251
|
Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z, Roux P, Zurzolo C. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci 2013; 126:3678-85. [PMID: 23781027 DOI: 10.1242/jcs.126086] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by CAG expansion in the huntingtin gene, which adds a homopolymeric tract of polyglutamine (polyQ) to the encoded protein leading to the formation of toxic aggregates. Despite rapidly accumulating evidences supporting a role for intercellular transmission of protein aggregates, little is known about whether and how huntingtin (Htt) misfolding progresses through the brain. It has been recently reported that synthetic polyQ peptides and recombinant fragments of mutant Htt are readily internalized in cell cultures and able to seed polymerization of a reporter wild-type Htt. However, there is no direct evidence of aggregate transfer between cells and the mechanism has not been explored. By expressing recombinant fragments of mutant Htt in neuronal cells and in primary neurons, we found that aggregated fragments formed within one cell spontaneously transfer to neighbors in cell culture. We demonstrate that the intercellular spreading of the aggregates requires cell-cell contact and does not occur upon aggregate secretion. Interestingly, we found that the expression of mutant, but not wild-type Htt fragments, increases the number of tunneling nanotubes, which in turn provide an efficient mechanism of transfer.
Collapse
Affiliation(s)
- Maddalena Costanzo
- Institut Pasteur, Unité de traffic membranaire et pathogenèse, 28 rue du Docteur Roux 75724 Paris, Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
252
|
|
253
|
The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J 2013; 452:1-17. [DOI: 10.1042/bj20121898] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The misfolding and aggregation of specific proteins is a common hallmark of many neurodegenerative disorders, including highly prevalent illnesses such as Alzheimer's and Parkinson's diseases, as well as rarer disorders such as Huntington's and prion diseases. Among these, only prion diseases are ‘infectious’. By seeding misfolding of the PrPC (normal conformer prion protein) into PrPSc (abnormal disease-specific conformation of prion protein), prions spread from the periphery of the body to the central nervous system and can also be transmitted between individuals of the same or different species. However, recent exciting data suggest that the transmissibility of misfolded proteins within the brain is a property that goes way beyond the rare prion diseases. Evidence indicates that non-prion aggregates [tau, α-syn (α-synuclein), Aβ (amyloid-β) and Htt (huntingtin) aggregates] can also move between cells and seed the misfolding of their normal conformers. These findings have enormous implications. On the one hand they question the therapeutical use of transplants, and on the other they indicate that it may be possible to bring these diseases to an early arrest by preventing cell-to-cell transmission. To better understand the prion-like spread of these protein aggregates it is essential to identify the underlying cellular and molecular factors. In the present review we analyse and discuss the evidence supporting prion-like spreading of amyloidogenic proteins, especially focusing on the cellular and molecular mechanisms and their significance.
Collapse
|
254
|
Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M, Abu-Kaoud N, Jacob A, Mirshahi M, Galas L, Rafii S, Le Foll F, Rafii A. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med 2013; 11:94. [PMID: 23574623 PMCID: PMC3668949 DOI: 10.1186/1479-5876-11-94] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/27/2013] [Indexed: 01/14/2023] Open
Abstract
Our vision of cancer has changed during the past decades. Indeed tumors are now perceived as complex entities where tumoral and stromal components interact closely. Among the different elements of tumor stroma the cellular component play a primordial role. Bone Marrow derived mesenchymal cells (MSCs) are attracted to tumor sites and support tumor growth. Endothelial cells (ECs) play a major role in angiogenesis. While the literature documents many aspects of the cross talk between stromal and cancer cells, the role of direct hetero-cellular contact is not clearly established. Recently, Tunneling nanotubes (TnTs) have been shown to support cell-to-cell transfers of plasma membrane components, cytosolic molecules and organelles within cell lines. Herein, we have investigated the formation of heterocellular TnTs between stromal (MSCs and ECs) and cancer cells. We demonstrate that TnTs occur between different cancer cells, stromal cells and cancer-stromal cell lines. We showed that TnTs-like structure occurred in 3D anchorage independent spheroids and also in tumor explant cultures. In our culture condition, TnTs formation occurred after large membrane adhesion. We showed that intercellular transfers of cytoplasmic content occurred similarly between cancer cells and MSCs or ECs, but we highlighted that the exchange of mitochondria occurred preferentially between endothelial cells and cancer cells. We illustrated that the cancer cells acquiring mitochondria displayed chemoresistance. Our results illustrate the perfusion-independent role of the endothelium by showing a direct endothelial to cancer cell mitochondrial exchange associated to phenotypic modulation. This supports another role of the endothelium in the constitution of the metastatic niche.