251
|
SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 2009; 64:173-87. [PMID: 19874786 PMCID: PMC2788510 DOI: 10.1016/j.neuron.2009.08.018] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/19/2009] [Accepted: 08/21/2009] [Indexed: 11/20/2022]
Abstract
Nuclear movement is critical during neurogenesis and neuronal migration, which are fundamental for mammalian brain development. Although dynein, Lis1, and other cytoplasmic proteins are known for their roles in connecting microtubules to the nucleus during interkinetic nuclear migration (INM) and nucleokinesis, the factors connecting dynein/Lis1 to the nuclear envelope (NE) remain to be determined. We report here that the SUN-domain proteins SUN1 and SUN2 and the KASH-domain proteins Syne-1/Nesprin-1 and Syne-2/Nesprin-2 play critical roles in neurogenesis and neuronal migration in mice. We show that SUN1 and SUN2 redundantly form complexes with Syne-2 to mediate the centrosome-nucleus coupling during both INM and radial neuronal migration in the cerebral cortex. Syne-2 is connected to the centrosome through interactions with both dynein/dynactin and kinesin complexes. Syne-2 mutants also display severe defects in learning and memory. These results fill an important gap in our understanding of the mechanism of nuclear movement during brain development.
Collapse
|
252
|
Attenuated hypertrophic response to pressure overload in a lamin A/C haploinsufficiency mouse. J Mol Cell Cardiol 2009; 48:1290-7. [PMID: 19913544 DOI: 10.1016/j.yjmcc.2009.10.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/26/2009] [Indexed: 11/24/2022]
Abstract
Inherited mutations cause approximately 30% of all dilated cardiomyopathy cases, with autosomal dominant mutations in the LMNA gene accounting for more than one third of these. The LMNA gene encodes the nuclear envelope proteins lamins A and C, which provide structural support to the nucleus and also play critical roles in transcriptional regulation. Functional deletion of a single allele is sufficient to trigger dilated cardiomyopathy in humans and mice. However, whereas Lmna(-/-) mice develop severe muscular dystrophy and dilated cardiomyopathy and die by 8 weeks of age, heterozygous Lmna(+/-) mice have a much milder phenotype, with changes in ventricular function and morphology only becoming apparent at 1 year of age. Here, we studied 8- to 20-week-old Lmna(+/-) mice and wild-type littermates in a pressure overload model to examine whether increased mechanical load can accelerate or exacerbate myocardial dysfunction in the heterozygotes. While overall survival was similar between genotypes, Lmna(+/-) animals had a significantly attenuated hypertrophic response to pressure overload as evidenced by reduced ventricular mass and myocyte size. Analysis of pressure overload-induced transcriptional changes suggested that the reduced hypertrophy in the Lmna(+/-) mice was accompanied by impaired activation of the mechanosensitive gene Egr-1. In conclusion, our findings provide further support for a critical role of lamins A and C in regulating the cellular response to mechanical stress in cardiomyocytes and demonstrate that haploinsufficiency of lamins A and C alone is sufficient to alter hypertrophic responses and cardiac function in the face of pressure overload in the heart.
Collapse
|
253
|
Shibata Y, Hu J, Kozlov MM, Rapoport TA. Mechanisms Shaping the Membranes of Cellular Organelles. Annu Rev Cell Dev Biol 2009; 25:329-54. [DOI: 10.1146/annurev.cellbio.042308.113324] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoko Shibata
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Junjie Hu
- College of Life Sciences, Nankai University, 300071 Tianjin, China;
| | - Michael M. Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel;
| | - Tom A. Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
254
|
|
255
|
Zhang J, Felder A, Liu Y, Guo LT, Lange S, Dalton ND, Gu Y, Peterson KL, Mizisin AP, Shelton GD, Lieber RL, Chen J. Nesprin 1 is critical for nuclear positioning and anchorage. Hum Mol Genet 2009; 19:329-41. [PMID: 19864491 DOI: 10.1093/hmg/ddp499] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nesprin 1 is an outer nuclear membrane protein that is thought to link the nucleus to the actin cytoskeleton. Recent data suggest that mutations in Nesprin 1 may also be involved in the pathogenesis of Emery-Dreifuss muscular dystrophy. To investigate the function of Nesprin 1 in vivo, we generated a mouse model in which all isoforms of Nesprin 1 containing the C-terminal spectrin-repeat region with or without KASH domain were ablated. Nesprin 1 knockout mice are marked by decreased survival rates, growth retardation and increased variability in body weight. Additionally, nuclear positioning and anchorage are dysfunctional in skeletal muscle from knockout mice. Physiological testing demonstrated no significant reduction in stress production in Nesprin 1-deficient skeletal muscle in either neonatal or adult mice, but a significantly lower exercise capacity in knockout mice. Nuclear deformation testing revealed ineffective strain transmission to nuclei in muscle fibers lacking Nesprin 1. Overall, our data show that Nesprin 1 is essential for normal positioning and anchorage of nuclei in skeletal muscle.
Collapse
Affiliation(s)
- Jianlin Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0613, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Abstract
Defects in nuclear morphology often correlate with the onset of disease, including cancer, progeria, cardiomyopathy, and muscular dystrophy. However, the mechanism by which a cell controls its nuclear shape is unknown. Here, we use adhesive micropatterned surfaces to control the overall shape of fibroblasts and find that the shape of the nucleus is tightly regulated by the underlying cell adhesion geometry. We found that this regulation occurs through a dome-like actin cap that covers the top of the nucleus. This cap is composed of contractile actin filament bundles containing phosphorylated myosin, which form a highly organized, dynamic, and oriented structure in a wide variety of cells. The perinuclear actin cap is specifically disorganized or eliminated by inhibition of actomyosin contractility and rupture of the LINC complexes, which connect the nucleus to the actin cap. The organization of this actin cap and its nuclear shape-determining function are disrupted in cells from mouse models of accelerated aging (progeria) and muscular dystrophy with distorted nuclei caused by alterations of A-type lamins. These results highlight the interplay between cell shape, nuclear shape, and cell adhesion mediated by the perinuclear actin cap.
