251
|
Cottin V, Crestani B, Cadranel J, Cordier JF, Marchand-Adam S, Prévot G, Wallaert B, Bergot E, Camus P, Dalphin JC, Dromer C, Gomez E, Israel-Biet D, Jouneau S, Kessler R, Marquette CH, Reynaud-Gaubert M, Aguilaniu B, Bonnet D, Carré P, Danel C, Faivre JB, Ferretti G, Just N, Lebargy F, Philippe B, Terrioux P, Thivolet-Béjui F, Trumbic B, Valeyre D. [French practical guidelines for the diagnosis and management of idiopathic pulmonary fibrosis: 2017 update. Short-length version]. Rev Mal Respir 2017:S0761-8425(17)30211-5. [PMID: 28935497 DOI: 10.1016/j.rmr.2017.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V Cottin
- Centre national de référence des maladies pulmonaires rares, pneumologie, hôpital Louis-Pradel, hospices civils de Lyon, université Claude-Bernard-Lyon 1, Lyon, France.
| | - B Crestani
- Service de pneumologie A, centre de compétences pour les maladies pulmonaires rares, CHU Bichat, université Paris Diderot, Paris, France
| | - J Cadranel
- Service de pneumologie et oncologie thoracique, centre de compétences pour les maladies pulmonaires rares, hôpital Tenon, université Pierre-et-Marie-Curie, Paris 6, GH-HUEP, Assistance publique-Hôpitaux de Paris, Paris, France
| | - J-F Cordier
- Centre national de référence des maladies pulmonaires rares, pneumologie, hôpital Louis-Pradel, hospices civils de Lyon, université Claude-Bernard-Lyon 1, Lyon, France
| | - S Marchand-Adam
- Service de pneumologie, centre de compétences pour les maladies pulmonaires rares, CHU de Tours, Tours, France
| | - G Prévot
- Service de pneumologie, centre de compétences pour les maladies pulmonaires rares, CHU Larrey, Toulouse, France
| | - B Wallaert
- Service de pneumologie et immuno-allergologie, centre de compétences pour les maladies pulmonaires rares, hôpital Calmette, CHRU de Lille, Lille, France
| | - E Bergot
- Service de pneumologie et oncologie thoracique, centre de compétences pour les maladies pulmonaires rares, CHU de Caen, Caen, France
| | - P Camus
- Service de pneumologie et oncologie thoracique, centre de compétences pour les maladies pulmonaires rares, CHU Dijon-Bourgogne, Dijon, France
| | - J-C Dalphin
- Service de pneumologie, allergologie et oncologie thoracique, centre de compétences pour les maladies pulmonaires rares, hôpital Jean-Minjoz, CHRU de Besançon, Besançon, France
| | - C Dromer
- Service de pneumologie, centre de compétences pour les maladies pulmonaires rares, hôpital Haut-Lévèque, CHU de Bordeaux, Bordeaux, France
| | - E Gomez
- Département de pneumologie, centre de compétences pour les maladies pulmonaires rares, CHU de Nancy, Vandœuvre-lès-Nancy, France
| | - D Israel-Biet
- Service de pneumologie, centre de compétences pour les maladies pulmonaires rares, hôpital européen Georges-Pompidou, université Paris-Descartes, Paris, France
| | - S Jouneau
- Service de pneumologie, centre de compétences pour les maladies pulmonaires rares, CHU de Rennes, IRSET UMR 1085, université de Rennes 1, Rennes, France
| | - R Kessler
- Service de pneumologie, centre de compétences pour les maladies pulmonaires rares, hôpital civil, CHU de Strasbourg, Strasbourg, France
| | - C-H Marquette
- Service de pneumologie, centre de compétences pour les maladies pulmonaires rares, CHU de Nice, FHU Oncoage, université Côte d'Azur, France
| | - M Reynaud-Gaubert
- Service de pneumologie, centre de compétence des maladies pulmonaires rares, CHU Nord, Marseille, France
| | | | - D Bonnet
- Service de pneumologie, centre hospitalier de la Côte-Basque, Bayonne, France
| | - P Carré
- Service de pneumologie, centre hospitalier, Carcassonne, France
| | - C Danel
- Département de pathologie, hôpital Bichat-Claude-Bernard, université Paris Diderot, Assistance publique-Hôpitaux de Paris, Paris 7, Paris, France
| | - J-B Faivre
- Service d'imagerie thoracique, hôpital Calmette, CHRU de Lille, Lille, France
| | - G Ferretti
- Clinique universitaire de radiologie et imagerie médicale, CHU Grenoble-Alpes, Grenoble, France
| | - N Just
- Service de pneumologie, centre hospitalier Victor-Provo, Roubaix, France
