251
|
Wu XF, Yuan HJ, Li H, Gong S, Lin J, Miao YL, Wang TY, Tan JH. Restraint stress on female mice diminishes the developmental potential of oocytes: roles of chromatin configuration and histone modification in germinal vesicle stage oocytes. Biol Reprod 2014; 92:13. [PMID: 25411393 DOI: 10.1095/biolreprod.114.124396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mechanisms by which restraint stress impairs oocyte developmental potential are unclear. Factors causing differences between the developmental potential of oocytes with surrounded nucleolus (SN) and that of oocytes with nonsurrounded nucleolus (NSN) are not fully characterized. Furthermore, the relationship between increased histone acetylation and methylation and the increased developmental competence in SN oocytes is particularly worth exploring using a system where the SN configuration can be uncoupled (dissociated) from increased histone modifications. In this study, female mice were subjected to restraint for 24 or 48 h or for 23 days before being examined for oocyte chromatin configuration, histone modification, and development in vitro and in vivo. Results showed that restraint for 48 h or 23 days impaired NSN-to-SN transition, histone acetylation and methylation in SN oocytes, and oocyte developmental potential. However, whereas the percentage of stressed SN oocytes returned to normal after a 48-h postrestraint recovery, neither histone acetylation/methylation in SN oocytes nor developmental competence recovered following postrestraint recovery with equine chorionic gonadotropin (eCG) injection. Priming unstressed mice with eCG expedited oocyte histone modification to an early completion. Contrary to the levels of acetylated and methylated histones, the level of phosphorylated H3S10 increased significantly in the stressed SN oocytes. Together, the results suggest that 1) restraint stress impaired oocyte potential with disturbed histone modifications; 2) SN configuration was uncoupled from increased histone acetylation/methylation in the restraint-stressed oocytes; and 3) the developmental potential of SN oocytes is more closely correlated with epigenetic histone modification than with chromatin configuration.
Collapse
Affiliation(s)
- Xiu-Fen Wu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, PR China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, PR China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, PR China
| | - Shuai Gong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, PR China
| | - Juan Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, PR China
| | - Yi-Long Miao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, PR China
| | - Tian-Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, PR China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, PR China
| |
Collapse
|
252
|
Armenti ST, Lohmer LL, Sherwood DR, Nance J. Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins. Development 2014; 141:4640-7. [PMID: 25377555 DOI: 10.1242/dev.115048] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The capability to conditionally inactivate gene function is essential for understanding the molecular basis of development. In gene and mRNA targeting approaches, protein products can perdure, complicating genetic analysis. Current methods for selective protein degradation require drug treatment or take hours for protein removal, limiting their utility in studying rapid developmental processes in vivo. Here, we repurpose an endogenous protein degradation system to rapidly remove targeted C. elegans proteins. We show that upon expression of the E3 ubiquitin ligase substrate-recognition subunit ZIF-1, proteins tagged with the ZF1 zinc-finger domain can be quickly degraded in all somatic cell types examined with temporal and spatial control. We demonstrate that genes can be engineered to become conditional loss-of-function alleles by introducing sequences encoding the ZF1 tag into endogenous loci. Finally, we use ZF1 tagging to establish the site of cdc-42 gene function during a cell invasion event. ZF1 tagging provides a powerful new tool for the analysis of dynamic developmental events.
Collapse
Affiliation(s)
- Stephen T Armenti
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Lauren L Lohmer
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
253
|
Zahmatkesh A, Ansari Mahyari S, Daliri Joupari M, Shirazi A, Rahmani H. Expression of bovine Ecat1 gene in immature and in vitro matured oocytes as well as during early embryonic development. Reprod Domest Anim 2014; 50:34-40. [PMID: 25366560 DOI: 10.1111/rda.12446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/21/2014] [Indexed: 12/13/2022]
Abstract
Ecat1 is a maternal effect gene that is exclusively expressed in oocytes and embryonic stem cells, and has an important role in pre-implantation development. This study was designed to investigate the expression of bovine Ecat1 gene in immature and in vitro matured oocytes as well as during early embryonic development, and also Ecat1 protein localization. Samples were obtained from slaughtered animals. RNA extractions were carried out from ovary, immature and in vitro matured oocytes and also different stages of embryonic development (2-, 4-, 8- to 16-cell stages and blastocysts). RT-PCR analysis revealed the expression of Ecat1 in ovary, oocytes and embryos. Analysis in FGENESH online tool predicted three exons and one transcription start site (TSS) in Ecat1 gene, and the 3' RACE-PCR result showed that just one splice variant was amplified. By quantitative real-time PCR technique, we showed that Ecat1 transcript increased at 8- to 16-cell-stage embryos and decreased in blastocyst stage (p < 0.05). Immunofluorescence analysis showed cytoplasmic localization of Ecat1 protein in bovine oocytes. Results demonstrated bovine Ecat1 expression at protein level and also indicated that Ecat1 has a significant higher embryonic expression at 8- to 16-cell stage. This embryonic expression is probably required for further developmental stages.
Collapse
Affiliation(s)
- A Zahmatkesh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | | | | | |
Collapse
|
254
|
Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci 2014; 72:251-71. [PMID: 25280482 DOI: 10.1007/s00018-014-1739-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023]
Abstract
Obesity, diabetes, and related metabolic disorders are major health issues worldwide. As the epidemic of metabolic disorders continues, the associated medical co-morbidities, including the detrimental impact on reproduction, increase as well. Emerging evidence suggests that the effects of maternal nutrition on reproductive outcomes are likely to be mediated, at least in part, by oocyte metabolism. Well-balanced and timed energy metabolism is critical for optimal development of oocytes. To date, much of our understanding of oocyte metabolism comes from the effects of extrinsic nutrients on oocyte maturation. In contrast, intrinsic regulation of oocyte development by metabolic enzymes, intracellular mediators, and transport systems is less characterized. Specifically, decreased acid transport proteins levels, increased glucose/lipid content and elevated reactive oxygen species in oocytes have been implicated in meiotic defects, organelle dysfunction and epigenetic alteration. Therefore, metabolic disturbances in oocytes may contribute to the diminished reproductive potential experienced by women with metabolic disorders. In-depth research is needed to further explore the underlying mechanisms. This review also discusses several approaches for metabolic analysis. Metabolomic profiling of oocytes, the surrounding granulosa cells, and follicular fluid will uncover the metabolic networks regulating oocyte development, potentially leading to the identification of oocyte quality markers and prevention of reproductive disease and poor outcomes in offspring.
Collapse
Affiliation(s)
- Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China,
| | | | | | | | | | | |
Collapse
|
255
|
Dankert D, Demond H, Trapphoff T, Heiligentag M, Rademacher K, Eichenlaub-Ritter U, Horsthemke B, Grümmer R. Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect genes. PLoS One 2014; 9:e108907. [PMID: 25271735 PMCID: PMC4182777 DOI: 10.1371/journal.pone.0108907] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Maternal effect genes code for oocyte proteins that are important for early embryogenesis. Transcription in oocytes does not take place from the onset of meiotic progression until zygotic genome activation. During this period, protein levels are regulated posttranscriptionally, for example by poly(A) tail length. Posttranscriptional regulation may be impaired in preovulatory and postovulatory aged oocytes, caused by delayed ovulation or delayed fertilization, respectively, and may lead to developmental defects. We investigated transcript levels and poly(A) tail length of ten maternal effect genes in in vivo- and in vitro- (follicle culture) grown oocytes after pre- and postovulatory aging. Quantitative RT-PCR was performed using random hexamer-primed cDNA to determine total transcript levels and oligo(dT)16-primed cDNA to analyze poly(A) tail length. Transcript levels of in vivo preovulatory-aged oocytes remained stable except for decreases in Brg1 and Tet3. Most genes investigated showed a tendency towards increased poly(A) content. Polyadenylation of in vitro preovulatory-aged oocytes was also increased, along with transcript level declines of Trim28, Nlrp2, Nlrp14 and Zar1. In contrast to preovulatory aging, postovulatory aging of in vivo- and in vitro-grown oocytes led to a shortening of poly(A) tails. Postovulatory aging of in vivo-grown oocytes resulted in deadenylation of Nlrp5 after 12 h, and deadenylation of 4 further genes (Tet3, Trim28, Dnmt1, Oct4) after 24 h. Similarly, transcripts of in vitro-grown oocytes were deadenylated after 12 h of postovulatory aging (Tet3, Trim28, Zfp57, Dnmt1, Nlrp5, Zar1). This impact of aging on poly(A) tail length may affect the timed translation of maternal effect gene transcripts and thereby contribute to developmental defects.
