251
|
Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L.). Gene 2014; 533:332-45. [DOI: 10.1016/j.gene.2013.08.092] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 01/06/2023]
|
252
|
Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments. PLoS One 2014. [PMID: 24498296 DOI: 10.3390/ijms1303317610.1371/journal.pone.0087156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Homeodomain-leucine zipper (HD-Zip) proteins, a group of homeobox transcription factors, participate in various aspects of normal plant growth and developmental processes as well as environmental responses. To date, no overall analysis or expression profiling of the HD-Zip gene family in soybean (Glycine max) has been reported. METHODS AND FINDINGS An investigation of the soybean genome revealed 88 putative HD-Zip genes. These genes were classified into four subfamilies, I to IV, based on phylogenetic analysis. In each subfamily, the constituent parts of gene structure and motif were relatively conserved. A total of 87 out of 88 genes were distributed unequally on 20 chromosomes with 36 segmental duplication events, indicating that segmental duplication is important for the expansion of the HD-Zip family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the HD-Zip family basically underwent purifying selection with restrictive functional divergence after the duplication events. Analysis of expression profiles showed that 80 genes differentially expressed across 14 tissues, and 59 HD-Zip genes are differentially expressed under salinity and drought stress, with 20 paralogous pairs showing nearly identical expression patterns and three paralogous pairs diversifying significantly under drought stress. Quantitative real-time RT-PCR (qRT-PCR) analysis of six paralogous pairs of 12 selected soybean HD-Zip genes under both drought and salinity stress confirmed their stress-inducible expression patterns. CONCLUSIONS This study presents a thorough overview of the soybean HD-Zip gene family and provides a new perspective on the evolution of this gene family. The results indicate that HD-Zip family genes may be involved in many plant responses to stress conditions. Additionally, this study provides a solid foundation for uncovering the biological roles of HD-Zip genes in soybean growth and development.
Collapse
Affiliation(s)
- Xue Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Zhu Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Hualin Zhao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yang Zhao
- Key Laboratory of Crop Biology of Anhui Agriculture University, Hefei, China
| | - Beijiu Cheng
- Key Laboratory of Crop Biology of Anhui Agriculture University, Hefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
253
|
Li XW, Li JW, Zhai Y, Zhao Y, Zhao X, Zhang HJ, Su LT, Wang Y, Wang QY. A R2R3-MYB transcription factor, GmMYB12B2, affects the expression levels of flavonoid biosynthesis genes encoding key enzymes in transgenic Arabidopsis plants. Gene 2013; 532:72-9. [PMID: 24060295 DOI: 10.1016/j.gene.2013.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/04/2013] [Indexed: 11/30/2022]
Abstract
Isoflavones play diverse roles in plant-microbe interactions and are potentially important for human nutrition and health. To study the regulation of isoflavonoid synthesis in soybean, the R2R3-MYB transcription factor GmMYB12B2 was isolated and characterized. Yeast expression experiments demonstrated that GmMYB12B2 showed transcriptional activity. GmMYB12B2 was localized in the nucleus when it was transiently expressed in onion epidermal cells. Real-time quantitative PCR analysis revealed that GmMYB12B2 transcription was increased in roots and mature seeds compared with other organs. The gene expression level in immature embryos was consistent with the accumulation of isoflavones. CHS8 is a key enzyme in plant flavonoid biosynthesis. Transient expression experiments in soybean calli demonstrated that CHS8 was regulated by GmMYB12B2 and produced more fluorescence. The expression levels of some key enzymes in flavonoid biosynthesis were examined in transgenic Arabidopsis lines. The results showed that the expression levels of PAL1, CHS and FLS in transgenic plants were significantly higher than those in wild type plants. However, the expression level of DFR was lower, and the expression levels of CHI, F3H and F3'H were the same in all lines. GmMYB12B2 expression caused a constitutive increase in the accumulation of flavonoids in transgenic Arabidopsis lines compared with wild type plants.