| | - F Lebargy
- Service des maladies respiratoires, CHU Maison-Blanche, Reims, France
| | - B Philippe
- Service de pneumologie, centre hospitalier René-Dubos, Pontoise, France
| | - P Terrioux
- Service de pneumologie, centre hospitalier de Meaux, Meaux, France
| | - F Thivolet-Béjui
- Service d'anatomie et cytologie pathologiques, hôpital Louis-Pradel, Lyon, France
| | | | - D Valeyre
- Service de pneumologie, centre de compétences pour les maladies pulmonaires rares, hôpital Avicenne, CHU Paris-Seine-Saint-Denis, Bobigny, France
| |
Collapse
|
252
|
Scahill CM, Digby Z, Sealy IM, White RJ, Collins JE, Busch-Nentwich EM. The age of heterozygous telomerase mutant parents influences the adult phenotype of their offspring irrespective of genotype in zebrafish. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.12530.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Mutations in proteins involved in telomere maintenance lead to a range of human diseases, including dyskeratosis congenita, idiopathic pulmonary fibrosis and cancer. Telomerase functions to add telomeric repeats back onto the ends of chromosomes, however non-canonical roles of components of telomerase have recently been suggested.Methods: Here we use a zebrafish telomerase mutant which harbours a nonsense mutation intertto investigate the adult phenotypes of fish derived from heterozygous parents of different ages. Furthermore we use whole genome sequencing data to estimate average telomere lengths.Results: We show that homozygous offspring from older heterozygotes exhibit signs of body wasting at a younger age than those of younger parents, and that offspring of older heterozygous parents weigh less irrespective of genotype. We also demonstrate thatterthomozygous mutant fish have a male sex bias, and that clutches from older parents also have a male sex bias in the heterozygous and wild-type populations. Telomere length analysis reveals that the telomeres of younger heterozygous parents are shorter than those of older heterozygous parents.Conclusions: These data indicate that the phenotypes observed in offspring from older parents cannot be explained by telomere length. Instead we propose that Tert functions outside of telomere length maintenance in an age-dependent manner to influence the adult phenotypes of the next generation.
Collapse
|
253
|
Jo HE, Troy LK, Keir G, Chambers DC, Holland A, Goh N, Wilsher M, de Boer S, Moodley Y, Grainge C, Whitford H, Chapman S, Reynolds PN, Glaspole I, Beatson D, Jones L, Hopkins P, Corte TJ. Treatment of idiopathic pulmonary fibrosis in Australia and New Zealand: A position statement from the Thoracic Society of Australia and New Zealand and the Lung Foundation Australia. Respirology 2017; 22:1436-1458. [DOI: 10.1111/resp.13146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Helen E. Jo
- Department of Respiratory Medicine; Royal Prince Alfred Hospital; Sydney NSW Australia
- Faculty of Medicine, University of Sydney; Sydney NSW Australia
| | - Lauren K. Troy
- Department of Respiratory Medicine; Royal Prince Alfred Hospital; Sydney NSW Australia
- Faculty of Medicine, University of Sydney; Sydney NSW Australia
| | - Gregory Keir
- Department of Respiratory Medicine, Princess Alexandra Hospital; Brisbane QLD Australia
| | - Daniel C. Chambers
- Department of Respiratory Medicine, The Prince Charles Hospital; Brisbane QLD Australia
| | - Anne Holland
- Department of Physiotherapy, The Alfred Hospital; Melbourne VIC Australia
| | - Nicole Goh
- Department of Respiratory Medicine, The Prince Charles Hospital; Brisbane QLD Australia
- Department of Respiratory Medicine; Austin Hospital; Melbourne VIC Australia
| | - Margaret Wilsher
- Department of Respiratory Medicine; Auckland District Health Board; Auckland New Zealand
| | - Sally de Boer
- Department of Respiratory Medicine; Auckland District Health Board; Auckland New Zealand
| | - Yuben Moodley
- Department of Respiratory Medicine; Fiona Stanley Hospital; Perth WA Australia
