (50 μg) in a double-blind crossover design. The panic rate was 67% after treatment with escitalopram and 56% after treatment with placebo (p = 0.7). Thus, the results showed a significant reduction in CCK-4-induced panic rates without significant differences between escitalopram and placebo conditions. There were no significant effects of either treatment on any other variable of anxiety or cardiovascular indices. Secondary analysis showed no effect of gender or 5-HTTLPR polymorphism on response to CCK-4 challenge. This study demonstrated that in contrast to the findings in patients with panic disorder, in CCK-4-sensitive healthy volunteers the treatment with an antipanic SSRI did not cause a reduction of CCK-4-induced panic attacks beyond the effect of placebo. The mechanisms behind this discrepancy and the reasons of the decrease in sensitivity to CCK-4 challenge on repeated administration remain to be clarified in future studies.
Collapse
Affiliation(s)
- Innar Tõru
- Department of Psychiatry, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
257
|
Abstract
Subjects routinely control the vigor with which they emit motoric responses. However, the bulk of formal treatments of decision-making ignores this dimension of choice. A recent theoretical study suggested that action vigor should be influenced by experienced average reward rate and that this rate is encoded by tonic dopamine in the brain. We previously examined how average reward rate modulates vigor as exemplified by response times and found a measure of agreement with the first suggestion. In the current study, we examined the second suggestion, namely the potential influence of dopamine signaling on vigor. Ninety healthy subjects participated in a double-blind experiment in which they received one of the following: placebo, L-DOPA (which increases dopamine levels in the brain), or citalopram (which has a selective, if complex, effect on serotonin levels). Subjects performed multiple trials of a rewarded odd-ball discrimination task in which we varied the potential reward over time in order to exercise the putative link between vigor and average reward rate. Replicating our previous findings, we found that a significant fraction of the variance in subjects' responses could be explained by our experimentally manipulated changes in average reward rate. Crucially, this relationship was significantly stronger under L-Dopa than under Placebo, suggesting that the impact of average reward levels on action vigor is indeed subject to a dopaminergic influence.
Collapse
|
258
|
Silote GP, Rosal AB, de Souza MM, Beijamini V. Infusion of galanin into the mid-caudal portion of the dorsal raphe nucleus has an anxiolytic effect on rats in the elevated T-maze. Behav Brain Res 2013; 252:312-7. [PMID: 23791934 DOI: 10.1016/j.bbr.2013.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/14/2013] [Accepted: 06/16/2013] [Indexed: 11/19/2022]
Abstract
Galanin and 5-HT coexist in dorsal raphe nucleus (DRN) neurons. Microinjection of galanin into the DRN reduces the firing rate of serotonin neurons. Serotonergic neurons projecting from the DRN to the amygdala facilitate learned anxiety producing an anxiogenic effect, while those projecting from the periaqueductal grey affect innate anxiety producing a panicolytic effect. We tested the hypothesis that injection of galanin into rat DRN would induce anxiolytic/panicogenic effects in the elevated T-maze (ETM), a model that allows for the evaluation of both of these effects. Galanin infusion into the mid-caudal DRN, but not into the rostral DRN, impaired inhibitory avoidance, suggesting an anxiolytic effect. The effective dose of galanin (0.3 nmol) did not modify locomotor activity in the open field. Contrary to expectations, microinjection of galanin into the DRN did not facilitate the latency of one-way escape in the ETM. Pretreatment with a galanin antagonist, M40, attenuated galanin-induced impairment of inhibitory avoidance. The results show that microinjection of a low dose of galanin only into the mid-caudal DRN has an anxiolytic effect. This effect seems to be mediated, at least in part, by galanin receptors. Further investigation is necessary to identify the receptor subtypes and the DRN subregion involved in the anxiolytic effect of galanin.
Collapse
Affiliation(s)
- Gabriela Pandini Silote
- Department of Pharmaceutical Sciences, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | | | | | | |
Collapse
|
259
|
de Andrade Strauss CV, Vicente MA, Zangrossi H. Activation of 5-HT1A receptors in the rat basolateral amygdala induces both anxiolytic and antipanic-like effects. Behav Brain Res 2013; 246:103-10. [DOI: 10.1016/j.bbr.2013.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
260
|
Sorregotti T, Mendes-Gomes J, Rico JL, Rodgers RJ, Nunes-de-Souza RL. Ethopharmacological analysis of the open elevated plus-maze in mice. Behav Brain Res 2013; 246:76-85. [DOI: 10.1016/j.bbr.2013.02.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/20/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022]
|
261
|
Abstract
Neural representations of the effort deployed in performing actions, and the valence of the outcomes they yield, form the foundation of action choice. To discover whether brain areas represent effort and outcome valence together or if they represent one but not the other, we examined these variables in an explicitly orthogonal way. We did this by asking human subjects to exert one of two levels of effort to improve their chances of either winning or avoiding the loss of money. Subjects responded faster both when exerting greater effort and when exerting effort in anticipation of winning money. Using fMRI, we inspected BOLD responses during anticipation (before any action was executed) and when the outcome was delivered. In this way, we indexed BOLD signals associated with an anticipated need to exert effort and its affective consequences, as well as the effect of executed effort on the representation of outcomes. Anterior cingulate cortex and dorsal striatum (dorsal putamen) signaled the anticipation of effort independently of the prospect of winning or losing. Activity in ventral striatum (ventral putamen) was greater for better-than-expected outcomes compared with worse-than-expected outcomes, an effect attenuated in the context of having exerted greater effort. Our findings provide evidence that neural representations of anticipated actions are sensitive to the expected demands, but not to the expected value of their consequence, whereas representations of outcome value are discounted by exertion, commensurate with an integration of cost and benefit so as to approximate net value.
Collapse
|
262
|
Abstract
The central serotonergic system has been implicated in the pathophysiology of panic disorder (PD) by evidence of abnormally elevated serotonin-turnover, reduced pre- and post-synaptic 5-HT(1A)-receptor sensitivity and binding and clinical improvement during administration of agents that enhance serotonergic transmission. Polymorphisms in genes that putatively influence serotonergic neurotransmission increase the vulnerability for developing PD specifically in males. We tested the hypotheses that serotonin transporter (5-HTT) binding is elevated in PD subjects vs. healthy controls in regions where in vivo evidence exists for both elevated 5-HTT and 5-HT(1A) receptor levels in PD and investigated whether the extent of this difference depends upon gender. Volunteers were out-patients with current PD (n=24) and healthy controls (n=24). The non-displaceable component of 5-HTT binding-potential (BP(ND)) was measured using positron emission tomography and the 5-HTT selective radioligand, [(11)C]DASB. PD severity was assessed using the PD Severity Scale. The 5-HTT-BP(ND) was increased in males with PD relative to male controls in the anterior cingulate cortex (F=8.96, p(FDR)=0.01) and midbrain (F=5.09, p(FDR)=0.03). In contrast, BP(ND) did not differ between females with PD and female controls in any region examined. The finding that 5-HTT-binding is elevated in males but not in females with PD converges with other evidence suggesting that dysfunction within the central serotonergic system exists in PD, and also indicates that such abnormalities are influenced by gender. These findings conceivably may reflect a sexual dimorphism that underlies the greater efficacy of serotonin reuptake inhibitor treatment in females vs. males with PD.