Collapse
|
257
|
Chi YH, Chen ZJ, Jeang KT. The nuclear envelopathies and human diseases. J Biomed Sci 2009; 16:96. [PMID: 19849840 PMCID: PMC2770040 DOI: 10.1186/1423-0127-16-96] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/22/2009] [Indexed: 12/30/2022] Open
Abstract
The nuclear envelope (NE) consists of two membrane layers that segregate the nuclear from the cytoplasmic contents. Recent progress in our understanding of nuclear-lamina associated diseases has revealed intriguing connections between the envelope components and nuclear processes. Here, we review the functions of the nuclear envelope in chromosome organization, gene expression, DNA repair and cell cycle progression, and correlate deficiencies in envelope function with human pathologies.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan, Republic of China
| | - Zi-Jie Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan, Republic of China
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Building 4, Room 306, 9000 Rockville Pike, Bethesda, MD 20892-0460, USA
| |
Collapse
|
258
|
Ostlund C, Folker ES, Choi JC, Gomes ER, Gundersen GG, Worman HJ. Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. J Cell Sci 2009; 122:4099-108. [PMID: 19843581 DOI: 10.1242/jcs.057075] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is situated in the nuclear envelope and forms a connection between the lamina and cytoskeletal elements. Sun1, Sun2 and nesprin-2 are important components of the LINC complex. We expressed these proteins fused to green fluorescent protein in embryonic fibroblasts and studied their diffusional mobilities using fluorescence recovery after photobleaching. We show that they all are more mobile in embryonic fibroblasts from mice lacking A-type lamins than in cells from wild-type mice. Knockdown of Sun2 also increased the mobility of a short, chimeric form of nesprin-2 giant (mini-nesprin-2G), whereas the lack of emerin did not affect the mobility of Sun1, Sun2 or mini-nesprin-2G. Fluorescence resonance energy transfer experiments showed Sun1 to be more closely associated with lamin A than is Sun2. Sun1 and Sun2 had similar affinity for the nesprin-2 KASH domain in plasmon surface resonance (Biacore) experiments. This affinity was ten times higher than that previously reported between nesprin-2 and actin. Deletion of the actin-binding domain had no effect on mini-nesprin-2G mobility. Our data support a model in which A-type lamins and Sun2 anchor nesprin-2 in the outer nuclear membrane, whereas emerin, Sun1 and actin are dispensable for this anchoring.
Collapse
Affiliation(s)
- Cecilia Ostlund
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
259
|
Chen S, Martin C, Maya-Mendoza A, Tang CW, Lovrić J, Sims PFG, Jackson DA. Reduced Expression of Lamin A/C Results in Modified Cell Signaling and Metabolism Coupled with Changes in Expression of Structural Proteins. J Proteome Res 2009; 8:5196-211. [DOI: 10.1021/pr900549a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Songbi Chen
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Catherine Martin
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Apolinar Maya-Mendoza
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Chi W. Tang
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Josip Lovrić
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Paul F. G. Sims
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Dean A. Jackson
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
260
|
Minn IL, Rolls MM, Hanna-Rose W, Malone CJ. SUN-1 and ZYG-12, mediators of centrosome-nucleus attachment, are a functional SUN/KASH pair in Caenorhabditis elegans. Mol Biol Cell 2009; 20:4586-95. [PMID: 19759181 DOI: 10.1091/mbc.e08-10-1034] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Klarsicht/ANC-1/Syne/homology (KASH)/Sad-1/UNC-84 (SUN) protein pairs can act as connectors between cytoplasmic organelles and the nucleoskeleton. Caenorhabditis elegans ZYG-12 and SUN-1 are essential for centrosome-nucleus attachment. Although SUN-1 has a canonical SUN domain, ZYG-12 has a divergent KASH domain. Here, we establish that the ZYG-12 mini KASH domain is functional and, in combination with a portion of coiled-coil domain, is sufficient for nuclear envelope localization. ZYG-12 and SUN-1 are hypothesized to be outer and inner nuclear membrane proteins, respectively, and to interact, but neither their topologies nor their physical interaction has been directly investigated. We show that ZYG-12 is a type II outer nuclear membrane (ONM) protein and that SUN-1 is a type II inner nuclear membrane protein. The proteins interact in the luminal space of the nuclear envelope via the ZYG-12 mini KASH domain and a region of SUN-1 that does not include the SUN domain. SUN-1 is hypothesized to restrict ZYG-12 to the ONM, preventing diffusion through the endoplasmic reticulum. We establish that ZYG-12 is indeed immobile at the ONM by using fluorescence recovery after photobleaching and show that SUN-1 is sufficient to localize ZYG-12 in cells. This work supports current models of KASH/SUN pairs and highlights the diversity in sequence elements defining KASH domains.
Collapse
Affiliation(s)
- I L Minn
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
261
|
Blau-Wasser R, Euteneuer U, Xiong H, Gassen B, Schleicher M, Noegel AA. CP250, a novel acidic coiled-coil protein of the Dictyostelium centrosome, affects growth, chemotaxis, and the nuclear envelope. Mol Biol Cell 2009; 20:4348-61. [PMID: 19692569 DOI: 10.1091/mbc.e09-03-0180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Dictyostelium centrosome is a nucleus associated body consisting of a box-shaped core surrounded by the corona, an amorphous matrix functionally equivalent to the pericentriolar material of animal centrosomes which is responsible for the nucleation and anchoring of microtubules. Here we describe CP250 a component of the corona, an acidic coiled coil protein that is present at the centrosome throughout interphase while disappearing during prophase and reappearing at the end of late telophase. Amino acids 756-1148 of the 2110 amino acids are sufficient for centrosomal targeting and cell cycle-dependent centrosome association. Mutant cells lacking CP250 are smaller in size, growth on bacteria is delayed, chemotaxis is altered, and development is affected, which, in general, are defects observed in cytoskeletal mutants. Furthermore, loss of CP250 affected the nuclear envelope and led to reduced amounts and altered distribution of Sun-1, a conserved nuclear envelope protein that connects the centrosome to chromatin.
Collapse
Affiliation(s)
- Rosemarie Blau-Wasser
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Köln, Germany
| | | | | | | | | | | |
Collapse
|
262
|
Razafsky D, Hodzic D. Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections. ACTA ACUST UNITED AC 2009; 186:461-72. [PMID: 19687252 PMCID: PMC2733748 DOI: 10.1083/jcb.200906068] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleus is the most prominent cellular organelle, and its sharp boundaries suggest the compartmentalization of the nucleoplasm from the cytoplasm. However, the recent identification of evolutionarily conserved linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes, a family of macromolecular assemblies that span the double membrane of the nuclear envelope, reveals tight physical connections between the two compartments. Here, we review the structure and evolutionary conservation of SUN and KASH domain–containing proteins, whose interaction within the perinuclear space forms the “nuts and bolts” of LINC complexes. Moreover, we discuss the function of these complexes in nuclear, centrosomal, and chromosome dynamics, and their connection to human disease.
Collapse
Affiliation(s)
- David Razafsky
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
263
|
McGee MD, Stagljar I, Starr DA. KDP-1 is a nuclear envelope KASH protein required for cell-cycle progression. J Cell Sci 2009; 122:2895-905. [PMID: 19638405 PMCID: PMC2724607 DOI: 10.1242/jcs.051607] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2009] [Indexed: 11/20/2022] Open
Abstract
Klarsicht, ANC-1 and Syne homology (KASH) proteins localize to the outer nuclear membrane where they connect the nucleus to the cytoskeleton. KASH proteins interact with Sad1-UNC-84 (SUN) proteins to transfer forces across the nuclear envelope to position nuclei or move chromosomes. A new KASH protein, KDP-1, was identified in a membrane yeast two-hybrid screen of a Caenorhabditis elegans library using the SUN protein UNC-84 as bait. KDP-1 also interacted with SUN-1. KDP-1 was enriched at the nuclear envelope in a variety of tissues and required SUN-1 for nuclear envelope localization in the germline. Genetic analyses showed that kdp-1 was essential for embryonic viability, larval growth and germline development. kdp-1(RNAi) delayed the entry into mitosis in embryos, led to a small mitotic zone in the germline, and caused an endomitotic phenotype. Aspects of these phenotypes were similar to those seen in sun-1(RNAi), suggesting that KDP-1 functions with SUN-1 in the germline and early embryo. The data suggest that KDP-1 is a novel KASH protein that functions to ensure the timely progression of the cell cycle between the end of S phase and the entry into mitosis.
