251
|
Wen S, Zhang H, Li Y, Wang N, Zhang W, Yang K, Wu N, Chen X, Deng F, Liao Z, Zhang J, Zhang Q, Yan Z, Liu W, Zhang Z, Ye J, Deng Y, Zhou G, Luu HH, Haydon RC, Shi LL, He TC, Wei G. Characterization of constitutive promoters for piggyBac transposon-mediated stable transgene expression in mesenchymal stem cells (MSCs). PLoS One 2014; 9:e94397. [PMID: 24714676 PMCID: PMC3979777 DOI: 10.1371/journal.pone.0094397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/15/2014] [Indexed: 01/23/2023] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) can undergo self-renewal and give rise to multi-lineages under given differentiation cues. It is frequently desirable to achieve a stable and high level of transgene expression in MSCs in order to elucidate possible molecular mechanisms through which MSC self-renewal and lineage commitment are regulated. Retroviral or lentiviral vector-mediated gene expression in MSCs usually decreases over time. Here, we choose to use the piggyBac transposon system and conduct a systematic comparison of six commonly-used constitutive promoters for their abilities to drive RFP or firefly luciferase expression in somatic HEK-293 cells and MSC iMEF cells. The analyzed promoters include three viral promoters (CMV, CMV-IVS, and SV40), one housekeeping gene promoter (UbC), and two composite promoters of viral and housekeeping gene promoters (hEFH and CAG-hEFH). CMV-derived promoters are shown to drive the highest transgene expression in HEK-293 cells, which is however significantly reduced in MSCs. Conversely, the composite promoter hEFH exhibits the highest transgene expression in MSCs whereas its promoter activity is modest in HEK-293 cells. The reduced transgene expression driven by CMV promoters in MSCs may be at least in part caused by DNA methylation, or to a lesser extent histone deacetlyation. However, the hEFH promoter is not significantly affected by these epigenetic modifications. Taken together, our results demonstrate that the hEFH composite promoter may be an ideal promoter to drive long-term and high level transgene expression using the piggyBac transposon vector in progenitor cells such as MSCs.
Collapse
Affiliation(s)
- Sheng Wen
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Yasha Li
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Departments of Cell Biology and Oncology of the Affiliated Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Ke Yang
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Ningning Wu
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Departments of Cell Biology and Oncology of the Affiliated Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Orthopaedic Surgery, the Affiliated Xiang-Ya Hospital of Central South University, Changsha, China
| | - Junhui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Qian Zhang
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Zhonglin Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Guolin Zhou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Tong-Chuan He
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
- * E-mail: (TCH); (GW)
| | - Guanghui Wei
- Stem Cell Biology and Therapy Laboratory of Ministry of Education Key Laboratory for Pediatrics, Chongqing Stem Cell Therapy and Engineering Center, and Department of Urology, The Children's Hospital of Chongqing Medical University, Chongqing, China
- * E-mail: (TCH); (GW)
| |
Collapse
|
252
|
Lewiecki EM. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther Adv Musculoskelet Dis 2014; 6:48-57. [PMID: 24688605 PMCID: PMC3956136 DOI: 10.1177/1759720x13510479] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sclerostin is a small protein expressed by the SOST gene in osteocytes, bone cells that respond to mechanical stress applied to the skeleton and appear to play an important role in the regulation of bone remodeling. When sclerostin binds to its receptors on the cell surface of osteoblasts, a downstream cascade of intracellular signaling is initiated, with the ultimate effect of inhibiting osteoblastic bone formation. Recent studies have shown that the SOST gene is also expressed by articular chondrocytes and that modulation of its activity may have effects on articular cartilage and subchondral bone. The role of sclerostin in the pathogenesis of osteoarthritis in humans has not yet been defined, and the potential utility of treating osteoarthritis with interventions that alter sclerostin is not known. Rare genetic skeletal disorders in humans with low sclerostin levels, such as sclerosteosis and van Buchem disease, have been associated with a high bone mineral density (BMD) phenotype and low risk of fractures. This has led to the concept that antisclerostin interventions might be useful in the treatment of patients with osteoporosis and skeletal disorders associated with low bone mass. Compounds that inhibit sclerostin have been shown to stimulate bone formation and reduce bone resorption, with a robust increase in BMD. Investigational monoclonal antibodies to sclerostin, including romosozumab, blosozumab, and BPS804, have advanced to phase II clinical trials or beyond. If antisclerostin therapy is found to have beneficial effects on clinical endpoints, such as reduction of fracture risk or improvement in quality of life in patients with osteoarthritis, with a favorable balance of benefit and risk, then this class of compounds may become a prominent addition to the options for therapy of osteoporosis and other skeletal disorders.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, University of New Mexico School of Medicine, 300 Oak Street NE, Albuquerque, NM 87106, USA