| | - Christopher Grainge
- Department of Respiratory Medicine; John Hunter Hospital; Newcastle NSW Australia
| | - Helen Whitford
- Department of Respiratory Medicine, The Alfred Hospital; Melbourne VIC Australia
| | - Sally Chapman
- Department of Respiratory Medicine; Royal Adelaide Hospital; Adelaide SA Australia
| | - Paul N. Reynolds
- Department of Respiratory Medicine; Royal Adelaide Hospital; Adelaide SA Australia
| | - Ian Glaspole
- Department of Respiratory Medicine, The Alfred Hospital; Melbourne VIC Australia
| | | | - Leonie Jones
- Department of Respiratory Medicine; John Hunter Hospital; Newcastle NSW Australia
| | - Peter Hopkins
- Department of Respiratory Medicine, The Prince Charles Hospital; Brisbane QLD Australia
| | - Tamera J. Corte
- Department of Respiratory Medicine; Royal Prince Alfred Hospital; Sydney NSW Australia
- Faculty of Medicine, University of Sydney; Sydney NSW Australia
| |
Collapse
|
254
|
Ley B, Newton CA, Arnould I, Elicker BM, Henry TS, Vittinghoff E, Golden JA, Jones KD, Batra K, Torrealba J, Garcia CK, Wolters PJ. The MUC5B promoter polymorphism and telomere length in patients with chronic hypersensitivity pneumonitis: an observational cohort-control study. THE LANCET RESPIRATORY MEDICINE 2017. [PMID: 28648751 PMCID: PMC5555581 DOI: 10.1016/s2213-2600(17)30216-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Patients with hypersensitivity pneumonitis are at risk of developing pulmonary fibrosis, which is associated with reduced survival. In families with multiple affected members, individuals might be diagnosed as having idiopathic pulmonary fibrosis (IPF) or chronic (fibrotic) hypersensitivity pneumonitis, which suggests these disorders share risk factors. We aimed to test whether the genomic risk factors associated with the development and progression of IPF are also associated with the development of fibrosis and reduced survival in people with chronic hypersensitivity pneumonitis. METHODS We did an observational study of two independent cohorts of patients with chronic hypersensitivity pneumonitis, one from the University of California San Francisco, CA, USA (UCSF), and one from the University of Texas Southwestern, TX, USA (UTSW). We measured two common single-nucleotide polymorphisms associated with IPF (MUC5B rs35705950 and TOLLIP rs5743890) and telomere length in peripheral blood leucocytes, and assessed their associations with chronic hypersensitivity pneumonitis risk, survival, and clinical, radiographic, and pathological features. We compared findings with those in patients with IPF from the UCSF and UTSW cohorts, and healthy controls from the European population of the 1000 Genomes Project Phase 3, version 1. FINDINGS The cohorts included 145 patients from UCSF and 72 from UTSW. The minor allele frequency (MAF) was greater for MUC5B rs35705950 in patients with chronic hypersensitivity pneumonitis than in healthy controls (24·4% in UCSF and 32·3% in UTSW vs 10·7%, both p<0·0001), but not for TOLLIP rs5743890. The MAFs were similar to those for IPF (UCSF 33·3%, p=0·09; UTSW 32·0%, p=0·95). In the combined UCSF and UTSW chronic hypersensitivity pneumonitis cohort, we saw associations between extent of radiographic fibrosis and MUC5B rs35705950 minor alleles (adjusted odds ratio [OR] 1·91, 95% CI 1·02-3·59, p=0·045) and short telomere length (adjusted OR per unit change in mean natural logarithm-transformed ratio of telomere repeat copy number to single gene copy number 0·23, 0·09-0·59, p=0·002). Telomere length less than the tenth percentile for age was also significantly associated with reduced survival (log-rank p=0·006). INTERPRETATION The associations between MUC5B rs35705950 and short telomere length with extent of fibrosis, histopathological features of usual interstitial pneumonia, and reduced survival in patients with chronic hypersensitivity pneumonitis suggest shared pathobiology with IPF, and might help to stratify risk. FUNDING National Institutes of Health and Nina Ireland Program for Lung Health.