Collapse
Affiliation(s)
- Matthew D McGee
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | | | | |
Collapse
|
264
|
Schulz I, Baumann O, Samereier M, Zoglmeier C, Gräf R. Dictyostelium Sun1 is a dynamic membrane protein of both nuclear membranes and required for centrosomal association with clustered centromeres. Eur J Cell Biol 2009; 88:621-38. [PMID: 19632001 DOI: 10.1016/j.ejcb.2009.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/23/2009] [Accepted: 06/26/2009] [Indexed: 11/25/2022] Open
Abstract
Centrosomal attachment to nuclei is crucial for proper mitosis and nuclear positioning in various organisms, and generally involves Sun-family proteins located at the inner nuclear envelope. There is still no common scheme for the outer nuclear membrane proteins interacting with Sun1 in centrosome/nucleus attachment. Here we propose a model in which Sun1 mediates a physical link between centrosomes and clustered centromeres through both nuclear membranes in Dictyostelium. For the first time we provide a detailed microscopic analysis of the centrosomal and nuclear envelope localization of endogenous Dictyostelium Sun1 during interphase and mitosis. By immunogold electron microscopy we show that Sun1 is a resident of both nuclear membranes. Disruption of Sun1 function by overexpression of full-length GFP-Sun1 or a GFP-Sun-domain deletion construct revealed not only the established function in centrosome/nucleus attachment and maintenance of ploidy, but also a requirement of Sun1 for the association of the centromere cluster with the centrosome. Live-cell imaging visualized the occurrence of mitotic defects, and demonstrated the requirement of microtubules for dynamic distance changes between centrosomes and nuclei. FRAP analysis revealed at least two populations of Sun1, with an immobile fraction associated with the centrosome, and a mobile fraction in the nuclear envelope.
Collapse
Affiliation(s)
- Irene Schulz
- Department of Cell Biology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
265
|
Marmiroli S, Bertacchini J, Beretti F, Cenni V, Guida M, De Pol A, Maraldi NM, Lattanzi G. A-type lamins and signaling: the PI 3-kinase/Akt pathway moves forward. J Cell Physiol 2009; 220:553-61. [PMID: 19479937 DOI: 10.1002/jcp.21807] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lamin A/C is a nuclear lamina constituent mutated in a number of human inherited disorders collectively referred to as laminopathies. The occurrence and significance of lamin A/C interplay with signaling molecules is an old question, suggested by pioneer studies performed in vitro. However, this relevant question has remained substantially unanswered, until data obtained in cellular and organismal models of laminopathies have indicated two main aspects of lamin A function. The first aspect is that lamins establish functional interactions with different protein platforms, the second aspect is that lamin A/C activity and altered function may elicit different effects in different cells and tissue types and even in different districts of the same tissue. Both these observations strongly suggest that signaling mechanisms targeting lamin A/C or its binding partners may regulate such a plastic behavior. A number of very recent data show involvement of kinases, as Akt and Erk, or phosphatases, as PP1 and PP2, in lamin A-linked cellular mechanisms. Moreover, altered activation of signaling in laminopathies and rescue of the pathological phenotype in animal models by inhibitors of signaling pathways, strongly suggest that signaling effectors related to lamin A/C may be implicated in the pathogenesis of laminopathies and may represent targets of therapeutic intervention. In face of such an open perspective of basic and applied research, we review current evidence of lamin A/C interplay with signaling molecules, with particular emphasis on the lamin A-Akt interaction and on the biological significance of their relationship.
Collapse
Affiliation(s)
- Sandra Marmiroli
- Department of Anatomy and Histology and CIPro Proteomics Centre, University of Modena and Reggio Emilia, Via Del Pozzo 71, I-41100 Modena, I.G.M.-CNR, Unit of Bologna, c/o IOR, via di Barbiano, Bologna I-40136, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Duplex (or quadruplet) CH domain containing human multidomain proteins: an inventory. Mol Biol Rep 2009; 37:1707-16. [PMID: 19565353 DOI: 10.1007/s11033-009-9589-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
In this paper, the inventory presented for singlet CH (calponin homology/actin binding) domain containing human multidomain proteins is extended to several duplex and one quadruplet CH containing forms. Invariably, the duplexes are located at the begin of the molecules. The regions connecting the two CH units suggest amino acid conservations which allows the placing of 18 duplex containing molecules into six groups wherein the gene for one member in each group created the others more recently by gene duplication. The ancient multidomain proteins, possibly, were primarily the result of an exon shuffling (transposition) mechanism that also guided the placing of the CH singlet or duplex domain at the amino end of the newly created proteins. A mechanism that creates pseudogenes could conceivably produce genes that encode multi-domain proteins. Intragenomic duplications (slippage) might have facilitated the occurrence of encoding repeats, thus allowing for the creation of multiple identical domains within one molecule. Gene duplication with subsequent modification and small domain gene recombination which formed multidomain proteins are important forces driving evolution.
Collapse
|
267
|
SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc Natl Acad Sci U S A 2009; 106:10207-12. [PMID: 19509342 DOI: 10.1073/pnas.0812037106] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How the nuclei in mammalian skeletal muscle fibers properly position themselves relative to the cell body is an interesting and important cell biology question. In the syncytial skeletal muscle cells, more than 100 nuclei are evenly distributed at the periphery of each cell, with 3-8 nuclei anchored beneath the neuromuscular junction (NMJ). Our previous studies revealed that the KASH domain-containing Syne-1/Nesprin-1 protein plays an essential role in anchoring both synaptic and nonsynaptic myonuclei in mice. SUN domain-containing proteins (SUN proteins) have been shown to interact with KASH domain-containing proteins (KASH proteins) at the nuclear envelope (NE), but their roles in nuclear positioning in mice are unknown. Here we show that the synaptic nuclear anchorage is partially perturbed in Sun1, but not in Sun2, knockout mice. Disruption of 3 or all 4 Sun1/2 wild-type alleles revealed a gene dosage effect on synaptic nuclear anchorage. The organization of nonsynaptic nuclei is disrupted in Sun1/2 double-knockout (DKO) mice as well. We further show that the localization of Syne-1 to the NE of muscle cells is disrupted in Sun1/2 DKO mice. These results clearly indicate that SUN1 and SUN2 function critically in skeletal muscle cells for Syne-1 localization at the NE, which is essential for proper myonuclear positioning.