Collapse
Affiliation(s)
- Debora Dankert
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hannah Demond
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tom Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Martyna Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Katrin Rademacher
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ruth Grümmer
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
256
|
Van Gorp H, Kuchmiy A, Van Hauwermeiren F, Lamkanfi M. NOD-like receptors interfacing the immune and reproductive systems. FEBS J 2014; 281:4568-82. [PMID: 25154302 DOI: 10.1111/febs.13014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022]
Abstract
Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) are intracellular proteins that are chiefly known for their critical functions in inflammatory responses and host defense against microbial pathogens. Several NLRs have been demonstrated to assemble inflammasomes or to engage transcriptional signaling cascades that result in the production of pro-inflammatory cytokines and bactericidal factors. In recent years, NLRs have also emerged as key regulators of early mammalian embryogenesis and reproduction. A subset of phylogenetically related NLRs represents a new class of maternal effect genes that are highly expressed in maturing oocytes and pre-implantation embryos. Mutations in several of these NLRs have been linked to hereditary reproductive defects and imprinting diseases. In this review, we discuss the expression profiles, the emerging functions and molecular mode of action of these NLRs with newly recognized roles at the interfaces of the immune and reproductive systems. In addition, we provide an overview of coding mutations in NLRs that have been associated with human reproductive diseases, and outline crucial outstanding questions in this emerging research field.
Collapse
Affiliation(s)
- Hanne Van Gorp
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
257
|
Yu XJ, Yi Z, Gao Z, Qin D, Zhai Y, Chen X, Ou-Yang Y, Wang ZB, Zheng P, Zhu MS, Wang H, Sun QY, Dean J, Li L. The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nat Commun 2014; 5:4887. [PMID: 25208553 DOI: 10.1038/ncomms5887] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022] Open
Abstract
Maternal effect genes play critical roles in early embryogenesis of model organisms where they have been intensively investigated. However, their molecular function in mammals remains largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that contains four proteins encoded by maternal effect genes (Mater, Filia, Floped and Tle6). Here we report that TLE6, similar to FLOPED and MATER, stabilizes the SCMC and is necessary for cleavage beyond the two-cell stage of development. We document that the SCMC is required for formation of the cytoplasmic F-actin meshwork that controls the central position of the spindle and ensures symmetric division of mouse zygotes. We further demonstrate that the SCMC controls formation of the actin cytoskeleton specifically via Cofilin, a key regulator of F-actin assembly. Our results provide molecular insight into the physiological function of TLE6, its interaction with the SCMC and their roles in the symmetric division of the zygote in early mouse development.
Collapse
Affiliation(s)
- Xing-Jiang Yu
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohong Yi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Gao
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Qin
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhua Zhai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Ou-Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Zheng
- State Key laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Min-Sheng Zhu
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Haibin Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-8028, USA
| | - Lei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
258
|
Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, Tang Y, Bi J, O’Neill R, Ruan Y, Chen J, Tian X(C. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics 2014; 15:756. [PMID: 25185836 PMCID: PMC4162962 DOI: 10.1186/1471-2164-15-756] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/29/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology. RESULTS Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development. CONCLUSIONS This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development.
Collapse
Affiliation(s)
- Zongliang Jiang
- />Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, Connecticut USA
| | - Jiangwen Sun
- />Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut USA
| | - Hong Dong
- />Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, Xinjiang P.R. China
| | - Oscar Luo
- />The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut USA
| | - Xinbao Zheng
- />Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, Xinjiang P.R. China
| | - Craig Obergfell
- />Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut USA
| | - Yong Tang
- />Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, Connecticut USA
| | - Jinbo Bi
- />Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut USA
| | - Rachel O’Neill
- />Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut USA
| | - Yijun Ruan
- />The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut USA
| | - Jingbo Chen
- />Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, Xinjiang P.R. China
| | - Xiuchun (Cindy) Tian
- />Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, Connecticut USA
| |
Collapse
|
259
|
Quantitative expression of pluripotency-related genes in parthenogenetically produced buffalo (Bubalus bubalis) embryos and in putative embryonic stem cells derived from them. Gene Expr Patterns 2014; 16:23-30. [DOI: 10.1016/j.gep.2014.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/23/2022]
|
260
|
Zhang Y, Gu S, Li C, Sang M, Wu W, Yun X, Hu X, Li B. Identification and characterization of novel ER-based hsp90 gene in the red flour beetle, Tribolium castaneum. Cell Stress Chaperones 2014; 19:623-33. [PMID: 24379085 PMCID: PMC4147069 DOI: 10.1007/s12192-013-0487-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 01/02/2023] Open
Abstract
Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone found in all species except for Archaea, which is required not only for stress tolerance but also for normal development. Recently, it was reported that HSP83, one member of the cytosolic HSP90 family, contributes to oogenesis and responds to heat resistance in Tribolium castaneum. Here, a novel ER-based HSP90 gene, Tchsp90, has been identified in T. castaneum. Phylogenetic analysis showed that hsp90s and hsp83s evolved separately from a common ancestor but that hsp90s originated earlier. Quantitative real-time polymerase chain reaction illustrated that Tchsp90 is expressed in all developmental stages and is highly expressed at early pupa and late adult stages. Tchsp90 was upregulated in response to heat stress but not to cold stress. Laval RNAi revealed that Tchsp90 is important for larval/pupal development. Meanwhile, parental RNAi indicated that it completely inhibited female fecundity and partially inhibited male fertility once Tchsp90 was knocked down and that it will further shorten the lifespan of T. castaneum. These results suggest that Tchsp90 is essential for development, lifespan, and reproduction in T. castaneum in addition to its response to heat stress.
Collapse
Affiliation(s)
- Yi Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Shasha Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Ming Sang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Wei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xiaopei Yun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xingxing Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
261
|
Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. Genome activation in bovine embryos: Review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 2014; 149:46-58. [DOI: 10.1016/j.anireprosci.2014.05.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/09/2014] [Accepted: 05/26/2014] [Indexed: 11/30/2022]
|
262
|
Sozen B, Can A, Demir N. Cell fate regulation during preimplantation development: a view of adhesion-linked molecular interactions. Dev Biol 2014; 395:73-83. [PMID: 25176042 DOI: 10.1016/j.ydbio.2014.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/01/2022]
Abstract
In the developmental process of the early mammalian embryo, it is crucial to understand how the identical cells in the early embryo later develop different fates. Along with existing models, many recently discovered molecular, cellular and developmental factors play roles in cell position, cell polarity and transcriptional networks in cell fate regulation during preimplantation. A structuring process known as compaction provides the "start signal" for cells to differentiate and orchestrates the developmental cascade. The proper intercellular junctional complexes assembled between blastomeres act as a conducting mechanism governing cellular diversification. Here, we provide an overview of the diversification process during preimplantation development as it relates to intercellular junctional complexes. We also evaluate transcriptional differences between embryonic lineages according to cell- cell adhesion and the contributions of adhesion to lineage commitment. These series of processes indicate that proper cell fate specification in the early mammalian embryo depends on junctional interactions and communication, which play essential roles during early morphogenesis.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070 Antalya, Turkey
| | - Alp Can
- Department of Histology and Embryology, School of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Campus, 07070 Antalya, Turkey.
| |
Collapse
|
263
|
Kong BY, Duncan FE, Que EL, Kim AM, O'Halloran TV, Woodruff TK. Maternally-derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition. Mol Hum Reprod 2014; 20:1077-89. [PMID: 25143461 DOI: 10.1093/molehr/gau066] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid cellular zinc influx regulates early mammalian development during the oocyte-to-egg transition through modulation of the meiotic cell cycle. Despite the physiological necessity of this zinc influx, the molecular mechanisms that govern such accumulation are unknown. Here we show that the fully grown mammalian oocyte does not employ a transcriptionally based mechanism of zinc regulation involving metal response element-binding transcription factor-1 (MTF-1), as demonstrated by a lack of MTF-1 responsiveness to environmental zinc manipulation. Instead, the mammalian oocyte controls zinc uptake through two maternally derived and cortically distributed zinc transporters, ZIP6 and ZIP10. Targeted disruption of these transporters using several approaches during meiotic maturation perturbs the intracellular zinc quota and results in a cell cycle arrest at a telophase I-like state. This arrest phenocopies established models of zinc insufficiency during the oocyte-to-egg transition, indicating the essential function of these maternally expressed transporters. Labile zinc localizes to punctate cytoplasmic structures in the human oocyte, and ZIP6 and ZIP10 are enriched in the cortex. Altogether, we demonstrate a mechanism of metal regulation required for female gamete development that may be evolutionarily conserved.