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha PO: 24144, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bella S Guerrouahen
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha PO: 24144, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hamda Al Thawadi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha PO: 24144, Qatar
| | - Pegah Ghiabi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha PO: 24144, Qatar
| | - Mahtab Maleki
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha PO: 24144, Qatar
| | - Nadine Abu-Kaoud
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha PO: 24144, Qatar
| | - Arthur Jacob
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha PO: 24144, Qatar
| | - Massoud Mirshahi
- UMRS 872 INSERM, Université Pierre et Marie Curie-Paris 6 and Université Paris Descartes, Equipe 18, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Medecine, Paris Cedex 06 75270, France
| | - Ludovic Galas
- Primacen Cellular Imaging Platform, University of Rouen, Mont-Saint-Aignan 76821, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Frank Le Foll
- Laboratory of Ecotoxicology, University of Le Havre, Le Havre 76058, France
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha PO: 24144, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
255
|
Kuznetsov I, Kuznetsov A. A two population model of prion transport through a tunnelling nanotube. Comput Methods Biomech Biomed Engin 2013; 17:1705-15. [DOI: 10.1080/10255842.2013.763938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
256
|
Gerdes HH, Rustom A, Wang X. Tunneling nanotubes, an emerging intercellular communication route in development. Mech Dev 2012; 130:381-7. [PMID: 23246917 DOI: 10.1016/j.mod.2012.11.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/15/2023]
Abstract
The development of multi-cellular organisms involves a comprehensive and tightly regulated cell-to-cell communication system to coordinate the activity and behavior of individual cells. Diverse signaling pathways ranging from receptor-mediated signal transduction to contact-dependent communication via gap junctions achieve these complex interactions. In this review, we will focus on a new type of intercellular connection, the tunneling nanotube (TNT), which has been observed in many cell types in vitro and recently also in developing embryos of different species in vivo. We will summarize the latest insights into their functional roles in cell-to-cell signaling with a particular focus on the TNT-dependent electrical coupling between developing embryonic cells. Finally, potential implications of these new findings in the light of developmental processes, particularly in cell migration, will be discussed.
Collapse
Affiliation(s)
- Hans-Hermann Gerdes
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | | | |
Collapse
|
257
|
Schiller C, Diakopoulos KN, Rohwedder I, Kremmer E, von Toerne C, Ueffing M, Weidle UH, Ohno H, Weiss EH. LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation. J Cell Sci 2012; 126:767-77. [PMID: 23239025 DOI: 10.1242/jcs.114033] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carefully orchestrated intercellular communication is an essential prerequisite for the development of multicellular organisms. In recent years, tunneling nanotubes (TNT) have emerged as a novel and widespread mechanism of cell-cell communication. However, the molecular basis of their formation is still poorly understood. In the present study we report that the transmembrane MHC class III protein leukocyte specific transcript 1 (LST1) induces the formation of functional nanotubes and is required for endogenous nanotube generation. Mechanistically, we found that LST1 induces nanotube formation by recruiting the small GTPase RalA to the plasma membrane and promoting its interaction with the exocyst complex. Furthermore, we determined that LST1 recruits the actin-crosslinking protein filamin to the plasma membrane and interacts with M-Sec, myosin and myoferlin. These results allow us to suggest a molecular model for nanotube generation. In this proposal LST1 functions as a membrane scaffold mediating the assembly of a multimolecular complex, which controls the formation of functional nanotubes.