Collapse
|
263
|
de Andrade JS, Céspedes IC, Abrão RO, Dos Santos TB, Diniz L, Britto LRG, Spadari-Bratfisch RC, Ortolani D, Melo-Thomas L, da Silva RCB, Viana MB. Chronic unpredictable mild stress alters an anxiety-related defensive response, Fos immunoreactivity and hippocampal adult neurogenesis. Behav Brain Res 2013; 250:81-90. [PMID: 23644183 DOI: 10.1016/j.bbr.2013.04.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 12/29/2022]
Abstract
Previous results show that elevated T-maze (ETM) avoidance responses are facilitated by acute restraint. Escape, on the other hand, was unaltered. To examine if the magnitude of the stressor is an important factor influencing these results, we investigated the effects of unpredictable chronic mild stress (UCMS) on ETM avoidance and escape measurements. Analysis of Fos protein immunoreactivity (Fos-ir) was used to map areas activated by stress exposure in response to ETM avoidance and escape performance. Additionally, the effects of the UCMS protocol on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the hippocampus were investigated. Corticosterone serum levels were also measured. Results showed that UCMS facilitates ETM avoidance, not altering escape. In unstressed animals, avoidance performance increases Fos-ir in the cingulate cortex, hippocampus (dentate gyrus) and basomedial amygdala, and escape increases Fos-ir in the dorsolateral periaqueductal gray and locus ceruleus. In stressed animals submitted to ETM avoidance, increases in Fos-ir were observed in the cingulate cortex, ventrolateral septum, hippocampus, hypothalamus, amygdala, dorsal and median raphe nuclei. In stressed animals submitted to ETM escape, increases in Fos-ir were observed in the cingulate cortex, periaqueductal gray and locus ceruleus. Also, UCMS exposure decreased the number of DCX-positive cells in the dorsal and ventral hippocampus and increased corticosterone serum levels. These data suggest that the anxiogenic effects of UCMS are related to the activation of specific neurobiological circuits that modulate anxiety and confirm that this stress protocol activates the hypothalamus-pituitary-adrenal axis and decreases hippocampal adult neurogenesis.
Collapse
Affiliation(s)
- J S de Andrade
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Perkins AM, Ettinger U, Weaver K, Schmechtig A, Schrantee A, Morrison PD, Sapara A, Kumari V, Williams SCR, Corr PJ. Advancing the defensive explanation for anxiety disorders: lorazepam effects on human defense are systematically modulated by personality and threat-type. Transl Psychiatry 2013; 3:e246. [PMID: 23591970 PMCID: PMC3641407 DOI: 10.1038/tp.2013.20] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 11/09/2022] Open
Abstract
Clinically effective drugs against human anxiety and fear systematically alter the innate defensive behavior of rodents, suggesting that in humans these emotions reflect defensive adaptations. Compelling experimental human evidence for this theory is yet to be obtained. We report the clearest test to date by investigating the effects of 1 and 2 mg of the anti-anxiety drug lorazepam on the intensity of threat-avoidance behavior in 40 healthy adult volunteers (20 females). We found lorazepam modulated the intensity of participants' threat-avoidance behavior in a dose-dependent manner. However, the pattern of effects depended upon two factors: type of threat-avoidance behavior and theoretically relevant measures of personality. In the case of flight behavior (one-way active avoidance), lorazepam increased intensity in low scorers on the Fear Survey Schedule tissue-damage fear but reduced it in high scorers. Conversely, in the case of risk-assessment behavior (two-way active avoidance), lorazepam reduced intensity in low scorers on the Spielberger trait anxiety but increased it in high scorers. Anti-anxiety drugs do not systematically affect rodent flight behavior; therefore, we interpret this new finding as suggesting that lorazepam has a broader effect on defense in humans than in rodents, perhaps by modulating general perceptions of threat intensity. The different patterning of lorazepam effects on the two behaviors implies that human perceptions of threat intensity are nevertheless distributed across two different neural streams, which influence effects observed on one-way or two-way active avoidance demanded by the situation.
Collapse
Affiliation(s)
- A M Perkins
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Moreira FA, Gobira PH, Viana TG, Vicente MA, Zangrossi H, Graeff FG. Modeling panic disorder in rodents. Cell Tissue Res 2013; 354:119-25. [DOI: 10.1007/s00441-013-1610-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
|
266
|
Li Y, Dalphin N, Hyland BI. Association with reward negatively modulates short latency phasic conditioned responses of dorsal raphe nucleus neurons in freely moving rats. J Neurosci 2013; 33:5065-78. [PMID: 23486976 PMCID: PMC6618993 DOI: 10.1523/jneurosci.5679-12.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/23/2013] [Accepted: 02/02/2013] [Indexed: 01/23/2023] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in mood regulation, control of impulsive behavior, and in processing aversive and reward-related signals. DRN neurons show phasic responses to sensory stimuli, but whether association with reward modulates these responses is unknown. We recorded DRN neurons from rats in a contextual conditioned approach paradigm in which an auditory cue was either followed or not followed by reward, depending on a global context signal. Conditioned approach (licking) occurred after cues in the reward context, but was suppressed in the no-reward context. Many DRN neurons showed short-latency phasic activations in response to the cues. There was striking contextual bias, with more and stronger excitations in the no-reward context than in the reward context. Therefore, DRN activity scaled inversely with cue salience and with the probability of subsequent conditioned approach. Tonic changes were similarly discriminatory, with increases being dominant after cues in the no-reward context, when licking was suppressed, and tonic decreases in rate dominant after reward-predictive cues during expression of conditioned licking. Phasic and tonic DRN responses thus provide signals of consistent valence but over different timescales. The tonic changes in activity are consistent with previous data and hypotheses relating DRN activity to response suppression and impulse control. Phasic responses could contribute to this via online modulation of attention allocation through projections to sensory-processing regions.
Collapse
Affiliation(s)
- Yuhong Li
- Department of Physiology, School of Medical Sciences, and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Neil Dalphin
- Department of Physiology, School of Medical Sciences, and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Brian I. Hyland
- Department of Physiology, School of Medical Sciences, and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
267
|
Almeida-Santos AF, Moreira FA, Guimarães FS, Aguiar DC. Role of TRPV1 receptors on panic-like behaviors mediated by the dorsolateral periaqueductal gray in rats. Pharmacol Biochem Behav 2013; 105:166-72. [PMID: 23474373 DOI: 10.1016/j.pbb.2013.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 12/23/2022]
Abstract
The transient receptors potential vanilloid type 1 channels (TRPV1) are expressed in several brain regions related to defensive behaviors, including the dorsolateral periaqueductal gray (dlPAG). The endocannabinoid anandamide, in addition to its agonist activity at cannabinoid type 1 (CB1), is also proposed as an endogenous agonist of these receptors, through which it could facilitate anxiety-like responses. The aim of this work was to test the hypothesis that TRPV1 in the dlPAG of rats would mediate panic-like responses in two models, namely the escape responses induced by chemical stimulation of this structure or by exposure to the elevated T-Maze (ETM). Antagonism of TRPV1 with capsazepine injected into the dlPAG reduced the defense response induced by local NMDA-injection, suggesting an anti-aversive effect. In the ETM, capsazepine inhibited escape response, suggesting a panicolytic-like effect. Interestingly, this effect was prevented by a CB1 antagonist (AM251). The present study showed that antagonism of TRPV1 in the dlPAG induces panicolytic-like effects, which can be prevented by a CB1 antagonist. Therefore, these antiaversive effects of TRPV1 blockade may ultimately occur due to a predominant action of anandamide through CB1 receptors.