Collapse
Affiliation(s)
- B Y Kong
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 250 East Superior Street, Suite 3-2303, Chicago, IL 60611, USA
| | - F E Duncan
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 250 East Superior Street, Suite 3-2303, Chicago, IL 60611, USA
| | - E L Que
- The Chemistry of Life Processes Institute and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - A M Kim
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 250 East Superior Street, Suite 3-2303, Chicago, IL 60611, USA
| | - T V O'Halloran
- The Chemistry of Life Processes Institute and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208, USA
| | - T K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 250 East Superior Street, Suite 3-2303, Chicago, IL 60611, USA Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208, USA
| |
Collapse
|
264
|
Ji Q, Cong P, Zhao H, Song Z, Zhao G, Gao J, Nie Y, Chen Y. Exogenous expression ofOCT4facilitates oocyte-mediated reprogramming in cloned porcine embryos. Mol Reprod Dev 2014; 81:820-32. [DOI: 10.1002/mrd.22351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Qianqian Ji
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Haijing Zhao
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Zhenwei Song
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Guangyin Zhao
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Jintao Gao
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Yu Nie
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol; Sun Yat-Sen University; Guangzhou P. R. China
| |
Collapse
|
265
|
Differences in gene expression between mouse and human for dynamically regulated genes in early embryo. PLoS One 2014; 9:e102949. [PMID: 25089626 PMCID: PMC4121084 DOI: 10.1371/journal.pone.0102949] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
Infertility is a worldwide concern that can be treated with in vitro fertilization (IVF). Improvements in IVF and infertility treatment depend largely on better understanding of the molecular mechanisms for human preimplantation development. Several large-scale studies have been conducted to identify gene expression patterns for the first five days of human development, and many functional studies utilize mouse as a model system. We have identified genes of possible importance for this time period by analyzing human microarray data and available data from online databases. We selected 70 candidate genes for human preimplantation development and investigated their expression in the early mouse development from oocyte to the 8-cell stage. Maternally loaded genes expectedly decreased in expression during development both in human and mouse. We discovered that 25 significantly upregulated genes after fertilization in human included 13 genes whose orthologs in mouse behaved differently and mimicked the expression profile of maternally expressed genes. Our findings highlight many significant differences in gene expression patterns during mouse and human preimplantation development. We also describe four cancer-testis antigen families that are also highly expressed in human embryos: PRAME, SSX, GAGE and MAGEA.
Collapse
|
266
|
Rajput SK, Lee K, Zhenhua G, Di L, Folger JK, Smith GW. Embryotropic actions of follistatin: paracrine and autocrine mediators of oocyte competence and embryo developmental progression. Reprod Fertil Dev 2014; 26:37-47. [PMID: 24305175 DOI: 10.1071/rd13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite several decades since the birth of the first test tube baby and the first calf derived from an in vitro-fertilised embryo, the efficiency of assisted reproductive technologies remains less than ideal. Poor oocyte competence is a major factor limiting the efficiency of in vitro embryo production. Developmental competence obtained during oocyte growth and maturation establishes the foundation for successful fertilisation and preimplantation embryonic development. Regulation of molecular and cellular events during fertilisation and embryo development is mediated, in part, by oocyte-derived factors acquired during oocyte growth and maturation and programmed by factors of follicular somatic cell origin. The available evidence supports an important intrinsic role for oocyte-derived follistatin and JY-1 proteins in mediating embryo developmental progression after fertilisation, and suggests that the paracrine and autocrine actions of oocyte-derived growth differentiation factor 9, bone morphogenetic protein 15 and follicular somatic cell-derived members of the fibroblast growth factor family impact oocyte competence and subsequent embryo developmental progression after fertilisation. An increased understanding of the molecular mechanisms mediating oocyte competence and stage-specific developmental events during early embryogenesis is crucial for further improvements in assisted reproductive technologies.
Collapse
Affiliation(s)
- Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
267
|
Lian HY, Jiao GZ, Wang HL, Tan XW, Wang TY, Zheng LL, Kong QQ, Tan JH. Role of cytoskeleton in regulating fusion of nucleoli: a study using the activated mouse oocyte model. Biol Reprod 2014; 91:56. [PMID: 25061094 DOI: 10.1095/biolreprod.114.120188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²⁺-free CZB medium containing 10 mM SrCl₂) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF.
Collapse
Affiliation(s)
- Hua-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Hui-Li Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Xiu-Wen Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Tian-Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Liang-Liang Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Qiao-Qiao Kong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| |
Collapse
|
268
|
Pohlmeier WE, Xie F, Kurz SG, Lu N, Wood JR. Progressive obesity alters the steroidogenic response to ovulatory stimulation and increases the abundance of mRNAs stored in the ovulated oocyte. Mol Reprod Dev 2014; 81:735-47. [PMID: 24824196 DOI: 10.1002/mrd.22342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/08/2014] [Indexed: 11/09/2022]
Abstract
Obese women who are able to attain pregnancy are at increased risk for early-pregnancy loss due, in part, to reduced oocyte quality. We and others have demonstrated that female Lethal Yellow (LY) mice and female C57BL/6 mice fed a high fat diet (B6-HFD) exhibit phenotypes consistent with human obesity. These studies also showed that zygotes collected from LY and B6-HFD females have reduced developmental competence. The current hypothesis is that LY and B6-HFD females exhibit an abnormal response to gonadotropin stimulation compared to C57BL/6 controls fed normal rodent chow (B6-ND), resulting in the ovulation of oocytes with an altered molecular phenotype which may contribute to its reduced developmental competence. To test this hypothesis, age-matched B6-ND, B6-HFD, and LY females were stimulated with exogenous gonadotropins, then circulating hormone levels and the phenotypes of ovulated oocytes were analyzed. There was no difference in ovulation rate or in the percentage of morphologically abnormal oocytes collected from the oviduct of any females. Progesterone and progesterone/estradiol ratios, however, were increased in B6-HFD and LY compared to B6-ND females 16 hr post-human chorionic gonadotropin treatment. The transcript abundance of several candidate oocyte genes was also increased in B6-HFD- and LY-derived oocytes compared to B6-ND-derived oocytes. These data suggest that increased insulin and leptin levels of obese females elevated circulating progesterone concentrations, altered transcriptional activity during oocyte growth, and/or impaired mechanisms of RNA translation and degradation during oocyte maturation. These changes in mRNA abundance likely contribute to reduced oocyte quality and the subsequent poor embryogenesis associated with obesity.
Collapse
Affiliation(s)
- William E Pohlmeier
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | | | | | | |
Collapse
|
269
|
Wagner A, Holland OJ, Tong M, Shelling AN, Chamley LW. The role of SPRASA in female fertility. Reprod Sci 2014; 22:452-61. [PMID: 25038051 DOI: 10.1177/1933719114542009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fertility is a complex process and infertility can have many causes. Sperm protein reactive with antisperm antibody (SPRASA)/sperm lysozyme-like protein 1 is a protein discovered as the target of autoantibodies in infertile men and previously thought to be expressed only in sperm. Using a bovine in vitro fertilization model, we have shown that SPRASA antiserum reduced sperm binding to zona-free oocytes and the development of embryos to morulae but did not affect the postfertilization cleavage rate to 2 cells or sperm motility. We demonstrated that SPRASA was expressed in ovarian follicles, corpora lutea, and oocytes by a combination of reverse transcription-polymerase chain reaction and immunohistochemistry. Female mice immunized with SPRASA had profound infertility following timed matings and those mice that did become pregnant had reduced fetal viability. The levels of antibodies reactive with SPRASA in 204 fertile and 202 infertile couples were elevated in 3 infertile but no fertile women. Together, these results indicate that SPRASA has a role in female fertility.
Collapse
Affiliation(s)
- Angela Wagner
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Olivia J Holland
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Mancy Tong
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
270
|
Lee KB, Zhang K, Folger JK, Knott JG, Smith GW. Evidence supporting a functional requirement of SMAD4 for bovine preimplantation embryonic development: a potential link to embryotrophic actions of follistatin. Biol Reprod 2014; 91:62. [PMID: 25031360 DOI: 10.1095/biolreprod.114.120105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) superfamily signaling controls various aspects of female fertility. However, the functional roles of the TGFbeta-superfamily cognate signal transduction pathway components (e.g., SMAD2/3, SMAD4, SMAD1/5/8) in early embryonic development are not completely understood. We have previously demonstrated pronounced embryotrophic actions of the TGFbeta superfamily member-binding protein, follistatin, on oocyte competence in cattle. Given that SMAD4 is a common SMAD required for both SMAD2/3- and SMAD1/5/8-signaling pathways, the objectives of the present studies were to determine the temporal expression and functional role of SMAD4 in bovine early embryogenesis and whether embryotrophic actions of follistatin are SMAD4 dependent. SMAD4 mRNA is increased in bovine oocytes during meiotic maturation, is maximal in 2-cell stage embryos, remains elevated through the 8-cell stage, and is decreased and remains low through the blastocyst stage. Ablation of SMAD4 via small interfering RNA microinjection of zygotes reduced proportions of embryos cleaving early and development to the 8- to 16-cell and blastocyst stages. Stimulatory effects of follistatin on early cleavage, but not on development to 8- to 16-cell and blastocyst stages, were observed in SMAD4-depleted embryos. Therefore, results suggest SMAD4 is obligatory for early embryonic development in cattle, and embryotrophic actions of follistatin on development to 8- to 16-cell and blastocyst stages are SMAD4 dependent.