| |
Collapse
|
253
|
Zhao C, Wu N, Deng F, Zhang H, Wang N, Zhang W, Chen X, Wen S, Zhang J, Yin L, Liao Z, Zhang Z, Zhang Q, Yan Z, Liu W, Wu D, Ye J, Deng Y, Zhou G, Luu HH, Haydon RC, Si W, He TC. Adenovirus-mediated gene transfer in mesenchymal stem cells can be significantly enhanced by the cationic polymer polybrene. PLoS One 2014; 9:e92908. [PMID: 24658746 PMCID: PMC3962475 DOI: 10.1371/journal.pone.0092908] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/26/2014] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors, which can undergo self-renewal and give rise to multi-lineages. A great deal of attentions have been paid to their potential use in regenerative medicine as potential therapeutic genes can be introduced into MSCs. Genetic manipulations in MSCs requires effective gene deliveries. Recombinant adenoviruses are widely used gene transfer vectors. We have found that although MSCs can be infected in vitro by adenoviruses, high virus titers are needed to achieve high efficiency. Here, we investigate if the commonly-used cationic polymer Polybrene can potentiate adenovirus-mediated transgene delivery into MSCs, such as C2C12 cells and iMEFs. Using the AdRFP adenovirus, we find that AdRFP transduction efficiency is significantly increased by Polybrene in a dose-dependent fashion peaking at 8 μg/ml in C2C12 and iMEFs cells. Quantitative luciferase assay reveals that Polybrene significantly enhances AdFLuc-mediated luciferase activity in C2C12 and iMEFs at as low as 4 μg/ml and 2 μg/ml, respectively. FACS analysis indicates that Polybrene (at 4 μg/ml) increases the percentage of RFP-positive cells by approximately 430 folds in AdRFP-transduced iMEFs, suggesting Polybrene may increase adenovirus infection efficiency. Furthermore, Polybrene can enhance AdBMP9-induced osteogenic differentiation of MSCs as early osteogenic marker alkaline phosphatase activity can be increased more than 73 folds by Polybrene (4 μg/ml) in AdBMP9-transduced iMEFs. No cytotoxicity was observed in C2C12 and iMEFs at Polybrene up to 40 μg/ml, which is about 10-fold higher than the effective concentration required to enhance adenovirus transduction in MSCs. Taken together, our results demonstrate that Polybrene should be routinely used as a safe, effective and inexpensive augmenting agent for adenovirus-mediated gene transfer in MSCs, as well as other types of mammalian cells.
Collapse
Affiliation(s)
- Chen Zhao
- Departments of Clinical Hematology, Cell Biology and Oncology, the Affiliated Southwest Hospital of the Third Military Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Ningning Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory of the Ministry of Education Key Laboratory for Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Deng
- Departments of Clinical Hematology, Cell Biology and Oncology, the Affiliated Southwest Hospital of the Third Military Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Hongmei Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ning Wang
- Departments of Clinical Hematology, Cell Biology and Oncology, the Affiliated Southwest Hospital of the Third Military Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Laboratory Medicine, the Affiliated Hospital of Bingzhou Medical University, Yantai, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Sheng Wen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory of the Ministry of Education Key Laboratory for Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junhui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Liangjun Yin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Orthopaedic Surgery, the Affiliated Xiang-Ya Hospital of Central South University, Changsha, China
| | - Zhonglin Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory of the Ministry of Education Key Laboratory for Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory of the Ministry of Education Key Laboratory for Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Guolin Zhou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Weike Si
- Departments of Clinical Hematology, Cell Biology and Oncology, the Affiliated Southwest Hospital of the Third Military Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- * E-mail: (WS); (TCH)
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Stem Cell Biology and Therapy Laboratory of the Ministry of Education Key Laboratory for Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China
- * E-mail: (WS); (TCH)
| |
Collapse
|
254
|
Thorfve A, Lindahl C, Xia W, Igawa K, Lindahl A, Thomsen P, Palmquist A, Tengvall P. Hydroxyapatite coating affects the Wnt signaling pathway during peri-implant healing in vivo. Acta Biomater 2014; 10:1451-62. [PMID: 24342040 DOI: 10.1016/j.actbio.2013.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/12/2013] [Accepted: 12/09/2013] [Indexed: 01/09/2023]