Collapse
Affiliation(s)
- Xiao-Wei Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Lai Y, Li H, Yamagishi M. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11515-013-1281-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
255
|
Cao ZH, Zhang SZ, Wang RK, Zhang RF, Hao YJ. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants. PLoS One 2013; 8:e69955. [PMID: 23950843 PMCID: PMC3735319 DOI: 10.1371/journal.pone.0069955] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 06/14/2013] [Indexed: 12/01/2022] Open
Abstract
The MYB proteins comprise one of the largest families of transcription factors (TFs) in plants. Although several MYB genes have been characterized to play roles in secondary metabolism, the MYB family has not yet been identified in apple. In this study, 229 apple MYB genes were identified through a genome-wide analysis and divided into 45 subgroups. A computational analysis was conducted using the apple genomic database to yield a complete overview of the MYB family, including the intron-exon organizations, the sequence features of the MYB DNA-binding domains, the carboxy-terminal motifs, and the chromosomal locations. Subsequently, the expression of 18 MYB genes, including 12 were chosen from stress-related subgroups, while another 6 ones from other subgroups, in response to various abiotic stresses was examined. It was found that several of these MYB genes, particularly MdoMYB121, were induced by multiple stresses. The MdoMYB121 was then further functionally characterized. Its predicted protein was found to be localized in the nucleus. A transgenic analysis indicated that the overexpression of the MdoMYB121 gene remarkably enhanced the tolerance to high salinity, drought, and cold stresses in transgenic tomato and apple plants. Our results indicate that the MYB genes are highly conserved in plant species and that MdoMYB121 can be used as a target gene in genetic engineering approaches to improve the tolerance of plants to multiple abiotic stresses.
Collapse
Affiliation(s)
- Zhong-Hui Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shi-Zhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Rong-Kai Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Rui-Fen Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- * E-mail:
| |
Collapse
|
256
|
Ambawat S, Sharma P, Yadav NR, Yadav RC. MYB transcription factor genes as regulators for plant responses: an overview. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:307-21. [PMID: 24431500 PMCID: PMC3715649 DOI: 10.1007/s12298-013-0179-1] [Citation(s) in RCA: 552] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Regulation of gene expression at the level of transcription controls many crucial biological processes. Transcription factors (TFs) play a great role in controlling cellular processes and MYB TF family is large and involved in controlling various processes like responses to biotic and abiotic stresses, development, differentiation, metabolism, defense etc. Here, we review MYB TFs with particular emphasis on their role in controlling different biological processes. This will provide valuable insights in understanding regulatory networks and associated functions to develop strategies for crop improvement.
Collapse
Affiliation(s)
- Supriya Ambawat
- Department of Molecular Biology and Biotechnology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Poonam Sharma
- Department of Molecular Biology and Biotechnology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Neelam R. Yadav
- Department of Molecular Biology and Biotechnology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Ram C. Yadav
- Department of Molecular Biology and Biotechnology, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|
257
|
Li MW, Qi X, Ni M, Lam HM. Silicon era of carbon-based life: application of genomics and bioinformatics in crop stress research. Int J Mol Sci 2013; 14:11444-83. [PMID: 23759993 PMCID: PMC3709742 DOI: 10.3390/ijms140611444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 01/25/2023] Open
Abstract
Abiotic and biotic stresses lead to massive reprogramming of different life processes and are the major limiting factors hampering crop productivity. Omics-based research platforms allow for a holistic and comprehensive survey on crop stress responses and hence may bring forth better crop improvement strategies. Since high-throughput approaches generate considerable amounts of data, bioinformatics tools will play an essential role in storing, retrieving, sharing, processing, and analyzing them. Genomic and functional genomic studies in crops still lag far behind similar studies in humans and other animals. In this review, we summarize some useful genomics and bioinformatics resources available to crop scientists. In addition, we also discuss the major challenges and advancements in the "-omics" studies, with an emphasis on their possible impacts on crop stress research and crop improvement.