Collapse
Affiliation(s)
- Kyung-Bon Lee
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Biology Education, College of Education, Chonnam National University, Gwangju, Republic of Korea
| | - Kun Zhang
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan Department of Animal Science, Michigan State University, East Lansing, Michigan Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
271
|
Schwarzer C, Siatkowski M, Pfeiffer MJ, Baeumer N, Drexler HCA, Wang B, Fuellen G, Boiani M. Maternal age effect on mouse oocytes: new biological insight from proteomic analysis. Reproduction 2014; 148:55-72. [DOI: 10.1530/rep-14-0126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-standing view of ‘immortal germline vs mortal soma’ poses a fundamental question in biology concerning how oocytes age in molecular terms. A mainstream hypothesis is that maternal ageing of oocytes has its roots in gene transcription. Investigating the proteins resulting from mRNA translation would reveal how far the levels of functionally available proteins correlate with mRNAs and would offer novel insights into the changes oocytes undergo during maternal ageing. Gene ontology (GO) semantic analysis revealed a high similarity of the detected proteome (2324 proteins) to the transcriptome (22 334 mRNAs), although not all proteins had a cognate mRNA. Concerning their dynamics, fourfold changes of abundance were more frequent in the proteome (3%) than the transcriptome (0.05%), with no correlation. Whereas proteins associated with the nucleus (e.g. structural maintenance of chromosomes and spindle-assembly checkpoints) were largely represented among those that change in oocytes during maternal ageing; proteins associated with oxidative stress/damage (e.g. superoxide dismutase) were infrequent. These quantitative alterations are either impoverishing or enriching. Using GO analysis, these alterations do not relate in any simple way to the classic signature of ageing known from somatic tissues. Given the lack of correlation, we conclude that proteome analysis of mouse oocytes may not be surrogated with transcriptome analysis. Furthermore, we conclude that the classic features of ageing may not be transposed from somatic tissues to oocytes in a one-to-one fashion. Overall, there is more to the maternal ageing of oocytes than mere cellular deterioration exemplified by the notorious increase of meiotic aneuploidy.
Collapse
|
272
|
Kim KH, Lee KA. Maternal effect genes: Findings and effects on mouse embryo development. Clin Exp Reprod Med 2014; 41:47-61. [PMID: 25045628 PMCID: PMC4102690 DOI: 10.5653/cerm.2014.41.2.47] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 11/22/2022] Open
Abstract
Stored maternal factors in oocytes regulate oocyte differentiation into embryos during early embryonic development. Before zygotic gene activation (ZGA), these early embryos are mainly dependent on maternal factors for survival, such as macromolecules and subcellular organelles in oocytes. The genes encoding these essential maternal products are referred to as maternal effect genes (MEGs). MEGs accumulate maternal factors during oogenesis and enable ZGA, progression of early embryo development, and the initial establishment of embryonic cell lineages. Disruption of MEGs results in defective embryogenesis. Despite their important functions, only a few mammalian MEGs have been identified. In this review we summarize the roles of known MEGs in mouse fertility, with a particular emphasis on oocytes and early embryonic development. An increased knowledge of the working mechanism of MEGs could ultimately provide a means to regulate oocyte maturation and subsequent early embryonic development.
Collapse
Affiliation(s)
- Kyeoung-Hwa Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
| |
Collapse
|
273
|
Vernet N, Mahadevaiah SK, Yamauchi Y, Decarpentrie F, Mitchell MJ, Ward MA, Burgoyne PS. Mouse Y-linked Zfy1 and Zfy2 are expressed during the male-specific interphase between meiosis I and meiosis II and promote the 2nd meiotic division. PLoS Genet 2014; 10:e1004444. [PMID: 24967676 PMCID: PMC4072562 DOI: 10.1371/journal.pgen.1004444] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 05/02/2014] [Indexed: 11/19/2022] Open
Abstract
Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis. The mouse Y chromosome genes Zfy1 and Zfy2 were first identified in the late 1980s during the search for the gene on the Y that triggers male development; they encode proteins that regulate the expression of other genes to which they bind via a ‘zinc finger’ domain. We have now discovered that these genes play important roles during spermatogenesis. Zfy2 proved to be essential for the efficient operation of a ‘checkpoint’ during the first meiotic division that identifies and kills cells that would otherwise produce sperm with an unbalanced chromosome set. Female meiosis, which does not have an equivalent checkpoint, generates a significant proportion of eggs with an unbalanced chromosome set. In the present study we show that Zfy2 also has a major role in ensuring that the second meiotic division occurs, with Zfy1 and a related gene, Zfx, on the X chromosome providing some support. In order to fulfil this function all three genes are expressed in the ‘interphase’ stage between the two divisions. In female meiosis there is no interphase stage between the two meiotic divisions but in this case essential functions during the divisions are supported by stored RNAs, so an interphase is not needed.
Collapse
Affiliation(s)
- Nadège Vernet
- MRC National Institute for Medical Research, London, United Kingdom
- Department of functional genomics and cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- * E-mail: ,
| | | | - Yasuhiro Yamauchi
- Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii, United States of America
| | | | - Michael J. Mitchell
- Aix Marseille Université, GMGF, Marseille, France
- Inserm UMR_S 910, Marseille, France
| | - Monika A. Ward
- Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii, United States of America
| | - Paul S. Burgoyne
- MRC National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
274
|
|
275
|
Lotan T, Chalifa-Caspi V, Ziv T, Brekhman V, Gordon MM, Admon A, Lubzens E. Evolutionary conservation of the mature oocyte proteome. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
276
|
Nuclear distribution of RNA polymerase II and mRNA processing machinery in early mammalian embryos. BIOMED RESEARCH INTERNATIONAL 2014; 2014:681596. [PMID: 24868542 PMCID: PMC4020508 DOI: 10.1155/2014/681596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/11/2014] [Indexed: 11/17/2022]
Abstract
Spatial distribution of components of nuclear metabolism provides a significant impact on regulation of the processes of gene expression. While distribution of the key nuclear antigens and their association with the defined nuclear domains were thoroughly traced in mammalian somatic cells, similar data for the preimplantation embryos are scanty and fragmental. However, the period of cleavage is characterized by the most drastic and dynamic nuclear reorganizations accompanying zygotic gene activation. In this minireview, we try to summarize the results of studies concerning distribution of major factors involved in RNA polymerase II-dependent transcription, pre-mRNA splicing mRNA export that have been carried out on early embryos of mammals.
Collapse
|
277
|
Duan L, Wang Z, Shen J, Shan Z, Shen X, Wu Y, Sun R, Li T, Yuan R, Zhao Q, Bai G, Gu Y, Jin L, Lei L. Comparison of reprogramming genes in induced pluripotent stem cells and nuclear transfer cloned embryos. Stem Cell Rev Rep 2014; 10:548-60. [PMID: 24828831 DOI: 10.1007/s12015-014-9516-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The most effective reprogramming methods, somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs), are widely used in biological research and regenerative medicine, yet the mechanism that reprograms somatic cells to totipotency remains unclear and thus reprogramming efficiency is still low. Microarray technology has been employed in analyzing the transcriptomes changes during iPS reprogramming. Unfortunately, it is difficult to obtain enough DNA from SCNT reconstructed embryos to take advantage of this technology. In this study, we aimed to identify critical genes from the transcriptional profile for iPS reprogramming and compared expression levels of these genes in SCNT reprogramming. By integrating gene expression information from microarray databases and published studies comparing somatic cells with either miPSCs or mouse embryonic stem cells (ESCs), we obtained two lists of co-upregulated genes. The gene ontology (GO) enriched analysis of these two lists demonstrated that the reprogramming process is associated with numerous biological processes. Specifically, we selected 32 genes related to heterochromatin, embryonic development, and cell cycle from our co-upregulated gene datasets and examined the gene expression level in iPSCs and SCNT embryos by qPCR. The results revealed that some reprogramming related genes in iPSCs were also expressed in SCNT reprogramming. We established the network of gene interactions that occur with genes differentially expressed in iPS and SCNT reprogramming and then performed GO analysis on the genes in the network. The network genes function in chromatin organization, heterochromatin, transcriptional regulation, and cell cycle. Further researches to improve reprogramming efficiency, especially in SCNT, will focus on functional studies of these selected genes.
Collapse
Affiliation(s)
- Lian Duan
- Department of Histology and Embryology, Harbin Medical University, 194 Xuefu Road, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Wang B, Pfeiffer MJ, Schwarzer C, Araúzo-Bravo MJ, Boiani M. DNA replication is an integral part of the mouse oocyte's reprogramming machinery. PLoS One 2014; 9:e97199. [PMID: 24836291 PMCID: PMC4023938 DOI: 10.1371/journal.pone.0097199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/14/2014] [Indexed: 11/26/2022] Open
Abstract
Many of the structural and mechanistic requirements of oocyte-mediated nuclear reprogramming remain elusive. Previous accounts that transcriptional reprogramming of somatic nuclei in mouse zygotes may be complete in 24–36 hours, far more rapidly than in other reprogramming systems, raise the question of whether the mere exposure to the activated mouse ooplasm is sufficient to enact reprogramming in a nucleus. We therefore prevented DNA replication and cytokinesis, which ensue after nuclear transfer, in order to assess their requirement for transcriptional reprogramming of the key pluripotency genes Oct4 (Pou5f1) and Nanog in cloned mouse embryos. Using transcriptome and allele-specific analysis, we observed that hundreds of mRNAs, but not Oct4 and Nanog, became elevated in nucleus-transplanted oocytes without DNA replication. Progression through the first round of DNA replication was essential but not sufficient for transcriptional reprogramming of Oct4 and Nanog, whereas cytokinesis and thereby cell-cell interactions were dispensable for transcriptional reprogramming. Responses similar to clones also were observed in embryos produced by fertilization in vitro. Our results link the occurrence of reprogramming to a previously unappreciated requirement of oocyte-mediated nuclear reprogramming, namely DNA replication. Nuclear transfer alone affords no immediate transition from a somatic to a pluripotent gene expression pattern unless DNA replication is also in place. This study is therefore a resource to appreciate that the quest for always faster reprogramming methods may collide with a limit that is dictated by the cell cycle.