Abstract
Owing to its bio- and osteoconductivity, hydroxyapatite (HA) is a widely used implant material, but its osteogenic properties are only partly evaluated in vitro and in vivo. The present study focused on bone healing adjacent to HA-coated titanium (Ti) implants, with or without incorporated lithium ions (Li(+)). Special attention was given to the Wnt signaling pathway. The implants were inserted into rat tibia for 7 or 28 days and analyzed ex vivo, mainly by histomorphometry and quantitative real-time polymerase chain reaction (qPCR). HA-coated implants showed, irrespective of Li(+) content, bone-implant contact (BIC) and removal torque values significantly higher than those of reference Ti. Further, the expression of OCN, CTSK, COL1A1, LRP5/6 and WISP1 was significantly higher in implant-adherent cells of HA-coated implants, with or without Li(+). Significantly higher β-catenin expression and significantly lower COL2A1 expression were observed in peri-implant bone cells from HA with 14 ng cm(-2) released Li(+). Interestingly, Ti implants showed a significantly larger bone area (BA) in the threads than HA with 39 ng cm(-2) released Li(+), but had a lower BIC than any HA-coated implant. This study shows that HA, with or without Li(+), is a strong activator of the Wnt signaling pathway, and may to some degree explain its high bone induction capacity.
Collapse
Affiliation(s)
- A Thorfve
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden.
| | - C Lindahl
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; Department of Engineering Sciences, Angstrom Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
| | - W Xia
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; Department of Engineering Sciences, Angstrom Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden
| | - K Igawa
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; Department of Oral and Maxillofacial Surgery, Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, 71-15 Yatsuyamada Koriyama, Fukushima 9638-563, Japan
| | - A Lindahl
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; Department of Clinical Chemistry and Transfusion Medicine, The Sahlgrenska Academy, University of Gothenburg, Bruna Straket 16, SE-413 45 Gothenburg, Sweden
| | - P Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden
| | - A Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden
| | - P Tengvall
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden; BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, The Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
255
|
Liedert A, Schinke T, Ignatius A, Amling M. The role of midkine in skeletal remodelling. Br J Pharmacol 2014; 171:870-8. [PMID: 24102259 PMCID: PMC3925025 DOI: 10.1111/bph.12412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/02/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Bone tissue is subjected to continuous remodelling, replacing old or damaged bone throughout life. In bone remodelling, the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts ensure the maintenance of bone mass and strength. In early life, the balance of these cellular activities is tightly regulated by various factors, including systemic hormones, the mechanical environment and locally released growth factors. Age-related changes in the activity of these factors in bone remodelling can result in diseases with low bone mass, such as osteoporosis. Osteoporosis is a systemic and age-related skeletal disease characterized by low bone mass and structural degeneration of bone tissue, predisposing the patient to an increased fracture risk. The growth factor midkine (Mdk) plays a key role in bone remodelling and it is expressed during bone formation and fracture repair. Using a mouse deficient in Mdk, our group have identified this protein as a negative regulator of bone formation and mechanically induced bone remodelling. Thus, specific Mdk antagonists might represent a therapeutic option for diseases characterized by low bone mass, such as osteoporosis. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- A Liedert
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
256
|
Hupkes M, Sotoca AM, Hendriks JM, van Zoelen EJ, Dechering KJ. MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells. BMC Mol Biol 2014; 15:1. [PMID: 24467925 PMCID: PMC3905160 DOI: 10.1186/1471-2199-15-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/24/2014] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression. Results Using a previously generated RNA polymerase II (Pol-II) ChIP-on-chip dataset, we show differential Pol-II occupancy at the promoter regions of six miRNAs during C2C12 myogenic versus BMP2-induced osteogenic differentiation. Overexpression of one of these miRNAs, miR-378, enhances Alp activity, calcium deposition and mRNA expression of osteogenic marker genes in the presence of BMP2. Conclusions Our results demonstrate a previously unknown role for miR-378 in promoting BMP2-induced osteogenic differentiation.