Collapse
Affiliation(s)
- Christian Schiller
- Department of Biology II, Ludwigs-Maximilians-Universität München, Großhadernerstr. 2, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Schiller C, Huber JE, Diakopoulos KN, Weiss EH. Tunneling nanotubes enable intercellular transfer of MHC class I molecules. Hum Immunol 2012; 74:412-6. [PMID: 23228397 DOI: 10.1016/j.humimm.2012.11.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 10/04/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
Carefully orchestrated intercellular communication is an essential prerequisite for an effective immune response. In recent years tunneling nanotubes (TNT) have emerged as a novel mechanism of cell-cell communication. These long membrane protrusions can establish cytoplasmic continuity between distant cells and enable the exchange of cellular components. In the present study we addressed the question whether these structures can facilitate the intercellular transfer of MHC class I molecules. We found a transmembrane HLA-A2-EGFP but not a soluble HLA-G1s-EGFP fusion protein to be effectively transferred between HeLa cells. Inhibition of actin polymerization significantly reduced the HLA-A2 transfer rate, indicating that transfer is dependent on tunneling nanotubes, whose de novo formation requires actin polymerization. Furthermore, overexpression of the nanotube-inducing protein LST1 promoted transfer of HLA-A2. Moreover, LST1 protein expression is enhanced in antigen presenting cells. Our results indicate that tunneling nanotubes can mediate transfer of MHC class I molecules between distant cells.
Collapse
Affiliation(s)
- Christian Schiller
- Department of Biology II, Ludwig-Maximilians-Universität München, Germany
| | | | | | | |
Collapse
|
259
|
Bloemendal S, Kück U. Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften 2012; 100:3-19. [PMID: 23128987 DOI: 10.1007/s00114-012-0988-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 12/30/2022]
Abstract
Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.
Collapse
Affiliation(s)
- Sandra Bloemendal
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, Bochum, 44780, Germany
| | | |
Collapse
|
260
|
Marzo L, Gousset K, Zurzolo C. Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 2012; 3:72. [PMID: 22514537 PMCID: PMC3322526 DOI: 10.3389/fphys.2012.00072] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/13/2012] [Indexed: 01/10/2023] Open
Abstract
Cell-to-cell communication and exchange of materials are vital processes in multicellular organisms during cell development, cell repair, and cell survival. In neuronal and immunological cells, intercellular transmission between neighboring cells occurs via different complex junctions or synapses. Recently, long distance intercellular connections in mammalian cells called tunneling nanotubes (TNTs) have been described. These structures have been found in numerous cell types and shown to transfer signals and cytosolic materials between distant cells, suggesting that they might play a prominent role in intercellular trafficking. However, these cellular connections are very heterogeneous in both structure and function, giving rise to more questions than answers as to their nature and role as intercellular conduits. To better understand and characterize the functions of TNTs, we have highlighted here the latest discoveries regarding the formation, structure, and role of TNTs in cell-to-cell spreading of various signals and materials. We first gathered information regarding their formation with an emphasis on the triggering mechanisms observed, such as stress and potentially important proteins and/or signaling pathways. We then describe the various types of transfer mechanisms, in relation to signals and cargoes that have been shown recently to take advantage of these structures for intercellular transfer. Because a number of pathogens were shown to use these membrane bridges to spread between cells we also draw attention to specific studies that point toward a role for TNTs in pathogen spreading. In particular we discuss the possible role that TNTs might play in prion spreading, and speculate on their role in neurological diseases in general.
Collapse
Affiliation(s)
- Ludovica Marzo
- Unité de traffic membranaire et pathogenèse, Institut PasteurParis, France
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico IINapoli, Italy
| | - Karine Gousset
- Unité de traffic membranaire et pathogenèse, Institut PasteurParis, France
| | - Chiara Zurzolo
- Unité de traffic membranaire et pathogenèse, Institut PasteurParis, France
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico IINapoli, Italy
| |
Collapse
|
261
|
|