Collapse
Affiliation(s)
- Bingyuan Wang
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | - Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- * E-mail:
| |
Collapse
|
279
|
Wu G, Schöler HR. Role of Oct4 in the early embryo development. CELL REGENERATION 2014; 3:7. [PMID: 25408886 PMCID: PMC4230828 DOI: 10.1186/2045-9769-3-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
Oct4 is a key component of the pluripotency regulatory network, and its reciprocal interaction with Cdx2 has been shown to be a determinant of either the self-renewal of embryonic stem cells (ESCs) or their differentiation into trophoblast. Oct4 of maternal origin is postulated to play critical role in defining totipotency and inducing pluripotency during embryonic development. However, the genetic elimination of maternal Oct4 using a Cre-lox approach in mouse revealed that the establishment of totipotency in maternal Oct4–depleted embryos was not affected, and that these embryos could complete full-term development without any obvious defect. These results indicate that Oct4 is not essential for the initiation of pluripotency, in contrast to its critical role in maintaining pluripotency. This conclusion is further supported by the formation of Oct4-GFP– and Nanog- expressing inner cell masses (ICMs) in embryos with complete inactivation of both maternal and zygotic Oct4 expression and the reprogramming of fibroblasts into fully pluripotent cells by Oct4-deficient oocytes.
Collapse
Affiliation(s)
- Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany ; Medical Faculty, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
280
|
García-López J, Hourcade JDD, Alonso L, Cárdenas DB, del Mazo J. Global characterization and target identification of piRNAs and endo-siRNAs in mouse gametes and zygotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:463-75. [PMID: 24769224 DOI: 10.1016/j.bbagrm.2014.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
A set of small RNAs known as rasRNAs (repeat-associated small RNAs) have been related to the down-regulation of Transposable Elements (TEs) to safeguard genome integrity. Two key members of the rasRNAs group are piRNAs and endo-siRNAs. We have performed a comparative analysis of piRNAs and endo-siRNAs present in mouse oocytes, spermatozoa and zygotes, identified by deep sequencing and bioinformatic analysis. The detection of piRNAs and endo-siRNAs in the spermatozoa and revealed also in zygotes, hints to their potential delivery to oocytes during fertilization. However, a comparative assessment of the three cell types indicates that both piRNAs and endo-siRNAs are mainly maternally inherited. Finally, we have assessed the role of the different rasRNA molecules in connection with amplification processes by way of the "ping-pong cycle". Our results suggest that the ping-pong cycle can act on other rasRNAs, such as tRNA- and rRNA-derived fragments, thus not only being restricted to TEs during gametogenesis.
Collapse
Affiliation(s)
- Jesús García-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Juan de Dios Hourcade
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Lola Alonso
- Bioinformatics Service, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - David B Cárdenas
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jesús del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
281
|
Condic ML. Totipotency: what it is and what it is not. Stem Cells Dev 2014; 23:796-812. [PMID: 24368070 PMCID: PMC3991987 DOI: 10.1089/scd.2013.0364] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/23/2013] [Indexed: 02/03/2023] Open
Abstract
There is surprising confusion surrounding the concept of biological totipotency, both within the scientific community and in society at large. Increasingly, ethical objections to scientific research have both practical and political implications. Ethical controversy surrounding an area of research can have a chilling effect on investors and industry, which in turn slows the development of novel medical therapies. In this context, clarifying precisely what is meant by "totipotency" and how it is experimentally determined will both avoid unnecessary controversy and potentially reduce inappropriate barriers to research. Here, the concept of totipotency is discussed, and the confusions surrounding this term in the scientific and nonscientific literature are considered. A new term, "plenipotent," is proposed to resolve this confusion. The requirement for specific, oocyte-derived cytoplasm as a component of totipotency is outlined. Finally, the implications of twinning for our understanding of totipotency are discussed.
Collapse
Affiliation(s)
- Maureen L Condic
- Department of Neurobiology, School of Medicine, University of Utah , Salt Lake City, Utah
| |
Collapse
|
282
|
Vernet N, Szot M, Mahadevaiah SK, Ellis PJI, Decarpentrie F, Ojarikre OA, Rattigan Á, Taketo T, Burgoyne PS. The expression of Y-linked Zfy2 in XY mouse oocytes leads to frequent meiosis 2 defects, a high incidence of subsequent early cleavage stage arrest and infertility. Development 2014; 141:855-66. [PMID: 24496622 PMCID: PMC3912830 DOI: 10.1242/dev.091165] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Outbred XYSry- female mice that lack Sry due to the 11 kb deletion Srydl1Rlb have very limited fertility. However, five lines of outbred XYd females with Y chromosome deletions YDel(Y)1Ct-YDel(Y)5Ct that deplete the Rbmy gene cluster and repress Sry transcription were found to be of good fertility. Here we tested our expectation that the difference in fertility between XO, XYd-1 and XYSry- females would be reflected in different degrees of oocyte depletion, but this was not the case. Transgenic addition of Yp genes to XO females implicated Zfy2 as being responsible for the deleterious Y chromosomal effect on fertility. Zfy2 transcript levels were reduced in ovaries of XYd-1 compared with XYSry- females in keeping with their differing fertility. In seeking the biological basis of the impaired fertility we found that XYSry-, XYd-1 and XO,Zfy2 females produce equivalent numbers of 2-cell embryos. However, in XYSry- and XO,Zfy2 females the majority of embryos arrested with 2-4 cells and almost no blastocysts were produced; by contrast, XYd-1 females produced substantially more blastocysts but fewer than XO controls. As previously documented for C57BL/6 inbred XY females, outbred XYSry- and XO,Zfy2 females showed frequent failure of the second meiotic division, although this did not prevent the first cleavage. Oocyte transcriptome analysis revealed major transcriptional changes resulting from the Zfy2 transgene addition. We conclude that Zfy2-induced transcriptional changes in oocytes are sufficient to explain the more severe fertility impairment of XY as compared with XO females.
Collapse
Affiliation(s)
- Nadège Vernet
- MRC National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Lee KB, Wee G, Zhang K, Folger JK, Knott JG, Smith GW. Functional role of the bovine oocyte-specific protein JY-1 in meiotic maturation, cumulus expansion, and subsequent embryonic development. Biol Reprod 2014; 90:69. [PMID: 24501174 DOI: 10.1095/biolreprod.113.115071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocyte-expressed genes regulate key aspects of ovarian follicular development and early embryogenesis. We previously demonstrated a requirement of the oocyte-specific protein JY-1 for bovine early embryogenesis. Given that JY-1 is present in oocytes throughout folliculogenesis, and oocyte-derived JY-1 mRNA is temporally regulated postfertilization, we hypothesized that JY-1 levels in oocytes impact nuclear maturation and subsequent early embryogenesis. A novel model system, whereby JY-1 small interfering RNA was microinjected into cumulus-enclosed germinal vesicle-stage oocytes and meiotic arrest maintained for 48 h prior to in vitro maturation (IVM), was validated and used to determine the effect of reduced oocyte JY-1 expression on nuclear maturation, cumulus expansion, and embryonic development after in vitro fertilization. Depletion of JY-1 protein during IVM effectively reduced cumulus expansion, percentage of oocytes progressing to metaphase II, proportion of embryos that cleaved early, total cleavage rates and development to 8- to 16-cell stage, and totally blocked development to the blastocyst stage relative to controls. Supplementation with JY-1 protein during oocyte culture rescued effects of JY-1 depletion on meiotic maturation, cumulus expansion, and early cleavage, but did not rescue development to 8- to 16-cell and blastocyst stages. However, effects of JY-1 depletion postfertilization on development to 8- to 16-cell and blastocyst stages were rescued by JY-1 supplementation during embryo culture. In conclusion, these results support an important functional role for oocyte-derived JY-1 protein during meiotic maturation in promoting progression to metaphase II, cumulus expansion, and subsequent embryonic development.