Collapse
Affiliation(s)
- Marlinda Hupkes
- Department of Cell & Applied Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
257
|
Gaudio A, Privitera F, Pulvirenti I, Canzonieri E, Rapisarda R, Fiore CE. The relationship between inhibitors of the Wnt signalling pathway (sclerostin and Dickkopf-1) and carotid intima-media thickness in postmenopausal women with type 2 diabetes mellitus. Diab Vasc Dis Res 2014; 11:48-52. [PMID: 24227537 DOI: 10.1177/1479164113510923] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to investigate the association of the extracellular inhibitors of Wnt/β-catenin signalling sclerostin and Dickkopf-1 (Dkk-1) with carotid intima-media thickness (CIMT) in type 2 diabetes mellitus (T2DM). We performed a cross-sectional study including 40 T2DM postmenopausal women and 40 healthy controls. CIMT was measured by B-mode ultrasound. Serum sclerostin and Dkk-1 were measured by solid-phase enzyme-linked immunosorbent assay (ELISA). Serum sclerostin and Dkk-1 concentrations were significantly higher in T2DM group than in controls. There was a significant negative correlation between sclerostin and Dkk-1 and CIMT in T2DM (p = 0.0063 and p = 0.0017, respectively). After adjustment for potential confounders, associations remained significant only for sclerostin. These data suggest that sclerostin, an established modulator of the canonical Wnt signalling, may protect against progression of vascular complications in diabetic patients, possibly by attenuating upregulation of β-catenin activity in the vascular cells.
Collapse
Affiliation(s)
- Agostino Gaudio
- Department of Medical and Pediatric Sciences, Clinica Medica 'L. Condorelli', University of Catania, Catania, Italy
| | | | | | | | | | | |
Collapse
|
258
|
Heilmann A, Schinke T, Bindl R, Wehner T, Rapp A, Haffner-Luntzer M, Nemitz C, Liedert A, Amling M, Ignatius A. The Wnt serpentine receptor Frizzled-9 regulates new bone formation in fracture healing. PLoS One 2013; 8:e84232. [PMID: 24391920 PMCID: PMC3877253 DOI: 10.1371/journal.pone.0084232] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022] Open
Abstract
Wnt signaling is a key regulator of bone metabolism and fracture healing. The canonical Wnt/β-catenin pathway is regarded as the dominant mechanism, and targeting this pathway has emerged as a promising strategy for the treatment of osteoporosis and poorly healing fractures. In contrast, little is known about the role of non-canonical Wnt signaling in bone. Recently, it was demonstrated that the serpentine receptor Fzd9, a Wnt receptor of the Frizzled family, is essential for osteoblast function and positively regulates bone remodeling via the non-canonical Wnt pathway without involving β-catenin-dependent signaling. Here we investigated whether the Fzd9 receptor is essential for fracture healing using a femur osteotomy model in Fzd9−/− mice. After 10, 24 and 32 days the fracture calli were analyzed using biomechanical testing, histomorphometry, immunohistochemistry, and micro-computed tomography. Our results demonstrated significantly reduced amounts of newly formed bone at all investigated healing time points in the absence of Fzd9 and, accordingly, a decreased mechanical competence of the callus tissue in the late phase of fracture healing. In contrast, cartilage formation and numbers of osteoclasts degrading mineralized matrix were unaltered. β-Catenin immunolocalization showed that canonical Wnt-signaling was not affected in the absence of Fzd9 in osteoblasts as well as in proliferating and mature chondrocytes within the fracture callus. The expression of established differentiation markers was not altered in the absence of Fzd9, whereas chemokines Ccl2 and Cxcl5 seemed to be reduced. Collectively, our results suggest that non-canonical signaling via the Fzd9 receptor positively regulates intramembranous and endochondral bone formation during fracture healing, whereas it does not participate in the formation of cartilage or in the osteoclastic degradation of mineralized matrix. The finding that Fzd9, in addition to its role in physiological bone remodeling, regulates bone repair may have implications for the development of treatments for poorly or non-healing fractures.