Collapse
|
268
|
Gieni RS, Hendzel MJ. Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem Cell Biol 2009; 87:283-306. [PMID: 19234542 DOI: 10.1139/o08-133] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin exists as a dynamic equilibrium of monomers and polymers within the nucleus of living cells. It is utilized by the cell for many aspects of gene regulation, including mRNA processing, chromatin remodelling, and global gene expression. Polymeric actin is now specifically linked to transcription by RNA polymerase I, II, and III. An active process, requiring both actin polymers and myosin, appears to drive RNA polymerase I transcription, and is also implicated in long-range chromatin movement. This type of mechanism brings activated genes from separate chromosomal territories together, and then participates in their compartmentalization near nuclear speckles. Nuclear speckle formation requires polymeric actin, and factors promoting polymerization, such as profilin and PIP2, are concentrated there. A review of the literature shows that a functional population of G-actin cycles between the cytoplasm and the nucleoplasm. Its nuclear concentration is dependent on the cytoplasmic G-actin pool, as well as on the activity of import and export mechanisms and the availability of interactions that sequester it within the nucleus. The N-WASP-Arp2/3 actin polymer-nucleating mechanism functions in the nucleus, and its mediators, including NCK, PIP2, and Rac1, can be found in the nucleoplasm, where they likely influence the kinetics of polymer formation. The actin polymer species produced are tightly regulated, and may take on conformations not easily recognized by phalloidin. Many of the factors that cleave F-actin in the cytoplasm are present at high levels in the nucleoplasm, and are also likely to affect actin dynamics there. The absolute and relative G-actin content in the nucleoplasm and the cytoplasm of a cell contains information about the homeostatic state of that cell. We propose that the cycling of G-actin between the nucleus and cytoplasm represents a signal transduction mechanism that can function through both extremes of global cellular G-actin content. MAL signalling within the serum response factor pathway, when G-actin levels are low, represents a well-studied example of actin functioning in signal transduction. The translocation of NCK into the nucleus, along with G-actin, during dissolution of the cytoskeleton in response to DNA damage represents another instance of a unique signalling mechanism operating when G-actin levels are high.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, ABT6G1Z2, Canada
| | | |
Collapse
|
269
|
Fridkin A, Penkner A, Jantsch V, Gruenbaum Y. SUN-domain and KASH-domain proteins during development, meiosis and disease. Cell Mol Life Sci 2009; 66:1518-33. [PMID: 19125221 PMCID: PMC6485414 DOI: 10.1007/s00018-008-8713-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUN-domain proteins interact directly with KASH-domain proteins to form protein complexes that connect the nucleus to every major cytoskeleton network. SUN-KASH protein complexes are also required for attaching centrosomes to the nuclear periphery and for alignment of homologous chromosomes, their pairing and recombination in meiosis. Other functions that require SUN-domain proteins include the regulation of apoptosis and maturation and survival of the germline. Laminopathic diseases affect the distribution of the SUN-KASH complexes, and mutations in KASH-domain proteins can cause Emery Dreifuss muscular dystrophy and recessive cerebellar ataxia. This review describes our current knowledge of the role of SUN-KASH domain protein complexes during development, meiosis and disease.
Collapse
Affiliation(s)
- A. Fridkin
- Department of Genetics, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - A. Penkner
- Department of Chromosome Biology, Max F. Perutz Laboratories University of Vienna, A-1030 Vienna, Austria
| | - V. Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories University of Vienna, A-1030 Vienna, Austria
| | - Y. Gruenbaum
- Department of Genetics, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| |
Collapse
|
270
|
Olins AL, Hoang TV, Zwerger M, Herrmann H, Zentgraf H, Noegel AA, Karakesisoglou I, Hodzic D, Olins DE. The LINC-less granulocyte nucleus. Eur J Cell Biol 2009; 88:203-14. [PMID: 19019491 PMCID: PMC2671807 DOI: 10.1016/j.ejcb.2008.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/03/2008] [Accepted: 10/06/2008] [Indexed: 01/18/2023] Open
Abstract
The major blood granulocyte (neutrophil) is rapidly recruited to sites of bacterial and fungal infections. It is a highly malleable cell, allowing it to squeeze out of blood vessels and migrate through tight tissue spaces. The human granulocyte nucleus is lobulated and exhibits a paucity of nuclear lamins, increasing its capability for deformation. The present study examined the existence of protein connections between the nuclear envelope and cytoskeletal elements (the LINC complex) in differentiated cell states (i.e. granulocytic, monocytic and macrophage) of the human leukemic cell line HL-60, as well as in human blood leukocytes. HL-60 granulocytes exhibited a deficiency of several LINC complex proteins (i.e. nesprin 1 giant, nesprin 2 giant, SUN1, plectin and vimentin); whereas, the macrophage state revealed nesprin 1 giant, plectin and vimentin. Both states possessed SUN2 in the nuclear envelope. Parallel differences were observed with some of the LINC complex proteins in isolated human blood leukocytes, including macrophage cells derived from blood monocytes. The present study documenting the paucity of LINC complex proteins in granulocytic forms, in combination with previous data on granulocyte nuclear shape and nuclear envelope composition, suggest the hypothesis that these adaptations evolved to facilitate granulocyte cellular malleability.
Collapse
Affiliation(s)
- Ada L Olins
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Chi YH, Cheng LI, Myers T, Ward JM, Williams E, Su Q, Faucette L, Wang JY, Jeang KT. Requirement for Sun1 in the expression of meiotic reproductive genes and piRNA. Development 2009; 136:965-73. [PMID: 19211677 PMCID: PMC2727561 DOI: 10.1242/dev.029868] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2009] [Indexed: 12/20/2022]
Abstract
The inner nuclear envelope (NE) proteins interact with the nuclear lamina and participate in the architectural compartmentalization of chromosomes. The association of NE proteins with DNA contributes to the spatial rearrangement of chromosomes and their gene expression. Sun1 is an inner nuclear membrane (INM) protein that locates to telomeres and anchors chromosome movement in the prophase of meiosis. Here, we have created Sun1-/- mice and have found that these mice are born and grow normally but are reproductively infertile. Detailed molecular analyses showed that Sun1-/- P14 testes are repressed for the expression of reproductive genes and have no detectable piRNA. These findings raise a heretofore unrecognized role of Sun1 in the selective gene expression of coding and non-coding RNAs needed for gametogenesis.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Abstract
Positioning the nucleus is essential for the formation of polarized cells, pronuclear migration, cell division, cell migration and the organization of specialized syncytia such as mammalian skeletal muscles. Proteins that are required for nuclear positioning also function during chromosome movement and pairing in meiosis. Defects in these processes lead to human diseases including laminopathies. To properly position the nucleus or move chromosomes within the nucleus, the cell must specify the outer surface of the nucleus and transfer forces across both membranes of the nuclear envelope. KASH proteins are specifically recruited to the outer nuclear membrane by SUN proteins, which reside in the inner nuclear membrane. KASH and SUN proteins physically interact in the perinuclear space, forming a bridge across the two membranes of the nuclear envelope. The divergent N-terminal domains of KASH proteins extend from the surface of the nucleus into the cytoplasm and interact with the cytoskeleton, whereas the N-termini of SUN proteins extend into the nucleoplasm to interact with the lamina or chromatin. The bridge of SUN and KASH across the nuclear envelope functions to transfer forces that are generated in the cytoplasm into the nucleoplasm during nuclear migration, nuclear anchorage, centrosome attachment, intermediate-filament association and telomere clustering.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
273
|
KASH-domain proteins and the cytoskeletal landscapes of the nuclear envelope. Biochem Soc Trans 2009; 36:1368-72. [PMID: 19021557 DOI: 10.1042/bst0361368] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the last few years, several novel proteins have been identified that facilitate the physical integration of the nucleus with the cytoplasmic compartment. The majority belong to the evolutionarily conserved KASH [klarsicht/ANC-1 (anchorage 1)/SYNE (synaptic nuclear envelope protein) homology]-domain family, which function primarily as exclusive outer nuclear membrane scaffolds that associate with the cytoskeleton, the centrosome and the motor protein apparatus. In the present paper, we propose a novel model, which may explain why these proteins also determine nuclear architecture. Moreover, we discuss further nuclear membrane-tethering devices, which indicate collectively the presence of specific molecular mechanisms that organize the cytoplasmic-nuclear membrane interface in mammalian cells.