Collapse
Affiliation(s)
- Brett Ley
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Chad A Newton
- Eugene McDermott Centre for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isabel Arnould
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Brett M Elicker
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Travis S Henry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey A Golden
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kirk D Jones
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Kiran Batra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine Kim Garcia
- Eugene McDermott Centre for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul J Wolters
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
255
|
Valeyre D, Nathan N, Bernaudin JF. Inborn Errors of Metabolism: The Achilles' Heel of the Respiratory System. Respiration 2017; 94:14-15. [PMID: 28535532 DOI: 10.1159/000477430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
256
|
Nunes H, Jeny F, Bouvry D, Picard C, Bernaudin JF, Ménard C, Brillet PY, Kannengiesser C, Valeyre D, Kambouchner M. Pleuroparenchymal fibroelastosis associated with telomerase reverse transcriptase mutations. Eur Respir J 2017; 49:49/5/1602022. [DOI: 10.1183/13993003.02022-2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/19/2017] [Indexed: 11/05/2022]
|
257
|
Wolters PJ. A recurring theme in pulmonary fibrosis genetics. Eur Respir J 2017; 49:49/5/1700545. [DOI: 10.1183/13993003.00545-2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022]
|
258
|
Newton CA, Batra K, Torrealba J, Meyer K, Raghu G, Garcia CK. Pleuroparenchymal fibroelastosis associated with telomerase reverse transcriptase mutations. Eur Respir J 2017; 49:49/5/1700696. [PMID: 28495683 DOI: 10.1183/13993003.00696-2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Chad A Newton
- Eugene McDermott Centre for Human Growth and Development, University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Dept of Medicine, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Kiran Batra
- Dept of Radiology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Jose Torrealba
- Dept of Pathology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Keith Meyer
- Dept of Medicine, University of Wisconsin, Madison, WI, USA
| | - Ganesh Raghu
- Dept of Medicine, University of Washington Seattle, Seattle, WA, USA
| | - Christine Kim Garcia
- Eugene McDermott Centre for Human Growth and Development, University of Texas Southwestern Medical Centre, Dallas, TX, USA .,Dept of Medicine, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
259
|
Speckmann C, Sahoo SS, Rizzi M, Hirabayashi S, Karow A, Serwas NK, Hoemberg M, Damatova N, Schindler D, Vannier JB, Boulton SJ, Pannicke U, Göhring G, Thomay K, Verdu-Amoros JJ, Hauch H, Woessmann W, Escherich G, Laack E, Rindle L, Seidl M, Rensing-Ehl A, Lausch E, Jandrasits C, Strahm B, Schwarz K, Ehl SR, Niemeyer C, Boztug K, Wlodarski MW. Clinical and Molecular Heterogeneity of RTEL1 Deficiency. Front Immunol 2017; 8:449. [PMID: 28507545 PMCID: PMC5410638 DOI: 10.3389/fimmu.2017.00449] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
Typical features of dyskeratosis congenita (DC) resulting from excessive telomere shortening include bone marrow failure (BMF), mucosal fragility, and pulmonary or liver fibrosis. In more severe cases, immune deficiency and recurring infections can add to disease severity. RTEL1 deficiency has recently been described as a major genetic etiology, but the molecular basis and clinical consequences of RTEL1-associated DC are incompletely characterized. We report our observations in a cohort of six patients: five with novel biallelic RTEL1 mutations p.Trp456Cys, p.Ile425Thr, p.Cys1244ProfsX17, p.Pro884_Gln885ins53X13, and one with novel heterozygous mutation p.Val796AlafsX4. The most unifying features were hypocellular BMF in 6/6 and B-/NK-cell lymphopenia in 5/6 patients. In addition, three patients with homozygous mutations p.Trp456Cys or p.Ile425Thr also suffered from immunodeficiency, cerebellar hypoplasia, and enteropathy, consistent with Hoyeraal-Hreidarsson syndrome. Chromosomal breakage resembling a homologous recombination defect was detected in patient-derived fibroblasts but not in hematopoietic compartment. Notably, in both cellular compartments, differential