Collapse
Affiliation(s)
- Aline Heilmann
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronny Bindl
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Tim Wehner
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Anna Rapp
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Claudia Nemitz
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
259
|
Gao Y, Huang E, Zhang H, Wang J, Wu N, Chen X, Wang N, Wen S, Nan G, Deng F, Liao Z, Wu D, Zhang B, Zhang J, Haydon RC, Luu HH, Shi LL, He TC. Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells. PLoS One 2013; 8:e82436. [PMID: 24340027 PMCID: PMC3855436 DOI: 10.1371/journal.pone.0082436] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/23/2013] [Indexed: 01/19/2023] Open
Abstract
Osteogenic differentiation from mesenchymal progenitor cells (MPCs) are initiated and regulated by a cascade of signaling events. Either Wnt/β-catenin or estrogen signaling pathway has been shown to play an important role in regulating skeletal development and maintaining adult tissue homeostasis. Here, we investigate the potential crosstalk and synergy of these two signaling pathways in regulating osteogenic differentiation of MPCs. We find that the activation of estrogen receptor (ER) signaling by estradiol (E2) or exogenously expressed ERα in MPCs synergistically enhances Wnt3A-induced early and late osteogenic markers, as well as matrix mineralization. The E2 or ERα-mediated synergy can be effectively blocked by ERα antagonist tamoxifen. E2 stimulation can enhance endochondral ossification of Wnt3A-transduced mouse fetal limb explants. Furthermore, exogenously expressed ERα significantly enhances the maturity and mineralization of Wnt3A-induced subcutaneous and intramuscular ectopic bone formation. Mechanistically, we demonstrate that E2 does not exert any detectable effect on β-catenin/Tcf reporter activity. However, ERα expression is up-regulated within the first 48h in AdWnt3A-transduced MPCs, whereas ERβ expression is significantly inhibited within 24h. Moreover, the key enzyme for the biosynthesis of estrogens aromatase is modulated by Wnt3A in a biphasic manner, up-regulated at 24h but reduced after 48h. Our results demonstrate that, while ER signaling acts synergistically with Wnt3A in promoting osteogenic differentiation, Wnt3A may crosstalk with ER signaling by up-regulating ERα expression and down-regulating ERβ expression in MPCs. Thus, the signaling crosstalk and synergy between these two pathways should be further explored as a potential therapeutic approach to combating bone and skeletal disorders, such as fracture healing and osteoporosis.
Collapse
Affiliation(s)
- Yanhong Gao
- Department of Geriatrics, Xinhua Hospital of Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- * E-mail: (TCH); (YG)
| | - Enyi Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jinhua Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ningning Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ning Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Cell Biology, and Department of Oncology of Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Sheng Wen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Guoxin Nan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Cell Biology, and Department of Oncology of Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Orthopaedic Surgery, Xiang-Ya Hospital, Central South University Xiang-Ya School of Medicine, Changsha, China
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Bosi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Junhui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and the Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Clinical Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- * E-mail: (TCH); (YG)
| |
Collapse
|
260
|
Shui W, Zhang W, Yin L, Nan G, Liao Z, Zhang H, Wang N, Wu N, Chen X, Wen S, He Y, Deng F, Zhang J, Luu HH, Shi LL, Hu Z, Haydon RC, Mok JM, He TC. Characterization of scaffold carriers for BMP9-transduced osteoblastic progenitor cells in bone regeneration. J Biomed Mater Res A 2013. [DOI: 10.1002/jbm.a.35006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wei Shui
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing 400016 China
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
| | - Wenwen Zhang
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals; Chongqing Medical University; Chongqing 400016 China
| | - Liangjun Yin
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing 400016 China
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
| | - Guoxin Nan
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
| | - Zhan Liao
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
- Department of Orthopaedic Surgery; Xiang-Ya Hospital of Central South University; Changsha 410083 China
| | - Hongmei Zhang
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
| | - Ning Wang
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
- Department of Cell Biology; Third Military Medical University; Chongqing 400038 China
- Department of Oncology; Southwest Hospital, Third Military Medical University; Chongqing 400038 China
| | - Ningning Wu
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals; Chongqing Medical University; Chongqing 400016 China
| | - Xian Chen
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals; Chongqing Medical University; Chongqing 400016 China
| | - Sheng Wen
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
| | - Yunfeng He
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing 400016 China
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
| | - Fang Deng
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
- Department of Cell Biology; Third Military Medical University; Chongqing 400038 China
- Department of Oncology; Southwest Hospital, Third Military Medical University; Chongqing 400038 China