Collapse
|
274
|
Patterns of evolutionary conservation in the nesprin genes highlight probable functionally important protein domains and isoforms. Biochem Soc Trans 2009; 36:1359-67. [PMID: 19021556 DOI: 10.1042/bst0361359] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The nesprins [also known as SYNEs (synaptic nuclear envelope proteins)] are a family of type II transmembrane proteins implicated in the tethering of membrane-bound organelles and in the genetic aetiology of cerebellar ataxia and Emery-Dreifuss muscular dystrophy. They are characterized by a common structure of an SR (spectrin repeat) rod domain and a C-terminal transmembrane KLS (klarsicht)/KASH [klarsicht/ANC-1 (anchorage 1)/SYNE homology] domain which interacts with SUN [Sad1p/UNC (uncoordinated)-84] proteins in the nuclear envelope; most nesprins also have N-terminal actin-binding CH (calponin homology) domains. The genes encoding the three vertebrate nesprins (five in bony fish) and the small transmembrane actin-binding protein calmin are related to each other by ancient duplications and rearrangements. In the present paper, we collate sequence data for nesprins and calmins across the vertebrate clade and use these to study evolutionary constraints acting on their genes. We show that the rod domains of the larger nesprins are composed almost entirely of unbroken SR-like structures (74 in nesprin-1 and 56 in nesprin-2) and that these range from poorly conserved purely structural elements to highly conserved regions with a presumed protein-protein interaction function. The analysis suggests several interesting regions for future study. We also assess the evolutionary and EST (expressed sequence tag) expression support for nesprin isoforms, both known and novel; our findings suggest that substantial reassessment is required.
Collapse
|
275
|
Disturbed nuclear orientation and cellular migration in A-type lamin deficient cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:312-24. [DOI: 10.1016/j.bbamcr.2008.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 08/26/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
|
276
|
Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc Natl Acad Sci U S A 2009; 106:2194-9. [PMID: 19164528 DOI: 10.1073/pnas.0808602106] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin-Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1-3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning.
Collapse
|
277
|
Méjat A, Decostre V, Li J, Renou L, Kesari A, Hantaï D, Stewart CL, Xiao X, Hoffman E, Bonne G, Misteli T. Lamin A/C-mediated neuromuscular junction defects in Emery-Dreifuss muscular dystrophy. ACTA ACUST UNITED AC 2009; 184:31-44. [PMID: 19124654 PMCID: PMC2615092 DOI: 10.1083/jcb.200811035] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The LMNA gene encodes lamins A and C, two intermediate filament-type proteins that are important determinants of interphase nuclear architecture. Mutations in LMNA lead to a wide spectrum of human diseases including autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD), which affects skeletal and cardiac muscle. The cellular mechanisms by which mutations in LMNA cause disease have been elusive. Here, we demonstrate that defects in neuromuscular junctions (NMJs) are part of the disease mechanism in AD-EDMD. Two AD-EDMD mouse models show innervation defects including misexpression of electrical activity–dependent genes and altered epigenetic chromatin modifications. Synaptic nuclei are not properly recruited to the NMJ because of mislocalization of nuclear envelope components. AD-EDMD patients with LMNA mutations show the same cellular defects as the AD-EDMD mouse models. These results suggest that lamin A/C–mediated NMJ defects contribute to the AD-EDMD disease phenotype and provide insights into the cellular and molecular mechanisms for the muscle-specific phenotype of AD-EDMD.
Collapse
Affiliation(s)
- Alexandre Méjat
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 2009; 10:75-82. [DOI: 10.1038/nrm2594] [Citation(s) in RCA: 1229] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
279
|
Lu W, Gotzmann J, Sironi L, Jaeger VM, Schneider M, Lüke Y, Uhlén M, Szigyarto CAK, Brachner A, Ellenberg J, Foisner R, Noegel AA, Karakesisoglou I. Sun1 forms immobile macromolecular assemblies at the nuclear envelope. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2415-26. [DOI: 10.1016/j.bbamcr.2008.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 10/25/2022]
|
280
|
Puckelwartz MJ, Kessler E, Zhang Y, Hodzic D, Randles KN, Morris G, Earley JU, Hadhazy M, Holaska JM, Mewborn SK, Pytel P, McNally EM. Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 2008; 18:607-20. [PMID: 19008300 DOI: 10.1093/hmg/ddn386] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mutations in the gene encoding the inner nuclear membrane proteins lamins A and C produce cardiac and skeletal muscle dysfunction referred to as Emery Dreifuss muscular dystrophy. Lamins A and C participate in the LINC complex that, along with the nesprin and SUN proteins, LInk the Nucleoskeleton with the Cytoskeleton. Nesprins 1 and 2 are giant spectrin-repeat containing proteins that have large and small forms. The nesprins contain a transmembrane anchor that tethers to the nuclear membrane followed by a short domain that resides within the lumen between the inner and outer nuclear membrane. Nesprin's luminal domain binds directly to SUN proteins. We generated mice where the C-terminus of nesprin-1 was deleted. This strategy produced a protein lacking the transmembrane and luminal domains that together are referred to as the KASH domain. Mice homozygous for this mutation exhibit lethality with approximately half dying at or near birth from respiratory failure. Surviving mice display hindlimb weakness and an abnormal gait. With increasing age, kyphoscoliosis, muscle pathology and cardiac conduction defects develop. The protein components of the LINC complex, including mutant nesprin-1alpha, lamin A/C and SUN2, are localized at the nuclear membrane in this model. However, the LINC components do not normally associate since coimmunoprecipitation experiments with SUN2 and nesprin reveal that mutant nesprin-1 protein no longer interacts with SUN2. These findings demonstrate the role of the LINC complex, and nesprin-1, in neuromuscular and cardiac disease.
Collapse
|
281
|
Willis ND, Cox TR, Rahman-Casañs SF, Smits K, Przyborski SA, van den Brandt P, van Engeland M, Weijenberg M, Wilson RG, de Bruïne A, Hutchison CJ. Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 2008; 3:e2988. [PMID: 18714339 PMCID: PMC2496895 DOI: 10.1371/journal.pone.0002988] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/17/2008] [Indexed: 11/23/2022] Open
Abstract
Background A-type lamins are type V intermediate filament proteins encoded by the gene LMNA. Mutations in LMNA give rise to diverse degenerative diseases related to premature ageing. A-type lamins also influence the activity of the Retinoblastoma protein (pRb) and oncogenes such a β-catenin. Consequently, it has been speculated that expression of A-type lamins may also influence tumour progression. Methodology/Principal Findings An archive of colorectal cancer (CRC) and normal colon tissue was screened for expression of A-type lamins. We used the Cox proportional hazard ratio (HR) method to investigate patient survival. Using CRC cell lines we investigated the effects of lamin A expression on other genes by RT-PCR; on cell growth by FACS analysis; and on invasiveness by cell migration assays and siRNA knockdown of targeted genes. We found that lamin A is expressed in colonic stem cells and that patients with A-type lamin-expressing tumours have significantly worse prognosis than patients with A-type lamin negative tumours (HR = 1.85, p = 0.005). To understand this finding, we established a model system based upon expression of GFP-lamin A in CRC cells. We found that expression of GFP-lamin A in these cells did not affect cell proliferation but did promote greatly increased cell motility and invasiveness. The reason for this increased invasiveness was that expression of lamin A promoted up-regulation of the actin bundling protein T-plastin, leading to down regulation of the cell adhesion molecule E-cadherin. Conclusions Expression of A-type lamins increases the risk of death from CRC because its presence gives rise to increased invasiveness and potentially a more stem cell-like phenotype. This report directly links A-type lamin expression to tumour progression and raises the profile of LMNA from one implicated in multiple but rare genetic conditions to a gene involved in one of the commonest diseases in the Western World.