Collapse
Affiliation(s)
- A F Almeida-Santos
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
268
|
Bailer UF, Frank GK, Price JC, Meltzer CC, Becker C, Mathis CA, Wagner A, Barbarich-Marsteller NC, Bloss CS, Putnam K, Schork NJ, Gamst A, Kaye WH. Interaction between serotonin transporter and dopamine D2/D3 receptor radioligand measures is associated with harm avoidant symptoms in anorexia and bulimia nervosa. Psychiatry Res 2013; 211:160-8. [PMID: 23154100 PMCID: PMC3880148 DOI: 10.1016/j.pscychresns.2012.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 10/27/2022]
Abstract
Individuals with anorexia nervosa (AN) and bulimia nervosa (BN) have alterations of measures of serotonin (5-HT) and dopamine (DA) function, which persist after long-term recovery and are associated with elevated harm avoidance (HA), a measure of anxiety and behavioral inhibition. Based on theories that 5-HT is an aversive motivational system that may oppose a DA-related appetitive system, we explored interactions of positron emission tomography (PET) radioligand measures that reflect portions of these systems. Twenty-seven individuals recovered (REC) from eating disorders (EDs) (7 AN-BN, 11 AN, 9 BN) and nine control women (CW) were analyzed for correlations between [(11)C]McN5652 and [(11)C]raclopride binding. There was a significant positive correlation between [(11)C]McN5652 binding potential (BP(non displaceable(ND))) and [(11)C]Raclopride BP(ND) for the dorsal caudate, antero-ventral striatum (AVS), middle caudate, and ventral and dorsal putamen. No significant correlations were found in CW. [(11)C]Raclopride BP(ND), but not [(11)C]McN5652 BP(ND), was significantly related to HA in REC EDs. A linear regression analysis showed that the interaction between [(11)C]McN5652 BP(ND) and [(11)C]raclopride BP(ND) in the dorsal putamen significantly predicted HA. This is the first study using PET and the radioligands [(11)C]McN5652 and [(11)C]raclopride to show a direct relationship between 5-HT transporter and striatal DA D2/D3 receptor binding in humans, supporting the possibility that 5-HT and DA interactions contribute to HA behaviors in EDs.
Collapse
Affiliation(s)
- Ursula F. Bailer
- University of California San Diego, Department of Psychiatry, La Jolla, CA,Medical University of Vienna, Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Vienna, Austria
| | - Guido K. Frank
- Department of Psychiatry, University of Colorado Denver, Children’s Hospital Colorado, Aurora, CO, USA,Department of Neuroscience, University of Colorado Denver; Anschutz Medical Campus, Aurora, CO, USA
| | - Julie C. Price
- University of Pittsburgh, School of Medicine, Department of Radiology, Presbyterian University Hospital, Pittsburgh, PA
| | - Carolyn C. Meltzer
- University of Pittsburgh, School of Medicine, Department of Radiology, Presbyterian University Hospital, Pittsburgh, PA,University of Pittsburgh, School of Medicine, Department of Psychiatry, Western Psychiatric Institute and Clinic, Pittsburgh, PA,Emory School of Medicine, Departments of Radiology, Neurology, and Psychiatry and Behavioral Sciences, Atlanta, Georgia, and Adjunct Professor of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Carl Becker
- University of Pittsburgh, School of Medicine, Department of Radiology, Presbyterian University Hospital, Pittsburgh, PA
| | - Chester A. Mathis
- University of Pittsburgh, School of Medicine, Department of Radiology, Presbyterian University Hospital, Pittsburgh, PA
| | - Angela Wagner
- University of California San Diego, Department of Psychiatry, La Jolla, CA
| | | | - Cinnamon S. Bloss
- Scripps Genomic Medicine, Scripps Translational Science Institute (STSI), and Scripps Health, La Jolla, CA
| | - Karen Putnam
- Department of Environmental Health, Division of Epidemiology and Biostatistics, University of Cincinnati, School of Medicine, Cincinnati, Ohio
| | - Nicholas J. Schork
- Department of Environmental Health, Division of Epidemiology and Biostatistics, University of Cincinnati, School of Medicine, Cincinnati, Ohio
| | - Anthony Gamst
- University of California San Diego, Department of Biostatistics and Bioinformatics, La Jolla, CA
| | - Walter H. Kaye
- University of California San Diego, Department of Psychiatry, La Jolla, CA,Corresponding author: Walter H. Kaye, M.D., University of California, San Diego, UCSD Department of Psychiatry, 8950 Villa La Jolla Drive, Suite C – 207, La Jolla, California 92037, Tel. (858) 534 3951, FAX: (858) 534 6727,
| |
Collapse
|
269
|
Lukkes JL, Kopelman JM, Donner NC, Hale MW, Lowry CA. Development × environment interactions control tph2 mRNA expression. Neuroscience 2013; 237:139-50. [PMID: 23403177 DOI: 10.1016/j.neuroscience.2013.01.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 01/29/2023]
Abstract
Adverse early life experience is thought to increase an individual's susceptibility to mental health disorders, including anxiety and affective disorders, later in life. Our previous studies have shown that post-weaning social isolation of female rats during a critical period of development sensitizes an anxiety-related serotonergic dorsal raphe nucleus (DR) system in adulthood. Therefore, we investigated how post-weaning social isolation, in combination with a challenge with the anxiogenic drug, N-methyl-beta-carboline-3-carboxamide (FG-7142; a partial inverse agonist at the benzodiazepine allosteric site on the GABAA receptor), affects home cage behavior and serotonergic gene expression in the DR of female rats using in situ hybridization histochemistry. Juvenile female rats were reared in isolation or groups of three for a 3-week period from weaning (postnatal day (PD) 21 to mid-adolescence (PD42)), after which all rats were group-reared for an additional 16 days until adulthood. Among vehicle-treated rats, isolation-reared rats had decreased rodent tryptophan hydroxylase 2 (tph2) mRNA expression in ventral and ventrolateral subdivisions of the DR, a pattern observed previously in a rat model of panic disorder. Isolation-reared rats, but not group-reared rats, responded to FG-7142 with increased duration of vigilance and arousal behaviors. In addition, FG-7142 decreased tph2 expression, measured 4h following treatment, in multiple subregions of the DR of group-reared rats but had no effect in isolation-reared rats. No treatment effects were observed on 5-HT1A receptor or serotonin transporter gene expression. These data suggest that adolescent social isolation alters tph2 expression in specific subregions of the DR and alters the effects of stress-related stimuli on behavior and serotonergic systems.
Collapse
Affiliation(s)
- J L Lukkes
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
270
|
Abstract
Recent notions about the vigour of responding in operant conditioning suggest that the long-run average rate of reward should control the alacrity of action in cases in which the actual cost of speed is balanced against the opportunity cost of sloth. The average reward rate is suggested as being reported by tonic activity in the dopamine system and thereby influencing all actions, including ones that do not themselves lead directly to the rewards. This idea is syntactically problematical for the case of punishment. Here, we broaden the scope of the original suggestion, providing a two-factor analysis of obviated punishment in a variety of operant circumstances. We also consider the effects of stochastically successful actions, which turn out to differ rather markedly between appetitive and aversive cases. Finally, we study how to fit these ideas into nascent treatments that extend concepts of opponency between dopamine and serotonin from valence to invigoration.
Collapse
Affiliation(s)
- Peter Dayan
- Gatsby Computational Neuroscience Unit, UCL, 17 Queen Square, London WC1N 3AR, UK.
| |
Collapse
|
271
|
Kaye WH, Wierenga CE, Bailer UF, Simmons AN, Bischoff-Grethe A. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci 2013; 36:110-20. [PMID: 23333342 PMCID: PMC3880159 DOI: 10.1016/j.tins.2013.01.003] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/07/2013] [Indexed: 01/30/2023]
Abstract
Individuals with anorexia nervosa (AN) engage in relentless restrictive eating and often become severely emaciated. Because there are no proven treatments, AN has high rates of relapse, chronicity, and death. Those with AN tend to have childhood temperament and personality traits, such as anxiety, obsessions, and perfectionism, which may reflect neurobiological risk factors for developing AN. Restricted eating may be a means of reducing negative mood caused by skewed interactions between serotonin aversive or inhibitory and dopamine reward systems. Brain imaging studies suggest that altered eating is a consequence of dysregulated reward and/or awareness of homeostatic needs, perhaps related to enhanced executive ability to inhibit incentive motivational drives. An understanding of the neurobiology of this disorder is likely to be important for developing more effective treatments.