| | - Junhui Zhang
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing 400016 China
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
| | - Hue H. Luu
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
| | - Lewis L. Shi
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
| | - Zhenming Hu
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing 400016 China
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
| | - Rex C. Haydon
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
| | - James M. Mok
- Molecular Oncology Laboratory; Department of Orthopaedic Surgery and Rehabilitation Medicine; The University of Chicago Medical Center; 5841 South Maryland Avenue, MC 3079 Chicago Illinois 60637
| | - Tong-Chuan He
- Institute of Orthopaedic Research and Education; Chongqing Medical University; Chongqing 400016 China
- Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals; Chongqing Medical University; Chongqing 400016 China
| |
Collapse
|
261
|
Shui W, Zhang W, Yin L, Nan G, Liao Z, Zhang H, Wang N, Wu N, Chen X, Wen S, He Y, Deng F, Zhang J, Luu HH, Shi LL, Hu Z, Haydon RC, Mok JM, He TC. Characterization of scaffold carriers for BMP9-transduced osteoblastic progenitor cells in bone regeneration. J Biomed Mater Res A 2013; 102:3429-38. [PMID: 24133046 DOI: 10.1002/jbma.35006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/25/2023]
Abstract
Successful bone tissue engineering at least requires sufficient osteoblast progenitors, efficient osteoinductive factors, and biocompatible scaffolding materials. We have demonstrated that BMP9 is one of the most potent factors in inducing osteogenic differentiation of mesenchymal progenitors. To facilitate the potential use of cell-based BMP9 gene therapy for bone regeneration, we characterize the in vivo osteoconductive activities and bone regeneration potential of three clinically used scaffold materials, type I collagen sponge, hydroxyapatite-tricalcium phosphate (HA-TCP), and demineralized bone matrix (DBM), using BMP9-expressing C2C12 osteoblastic progenitor cells. We find that recombinant adenovirus-mediated BMP9 expression effectively induces osteogenic differentiation in C2C12 cells. Although direct subcutaneous injection of BMP9-transduced C2C12 cells forms ectopic bony masses, subcutaneous implantation of BMP9-expressing C2C12 cells with collagen sponge or HA-TCP scaffold yields the most robust and mature cancellous bone formation, whereas the DBM carrier group forms no or minimal bone masses. Our results suggest that collagen sponge and HA-TCP scaffold carriers may provide more cell-friendly environment to support the survival, propagation, and ultimately differentiation of BMP9-expressing progenitor cells. This line of investigation should provide important experimental evidence for further preclinical studies in BMP9-mediated cell-based approach to bone tissue engineering.
Collapse
|
262
|
Märtson A, Kõks S, Reimann E, Prans E, Erm T, Maasalu K. Transcriptome analysis of osteosarcoma identifies suppression of wnt pathway and up-regulation of adiponectin as potential biomarker. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2052-7993-1-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
263
|
Zhang W, Zhang H, Wang N, Zhao C, Zhang H, Deng F, Wu N, He Y, Chen X, Zhang J, Wen S, Liao Z, Zhang Q, Zhang Z, Liu W, Yan Z, Luu HH, Haydon RC, Zhou L, He TC. Modulation of β-catenin signaling by the inhibitors of MAP kinase, tyrosine kinase, and PI3-kinase pathways. Int J Med Sci 2013; 10:1888-98. [PMID: 24324366 PMCID: PMC3856380 DOI: 10.7150/ijms.6019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of β-catenin signaling plays an important role in human tumorigenesis. However, molecular mechanisms behind the β-catenin signaling deregulation are mostly unknown because genetic alterations in this pathway only account for a small fraction of tumors. Here, we investigator if other major pathways can regulate β-catenin signaling activity. By employing a panel of chemical activators and/or inhibitors of several cellular signaling pathways, we assess these modulators' effects on luciferase reporter driven by β-catenin/TCF4-responsive elements. We find that lithium-stimulated β-catenin activity is synergistically enhanced by protein kinase C activator PMA. However, β-catenin-regulated transcriptional (CRT) activity is significantly inhibited by casein kinase II inhibitor DRB, MEK inhibitor PD98059, G-proteins and their receptor uncoupling agent suramin, protein tyrosine kinase inhibitor genistein, and PI-3 kinase inhibitor wortmannin, suggesting that these cellular pathways may participate in regulating β-catenin signaling. Interestingly, the Ca⁺⁺/calmodulin kinase II inhibitor HDBA is shown to activate β-catenin activity at low doses. Furthermore, Wnt3A-stimulated and constitutively activated CRT activities, as well as the intracellular accumulation of β-catenin protein in human colon cancer cells, are effectively suppressed by PD98059, genistein, and wortmannin. We further demonstrate that EGF can activate TCF4/β-catenin activity and induce the tyrosine phosphorylation of β-catenin protein. Thus, our results should provide important insights into the molecular mechanisms underlying Wnt/β-catenin activation. This knowledge should facilitate our efforts to develop efficacious and novel therapeutics by targeting these pathways.
Collapse
Affiliation(s)
- Wenwen Zhang
- 1. Ministry of Education Key Laboratory of Diagnostic Medicine and School of Clinical Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; ; 2. Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL 60637, USA; ; 3. Department of Laboratory Medicine of the Affiliated Hospital, Bingzhou Medical University, Yantai, Shandong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|