Collapse
Affiliation(s)
- Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Xinpeng Qi
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Meng Ni
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| |
Collapse
|
258
|
Du H, Wang YB, Xie Y, Liang Z, Jiang SJ, Zhang SS, Huang YB, Tang YX. Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants. DNA Res 2013; 20:437-48. [PMID: 23690543 PMCID: PMC3789555 DOI: 10.1093/dnares/dst021] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MYB proteins constitute one of the largest transcription factor families in plants. Recent evidence revealed that MYB-related genes play crucial roles in plants. However, compared with the R2R3-MYB type, little is known about the complex evolutionary history of MYB-related proteins in plants. Here, we present a genome-wide analysis of MYB-related proteins from 16 species of flowering plants, moss, Selaginella, and algae. We identified many MYB-related proteins in angiosperms, but few in algae. Phylogenetic analysis classified MYB-related proteins into five distinct subgroups, a result supported by highly conserved intron patterns, consensus motifs, and protein domain architecture. Phylogenetic and functional analyses revealed that the Circadian Clock Associated 1-like/R-R and Telomeric DNA-binding protein-like subgroups are >1 billion yrs old, whereas the I-box-binding factor-like and CAPRICE-like subgroups appear to be newly derived in angiosperms. We further demonstrated that the MYB-like domain has evolved under strong purifying selection, indicating the conservation of MYB-related proteins. Expression analysis revealed that the MYB-related gene family has a wide expression profile in maize and soybean development and plays important roles in development and stress responses. We hypothesize that MYB-related proteins initially diversified through three major expansions and domain shuffling, but remained relatively conserved throughout the subsequent plant evolution.
Collapse
Affiliation(s)
- Hai Du
- 1Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Beneventi MA, da Silva OB, de Sá MEL, Firmino AAP, de Amorim RMS, Albuquerque ÉVS, da Silva MCM, da Silva JP, Campos MDA, Lopes MJC, Togawa RC, Pappas GJ, Grossi–de–Sa MF. Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction. BMC Genomics 2013; 14:322. [PMID: 23663436 PMCID: PMC3701510 DOI: 10.1186/1471-2164-14-322] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Root-knot nematodes (RKN- Meloidogyne genus) present extensive challenges to soybean crop. The soybean line (PI 595099) is known to be resistant against specific strains and races of nematode species, thus its differential gene expression analysis can lead to a comprehensive gene expression profiling in the incompatible soybean-RKN interaction. Even though many disease resistance genes have been studied, little has been reported about phytohormone crosstalk on modulation of ROS signaling during soybean-RKN interaction. RESULTS Using 454 technology to explore the common aspects of resistance reaction during both parasitism and resistance phases it was verified that hormone, carbohydrate metabolism and stress related genes were consistently expressed at high levels in infected roots as compared to mock control. Most noteworthy genes include those encoding glycosyltransferases, peroxidases, auxin-responsive proteins and gibberellin-regulated genes. Our data analysis suggests the key role of glycosyltransferases, auxins and components of gibberellin signal transduction, biosynthesis and deactivation pathways in the resistance reaction and their participation in jasmonate signaling and redox homeostasis in mediating aspects of plant growth and responses to biotic stress. CONCLUSIONS Based on this study we suggest a reasonable model regarding to the complex mechanisms of crosstalk between plant hormones, mainly gibberellins and auxins, which can be crucial to modulate the levels of ROS in the resistance reaction to nematode invasion. The model also includes recent findings concerning to the participation of DELLA-like proteins and ROS signaling controlling plant immune or stress responses. Furthermore, this study provides a dataset of potential candidate genes involved in both nematode parasitism and resistance, which can be tested further for their role in this biological process using functional genomics approaches.