Collapse
Affiliation(s)
- Walter H Kaye
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | | | | | | | | |
Collapse
|
272
|
Ara I, Bano S. Citalopram decreases tryptophan 2,3-dioxygenase activity and brain 5-HT turnover in swim stressed rats. Pharmacol Rep 2013; 64:558-66. [PMID: 22814009 DOI: 10.1016/s1734-1140(12)70851-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/24/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressant class today and exert their effects by increasing synaptic concentrations of serotonin (5-HT). The forced swim test (FST) is the most widely used animal test predictive of antidepressant action. Rationale of the present study was to investigate the acute effects of citalopram on hepatic tryptophan metabolism and disposition in rats exposed to FST. METHODS We investigated the effects of acute citalopram (20 mg/kg, ip) administration on rat's behavioral responses in FST paradigm, hepatic tryptophan 2,3-dioxygenase (TDO) activity, serum corticosterone levels and brain regional 5-HT metabolism. RESULTS Citalopram administered to swim-stressed rats showed a decrease in FST-induced increases in plasma corticosterone concentration and 5-HT turnover in hypothalamus, amygdala and hippocampus. The drug also decreases immobility and increases swimming during the FST. Citalopram administration to unstressed rats increases plasma corticosterone concentration but decreases 5-HT turnover in all three brain areas examined. CONCLUSIONS Our findings support the hypothesis that acute citalopram administration increases tryptophan (by inhibiting TDO activity) availability for 5-HT synthesis and activates serotonergic neurotransmission in limbic brain areas in rats exposed to FST paradigm. The mechanism of action of citalopram in ameliorating social stress related depressive disorder in humans is discussed.
Collapse
Affiliation(s)
- Iffat Ara
- Clinical Biochemistry and Psychopharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| | | |
Collapse
|
273
|
Mochny CR, Kincheski GC, Molina VA, Carobrez AP. Dorsolateral periaqueductal gray stimulation prior to retrieval potentiates a contextual fear memory in rats. Behav Brain Res 2013; 237:76-81. [DOI: 10.1016/j.bbr.2012.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 11/27/2022]
|
274
|
Spiacci A, Coimbra N, Zangrossi H. Differential involvement of dorsal raphe subnuclei in the regulation of anxiety- and panic-related defensive behaviors. Neuroscience 2012; 227:350-60. [DOI: 10.1016/j.neuroscience.2012.09.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/29/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
275
|
The dorsolateral periaqueductal gray and its role in mediating fear learning to life threatening events. PLoS One 2012; 7:e50361. [PMID: 23209724 PMCID: PMC3508919 DOI: 10.1371/journal.pone.0050361] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/19/2012] [Indexed: 01/15/2023] Open
Abstract
The dorsolateral column of the periaqueductal gray (dlPAG) integrates aversive emotional experiences and represents an important site responding to life threatening situations, such as hypoxia, cardiac pain and predator threats. Previous studies have shown that the dorsal PAG also supports fear learning; and we have currently explored how the dlPAG influences associative learning. We have first shown that N-methyl-D-aspartate (NMDA) 100 pmol injection in the dlPAG works as a valuable unconditioned stimulus (US) for the acquisition of olfactory fear conditioning (OFC) using amyl acetate odor as conditioned stimulus (CS). Next, we revisited the ascending projections of the dlPAG to the thalamus and hypothalamus to reveal potential paths that could mediate associative learning during OFC. Accordingly, the most important ascending target of the dlPAG is the hypothalamic defensive circuit, and we were able to show that pharmacological inactivation using β-adrenoceptor blockade of the dorsal premammillary nucleus, the main exit way for the hypothalamic defensive circuit to thalamo-cortical circuits involved in fear learning, impaired the acquisition of the OFC promoted by NMDA stimulation of the dlPAG. Moreover, our tracing study revealed multiple parallel paths from the dlPAG to several thalamic targets linked to cortical-hippocampal-amygdalar circuits involved in fear learning. Overall, the results point to a major role of the dlPAG in the mediation of aversive associative learning via ascending projections to the medial hypothalamic defensive circuit, and perhaps, to other thalamic targets, as well. These results provide interesting perspectives to understand how life threatening events impact on fear learning, and should be useful to understand pathological fear memory encoding in anxiety disorders.
Collapse
|
276
|
Campos KFC, Amaral VCS, Rico JL, Miguel TT, Nunes-de-Souza RL. Ethopharmacological evaluation of the rat exposure test: a prey-predator interaction test. Behav Brain Res 2012. [PMID: 23195112 DOI: 10.1016/j.bbr.2012.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The rat exposure test (RET) is a prey (mouse)-predator (rat) situation that activates brain defensive areas and elicits hormonal and defensive behavior in the mouse. Here, we investigated possible correlations between the spatiotemporal [time spent in protected (home chamber and tunnel) and unprotected (surface) compartments and frequency of entries into the three compartments] and ethological [e.g., duration of protected and unprotected stretched-attend postures (SAP), duration of contact with the rat's compartment] measures (Experiment 1). Secondly, we investigated the effects of systemic treatment with pro- or anti-aversive drugs on the behavior that emerged from the factor analysis (Experiment 2). The effects of chronic (21 days) imipramine and fluoxetine on defensive behavior were also investigated (Experiment 3). Exp. 1 revealed that the time in the protected compartment, protected SAP and rat contacts loaded on factor 1 (defensive behavior), while the total entries and unprotected SAP loaded on factor 2 (locomotor activity). Exp. 2 showed that alprazolam (but not diazepam) selectively changed the defensive factor. Caffeine produced a mild proaversive-like effect, whereas yohimbine only decreased locomotor activity (total entries). Fluoxetine (but not imipramine) produced a weak proaversive-like effect. 5-HT(1A)/5-HT(2) receptor ligands did not change any behavioral measure. In Exp. 3, chronic fluoxetine (but not imipramine) attenuated the defensive behavior factor without changing locomotion. Given that the defensive factor was sensitive to drugs known to attenuate (alprazolam and chronic fluoxetine) and induce (caffeine) panic attack, we suggest the RET as a useful test to assess the effects of panicolytic and panicogenic drugs.
Collapse
Affiliation(s)
- Kelciane Ferreira Caetano Campos
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil
| | | | | | | | | |
Collapse
|
277
|
Repeated stress dysregulates κ-opioid receptor signaling in the dorsal raphe through a p38α MAPK-dependent mechanism. J Neurosci 2012; 32:12325-36. [PMID: 22956823 DOI: 10.1523/jneurosci.2053-12.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repeated stress releases dynorphins and causes subsequent activation of κ-opioid receptors (KORs) in limbic brain regions. The serotonergic dorsal raphe nucleus (DRN) has previously been found to be an important site of action for the dysphoric effects of dynorphin-κ-opioid receptor system activation during stress-evoked behaviors, and KOR-induced activation of p38α mitogen-activated protein kinase (MAPK) in serotonergic neurons was found to be a critical mediator of the aversive properties of stress. Yet, how dynorphins and KORs functionally regulate the excitability of serotonergic DRN neurons both in adaptive and pathological stress states is poorly understood. Here we report that acute KOR activation by the selective agonist U69,593 [(+)-(5α,7α,8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]benzeneacetamide] inhibits serotonergic neuronal excitability within the DRN through both presynaptic inhibition of excitatory synaptic transmission and postsynaptic activation of G-protein-gated inwardly rectifying potassium channels (GIRKs) electrophysiologically recorded in brain slices. C57BL/6 mice subjected to repeated swim, stress sessions had significantly reduced KOR-mediated GIRK currents recorded in serotonergic neurons in DRN postsynaptically, without significantly affecting presynaptic KOR-mediated regulation of excitatory transmission. This effect was blocked by genetic excision of p38α MAPK selectively from serotonergic neurons. An increase in phospho-immunoreactivity suggests that this functional dysregulation may be a consequence of tyrosine phosphorylation of GIRK (K(IR)3.1) channels. These data elucidate a mechanism for stress-induced dysregulation of the excitability of neurons in the DRN and identify a functional target of stress-induced p38α MAPK activation that may underlie some of the negative effects of pathological stress exposure.