Collapse
Affiliation(s)
- Kyung-Bon Lee
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
| | | | | | | | | | | |
Collapse
|
284
|
Duncan FE, Padilla-Banks E, Bernhardt ML, Ord TS, Jefferson WN, Moss SB, Williams CJ. Transducin-like enhancer of split-6 (TLE6) is a substrate of protein kinase A activity during mouse oocyte maturation. Biol Reprod 2014; 90:63. [PMID: 24501176 DOI: 10.1095/biolreprod.113.112565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fully grown oocytes in the ovary are arrested at prophase of meiosis I because of high levels of intraoocyte cAMP that maintain increased levels of cAMP-dependent protein kinase (PKA) activity. Following the luteinizing hormone surge at the time of ovulation, cAMP levels drop, resulting in a reduction in PKA activity that triggers meiotic resumption. Although much is known about the molecular mechanisms of how PKA activity fluctuations initiate the oocyte's reentry into meiosis, significantly less is known about the requirement for PKA activity in the oocyte after exit from the prophase I arrest. Here we show that although PKA activity decreases in the oocyte upon meiotic resumption, it increases throughout meiotic progression from the time of germinal vesicle breakdown (GVBD) until the metaphase II (MII) arrest. Blocking this meiotic maturation-associated increase in PKA activity using the pharmacological inhibitor H89 resulted in altered kinetics of GVBD, defects in chromatin and spindle dynamics, and decreased ability of oocytes to reach MII. These effects appear to be largely PKA specific because inhibitors targeting other kinases did not have the same outcomes. To determine potential proteins that may require PKA phosphorylation during meiosis, we separated oocyte protein extracts on an SDS-PAGE gel, extracted regions of the gel that had corresponding immune reactivity towards an anti-PKA substrate antibody, and performed mass spectrometry and microsequencing. Using this approach, we identified transducin-like enhancer of split-6 (TLE6)-a maternal effect gene that is part of the subcortical maternal complex-as a putative PKA substrate. TLE6 localized to the oocyte cortex throughout meiosis in a manner that is spatially and temporally consistent with the localization of critical PKA subunits. Moreover, we demonstrated that TLE6 becomes phosphorylated in a narrow window following meiotic resumption, and H89 treatment can completely block this phosphorylation when added prior to GVBD but not after. Taken together, these results highlight the importance of oocyte-intrinsic PKA in regulating meiotic progression after the prophase I arrest and offer new insights into downstream targets of its activity.
Collapse
Affiliation(s)
- Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
285
|
Stapel LC, Vastenhouw NL. Message control in developmental transitions; deciphering chromatin's role using zebrafish genomics. Brief Funct Genomics 2013; 13:106-20. [PMID: 24170706 DOI: 10.1093/bfgp/elt045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Now that the sequencing of genomes has become routine, understanding how a given genome is used in different ways to obtain cell type diversity in an organism is the next frontier. How specific transcription programs are established during vertebrate embryogenesis, however, remains poorly understood. Transcription is influenced by chromatin structure, which determines the accessibility of DNA-binding proteins to the genome. Although large-scale genomics approaches have uncovered specific features of chromatin structure that are diagnostic for different cell types and developmental stages, our functional understanding of chromatin in transcriptional regulation during development is very limited. In recent years, zebrafish embryogenesis has emerged as an excellent vertebrate model system to investigate the functional relationship between chromatin organization, gene regulation and development in a dynamic environment. Here, we review how studies in zebrafish have started to improve our understanding of the role of chromatin structure in genome activation and pluripotency and in the potential inheritance of transcriptional states from parent to progeny.
Collapse
Affiliation(s)
- L Carine Stapel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| | | |
Collapse
|
286
|
Oldenbroek M, Robertson SM, Guven-Ozkan T, Spike C, Greenstein D, Lin R. Regulation of maternal Wnt mRNA translation in C. elegans embryos. Development 2013; 140:4614-23. [PMID: 24131629 DOI: 10.1242/dev.096313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The restricted spatiotemporal translation of maternal mRNAs, which is crucial for correct cell fate specification in early C. elegans embryos, is regulated primarily through the 3'UTR. Although genetic screens have identified many maternally expressed cell fate-controlling RNA-binding proteins (RBPs), their in vivo targets and the mechanism(s) by which they regulate these targets are less clear. These RBPs are translated in oocytes and localize to one or a few blastomeres in a spatially and temporally dynamic fashion unique for each protein and each blastomere. Here, we characterize the translational regulation of maternally supplied mom-2 mRNA, which encodes a Wnt ligand essential for two separate cell-cell interactions in early embryos. A GFP reporter that includes only the mom-2 3'UTR is translationally repressed properly in oocytes and early embryos, and then correctly translated only in the known Wnt signaling cells. We show that the spatiotemporal translation pattern of this reporter is regulated combinatorially by a set of nine maternally supplied RBPs. These nine proteins all directly bind the mom-2 3'UTR in vitro and function as positive or negative regulators of mom-2 translation in vivo. The net translational readout for the mom-2 3'UTR reporter is determined by competitive binding between positive- and negative-acting RBPs for the 3'UTR, along with the distinct spatiotemporal localization patterns of these regulators. We propose that the 3'UTR of maternal mRNAs contains a combinatorial code that determines the topography of associated RBPs, integrating positive and negative translational inputs.
Collapse
Affiliation(s)
- Marieke Oldenbroek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
287
|
MicroRNA-212 post-transcriptionally regulates oocyte-specific basic-helix-loop-helix transcription factor, factor in the germline alpha (FIGLA), during bovine early embryogenesis. PLoS One 2013; 8:e76114. [PMID: 24086699 PMCID: PMC3785419 DOI: 10.1371/journal.pone.0076114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/20/2013] [Indexed: 02/04/2023] Open
Abstract
Factor in the germline alpha (FIGLA) is an oocyte-specific basic helix-loop-helix transcription factor essential for primordial follicle formation and expression of many genes required for folliculogenesis, fertilization and early embryonic survival. Here we report the characterization of bovine FIGLA gene and its regulation during early embryogenesis. Bovine FIGLA mRNA expression is restricted to gonads and is detected in fetal ovaries harvested as early as 90 days of gestation. FIGLA mRNA and protein are abundant in germinal vesicle and metaphase II stage oocytes, as well as in embryos from pronuclear to eight-cell stage but barely detectable at morula and blastocyst stages, suggesting that FIGLA might be a maternal effect gene. Recent studies in zebrafish and mice have highlighted the importance of non-coding small RNAs (microRNAs) as key regulatory molecules targeting maternal mRNAs for degradation during embryonic development. We hypothesized that FIGLA, as a maternal transcript, is regulated by microRNAs during early embryogenesis. Computational predictions identified a potential microRNA recognition element (MRE) for miR-212 in the 3’ UTR of the bovine FIGLA mRNA. Bovine miR-212 is expressed in oocytes and tends to increase in four-cell and eight-cell stage embryos followed by a decline at morula and blastocyst stages. Transient transfection and reporter assays revealed that miR-212 represses the expression of FIGLA in a MRE dependent manner. In addition, ectopic expression of miR-212 mimic in bovine early embryos dramatically reduced the expression of FIGLA protein. Collectively, our results demonstrate that FIGLA is temporally regulated during bovine early embryogenesis and miR-212 is an important negative regulator of FIGLA during the maternal to zygotic transition in bovine embryos.
Collapse
|
288
|
Zheng Z, Zhao MH, Jia JL, Heo YT, Cui XS, Oh JS, Kim NH. Knockdown of maternal homeobox transcription factor SEBOX gene impaired early embryonic development in porcine parthenotes. J Reprod Dev 2013; 59:557-62. [PMID: 24018616 PMCID: PMC3934157 DOI: 10.1262/jrd.2013-050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A number of germ cell-specific transcription factors essential for ovarian formation
and folliculogenesis have been identified and studied. However, the role of these
factors during early embryonic development has been poorly explored. In the present
study, we investigated the role of SEBOX, a maternal homeobox transcription factor,
during early embryonic development in porcine parthenotes. mRNA for
SEBOX is preferentially expressed in oocytes, and expression
persists until embryonic genome activation (EGA). Knockdown of SEBOX by siRNA
disrupted early embryonic development, but not oocyte maturation. Many maternal genes
essential for early embryonic development were upregulated in SEBOX-depleted embryos.
Moreover, some pluripotency-associated genes, including SOX2 and
NANOG, were upregulated when SEBOX was knocked down. Therefore,
our data demonstrate that SEBOX is required for early embryonic development in pigs
and appears to regulate the degradation of maternal transcripts and the expression of
pluripotency genes.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
289
|
Wu G, Han D, Gong Y, Sebastiano V, Gentile L, Singhal N, Adachi K, Fischedick G, Ortmeier C, Sinn M, Radstaak M, Tomilin A, Schöler HR. Establishment of totipotency does not depend on Oct4A. Nat Cell Biol 2013; 15:1089-97. [PMID: 23934214 PMCID: PMC3845671 DOI: 10.1038/ncb2816] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 07/02/2013] [Indexed: 12/11/2022]
Abstract
Oct4A is a core component of the regulatory network of pluripotent cells, and by itself can reprogram neural stem cells into pluripotent cells in mouse and humans. However, its role in defining totipotency and inducing pluripotency during embryonic development is still unclear. We genetically eliminated maternal Oct4A using a Cre-lox approach in mouse and found that the establishment of totipotency was not affected, as shown by the generation of live pups. After complete inactivation of both maternal and zygotic Oct4A expression, the embryos still formed Oct4-GFP– and Nanog–expressing inner cell masses, albeit non-pluripotent, indicating that Oct4A is not a determinant for the pluripotent cell lineage separation. Interestingly, Oct4A-deficient oocytes were able to reprogram fibroblasts into pluripotent cells. Our results clearly demonstrate that, in contrast to its role in the maintenance of pluripotency, maternal Oct4A is crucial for neither the establishment of totipotency in embryos, nor the induction of pluripotency in somatic cells using oocytes.