expression of 1243aa and 1219/1300aa RTEL1 isoforms was observed. In fibroblasts, response to ionizing irradiation and non-homologous end joining were not impaired. Telomeric circles did not accumulate in patient-derived primary cells and lymphoblastoid cell lines, implying alternative pathomechanisms for telomeric loss. Overall, RTEL1-deficient cells exhibited a phenotype of replicative exhaustion, spontaneous apoptosis and senescence. Specifically, CD34+ cells failed to expand in vitro, B-cell development was compromised, and T-cells did not proliferate in long-term culture. Finally, we report on the natural history and outcome of our patients. While two patients died from infections, hematopoietic stem cell transplantation (HSCT) resulted in sustained engraftment in two patients. Whether chemotherapy negatively impacts on the course and onset of other DC-related symptoms remains open at present. Early-onset lung disease occurred in one of our patients after HSCT. In conclusion, RTEL deficiency can show a heterogeneous clinical picture ranging from mild hypocellular BMF with B/NK cell lymphopenia to early-onset, very severe, and rapidly progressing cellular deficiency.
Collapse
Affiliation(s)
- Carsten Speckmann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sushree Sangita Sahoo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shinsuke Hirabayashi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel Karow
- Department of Paediatrics, Univeristy of Bern, Bern, Switzerland
| | - Nina Kathrin Serwas
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marc Hoemberg
- Department of Pediatric Hematology and Oncology, Children’s Hospital, University of Cologne, Cologne, Germany
| | - Natalja Damatova
- Department of Medical Genetics, Biozentrum, University of Wuerzburg, Wuerzburg, Germany
| | - Detlev Schindler
- Department of Medical Genetics, Biozentrum, University of Wuerzburg, Wuerzburg, Germany
| | - Jean-Baptiste Vannier
- Telomere Replication and Stability Group, MRC London Institute of Medical Sciences (LMS), London, UK
| | - Simon J. Boulton
- Telomere Replication and Stability Group, MRC London Institute of Medical Sciences (LMS), London, UK
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg – Hessen, University Ulm, Ulm, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - J. J. Verdu-Amoros
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Holger Hauch
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Wilhelm Woessmann
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eckart Laack
- Hemato-Oncology Clinic Hamburg, Hamburg, Germany
| | - Liliana Rindle
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute of Pathology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ekkehart Lausch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Jandrasits
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg – Hessen, University Ulm, Ulm, Germany
| | - Stephan R. Ehl
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Kinderspital and Children’s Cancer Research Instutute, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcin W. Wlodarski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
260
|
Borie R, Kannengiesser C, Sicre de Fontbrune F, Gouya L, Nathan N, Crestani B. Management of suspected monogenic lung fibrosis in a specialised centre. Eur Respir Rev 2017; 26:26/144/160122. [DOI: 10.1183/16000617.0122-2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
At least 10% of patients with interstitial lung disease present monogenic lung fibrosis suspected on familial aggregation of pulmonary fibrosis, specific syndromes or early age of diagnosis. Approximately 25% of families have an identified mutation in genes mostly involved in telomere homeostasis, and more rarely in surfactant homeostasis.Beyond pathophysiological knowledge, detection of these mutations has practical consequence for patients. For instance, mutations involved in telomere homeostasis are associated with haematological complications after lung transplantation and may require adapted immunosuppression. Moreover, relatives may benefit from a clinical and genetic evaluation that should be specifically managed.The field of genetics of pulmonary fibrosis has made great progress in the last 10 years, raising specific problems that should be addressed by a specialised team.