Collapse
|
278
|
The anxiogenic-like effects of dehydration in a semi-desert rodent Meriones shawi indicating the possible involvement of the serotoninergic system. Acta Histochem 2012; 114:603-7. [PMID: 22172710 DOI: 10.1016/j.acthis.2011.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/21/2022]
Abstract
Dehydration is a powerful stimulus causing disequilibrium in homeostasis of water and electrolytes resulting from depletion in total body water. Most studies have focused on domestic and laboratory animals; however, the study of desert animals allows improved understanding about water balance and resistance to dehydration and associated behavioral changes, including those related to mood disorders. Meriones shawi (Shaw's Jird) is a desert rodent characterized by its resistance to long periods of thirst that can extend for several months. In the present study, M. shawi were subjected to water deprivation for 1 and 3 months. We used 5-HT immunohistochemistry to evaluate the effects of prolonged dehydration on the serotoninergic system in both dorsal and median raphe nuclei (DRN, MRN), which are the main sources of 5-HT input to several brain areas. In addition, a dark/light box was used to evaluate the anxiolytic-like or anxiogenic-like effects of dehydration on M. shawi. The results showed a reduction in the 5-HT immunolabelling in both DRN and MRN following 1 and 3 months of dehydration. This diminution of serotonin immunoreactivity was accompanied by noticeable changes in anxiety behavior of Meriones, with animals spending more time in the light box, suggesting anxiogenic-like effects caused by dehydration. Overall, the results indicate that dehydration is able to reduce serotoninergic neurotransmission, which might be involved in generating anxiety behavior in this desert animal.
Collapse
|
279
|
Hale MW, Raison CL, Lowry CA. Integrative physiology of depression and antidepressant drug action: implications for serotonergic mechanisms of action and novel therapeutic strategies for treatment of depression. Pharmacol Ther 2012; 137:108-18. [PMID: 23017938 DOI: 10.1016/j.pharmthera.2012.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 11/15/2022]
Abstract
Major depressive disorder (MDD) is predicted to be the second leading cause of disability worldwide by the year 2020. Currently available treatments for MDD are suboptimal. Only 50% of MDD patients recover in less than 12 weeks with adequate treatment, and up to 20% of patients will fail to adequately respond to all currently available interventions. Moreover, current treatments come at the cost of significant central nervous system (CNS) side effects, further highlighting the need for more effective treatments with fewer side effects. A greater mechanistic understanding of MDD and the actions of antidepressant drugs would provide opportunities for development of novel therapeutic approaches to treatment. With this aim in mind, we explore the novel, but empirically supported, hypothesis that an evolutionarily ancient thermoafferent pathway, signaling via the spinoparabrachial pathway from serotonergic sensory cells in the skin and other epithelial linings to serotonergic neurons and depression-related circuits in the brain, is dysfunctional in MDD and that antidepressant therapies, including antidepressant drugs and exercise, act by restoring its function.
Collapse
Affiliation(s)
- Matthew W Hale
- School of Psychological Science, La Trobe University, Melbourne 3086, Australia
| | | | | |
Collapse
|
280
|
Browne CA, Clarke G, Hanke J, Dinan TG, Schwegler H, Yilmazer-Hanke DM, Cryan JF. Alterations in prefrontal cortical serotonin and antidepressant-like behavior in a novel C3H/HeJxDBA/2J recombinant inbred mouse strain. Behav Brain Res 2012; 236:283-288. [PMID: 22960457 DOI: 10.1016/j.bbr.2012.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/10/2012] [Indexed: 12/12/2022]
Abstract
In the present study, two genetically related inbred mouse strains selectively bred for high and low fear-sensitized acoustic startle reflex (FSS) were assessed in the forced swim test model of anti-depressant action and central monoamine concentrations in several brain regions were investigated. These mice were generated through backcrossing C3H/HeJ mice on DBA/2J mice, followed by inbreeding for several generations. The high-FSS and low-FSS strains are known to differ in their acquisition and extinction of fear following auditory fear conditioning. Significantly increased concentrations of 5-HT and its metabolite 5-HIAA were observed in the medial prefrontal cortex (mPFC) but not in the hypothalamus, striatum, hippocampus, amygdala, or midbrain of high-FSS mice compared to low-FSS mice. In addition the concentration of DOPAC, the major metabolite of dopamine was also significantly increased in the mPFC. Furthermore, the high-FSS mice displayed significantly higher levels of immobility in the forced swim test but not the tail suspension test in comparison to the low-FSS group. The mPFC is not only important in the regulation of fear extinction, but also a key region of interest in the study of depression and maintenance of depressive-like behaviors. These data implicate serotonergic modulation in the mPFC in the maintenance of antidepressant-like behavior in a highly fearful mouse strain.
Collapse
Affiliation(s)
- Caroline A Browne
- Neuropharmacology Research Group, Department of Pharmacology and Therapeutics, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - Joachim Hanke
- Institut für Anatomie, Medizinische Fakultät, Otto-von-Guerike Universität, Magdeburg, Germany
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | - Herbert Schwegler
- Institut für Anatomie, Medizinische Fakultät, Otto-von-Guerike Universität, Magdeburg, Germany
| | | | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
281
|
Levita L, Hoskin R, Champi S. Avoidance of harm and anxiety: A role for the nucleus accumbens. Neuroimage 2012; 62:189-98. [DOI: 10.1016/j.neuroimage.2012.04.059] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/08/2012] [Accepted: 04/29/2012] [Indexed: 02/08/2023] Open
|
282
|
Palminteri S, Clair AH, Mallet L, Pessiglione M. Similar improvement of reward and punishment learning by serotonin reuptake inhibitors in obsessive-compulsive disorder. Biol Psychiatry 2012; 72:244-50. [PMID: 22325972 DOI: 10.1016/j.biopsych.2011.12.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 12/23/2011] [Accepted: 12/23/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND The role of dopamine in reinforcement learning has been extensively studied, but the role of other major neuromodulators, particularly serotonin, remains poorly understood. An influential theory has suggested that dopamine and serotonin represent opponent systems respectively driving reward and punishment learning. METHODS To test this theory, we compared two groups of patients with obsessive-compulsive disorder, one unmedicated (n = 12) and one treated with serotonin reuptake inhibitors (SRI; n = 13). To avoid confounding basic reinforcement learning with strategic conscious reasoning, we used a subliminal conditioning task that involves subjects learning to associate masked cues with gambling outcomes to maximize their payoff. The same task was used in a previous study to demonstrate opposite effects of dopaminergic medication on reward and punishment learning. RESULTS Unmedicated obsessive-compulsive disorder patients exhibited an instrumental learning deficit that was fully alleviated under SRI treatment. Contrary to dopaminergic medication, SRIs similarly modulated reward and punishment learning. CONCLUSIONS Thus, departing from the opponency model, our results support a beneficial role of serotonin in instrumental learning that is independent of outcome valence.
Collapse
Affiliation(s)
- Stefano Palminteri
- Institut National de la Santé et de la Recherche Médicale Unité 975, Centre National de la Recherche Scientifique Unité 7225, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | | | |
Collapse
|
283
|
Baptista D, Nunes-de-Souza RL, Canto-de-Souza A. Activation of 5-HT(2C) receptors in the dorsal periaqueductal gray increases antinociception in mice exposed to the elevated plus-maze. Behav Brain Res 2012; 235:42-7. [PMID: 22800924 DOI: 10.1016/j.bbr.2012.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/29/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT(1A) and 5-HT(2A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT(1A) and 5-HT(2B/2C) receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 μl intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT(1A) receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT(2B/2C) receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAA), mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 μl), a 5-HT(2A/2C) receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAA enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT(2C) receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice.