Collapse
Affiliation(s)
- Naomi D. Willis
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Thomas R. Cox
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | | | - Kim Smits
- Department of Epidemiology, University of Maastricht, Maastricht, The Netherlands
| | - Stefan A. Przyborski
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Piet van den Brandt
- Department of Epidemiology, University of Maastricht, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, University of Maastricht, Maastricht, The Netherlands
| | - Matty Weijenberg
- Department of Epidemiology, University of Maastricht, Maastricht, The Netherlands
| | | | - Adriaan de Bruïne
- Department of Pathology, University of Maastricht, Maastricht, The Netherlands
| | - Christopher J. Hutchison
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
- * E-mail:
| |
Collapse
|
282
|
Abstract
The human genome is contained within the nucleus and is separated from the cytoplasm by the nuclear envelope. Mutations in the nuclear envelope proteins emerin and lamin A cause a number of diseases including premature aging syndromes, muscular dystrophy, and cardiomyopathy. Emerin and lamin A are implicated in regulating muscle- and heart-specific gene expression and nuclear architecture. For example, lamin A regulates the expression and localization of gap junction and intercalated disc components. Additionally, emerin and lamin A are also required to maintain nuclear envelope integrity. Demonstrating the importance of maintaining nuclear integrity in heart disease, atrioventricular node cells lacking lamin A exhibit increased nuclear deformation and apoptosis. This review highlights the present understanding of lamin A and emerin function in regulating nuclear architecture, gene expression, and cell signaling and discusses putative mechanisms for how specific mutations in lamin A and emerin cause cardiac- or muscle-specific disease.
Collapse
Affiliation(s)
- James M. Holaska
- From the Department of Medicine, Section of Cardiology, University of Chicago, Ill
| |
Collapse
|
283
|
Pekovic V, Hutchison CJ. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 2008; 213:5-25. [PMID: 18638067 PMCID: PMC2475560 DOI: 10.1111/j.1469-7580.2008.00928.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2008] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells have been identified in most mammalian tissues of the adult body and are known to support the continuous repair and regeneration of tissues. A generalized decline in tissue regenerative responses associated with age is believed to result from a depletion and/or a loss of function of adult stem cells, which itself may be a driving cause of many age-related disease pathologies. Here we review the striking similarities between tissue phenotypes seen in many degenerative conditions associated with old age and those reported in age-related nuclear envelope disorders caused by mutations in the LMNA gene. The concept is beginning to emerge that nuclear filament proteins, A-type lamins, may act as signalling receptors in the nucleus required for receiving and/or transducing upstream cytosolic signals in a number of pathways central to adult stem cell maintenance as well as adaptive responses to stress. We propose that during ageing and in diseases caused by lamin A mutations, dysfunction of the A-type lamin stress-resistant signalling network in adult stem cells, their progenitors and/or stem cell niches leads to a loss of protection against growth-related stress. This in turn triggers an inappropriate activation or a complete failure of self-renewal pathways with the consequent initiation of stress-induced senescence. As such, A-type lamins should be regarded as intrinsic modulators of ageing within adult stem cells and their niches that are essential for survival to old age.
Collapse
Affiliation(s)
- Vanja Pekovic
- School of Biological and Biomedical Science, Integrated Cell Biology Laboratories, Durham University, South Road, Durham DH1 3LE, UK.
| | | |
Collapse
|
284
|
Abstract
In eukaryotic cells, the nucleus contains the genome and is the site of transcriptional regulation. The nucleus is the largest and stiffest organelle and is exposed to mechanical forces transmitted through the cytoskeleton from outside the cell and from force generation within the cell. Here, we discuss the effect of intra- and extracellular forces on nuclear shape and structure and how these force-induced changes could be implicated in nuclear mechanotransduction, ie, force-induced changes in cell signaling and gene transcription. We review mechanical studies of the nucleus and nuclear structural proteins, such as lamins. Dramatic changes in nuclear shape, organization, and stiffness are seen in cells where lamin proteins are mutated or absent, as in genetically engineered mice, RNA interference studies, or human disease. We examine the different mechanical pathways from the force-responsive cytoskeleton to the nucleus. We also highlight studies that link changes in nuclear shape with cell function during developmental, physiological, and pathological modifications. Together, these studies suggest that the nucleus itself may play an important role in the response of the cell to force.
Collapse
Affiliation(s)
- Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
285
|
Lüke Y, Zaim H, Karakesisoglou I, Jaeger VM, Sellin L, Lu W, Schneider M, Neumann S, Beijer A, Munck M, Padmakumar VC, Gloy J, Walz G, Noegel AA. Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. J Cell Sci 2008; 121:1887-98. [PMID: 18477613 DOI: 10.1242/jcs.019075] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Giant isoforms, encoded by Nesprin-1 (Syne1) and Nesprin-2 (Syne2), are multifunctional actin-binding and nuclear-envelope-associated proteins belonging to the spectrin superfamily. Here, we investigate the function of Nesprin-2 Giant (NUANCE) in skin by generating mice lacking the actin-binding domain of Nesprin-2 (Nesprin-2DeltaABD). This loss results in a slight but significant thickening of the epidermis, which is a consequence of the increased epithelial nuclear size. Nonetheless, epidermal proliferation and differentiation appear normal in the knockout epidermis. Surprisingly, Nesprin-2 C-terminal-isoform expression and nuclear envelope localization were affected in certain tissues. Nuclei of primary dermal knockout fibroblasts and keratinocytes were heavily misshapen, displaying a striking similarity to nuclear deformations characteristic of laminopathies. Furthermore, emerin, the protein involved in the X-linked form of Emery-Dreifuss muscular dystrophy (EDMD), was unevenly distributed along the nuclear envelope in mutant fibroblasts, often forming aggregates in the deformed nuclear envelope areas. Thus, Nesprin-2 is an important scaffold protein implicated in the maintenance of nuclear envelope architecture. Aged knockout fibroblasts readily generated, by alternative splicing and alternative translation initiation, aberrant Nesprin-2 Giant isoforms that lacked an ABD but that were sufficient to restore nuclear shape and emerin localization; this suggests that other regions of Nesprin-2 Giant, potentially including its spectrin repeats, are crucial for these functions.