Collapse
|
261
|
Tomassetti S, Ravaglia C, Poletti V. Diffuse parenchymal lung disease. Eur Respir Rev 2017; 26:26/144/170004. [PMID: 28446601 DOI: 10.1183/16000617.0004-2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
Between September 2015 and August 2016 there were >1500 publications in the field of diffuse parenchymal lung diseases (DPLDs). For the Clinical Year in Review session at the European Respiratory Society Congress that was held in London, UK, in September 2016, we selected only five articles. This selection, made from the enormous number of published papers, does not include all the relevant studies that will significantly impact our knowledge in the field of DPLDs in the near future. This review article provides our personal view on the following topics: early diagnosis of idiopathic pulmonary fibrosis, current knowledge on the multidisciplinary team diagnosis of DPLDs and the diagnostic role of transbronchial cryobiopsy in this diagnostic setting, insights on the new entity of interstitial pneumonia with autoimmune features, and new therapeutic approaches for scleroderma-related interstitial lung disease.
Collapse
Affiliation(s)
- Sara Tomassetti
- Dept of Diseases of the Thorax, GB Morgagni Hospital, Forlì, Italy
| | - Claudia Ravaglia
- Dept of Diseases of the Thorax, GB Morgagni Hospital, Forlì, Italy
| | - Venerino Poletti
- Dept of Diseases of the Thorax, GB Morgagni Hospital, Forlì, Italy.,Dept of Respiratory Diseases and Allergology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
262
|
Abstract
INTRODUCTION Many forms of interstitial lung disease (ILD) can progress to extensive fibrosis and respiratory failure. Idiopathic pulmonary fibrosis (IPF), which generally has a poor prognosis, has been thoroughly studied over the past two decades, and many important discoveries have been made that pertain to genetic predisposition, epidemiology, disease pathogenesis, diagnosis, and management. Additionally, non-IPF forms of ILD can have radiologic and histopathologic manifestations that mimic IPF, and making an accurate diagnosis is key to providing personalized medicine to patients with pulmonary fibrosis. Areas covered: This manuscript discusses current knowledge pertaining to the genetics, epidemiology, pathogenesis, and diagnosis of pulmonary fibrosis with an emphasis on IPF. The material upon which this discussion is based was obtained from various published texts and manuscripts identified via literature searching (e.g. PubMed). Expert commentary: Many genetic variants have been identified that are associated with risk of developing pulmonary fibrosis, and an improved understanding of the influence of both genomic and epigenomic factors in the development of pulmonary fibrosis is rapidly evolving. Because many forms of fibrosing ILD can have similar radiologic and histopathologic patterns yet have different responses to therapeutic interventions, making an accurate diagnosis of specific forms of pulmonary fibrosis is increasingly important.
Collapse
Affiliation(s)
- Keith C Meyer
- a Department of Medicine , University of Wisconsin School of Medicine and Public Health - Medicine , Madison , WI , United States
| |
Collapse
|
263
|
Abstract
Pulmonary fibrosis is associated with a number of specific forms of interstitial lung disease (ILD) and can lead to progressive decline in lung function, poor quality of life, and, ultimately, early death. Idiopathic pulmonary fibrosis (IPF), the most common fibrotic ILD, affects up to 1 in 200 elderly individuals and has a median survival that ranges from 3 to 5 years following initial diagnosis. IPF has not been shown to respond to immunomodulatory therapies, but recent trials with novel antifibrotic agents have demonstrated lessening of lung function decline over time. Pirfenidone has been shown to significantly slow decline in forced vital capacity (FVC) over time and prolong progression-free survival, which led to its licensing by the United States Food and Drug Administration (FDA) in 2014 for the treatment of patients with IPF. However, pirfenidone has been associated with significant side effects, and patients treated with pirfenidone must be carefully monitored. We review recent and ongoing clinical research and experience with pirfenidone as a pharmacologic therapy for patients with IPF, provide a suggested approach to incorporate pirfenidone into a treatment algorithm for patients with IPF, and examine the potential of pirfenidone as a treatment for non-IPF forms of ILD accompanied by progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Keith C Meyer