Collapse
Affiliation(s)
- Magda Aparecida Beneventi
- Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF 70770-917, Brazil
| | | | - Maria Eugênia Lisei de Sá
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF 70770-917, Brazil
- Agricultural Research Company of Minas Gerais State, Uberaba, MG 38001-970, Brazil
| | - Alexandre Augusto Pereira Firmino
- Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF 70770-917, Brazil
| | | | | | | | | | | | | | | | | | - Maria Fatima Grossi–de–Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF 70770-917, Brazil
- Catholic University of Brasília, Brasília, DF 70790-160, Brazil
| |
Collapse
|
260
|
Transcriptome-wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis. Mol Genet Genomics 2013; 288:141-55. [PMID: 23539153 DOI: 10.1007/s00438-013-0740-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
MYB family of transcription factors (TF) comprises one of the largest transcription factors in plants and is represented in all eukaryotes. They include highly conserved MYB repeats (1R, R2R3, 3R, and 4R) in the N-terminus. In addition to this, they have diverse C-terminal sequences which help the protein gain wide distinct functions, such as controlling development, secondary metabolism, hormonal regulation and response to biotic and abiotic stress. Stress-responsive roles of the MYB TFs were reported for drought, salt, wounding, cold, freezing, dehydration and osmotic stresses. This study describes the identification of barley R2R3-MYB TFs including their expression analysis in tissues under control and Boron (B) toxic conditions. Conserved motifs for MYB proteins were searched into barley full-transcriptome RNA-seq data and a total of 320 protein sequences were filtered as MYB TFs in which 51 of them corresponded to R2R3 MYB TFs. Using various bioinformatics tools, their conserved domain structures, chromosomal distributions, gene duplications, comparative functional analysis, as well as phylogenetic relations with Arabidopsis thaliana, were conducted. Beside the RNA-seq data-based expression pattern analysis of 51 R2R3 MYB TFs, quantitative analysis of selected R2R3 MYB TF genes was assessed in control and B-stressed root and leaf tissues. Critical B-induced R2R3 MYB TFs were identified. It was concluded that the results would be useful for functional characterizations of R2R3-type MYB transcription factors that are possibly involved in both B stress and divergent regulation mechanisms in plants.
Collapse
|
261
|
Li Q, Zhang C, Li J, Wang L, Ren Z. Genome-wide identification and characterization of R2R3MYB family in Cucumis sativus. PLoS One 2012; 7:e47576. [PMID: 23110079 PMCID: PMC3479133 DOI: 10.1371/journal.pone.0047576] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/13/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The R2R3MYB proteins comprise one of the largest families of transcription factors in plants. Although genome-wide analysis of this family has been carried out in some species, little is known about R2R3MYB genes in cucumber (Cucumis sativus L.). PRINCIPAL FINDINGS This study has identified 55 R2R3MYB genes in the latest cucumber genome and the CsR2R3MYB family contained the smallest number of identified genes compared to other species that have been studied due to the absence of recent gene duplication events. These results were also supported by genome distribution and gene duplication analysis. Phylogenetic analysis showed that they could be classified into 11 subgroups. The evolutionary relationships and the intron-exon organizations that showed similarities with Arabidopsis, Vitis and Glycine R2R3MYB proteins were also analyzed and suggested strong gene conservation but also the expansions of particular functional genes during the evolution of the plant species. In addition, we found that 8 out of 55 (∼14.54%) cucumber R2R3MYB genes underwent alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Tissue-specific expression profiles showed that 50 cucumber R2R3MYB genes were expressed in at least one of the tissues and the other 5 genes showed very low expression in all tissues tested, which suggested that cucumber R2R3MYB genes took part in many cellular processes. The transcript abundance level analysis during abiotic conditions (NaCl, ABA and low temperature treatments) identified a group of R2R3MYB genes that responded to one or more treatments. CONCLUSIONS This study has produced a comparative genomics analysis of the cucumber R2R3MYB gene family and has provided the first steps towards the selection of CsR2R3MYB genes for cloning and functional dissection that can be used in further studies to uncover their roles in cucumber growth and development.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Cunjia Zhang
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Lina Wang
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, People’s Republic of China
| |
Collapse
|