Collapse
Affiliation(s)
- Yvonne Lüke
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
The nuclear envelope as an integrator of nuclear and cytoplasmic architecture. FEBS Lett 2008; 582:2023-32. [PMID: 18474238 DOI: 10.1016/j.febslet.2008.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
Initially perceived as little more than a container for the genome, our view of the nuclear envelope (NE) and its role in defining global nuclear architecture has evolved significantly in recent years. The recognition that certain human diseases arise from defects in NE components has provided new insight into its structural and regulatory functions. In particular, NE defects associated with striated muscle disease have been shown to cause structural perturbations not just of the nucleus itself but also of the cytoplasm. It is now becoming increasingly apparent that these two compartments display co-dependent mechanical properties. The identification of cytoskeletal binding complexes that localize to the NE now reveals a molecular framework that can seamlessly integrate nuclear and cytoplasmic architecture.
Collapse
|
287
|
Experimental techniques for study of chromatin mechanics in intact nuclei and living cells. Chromosome Res 2008; 16:499-510. [DOI: 10.1007/s10577-008-1232-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
288
|
Stewart-Hutchinson P, Hale CM, Wirtz D, Hodzic D. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp Cell Res 2008; 314:1892-905. [PMID: 18396275 PMCID: PMC2562747 DOI: 10.1016/j.yexcr.2008.02.022] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/21/2008] [Accepted: 02/26/2008] [Indexed: 11/27/2022]
Abstract
The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affect cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins.
Collapse
Affiliation(s)
- P.J. Stewart-Hutchinson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Christopher M. Hale
- Department of Chemical and Biochemical Engineering and Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biochemical Engineering and Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Didier Hodzic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
289
|
Ketema M, Wilhelmsen K, Kuikman I, Janssen H, Hodzic D, Sonnenberg A. Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin. J Cell Sci 2008; 120:3384-94. [PMID: 17881500 DOI: 10.1242/jcs.014191] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer nuclear membrane proteins nesprin-1 and nesprin-2 are retained at the nuclear envelope through an interaction of their klarsicht/ANC-1/syne homology (KASH) domain with Sun proteins present at the inner nuclear membrane. We investigated the requirements for the localization of nesprin-3alpha at the outer nuclear membrane and show that the mechanism by which its localization is mediated is similar to that reported for the localization of nesprin-1 and nesprin-2: the last four amino acids of the nesprin-3alpha KASH domain are essential for its interaction with Sun1 and Sun2. Moreover, deletion of these amino acids or knockdown of the Sun proteins results in a redistribution of nesprin-3alpha away from the nuclear envelope and into the endoplasmic reticulum (ER), where it becomes colocalized with the cytoskeletal crosslinker protein plectin. Both nesprin-3alpha and plectin can form dimers, and dimerization of plectin is required for its interaction with nesprin-3alpha at the nuclear envelope, which is mediated by its N-terminal actin-binding domain. Additionally, overexpression of the plectin actin-binding domain stabilizes the actin cytoskeleton and prevents the recruitment of endogenous plectin to the nuclear envelope. Our studies support a model in which the actin cytoskeleton influences the binding of plectin dimers to dimers of nesprin-3alpha, which in turn are retained at the nuclear envelope through an interaction with Sun proteins.
Collapse
Affiliation(s)
- Mirjam Ketema
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
290
|
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22:832-53. [PMID: 18381888 PMCID: PMC2732390 DOI: 10.1101/gad.1652708] [Citation(s) in RCA: 746] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Katrin Pfleghaar
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Kaushik Sengupta
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Dale K. Shumaker
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Liliana Solimando
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
291
|
A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, HAP95. Exp Cell Res 2008; 314:1519-28. [DOI: 10.1016/j.yexcr.2008.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/21/2007] [Accepted: 01/11/2008] [Indexed: 02/06/2023]
|
292
|
Xiong H, Rivero F, Euteneuer U, Mondal S, Mana-Capelli S, Larochelle D, Vogel A, Gassen B, Noegel AA. Dictyostelium Sun-1 connects the centrosome to chromatin and ensures genome stability. Traffic 2008; 9:708-24. [PMID: 18266910 DOI: 10.1111/j.1600-0854.2008.00721.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The centrosome-nucleus attachment is a prerequisite for faithful chromosome segregation during mitosis. We addressed the function of the nuclear envelope (NE) protein Sun-1 in centrosome-nucleus connection and the maintenance of genome stability in Dictyostelium discoideum. We provide evidence that Sun-1 requires direct chromatin binding for its inner nuclear membrane targeting. Truncation of the cryptic N-terminal chromatin-binding domain of Sun-1 induces dramatic separation of the inner from the outer nuclear membrane and deformations in nuclear morphology, which are also observed using a Sun-1 RNAi construct. Thus, chromatin binding of Sun-1 defines the integrity of the nuclear architecture. In addition to its role as a NE scaffold, we find that abrogation of the chromatin binding of Sun-1 dissociates the centrosome-nucleus connection, demonstrating that Sun-1 provides an essential link between the chromatin and the centrosome. Moreover, loss of the centrosome-nucleus connection causes severe centrosome hyperamplification and defective spindle formation, which enhances aneuploidy and cell death significantly. We highlight an important new aspect for Sun-1 in coupling the centrosome and nuclear division during mitosis to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
- Huajiang Xiong
- Center for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Commisso C, Boulianne GL. The neuralized homology repeat 1 domain of Drosophila neuralized mediates nuclear envelope association and delta-dependent inhibition of nuclear import. J Mol Biol 2008; 375:1125-40. [PMID: 18076903 DOI: 10.1016/j.jmb.2007.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/08/2007] [Accepted: 11/12/2007] [Indexed: 01/25/2023]
Abstract
Signaling by the Notch (N) pathway is critical for many developmental processes and requires complex trafficking of both the N receptor and its transmembrane ligands, Delta (Dl) and Serrate. neuralized encodes an E3 ubiquitin ligase required for N ligand internalization. Neuralized (Neur) is conserved from worms to humans and comprises two Neur homology repeat (NHR) domains, NHR1 and NHR2, and a carboxyl-terminal RING domain. We have previously shown that the RING domain is required for ubiquitin ligase activity and that NHR1 mediates binding to Dl, a ubiquitination target. In Drosophila, Neur associates with the plasma membrane and hepatocyte responsive serum phosphoprotein-positive endosomes. Here we demonstrate that Neur also exhibits nuclear envelope localization. We have determined that Neur subcellular localization is regulated by nuclear trafficking and that inhibition of chromosome region maintenance 1, a nuclear export receptor, interferes with Neur nuclear export, trapping Neur in the nucleus. Moreover, we demonstrate that nuclear envelope localization is mediated by the Neur NHR1 domain. Interestingly, Dl expression in Schneider cells is sufficient to inhibit Neur nuclear import and inhibition occurs in an NHR1-dependent manner, suggesting that Neur nuclear localization occurs in contexts where Dl expression is either low or absent. Consistent with this, we found that Neur exhibits nuclear trafficking and associates with the nuclear envelope in the secretory cells of the larval salivary gland and that overexpression of Dl can reduce Neur localization to the nucleus. Altogether, our data demonstrate that Neur localizes to the nuclear envelope and that this localization can be negatively regulated by Dl, suggesting a possible nuclear function for Neur in Drosophila.