- University of Wisconsin Lung Transplant and Advanced Lung Diseas Program.,Department of Medicine, Section of Allergy, Pulmonary and Critical Care Medicine, Clinical Sciences Center, University of Wisconsin School of Medicine and Public Health
| | - Catherine A Decker
- Department of Pharmacy.,Department of Pulmonary Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| |
Collapse
|
264
|
Kuang FM, Tang LL, Zhang H, Xie M, Yang MH, Yang LC, Yu Y, Cao LZ. [Recurrent pulmonary infection and oral mucosal ulcer]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:452-457. [PMID: 28407835 PMCID: PMC7389673 DOI: 10.7499/j.issn.1008-8830.2017.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/03/2017] [Indexed: 06/07/2023]
Abstract
An 8-year-old girl who had experienced intermittent cough and fever over a 3 year period, was admitted after experiencing a recurrence for one month. One year ago the patient experienced a recurrent oral mucosal ulcer. Physical examination showed vitiligo in the skin of the upper right back. Routine blood tests and immune function tests performed in other hospitals had shown normal results. Multiple lung CT scans showed pulmonary infection. The patient had recurrent fever and cough and persistent presence of some lesions after anti-infective therapy. The antitubercular therapy was ineffective. Routine blood tests after admission showed agranulocytosis. Gene detection was performed and she was diagnosed with dyskeratosis congenita caused by homozygous mutation in RTEL1. Patients with dyskeratosis congenita with RTEL1 gene mutation tend to develop pulmonary complications. Since RTEL1 gene sequence is highly variable with many mutation sites and patterns and can be inherited via autosomal dominant or recessive inheritance, this disease often has various clinical manifestations, which may lead to missed diagnosis or misdiagnosis. For children with unexplained recurrent pulmonary infection, examinations of the oral cavity, skin, and nails and toes should be taken and routine blood tests should be performed to exclude dyskeratosis congenita. There are no specific therapies for dyskeratosis congenita at present, and when bone marrow failure and pulmonary failure occur, hematopoietic stem cell transplantation and lung transplantation are the only therapies. Androgen and its derivatives are effective in some patients. Drugs targeting the telomere may be promising for patients with dyskeratosis congenita.
Collapse
Affiliation(s)
- Fei-Mei Kuang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | |
Collapse
|
265
|
Humbert M, Wagner TO. Rare respiratory diseases are ready for primetime: from Rare Disease Day to the European Reference Networks. Eur Respir J 2017; 49:49/2/1700085. [DOI: 10.1183/13993003.00085-2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/31/2022]
|
266
|
Maryoung L, Yue Y, Young A, Newton CA, Barba C, van Oers NSC, Wang RC, Garcia CK. Somatic mutations in telomerase promoter counterbalance germline loss-of-function mutations. J Clin Invest 2017; 127:982-986. [PMID: 28192371 DOI: 10.1172/jci91161] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022] Open
Abstract
Germline coding mutations in different telomere-related genes have been linked to autosomal-dominant familial pulmonary fibrosis. Individuals with these inherited mutations demonstrate incomplete penetrance of clinical phenotypes affecting the lung, blood, liver, skin, and other organs. Here, we describe the somatic acquisition of promoter mutations in telomerase reverse transcriptase (TERT) in blood leukocytes of approximately 5% of individuals with inherited loss-of-function coding mutations in TERT or poly(A)-specific ribonuclease (PARN), another gene linked to telomerase function. While these promoter mutations were initially identified as oncogenic drivers of cancer, individuals expressing the mutations have no history of cancer. Neither promoter mutation was found in population-based cohorts of similar or advanced age. The TERT promoter mutations were found more frequently in cis with the WT allele than the TERT coding sequence mutation. EBV-transformed lymphoblastoid B cell lines (LCLs) derived from subjects with TERT promoter mutations showed increased telomerase expression and activity compared with cell lines from family members with identical coding mutations. TERT promoter mutations resulted in an increased proliferation of LCLs and demonstrated positive selection over time. The persistence and recurrence of noncoding gain-of-function mutations in these cases suggests that telomerase activation is not only safely tolerated but also advantageous for clonal expansion.