Collapse
Affiliation(s)
- Guangming Wu
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Röntgenstrasse 20, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Agca C, Yakan A, Agca Y. Estrus synchronization and ovarian hyper-stimulation treatments have negligible effects on cumulus oocyte complex gene expression whereas induction of ovulation causes major expression changes. Mol Reprod Dev 2013; 80:102-17. [PMID: 23239112 DOI: 10.1002/mrd.22141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/29/2012] [Indexed: 02/02/2023]
Abstract
The effects of exogenous hormones, used for estrus synchronization and ovarian hyper stimulation, on cumulus oocyte complexes (COCs) gene expression in sexually mature rats were determined using microarrays. Gene expression in COCs collected from GnRH (G(trt)), GnRH + eCG (G + E(trt)), and GnRH + eCG + hCG (G + E + H(trt)) treatments were compared to COCs from naturally cycling (NC) rats before the preovulatory luteninizing hormone surge. There was no significant difference in gene expression among NC, G(trt), and G + E(trt); however, over 2,600 genes were significantly different between NC and G + E + H(trt) (P < 0.05). Genes upregulated in G + E + H(trt) encode for: proteins that are involved in prostaglandin synthesis (Ptgs2, Pla2g4a, and Runx1) and cholesterol biosynthesis (Hmgcr, Sc4mol, and Dhcr24); receptors that allow cholesterol uptake (Ldlr and Scarb1), regulate progesterone synthesis (Star), and inactivate estrogen (Sult1e1); and downstream effectors of LH signal (Pgr, Cebpb, Creb3l1, Areg, Ereg, and Adamts1). Conversely, G + E + H(trt) downregulated genes encoding proteins involved in: DNA replication and cell cycle progression (Ccne2, Orc5l, Rad50, and Mcm6); reproductive developmental process; and granulosa cell expansion (Gdf9, Bmp15, Amh, Amhr2, Bmpr1b, Tgfb2, Foxl2, Pde3a, Esr2, Fshr, Ybx2, Ccnd2, Ccnb1ip1, and Zp3); maternal effect genes required for embryo development (Zar1, Npm2, Nlrp5, Dnmt1, H1foo, and Zfp57); amino acid degradation; and ketogenesis (Hmgcs2, and Cpt1b). These results from the rat show that hormones used for estrus synchronization (G(trt)) and ovarian hyper stimulation (G + E(trt)) had minimal effects on gene expression, whereas induction of ovulation (G + E + H(trt)) caused major changes in gene expression of rat COCs. This study provides comprehensive information about regulated genes during late follicle development and ovulation induction.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
291
|
Denomme MM, Mann MRW. Maternal control of genomic imprint maintenance. Reprod Biomed Online 2013; 27:629-36. [PMID: 24125946 DOI: 10.1016/j.rbmo.2013.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/03/2013] [Accepted: 06/12/2013] [Indexed: 11/17/2022]
Abstract
Genomic imprinting is a specialized transcriptional phenomenon that employs epigenetic mechanisms to facilitate parental-specific expression. Perturbations in parental epigenetic asymmetry can lead to the development of imprinting disorders, such as Beckwith-Wiedemann syndrome and Angelman syndrome. DNA methylation is one of the most widely studied epigenetic marks that characterizes imprinted regions. During gametogenesis and early embryogenesis, imprinted methylation undergoes a cycle of erasure, acquisition and maintenance. Gamete and embryo manipulations for the purpose of assisted reproduction are performed during these reprogramming events and may lead to their disruption. Recent studies point to the role of maternal-effect proteins in imprinted gene regulation. Studies are now required to increase understanding of how these factors regulate genomic imprinting as well as how assisted reproduction technologies may alter their function.
Collapse
Affiliation(s)
- Michelle M Denomme
- Department of Obstetrics and Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada; Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada N6C 2V5
| | | |
Collapse
|
292
|
Chu DP, Tian S, Qi L, Hao CJ, Xia HF, Ma X. Abnormality of maternal-to-embryonic transition contributes to MEHP-induced mouse 2-cell block. J Cell Physiol 2013; 228:753-63. [PMID: 22949295 DOI: 10.1002/jcp.24222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/27/2012] [Indexed: 11/09/2022]
Abstract
Mono (2-ethylhexyl) phthalate (MEHP), an environmental contaminant, is known to cause many serious diseases, especially in reproductive system. However, little is known about the effect of MEHP on preimplantation embryo development. In this study, we found that the development of mouse 2-cell embryo was blocked by 10(-3) M MEHP. A significant increase in the level of reactive oxygen species (ROS) was observed in arrested 2-cell embryo following 10(-3) M MEHP treatment for 24 h. However, antioxidants, catalase (CAT), and superoxide dismutase (SOD), reduced intracellular ROS and protected MEHP-exposed embryos from death but failed to return the arrested embryos. Further experiments demonstrated that the level of apoptosis was not altered in live arrested 2-cell embryo and increased in dead arrested 2-cell embryo after MEHP treatment, which implied that ROS and apoptosis were not related with 2-cell block. During analysis of the indicators of embryonic genome activation (EGA) initiation (Hsc70, MuERV-L, Hsp70.1, eIF-1A, and Zscan4) and maternal-effect genes (OCT4 and SOX2), we found that MEHP treatment could significantly decline Hsc70, MuERV-L mRNA level and SOX2 protein level, and markedly enhance Hsp70.1, eIF-1A, Zscan4 mRNA level, and OCT4 protein level at 2-cell to 4-cell stage. Supplementation of CAT and SOD did not reverse the expression tendency of EGA related genes. Collectively, this study demonstrates for the first time that MEHP-induced 2-cell block is mediated by the failure of EGA onset and maternal-effect genes, not oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Da-Peng Chu
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China
| | | | | | | | | | | |
Collapse
|
293
|
Jiao ZX, Woodruff TK. Detection and quantification of maternal-effect gene transcripts in mouse second polar bodies: potential markers of embryo developmental competence. Fertil Steril 2013; 99:2055-61. [PMID: 23465709 DOI: 10.1016/j.fertnstert.2013.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To test the hypothesis that quantification of messenger RNAs originating from the second polar body (PB(2)) provides a noninvasive tool for assessing embryo quality. DESIGN Prospective study. SETTING Hospital-based academic research laboratory. ANIMAL(S) CD1 female mice. INTERVENTION(S) Metaphase II oocytes obtained from 7- to 8-week-old mice after pregnant mare's serum gonadotropin and hCG priming. After in vitro fertilization, the PB(2) was biopsied from zygote, followed by reverse transcription. Real-time polymerase chain reaction was performed to quantify gene expression levels in single PB(2). The sibling zygotes were continuously cultured to blastocyst stage. MAIN OUTCOME MEASURE(S) Embryo developmental competence and six maternal-effect gene (Dnmt1, Mater, Nobox, Npm2, Tcl1, and Zar1) transcripts in the PB(2). RESULT(S) Second polar body messenger RNA was detected in all candidate genes. Transcripts that were present in greater abundance in the zygote were more likely to be detected in quantitative polymerase chain reaction replicates from single PB(2). Four candidate genes (Dnmt1, Nobox, Npm2, and Tcl1) expression levels in PB(2) between two groups (two-cell embryo vs. blastocyts) approached statistical significance. CONCLUSION(S) Second polar bodies may contain a representative transcript profile to that of the zygote after fertilization. Differences in gene expression in PB(2) may be potential biomarkers of embryo quality.
Collapse
Affiliation(s)
- Ze-Xu Jiao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
294
|
Nishikawa S, Hatanaka Y, Tokoro M, Shin SW, Shimizu N, Nishihara T, Kato R, Takemoto A, Amano T, Anzai M, Kishigami S, Hosoi Y, Matsumoto K. Functional analysis of nocturnin, a circadian deadenylase, at maternal-to-zygotic transition in mice. J Reprod Dev 2013; 59:258-65. [PMID: 23449310 PMCID: PMC3934129 DOI: 10.1262/jrd.2013-001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Degradation of maternally stored mRNAs after fertilization is an essential process for
mammalian embryogenesis. Maternal mRNA degradation depending on deadenylases in mammalian
early embryos has been mostly speculated, rather than directly demonstrated. Previously,
we found that gene expression of nocturnin, which functions as a
circadian clock-controlled deadenylase in mammalian cells, was clearly changed during the
maternal-to-zygotic transition (MZT). Here, we investigated the possible role of nocturnin
during mouse MZT. First, we examined the expression profile and localization of nocturnin
in mouse oocytes and early embryos. The abundance of Nocturnin mRNA level
was significantly decreased from the MII to 4-cell stages and slightly increased from the
8-cell to blastocyst stages, whereas the Nocturnin protein level was almost stable in all
examined cells including GV and MII oocytes and early embryos. Nocturnin was localized in
both the cytoplasm and the nucleus of all examined cells. We then examined the effect of
loss or gain of Nocturnin function on early embryonic development.