Collapse
Affiliation(s)
- Cosimo Commisso
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada
| | | |
Collapse
|
294
|
Parnaik VK. Role of Nuclear Lamins in Nuclear Organization, Cellular Signaling, and Inherited Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:157-206. [DOI: 10.1016/s1937-6448(07)66004-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
295
|
Cohen TV, Stewart CL. Fraying at the edge mouse models of diseases resulting from defects at the nuclear periphery. Curr Top Dev Biol 2008; 84:351-84. [PMID: 19186248 DOI: 10.1016/s0070-2153(08)00607-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Eukaryotic cells compartmentalize their genetic material within the nucleus. The boundary separating the genetic material from the cytoplasm is the nuclear envelope (NE) and lamina. Historically, the NE was perceived as functioning primarily as a barrier regulating the entry and exit of macromolecules between the nucleus and cytoplasm via the nuclear pore complexes (NPCs) that traverse the nuclear membranes. However, recent findings have caused a fundamental reassessment with regard to NE and lamina functions. Evidence now points to the NE and lamina functioning as a "hub" in regulating and perhaps integrating critical cellular functions that include chromatin organization, transcriptional regulation, mechanical integrity of the cell, signaling pathways, as well as acting as a key component of the cytoskeleton. Such an integral role for the nuclear boundary has emerged from increased interest into the functions of the NE/lamina, which has been largely stimulated by the discovery that some 24 different diseases and anomalies are caused by defects in proteins of the NE and lamina.
Collapse
Affiliation(s)
- Tatiana V Cohen
- Center for Genetic Medicine, Children's National Medical Center, N.W. Washington, DC 20010, USA
| | | |
Collapse
|
296
|
Liu Q, Pante N, Misteli T, Elsagga M, Crisp M, Hodzic D, Burke B, Roux KJ. Functional association of Sun1 with nuclear pore complexes. ACTA ACUST UNITED AC 2007; 178:785-98. [PMID: 17724119 PMCID: PMC2064544 DOI: 10.1083/jcb.200704108] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sun1 and 2 are A-type lamin-binding proteins that, in association with nesprins, form a link between the inner nuclear membranes (INMs) and outer nuclear membranes of mammalian nuclear envelopes. Both immunofluorescence and immunoelectron microscopy reveal that Sun1 but not Sun2 is intimately associated with nuclear pore complexes (NPCs). Topological analyses indicate that Sun1 is a type II integral protein of the INM. Localization of Sun1 to the INM is defined by at least two discrete regions within its nucleoplasmic domain. However, association with NPCs is dependent on the synergy of both nucleoplasmic and lumenal domains. Cells that are either depleted of Sun1 by RNA interference or that overexpress dominant-negative Sun1 fragments exhibit clustering of NPCs. The implication is that Sun1 represents an important determinant of NPC distribution across the nuclear surface.
Collapse
Affiliation(s)
- Qian Liu
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Stewart CL, Roux KJ, Burke B. Blurring the Boundary: The Nuclear Envelope Extends Its Reach. Science 2007; 318:1408-12. [DOI: 10.1126/science.1142034] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
298
|
Bupp JM, Martin AE, Stensrud ES, Jaspersen SL. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. ACTA ACUST UNITED AC 2007; 179:845-54. [PMID: 18039933 PMCID: PMC2099192 DOI: 10.1083/jcb.200706040] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Positioning of telomeres at the nuclear periphery can have dramatic effects on gene expression by establishment of heritable, transcriptionally repressive subdomains. However, little is known about the integral membrane proteins that mediate telomere tethering at the nuclear envelope. Here, we find a previously unrecognized function for the Saccharomyces cerevisiae Sad1-UNC-84 domain protein Mps3 in regulating telomere positioning in mitotic cells. Our data demonstrate that the nucleoplasmic N-terminal acidic domain of Mps3 is not essential for viability. However, this acidic domain is necessary and sufficient for telomere tethering during S phase and the silencing of reporter constructs integrated at telomeres. We show that this is caused by the role of the Mps3 acidic domain in binding and localization of the silent information regulator protein Sir4 to the nuclear periphery. Thus, Mps3 functions as an integral membrane anchor for telomeres and is a novel nuclear receptor for the Sir4 pathway of telomere tethering and gene inactivation.
Collapse
Affiliation(s)
- Jennifer M Bupp
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
299
|
Kandert S, Lüke Y, Kleinhenz T, Neumann S, Lu W, Jaeger VM, Munck M, Wehnert M, Müller CR, Zhou Z, Noegel AA, Dabauvalle MC, Karakesisoglou I. Nesprin-2 giant safeguards nuclear envelope architecture in LMNA S143F progeria cells. Hum Mol Genet 2007; 16:2944-59. [PMID: 17881656 DOI: 10.1093/hmg/ddm255] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The S143F lamin A/C point mutation causes a phenotype combining features of myopathy and progeria. We demonstrate here that patient dermal fibroblast cells have dysmorphic nuclei containing numerous blebs and lobulations, which progressively accumulate as cells age in culture. The lamin A/C organization is altered, showing intranuclear and nuclear envelope (NE) aggregates and presenting often a honeycomb appearance. Immunofluorescence microscopy showed that nesprin-2 C-terminal isoforms and LAP2alpha were recovered in the cytoplasm, whereas LAP2beta and emerin were unevenly localized along the NE. In addition, the intranuclear organization of acetylated histones, histone H1 and the active form of RNA polymerase II were markedly different in patient cells. A subpopulation of mutant cells, however, expressing the 800 kDa nesprin-2 giant isoform, did not show an overt nuclear phenotype. Ectopic expression of p.S143F lamin A in fibroblasts recapitulates the patient cell phenotype, whereas no effects were observed in p.S143F LMNA keratinocytes, which highly express nesprin-2 giant. Overexpression of the mutant lamin A protein had a more severe impact on the NE of nesprin-2 giant deficient fibroblasts when compared with wild-type. In summary, our results suggest that the p.S143F lamin A mutation affects NE architecture and composition, chromatin organization, gene expression and transcription. Furthermore, our findings implicate a direct involvement of the nesprins in laminopathies and propose nesprin-2 giant as a structural reinforcer at the NE.
Collapse
Affiliation(s)
- Sebastian Kandert
- Department of Cell and Developmental Biology, University of Würzburg, D97074, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Chi YH, Haller K, Peloponese JM, Jeang KT. Histone Acetyltransferase hALP and Nuclear Membrane Protein hsSUN1 Function in De-condensation of Mitotic Chromosomes. J Biol Chem 2007; 282:27447-27458. [PMID: 17631499 DOI: 10.1074/jbc.m703098200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicated mammalian chromosomes condense to segregate during anaphase, and they de-condense at the conclusion of mitosis. Currently, it is not understood what the factors and events are that specify de-condensation. Here, we demonstrate that chromosome de-condensation needs the function of an inner nuclear membrane (INM) protein hsSUN1 and a membrane-associated histone acetyltransferase (HAT), hALP. We propose that nascently reforming nuclear envelope employs hsSUN1 and hALP to acetylate histones for de-compacting DNA at the end of mitosis.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Kerstin Haller
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Jean-Marie Peloponese
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|