Collapse
|
267
|
Newton CA, Kozlitina J, Lines JR, Kaza V, Torres F, Garcia CK. Telomere length in patients with pulmonary fibrosis associated with chronic lung allograft dysfunction and post-lung transplantation survival. J Heart Lung Transplant 2017; 36:845-853. [PMID: 28262440 DOI: 10.1016/j.healun.2017.02.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/10/2017] [Accepted: 02/01/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prior studies have shown that patients with pulmonary fibrosis with mutations in the telomerase genes have a high rate of certain complications after lung transplantation. However, few studies have investigated clinical outcomes based on leukocyte telomere length. METHODS We conducted an observational cohort study of all patients with pulmonary fibrosis who underwent lung transplantation at a single center between January 1, 2007, and December 31, 2014. Leukocyte telomere length was measured from a blood sample collected before lung transplantation, and subjects were stratified into 2 groups (telomere length <10th percentile vs ≥10th percentile). Primary outcome was post-lung transplant survival. Secondary outcomes included incidence of allograft dysfunction, non-pulmonary organ dysfunction, and infection. RESULTS Approximately 32% of subjects had a telomere length <10th percentile. Telomere length <10th percentile was independently associated with worse survival (hazard ratio 10.9, 95% confidence interval 2.7-44.8, p = 0.001). Telomere length <10th percentile was also independently associated with a shorter time to onset of chronic lung allograft dysfunction (hazard ratio 6.3, 95% confidence interval 2.0-20.0, p = 0.002). Grade 3 primary graft dysfunction occurred more frequently in the <10th percentile group compared with the ≥10th percentile group (28% vs 7%; p = 0.034). There was no difference between the 2 groups in incidence of acute cellular rejection, cytopenias, infection, or renal dysfunction. CONCLUSIONS Telomere length <10th percentile was associated with worse survival and shorter time to onset of chronic lung allograft dysfunction and thus represents a biomarker that may aid in risk stratification of patients with pulmonary fibrosis before lung transplantation.
Collapse
Affiliation(s)
- Chad A Newton
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jefferson R Lines
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vaidehi Kaza
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Fernando Torres
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christine Kim Garcia
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
268
|
Mathai SK, Newton CA, Schwartz DA, Garcia CK. Pulmonary fibrosis in the era of stratified medicine. Thorax 2016; 71:1154-1160. [PMID: 27799632 DOI: 10.1136/thoraxjnl-2016-209172] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022]
Abstract
Both common and rare variants contribute to the genetic architecture of pulmonary fibrosis. Genome-wide association studies have identified common variants, or those with a minor allele frequency of >5%, that are linked to pulmonary fibrosis. The most widely replicated variant (rs35705950) is located in the promoter region of the MUC5B gene and has been strongly associated with idiopathic pulmonary fibrosis (IPF) and familial interstitial pneumonia (FIP) across multiple different cohorts. However, many more common variants have been identified with disease risk and in aggregate account for approximately one-third of the risk of IPF. Moreover, several of these common variants appear to have prognostic potential. Next generation sequencing technologies have facilitated the identification of rare variants. Recent whole exome sequencing studies have linked pathogenic rare variants in multiple new genes to FIP. Compared with common variants, rare variants have lower population allele frequencies and higher effect sizes. Pulmonary fibrosis rare variants genes can be subdivided into two pathways: telomere maintenance and surfactant metabolism. Heterozygous rare variants in telomere-related genes co-segregate with adult-onset pulmonary fibrosis with incomplete penetrance, lead to reduced protein function, and are associated with short telomere lengths. Despite poor genotype-phenotype correlations, lung fibrosis associated with pathogenic rare variants in different telomere genes is progressive and displays similar survival characteristics. In contrast, many of the heterozygous rare variants in the surfactant genes predict a gain of toxic function from protein misfolding and increased endoplasmic reticulum (ER) stress. Evidence of both telomere shortening and increased ER stress have been found in sporadic IPF patients, suggesting that the mechanisms identified from rare variant genetic studies in unique individuals and families are applicable to a wider spectrum of patients. The ability to sequence large cohorts of individuals rapidly has the potential to further our understanding of the relative contributions of common and rare variants in the pathogenesis of pulmonary fibrosis. The UK 100,000 Genomes Project will provide opportunities to interrogate both common and rare variants and to investigate how these biological signals provide diagnostic and prognostic information in the era of stratified medicine.
Collapse
Affiliation(s)
- Susan K Mathai
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Chad A Newton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David A Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Christine Kim Garcia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|