Collapse
Affiliation(s)
- Daniela Baptista
- Psychobiology Group, Department of Psychology, CECH-UFSCar, São Carlos, SP 13565-905, Brazil
| | | | | |
Collapse
|
284
|
Hale MW, Shekhar A, Lowry CA. Stress-related serotonergic systems: implications for symptomatology of anxiety and affective disorders. Cell Mol Neurobiol 2012; 32:695-708. [PMID: 22484834 PMCID: PMC3378822 DOI: 10.1007/s10571-012-9827-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/07/2012] [Indexed: 11/30/2022]
Abstract
Previous studies have suggested that serotonergic neurons in the midbrain raphe complex have a functional topographic organization. Recent studies suggest that stimulation of a bed nucleus of the stria terminalis-dorsal raphe nucleus pathway by stress- and anxiety-related stimuli modulates a subpopulation of serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD) and caudal part of the dorsal raphe nucleus (DRC) that participates in facilitation of anxiety-like responses. In contrast, recent studies suggest that activation of a spinoparabrachial pathway by peripheral thermal or immune stimuli excites subpopulations of serotonergic neurons in the ventrolateral part of the dorsal raphe nucleus/ventrolateral periaqueducal gray (DRVL/VLPAG) region and interfascicular part of the dorsal raphe nucleus (DRI). Studies support a role for serotonergic neurons in the DRVL/VLPAG in inhibition of panic-like responses, and serotonergic neurons in the DRI in antidepressant-like effects. Thus, data suggest that while some subpopulations of serotonergic neurons in the dorsal raphe nucleus play a role in facilitation of anxiety-like responses, others play a role in inhibition of anxiety- or panic-like responses, while others play a role in antidepressant-like effects. Understanding the anatomical and functional properties of these distinct serotonergic systems may lead to novel therapeutic strategies for the prevention and/or treatment of affective and anxiety disorders. In this review, we describe the anatomical and functional properties of subpopulations of serotonergic neurons in the dorsal raphe nucleus, with a focus on those implicated in symptoms of anxiety and affective disorders, the DRD/DRC, DRVL/VLPAG, and DRI.
Collapse
Affiliation(s)
- Matthew W. Hale
- School of Psychological Science, La Trobe University, Melbourne, 3086 Australia
| | - Anantha Shekhar
- Department of Psychiatry and Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354 USA
| |
Collapse
|
285
|
Shen YB, Voilqué G, Kim JD, Odle J, Kim SW. Effects of increasing tryptophan intake on growth and physiological changes in nursery pigs1. J Anim Sci 2012; 90:2264-75. [DOI: 10.2527/jas.2011-4203] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Y. B. Shen
- Department of Animal Science, North Carolina State University, Raleigh 27695
| | - G. Voilqué
- Department of Animal Science, North Carolina State University, Raleigh 27695
| | - J. D. Kim
- Bio Business Unit, CJ CheilJedang, Seoul, 100-400, Korea
| | - J. Odle
- Department of Animal Science, North Carolina State University, Raleigh 27695
| | - S. W. Kim
- Department of Animal Science, North Carolina State University, Raleigh 27695
| |
Collapse
|
286
|
Choy KHC, Yu J, Hawkes D, Mayorov DN. Analysis of vigilant scanning behavior in mice using two-point digital video tracking. Psychopharmacology (Berl) 2012; 221:649-57. [PMID: 22193725 DOI: 10.1007/s00213-011-2609-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 12/04/2011] [Indexed: 11/26/2022]
Abstract
RATIONALE Vigilant scanning of the environment is a major risk assessment activity in many species. However, due to difficulties in its manual scoring, scanning has rarely been quantified in laboratory rodent studies. OBJECTIVES AND METHODS We developed a novel method for automated measurement of vigilant scanning in mice, based on simultaneous tracking of an animal's nose- and center-points. The studied scanning parameters included the frequency and duration of scans and scanning (nose-point) speed. The sensitivity of these parameters to anxiolytic diazepam (1-2 mg/kg) and anxiogenic FG-7142 (5 mg/kg) was evaluated upon exposure to the context (conditioning chamber) before and 24 h after footshock. RESULTS Scanning behavior was observed in all C57BL/6, 129xC57BL/6, and DBA/2 mice, as recurrent stationary episodes accompanied by observatory head movements. These episodes respectively comprised 28 ± 1%, 29 ± 1%, and 24 ± 2% of preexposure time. Diazepam dose-dependently decreased the scanning frequency and duration, without affecting the scanning speed. Fear conditioning increased freezing and inhibited other behaviors upon reexposure, with scanning being only marginally affected and still comprising 17 ± 2%, 16 ± 2%, and 19 ± 1% of reexposure time, respectively. Consequently, scanning accounted for most (DBA/2) or virtually all (C57BL/6 and 129xC57BL/6) gross motor activities upon reexposure. FG-7142 mirrored the effects of conditioning, inducing behavioral inhibition with scanning being least affected. CONCLUSIONS Two-point tracking is effective for studying vigilant scanning in mice. Using this approach, we show that scanning is a key risk assessment activity in both unconditioned and conditioned mice; scanning is resistant to threat-induced behavioral inhibition and is highly sensitive to anxiolytic treatment.
Collapse
Affiliation(s)
- Kwok Ho C Choy
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | | | | |
Collapse
|
287
|
Lisboa S, Guimarães F. Differential role of CB1 and TRPV1 receptors on anandamide modulation of defensive responses induced by nitric oxide in the dorsolateral periaqueductal gray. Neuropharmacology 2012; 62:2455-62. [DOI: 10.1016/j.neuropharm.2012.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/06/2012] [Accepted: 02/10/2012] [Indexed: 12/18/2022]
|
288
|
Opioidergic, GABAergic and serotonergic neurotransmission in the dorsal raphe nucleus modulates tonic immobility in guinea pigs. Physiol Behav 2012; 106:109-16. [DOI: 10.1016/j.physbeh.2012.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/24/2022]
|
289
|
Reis FMCV, Albrechet-Souza L, Franci CR, Brandão ML. Risk assessment behaviors associated with corticosterone trigger the defense reaction to social isolation in rats: role of the anterior cingulate cortex. Stress 2012; 15:318-28. [PMID: 21992055 DOI: 10.3109/10253890.2011.623740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The extent to which the hypothalamic-pituitary-adrenal axis is activated by short-term and long-term consequences of stress is still open to investigation. This study aimed to determine (i) the correlation between plasma corticosterone and exploratory behavior exhibited by rats subjected to the elevated plus maze (EPM) following different periods of social isolation, (ii) the effects of the corticosterone synthesis blocker, metyrapone, on the behavioral consequences of isolation, and (iii) whether corticosterone produces its effects through an action on the anterior cingulate cortex, area 1 (Cg1). Rats were subjected to 30-min, 2-h, 24-h, or 7-day isolation periods before EPM exposure and plasma corticosterone assessments. Isolation for longer periods of time produced greater anxiogenic-like effects on the EPM. However, stretched attend posture (SAP) and plasma corticosterone concentrations were increased significantly after 30 min of isolation. Among all of the behavioral categories measured in the EPM, only SAP positively correlated with plasma corticosterone. Metyrapone injected prior to the 24 h isolation period reversed the anxiogenic effects of isolation. Moreover, corticosterone injected into the Cg1 produced a selective increase in SAP. These findings indicate that risk assessment behavior induced by the action of corticosterone on Cg1 neurons initiates a cascade of defensive responses during exposure to stressors.