Knockdown of Nocturnin by injection of Nocturnin
antisense expression vector into 1-cell embryos resulted in the delay of early embryonic
development to the early blastocyst stage. Moreover,
Nocturnin-overexpressed embryos by injection of
Nocturnin expression vector impaired their development from the 1-cell
to 2-cell or 4-cell stages. These results suggest that precise expression of nocturnin is
critical to proper development of early mouse embryos. Functional analysis of nocturnin
may contribute to the understanding of the possible role of the deadenylase at mouse
MZT.
Collapse
Affiliation(s)
- Satoshi Nishikawa
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama 649-6493, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Li L, Lu X, Dean J. The maternal to zygotic transition in mammals. Mol Aspects Med 2013; 34:919-38. [PMID: 23352575 DOI: 10.1016/j.mam.2013.01.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/15/2022]
Abstract
Prior to activation of the embryonic genome, the initiating events of mammalian development are under maternal control and include fertilization, the block to polyspermy and processing sperm DNA. Following gamete union, the transcriptionally inert sperm DNA is repackaged into the male pronucleus which fuses with the female pronucleus to form a 1-cell zygote. Embryonic transcription begins during the maternal to zygotic transfer of control in directing development. This transition occurs at species-specific times after one or several rounds of blastomere cleavage and is essential for normal development. However, even after activation of the embryonic genome, successful development relies on stored maternal components without which embryos fail to progress beyond initial cell divisions. Better understanding of the molecular basis of maternal to zygotic transition including fertilization, the activation of the embryonic genome and cleavage-stage development will provide insight into early human development that should translate into clinical applications for regenerative medicine and assisted reproductive technologies.
Collapse
Affiliation(s)
- Lei Li
- Division of Molecular Embryonic Development, State Key Laboratory of Reproductive Biology, Institute of Zoology/Chinese Academy of Sciences, Beijing 100101, PR China.
| | | | | |
Collapse
|
296
|
Sakatani M, Bonilla L, Dobbs KB, Block J, Ozawa M, Shanker S, Yao J, Hansen PJ. Changes in the transcriptome of morula-stage bovine embryos caused by heat shock: relationship to developmental acquisition of thermotolerance. Reprod Biol Endocrinol 2013; 11:3. [PMID: 23320502 PMCID: PMC3583805 DOI: 10.1186/1477-7827-11-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/11/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND While initially sensitive to heat shock, the bovine embryo gains thermal resistance as it progresses through development so that physiological heat shock has little effect on development to the blastocyst stage by Day 5 after insemination. Here, experiments using 3' tag digital gene expression (3'DGE) and real-time PCR were conducted to determine changes in the transcriptome of morula-stage bovine embryos in response to heat shock (40 degrees C for 8 h) that could be associated with thermotolerance. RESULTS Using 3'DGE, expression of 173 genes were modified by heat shock, with 94 genes upregulated by heat shock and 79 genes downregulated by heat shock. A total of 38 differentially-regulated genes were associated with the ubiquitin protein, UBC. Heat shock increased expression of one heat shock protein gene, HSPB11, and one heat shock protein binding protein, HSPBP1, tended to increase expression of HSPA1A and HSPB1, but did not affect expression of 64 other genes encoding heat shock proteins, heat shock transcription factors or proteins interacting with heat shock proteins. Moreover, heat shock increased expression of five genes associated with oxidative stress (AKR7A2, CBR1, GGH, GSTA4, and MAP2K5), decreased expression of HIF3A, but did not affect expression of 42 other genes related to free radical metabolism. Heat shock also had little effect on genes involved in embryonic development. Effects of heat shock for 2, 4 and 8 h on selected heat shock protein and antioxidant genes were also evaluated by real-time PCR. Heat shock increased steady-state amounts of mRNA for HSPA1A (P<0.05) and tended to increase expression of HSP90AA1 (P<0.07) but had no effect on expression of SOD1 or CAT. CONCLUSIONS Changes in the transcriptome of the heat-shocked bovine morula indicate that the embryo is largely resistant to effects of heat shock. As a result, transcription of genes involved in thermal protection is muted and there is little disruption of gene networks involved in embryonic development. It is likely that the increased resistance of morula-stage embryos to heat shock as compared to embryos at earlier stages of development is due in part to developmental acquisition of mechanisms to prevent accumulation of denatured proteins and free radical damage.
Collapse
Affiliation(s)
- Miki Sakatani
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Kumamoto, 861-1192, Japan
| | - Luciano Bonilla
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
- Present address: Minitube International Center for Biotechnology, Mt. Horeb, WI, 53572, USA
| | - Kyle B Dobbs
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
| | - Jeremy Block
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
- Ovatech LLC, Gainesville Florida, FL, 32608, USA
| | - Manabu Ozawa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
- Laboratory of Developmental Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Savita Shanker
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - JiQiang Yao
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
| |
Collapse
|
297
|
Abstract
Egg activation is the final transition that an oocyte goes through to become a developmentally competent egg. This transition is usually triggered by a calcium-based signal that is often, but not always, initiated by fertilization. Activation encompasses a number of changes within the egg. These include changes to the egg's membranes and outer coverings to prevent polyspermy and to support the developing embryo, as well as resumption and completion of the meiotic cell cycle, mRNA polyadenylation, translation of new proteins, and the degradation of specific maternal mRNAs and proteins. The transition from an arrested, highly differentiated cell, the oocyte, to a developmentally active, totipotent cell, the activated egg or embryo, represents a complete change in cellular state. This is accomplished by altering ion concentrations and by widespread changes in both the proteome and the suite of mRNAs present in the cell. Here, we review the role of calcium and zinc in the events of egg activation, and the importance of macromolecular changes during this transition. The latter include the degradation and translation of proteins, protein posttranslational regulation through phosphorylation, and the degradation, of maternal mRNAs.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
298
|
Smolyaninova ЕI, The Institute for Problems of Cryobiology and Cryomedicine. ELECTRIC CONDUCTIVITY OF MURINE EMBRYOS AT PREIMPLANTATION DEVELOPMENTAL STAGES AFTER OVARY HORMONAL STIMULATION IN ANIMALS. BIOTECHNOLOGIA ACTA 2013. [DOI: 10.15407/biotech6.01.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
299
|
Yamagata K, FitzHarris G. 4D imaging reveals a shift in chromosome segregation dynamics during mouse pre-implantation development. Cell Cycle 2012; 12:157-65. [PMID: 23255117 DOI: 10.4161/cc.23052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cells of the early developing mammalian embryo frequently mis-segregate chromosomes during cell division, causing daughter cells to inherit an erroneous numbers of chromosomes. Why the embryo is so susceptible to errors is unknown, and the mechanisms that embryos employ to accomplish chromosome segregation are poorly understood. Chromosome segregation is performed by the spindle, a fusiform-shaped microtubule-based transient organelle. Here we present a detailed analysis of 4D fluorescence-confocal data sets of live embryos progressing from the one-cell embryo stage through to blastocyst in vitro, providing some of the first mechanistic insights into chromosome segregation in the mammalian embryo. We show that chromosome segregation occurs as a combined result of poleward chromosome motion (anaphase-A) and spindle elongation (anaphase-B), which occur simultaneously at the time of cell division. Unexpectedly, however, regulation of the two anaphase mechanisms changes significantly between the first and second embryonic mitoses. In one-cell embryos, the velocity of anaphase-A chromosome motion and the velocity and overall extent of anaphase-B spindle elongation are significantly constrained compared with later stages. As a result chromosomes are delivered close to the center of the forming two-cell stage blastomeres at the end of the first mitosis. In subsequent divisions, anaphase-B spindle elongation is faster and more extensive, resulting in the delivery of chromosomes to the distal plasma membrane of the newly forming blastomeres. Metaphase spindle length scales with cell size from the two-cell stage onwards, but is substantially shorter in the first mitosis than in the second mitosis, and the duration of mitosis-1 is substantially greater than subsequent divisions. Thus, there is a striking and unexpected shift in the approach to cell division between the first and second mitotic divisions, which likely reflects adaptations to the unique environment within the developing embryo.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|
300
|
Mantikou E, Wong KM, Repping S, Mastenbroek S. Molecular origin of mitotic aneuploidies in preimplantation embryos. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1921-30. [DOI: 10.1016/j.bbadis.2012.06.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 01/06/2023]
|