Collapse
|
290
|
Seymour B, Daw ND, Roiser JP, Dayan P, Dolan R. Serotonin selectively modulates reward value in human decision-making. J Neurosci 2012; 32:5833-42. [PMID: 22539845 PMCID: PMC5321452 DOI: 10.1523/jneurosci.0053-12.2012] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/28/2012] [Indexed: 01/31/2023] Open
Abstract
Establishing a function for the neuromodulator serotonin in human decision-making has proved remarkably difficult because if its complex role in reward and punishment processing. In a novel choice task where actions led concurrently and independently to the stochastic delivery of both money and pain, we studied the impact of decreased brain serotonin induced by acute dietary tryptophan depletion. Depletion selectively impaired both behavioral and neural representations of reward outcome value, and hence the effective exchange rate by which rewards and punishments were compared. This effect was computationally and anatomically distinct from a separate effect on increasing outcome-independent choice perseveration. Our results provide evidence for a surprising role for serotonin in reward processing, while illustrating its complex and multifarious effects.
Collapse
Affiliation(s)
- Ben Seymour
- Wellcome Trust Centre for Neuroimaging, University College London-UCL, London WC1N 3BG, United Kingdom.
| | | | | | | | | |
Collapse
|
291
|
Guitart-Masip M, Huys QJM, Fuentemilla L, Dayan P, Duzel E, Dolan RJ. Go and no-go learning in reward and punishment: interactions between affect and effect. Neuroimage 2012; 62:154-66. [PMID: 22548809 PMCID: PMC3387384 DOI: 10.1016/j.neuroimage.2012.04.024] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/28/2012] [Accepted: 04/11/2012] [Indexed: 11/19/2022] Open
Abstract
Decision-making invokes two fundamental axes of control: affect or valence, spanning reward and punishment, and effect or action, spanning invigoration and inhibition. We studied the acquisition of instrumental responding in healthy human volunteers in a task in which we orthogonalized action requirements and outcome valence. Subjects were much more successful in learning active choices in rewarded conditions, and passive choices in punished conditions. Using computational reinforcement-learning models, we teased apart contributions from putatively instrumental and Pavlovian components in the generation of the observed asymmetry during learning. Moreover, using model-based fMRI, we showed that BOLD signals in striatum and substantia nigra/ventral tegmental area (SN/VTA) correlated with instrumentally learnt action values, but with opposite signs for go and no-go choices. Finally, we showed that successful instrumental learning depends on engagement of bilateral inferior frontal gyrus. Our behavioral and computational data showed that instrumental learning is contingent on overcoming inherent and plastic Pavlovian biases, while our neuronal data showed this learning is linked to unique patterns of brain activity in regions implicated in action and inhibition respectively.
Collapse
Affiliation(s)
- Marc Guitart-Masip
- Institute of Cognitive Neuroscience, University College London, London, W1CN 4AR, UK.
| | | | | | | | | | | |
Collapse
|
292
|
Carvalho MG, Ferreira GFS, Salviano MDF, Silva FMD, Couto KC, Alves SHDS, Cruz APDM. Envolvimento de receptores 5-HT2C do hipocampo ventral em comportamentos de defesa de ratos no labirinto em cruz elevado. ESTUDOS DE PSICOLOGIA (NATAL) 2012. [DOI: 10.1590/s1413-294x2012000100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A ativação farmacológica dos receptores 5-HT2C induz comportamentos de defesa em modelos animais. O estudo busca investigar se o bloqueio seletivo de receptores 5-HT2C no hipocampo ventral (HV) previne comportamentos defensivos induzidos por um agonista de receptor 5-HT2C administrado perifericamente em ratos expostos ao labirinto em cruz elevado (LCE). Quinze minutos após injeções intraperitoniais (IP, 1ml/kg) do agonista 5-HT2C WAY-161503, ratos foram microinjetados bilateralmente no HV com o antagonista seletivo de receptores 5-HT2C SB-242084 (0, 0,1, 0,5 ou 1.5μg). Dez minutos após, cada animal foi exposto ao LCE para o registro de categorias de ansiedade. Injeções sistêmicas do WAY-161503 reduziram seletivamente as explorações nos braços abertos e aumentaram padrões de avaliação de risco. Esse efeito foi atenuado de maneira dose-dependente pela microinjeção de SB-242084 no HV, confirmando a ação ansiogênica de agonistas 5-HT2C e sugerindo que esse perfil comportamental seja mediado, pelo menos em parte, por receptores 5-HT2C do HV.
Collapse
|
293
|
Yang Y, Gao H. Comparison of the performance of different DFT methods in the calculations of the molecular structure and vibration spectra of serotonin (5-hydroxytryptamine, 5-HT). J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
294
|
Carvalho MC, Moreira CM, Zanoveli JM, Brandão ML. Central, but not basolateral, amygdala involvement in the anxiolytic-like effects of midazolam in rats in the elevated plus maze. J Psychopharmacol 2012; 26:543-54. [PMID: 21148026 DOI: 10.1177/0269881110389209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of the amygdala in the mediation of fear and anxiety has been extensively investigated. However, how the amygdala functions during the organization of the anxiety-like behaviors generated in the elevated plus maze (EPM) is still under investigation. The basolateral (BLA) and the central (CeA) nuclei are the main input and output stations of the amygdala. In the present study, we ethopharmacologically analyzed the behavior of rats subjected to the EPM and the tissue content of the monoamines dopamine (DA) and serotonin (5-HT) and their metabolites in the nucleus accumbens (NAc), dorsal hippocampus (DH), and dorsal striatum (DS) of animals injected with saline or midazolam (20 and 30 nmol/0.2 µL) into the BLA or CeA. Injections of midazolam into the CeA, but not BLA, caused clear anxiolytic-like effects in the EPM. These treatments did not cause significant changes in 5-HT or DA contents in the NAc, DH, or DS of animals tested in the EPM. The data suggest that the anxiolytic-like effects of midazolam in the EPM also appear to rely on GABA-benzodiazepine mechanisms in the CeA, but not BLA, and do not appear to depend on 5-HT and DA mechanisms prevalent in limbic structures.
Collapse
Affiliation(s)
- Milene C Carvalho
- Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
295
|
Del-Ben CM, Ferreira CAQ, Sanchez TA, Alves-Neto WC, Guapo VG, de Araujo DB, Graeff FG. Effects of diazepam on BOLD activation during the processing of aversive faces. J Psychopharmacol 2012; 26:443-51. [PMID: 21106607 DOI: 10.1177/0269881110389092] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study aimed to measure, using fMRI, the effect of diazepam on the haemodynamic response to emotional faces. Twelve healthy male volunteers (mean age = 24.83 ± 3.16 years), were evaluated in a randomized, balanced-order, double-blind, placebo-controlled crossover design. Diazepam (10 mg) or placebo was given 1 h before the neuroimaging acquisition. In a blocked design covert face emotional task, subjects were presented with neutral (A) and aversive (B) (angry or fearful) faces. Participants were also submitted to an explicit emotional face recognition task, and subjective anxiety was evaluated throughout the procedures. Diazepam attenuated the activation of right amygdala and right orbitofrontal cortex and enhanced the activation of right anterior cingulate cortex (ACC) to fearful faces. In contrast, diazepam enhanced the activation of posterior left insula and attenuated the activation of bilateral ACC to angry faces. In the behavioural task, diazepam impaired the recognition of fear in female faces. Under the action of diazepam, volunteers were less anxious at the end of the experimental session. These results suggest that benzodiazepines can differentially modulate brain activation to aversive stimuli, depending on the stimulus features and indicate a role of amygdala and insula in the anxiolytic action of benzodiazepines.
Collapse
Affiliation(s)
- Cristina M Del-Ben
- Division of Psychiatry, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
296
|
Ayissi Mbomo R, Gartside S, Ngo Bum E, Njikam N, Okello E, McQuade R. Effect of Mimosa pudica (Linn.) extract on anxiety behaviour and GABAergic regulation of 5-HT neuronal activity in the mouse. J Psychopharmacol 2012; 26:575-83. [PMID: 21427203 DOI: 10.1177/0269881111398686] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mimosa pudica (Linn.) (M. pudica L.) is a plant used in some countries to treat anxiety and depression. In the present study we investigated the effects of an aqueous extract of M. pudica L. on mouse anxiety-like behaviour using the elevated T maze, and on regulation of dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT) neuronal activity using an in-vitro mouse brain slice preparation. Acute treatment with M. pudica L. extract had an anxiolytic effect on behaviour in the elevated T maze, specifically on inhibitory avoidance behaviour. Acute application of the extract alone had no effect on the activity of DRN 5-HT neurones. However, when co-applied with the GABA(A) receptor agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol), the extract enhanced the inhibitory effect of the THIP on DRN 5-HT neurones. These observed effects of M. pudica L. on both behaviour and GABA modulation of 5-HT neuronal activity are similar to the effects of diazepam, the established anxiolytic and positive modulator of the GABA(A) receptor. This study suggests that the aqueous extract of M. pudica L. contains a positive modulator of GABA(A) receptor function and provides impetus for further investigation of the neuropharmacologically active constituents of the extract.
Collapse
Affiliation(s)
- Rigobert Ayissi Mbomo
- Department of Animal Biology and Physiology, University of Yaounde 1, Yaounde, Cameroon
| | | | | | | | | | | |
Collapse
|
297
|
Roncon CM, Biesdorf C, Santana RG, Zangrossi H, Graeff FG, Audi EA. The panicolytic-like effect of fluoxetine in the elevated T-maze is mediated by serotonin-induced activation of endogenous opioids in the dorsal periaqueductal grey. J Psychopharmacol 2012; 26:525-31. [PMID: 22279131 DOI: 10.1177/0269881111434619] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serotonin (5-HT), opioids and the dorsal periaqueductal grey (DPAG) have been implicated in the pathophysiology of panic disorder. In order to study 5-HT-opioid interaction, the opioid antagonist naloxone was injected either systemically (1 mg/kg, i.p.) or intra-DPAG (0.2 μg/0.5 μL) to assess its interference with the effect of chronic fluoxetine (10 mg/kg, i.p., daily for 21 days) or of intra-DPAG 5-HT (8 μg/0.5 μL). Drug effects were measured in the one-escape task of the rat elevated T-maze, an animal model of panic. Pretreatment with systemic naloxone antagonized the lengthening of escape latency caused by chronic fluoxetine, considered a panicolytic-like effect that parallels the drug's therapeutic response in the clinics. Pretreatment with naloxone injected intra-DPAG antagonized both the panicolytic effect of chronic fluoxetine as well as that of 5-HT injected intra-DPAG. Neither the performance of the inhibitory avoidance task in the elevated T-maze, a model of generalized anxiety nor locomotion measured in a circular arena was affected by the above drug treatments. These results indicate that the panicolytic effect of fluoxetine is mediated by endogenous opioids that are activated by 5-HT in the DPAG. They also allow reconciliation between the serotonergic and opioidergic hypotheses of panic disorder pathophysiology.
Collapse
Affiliation(s)
- Camila M Roncon
- Department of Pharmacology and Therapeutic, State University of Maringá, Maringá, Brazil
| | | | | | | | | | | |
Collapse
|
298
|
de Andrade JS, Abrão RO, Céspedes IC, Garcia MC, Nascimento JOG, Spadari-Bratfisch RC, Melo LL, da Silva RCB, Viana MB. Acute restraint differently alters defensive responses and fos immunoreactivity in the rat brain. Behav Brain Res 2012; 232:20-9. [PMID: 22487246 DOI: 10.1016/j.bbr.2012.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/30/2022]
Abstract
Results from a previous study show that rats exposed to acute restraint display anxiogenic-like behavior, evidenced by facilitation of avoidance responses in the elevated T-maze (ETM) model of anxiety. In contrast, escape responses were unaltered by stress exposure. Since ETM avoidance and escape tasks seem to activate distinct sets of brain structures, it is possible that the differences observed with acute restraint are due to particularities in the neurobiological mechanisms which modulate these responses. In the present study, analysis of fos protein immunoreactivity (fos-ir) was used to map areas activated by exposure of male Wistar rats to restraint stress (30 min) previously (30 min) to the ETM. Corticosterone levels were also measured in stressed and non-stressed animals. Confirming previous observations restraint facilitated avoidance performance, an anxiogenic result, while leaving escape unaltered. Performance of the avoidance task increased fos-ir in the frontal cortex, intermediate lateral septum, basolateral amygdala, basomedial amygdala, lateral amygdala, anterior hypothalamus and dorsal raphe nucleus. In contrast, performance of escape increased fos-ir in the ventromedial hypothalamus, dorsolateral periaqueductal gray and locus ceruleus. Both behavioral tasks also increased fos-ir in the dorsomedial hypothalamus. Restraint significantly raised corticosterone levels. Additionally after restraint, fos-ir was predominantly seen in the basolateral amygdala and dorsal raphe of animals submitted to the avoidance task. This data confirms that different sets of brain structures are activated by ETM avoidance and escape tasks and suggests that acute restraint differently alters ETM behavior and the pattern of fos activation in the brain.
Collapse
Affiliation(s)
- J S de Andrade
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Graeff FG. New perspective on the pathophysiology of panic: merging serotonin and opioids in the periaqueductal gray. Braz J Med Biol Res 2012; 45:366-75. [PMID: 22437485 PMCID: PMC3854168 DOI: 10.1590/s0100-879x2012007500036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/08/2012] [Indexed: 12/15/2022] Open
Abstract
Panic disorder patients are vulnerable to recurrent panic attacks. Two neurochemical hypotheses have been proposed to explain this susceptibility. The first assumes that panic patients have deficient serotonergic inhibition of neurons localized in the dorsal periaqueductal gray matter of the midbrain that organize defensive reactions to cope with proximal threats and of sympathomotor control areas of the rostral ventrolateral medulla that generate most of the neurovegetative symptoms of the panic attack. The second suggests that endogenous opioids buffer normal subjects from the behavioral and physiological manifestations of the panic attack, and their deficit brings about heightened suffocation sensitivity and separation anxiety in panic patients, making them more vulnerable to panic attacks. Experimental results obtained in rats performing one-way escape in the elevated T-maze, an animal model of panic, indicate that the inhibitory action of serotonin on defense is connected with activation of endogenous opioids in the periaqueductal gray. This allows reconciliation of the serotonergic and opioidergic hypotheses of panic pathophysiology, the periaqueductal gray being the fulcrum of serotonin-opioid interaction.
Collapse
Affiliation(s)
- F G Graeff
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil.
| |
Collapse
|
300
|
Serotonin transporter polyadenylation polymorphism modulates the retention of fear extinction memory. Proc Natl Acad Sci U S A 2012; 109:5493-8. [PMID: 22431634 DOI: 10.1073/pnas.1202044109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests serotonin's role in anxiety and depression is mediated by its effects on learned fear associations. Pharmacological and genetic manipulations of serotonin signaling in mice alter the retention of fear extinction learning, which is inversely associated with anxious temperament in mice and humans. Here, we test whether genetic variation in serotonin signaling in the form of a common human serotonin transporter polyadenylation polymorphism (STPP/rs3813034) is associated with spontaneous fear recovery after extinction. We show that the risk allele of this polymorphism is associated with impaired retention of fear extinction memory and heightened anxiety and depressive symptoms. These STPP associations in humans mirror the phenotypic effects of serotonin transporter knockout in mice, highlighting the STPP as a potential genetic locus underlying interindividual differences in serotonin transporter function in humans. Furthermore, we show that the serotonin transporter polyadenylation profile associated with the STPP risk allele is altered through the chronic administration of fluoxetine, a treatment that also facilitates retention of extinction learning. The propensity to form persistent fear associations due to poor extinction recall may be an intermediate phenotype mediating the effects of genetic variation in serotonergic function on anxiety and depression. The consistency and specificity of these data across species provide robust support for this hypothesis and suggest that the little-studied STPP may be an important risk factor for mood and anxiety disorders in humans.
Collapse
|