251
|
Affiliation(s)
- Peter Gahan
- Anatomy & Human Sciences; King's College London; London Bridge London SE1 1UL UK
| |
Collapse
|
252
|
Armstrong JA, Cash N, Soares PMG, Souza MHLP, Sutton R, Criddle DN. Oxidative stress in acute pancreatitis: lost in translation? Free Radic Res 2013; 47:917-33. [PMID: 23952531 DOI: 10.3109/10715762.2013.835046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress has been implicated in the pathogenesis of acute pancreatitis, a severe and debilitating inflammation of the pancreas that carries a significant mortality, and which imposes a considerable financial burden on the health system due to patient care. Although extensive efforts have been directed towards the elucidation of critical underlying mechanisms and the identification of novel therapeutic targets, the disease remains without a specific therapy. In experimental animal models of acute pancreatitis, increased oxidative stress and decreased antioxidant defences have been observed, changes also detected in patients clinically. However, despite the promise of studies evaluating the effects of antioxidants in these model systems, translation to the clinic has thus far been disappointing. This may reflect many factors involved in the design of both preclinical and clinical evaluations of antioxidant therapy, not least the fact that most experimental studies have focussed on pre-treatment rather than post-injury assessment. This review has examined evidence relating to the involvement of oxidative stress in the pathophysiology of acute pancreatitis, focussing on experimental models and the clinical experience, including the experimental techniques employed and potential of antioxidant therapy.
Collapse
Affiliation(s)
- J A Armstrong
- NIHR Liverpool Pancreas Biomedical Research Unit, RLBUHT , Liverpool , UK
| | | | | | | | | | | |
Collapse
|
253
|
Kondratskyi A, Yassine M, Kondratska K, Skryma R, Slomianny C, Prevarskaya N. Calcium-permeable ion channels in control of autophagy and cancer. Front Physiol 2013; 4:272. [PMID: 24106480 PMCID: PMC3788328 DOI: 10.3389/fphys.2013.00272] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/11/2013] [Indexed: 11/13/2022] Open
Abstract
Autophagy, or cellular self-eating, is a tightly regulated cellular pathway the main purpose of which is lysosomal degradation and subsequent recycling of cytoplasmic material to maintain normal cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Cancer is the disease associated with abnormal tissue growth following an alteration in such fundamental cellular processes as apoptosis, proliferation, differentiation, migration and autophagy. The role of autophagy in cancer is complex, as it can promote both tumor prevention and survival/treatment resistance. It's now clear that modulation of autophagy has a great potential in cancer diagnosis and treatment. Recent findings identified intracellular calcium as an important regulator of both basal and induced autophagy. Calcium is a ubiquitous secondary messenger which regulates plethora of physiological and pathological processes such as aging, neurodegeneration and cancer. The role of calcium and calcium-permeable channels in cancer is well-established, whereas the information about molecular nature of channels regulating autophagy and the mechanisms of this regulation is still limited. Here we review existing mechanisms of autophagy regulation by calcium and calcium-permeable ion channels. Furthermore, we will also discuss some calcium-permeable channels as the potential new candidates for autophagy regulation. Finally we will propose the possible link between calcium permeable channels, autophagy and cancer progression and therapeutic response.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Laboratory of Excellence, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Ion Channels Science and Therapeutics, INSERM, U-1003, Université Lille 1 Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
254
|
Mitochondrial dysfunction induced by nuclear poly(ADP-ribose) polymerase-1: a treatable cause of cell death in stroke. Transl Stroke Res 2013; 5:136-44. [PMID: 24323707 DOI: 10.1007/s12975-013-0283-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Many drugs targeting excitotoxic cell death have demonstrated robust neuroprotective effects in animal models of cerebral ischemia. However, these neuroprotective effects have almost universally required drug administration at relatively short time intervals after ischemia onset. This finding has translated to clinical trial results; interventions targeting excitotoxicity have had no demonstrable efficacy when initiated hours after ischemia onset, but beneficial effects have been reported with more rapid initiation. Consequently, there continues to be a need for interventions with efficacy at later time points after ischemia. Here, we focus on mitochondrial dysfunction as both a relatively late event in ischemic neuronal death and a recognized cause of delayed neuronal death. Activation of poly(ADP-ribose) polymerase-1 (PARP-1) is a primary cause of mitochondrial depolarization and subsequent mitochondria-triggered cell death in ischemia reperfusion. PARP-1 consumes cytosolic NAD(+), thereby blocking both glycolytic ATP production and delivery of glucose carbon to mitochondria for oxidative metabolism. However, ketone bodies such as pyruvate, beta- and gamma-hydroxybutyrate, and 1,4-butanediol can fuel mitochondrial metabolism in cells with depleted cytosolic NAD(+) as long as the mitochondria remain functional. Ketone bodies have repeatedly been shown to be highly effective in preventing cell death in animal models of ischemia, but a rigorous study of the time window of opportunity for this approach remains to be performed.
Collapse
|
255
|
Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol 2013; 4:227. [PMID: 24027528 PMCID: PMC3759743 DOI: 10.3389/fphys.2013.00227] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/05/2013] [Indexed: 02/02/2023] Open
Abstract
Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3)), Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova Padova, Italy
| | | | | | | | | | | |
Collapse
|
256
|
Du Q, Bian XL, Xu XL, Zhu B, Yu B, Zhai Q. Role of mitochondrial permeability transition in human hepatocellular carcinoma Hep-G2 cell death induced by rhein. Fitoterapia 2013; 91:68-73. [PMID: 23994628 DOI: 10.1016/j.fitote.2013.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 11/28/2022]
Abstract
Rhein, a compound found as a glucoside in the root of rhubarb, is currently a subject of interest for its antitumor properties. The apoptosis of tumor cell lines induced by rhein was observed, and the involvement of mitochondria was established; however, the role of mitochondrial permeability transition (MPT) remains unknown. Here we report that MPT plays an important role in the apoptosis of human hepatocellular carcinoma Hep-G2 cells induced by rhein. After adding rhein to the isolated hepatic mitochondria, swelling effects and the leakage of Ca(2+) were observed. These alterations were suppressed by cyclosporin A (CsA), an MPT inhibitor. Furthermore, in Hep-G2 cells, the decrease of ATP production, the loss of mitochondrial transmembrane potential (MTP), the release of cytochrome c (Cyto c), and the activation of caspase 3 were also observed. These toxic effects of rhein can also be attenuated by CsA as well. Moreover, TUNEL assay confirmed that in the presence of CsA, rhein-induced apoptosis was largely inhibited. These results suggest that MPT plays a critical role in the pathogenesis of Hep-G2 cell injury induced by rhein, and imply that MPT may contribute to the anti-cancer activity of rhein.
Collapse
Affiliation(s)
- Qiong Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Lan Bian
- Department of Pharmacy, Luwan Branch of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pharmacy, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Le Xu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bin Zhu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bo Yu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Qing Zhai
- Department of Pharmacy, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
257
|
Javadov S, Kuznetsov AV. Mitochondria: the cell powerhouse and nexus of stress. Front Physiol 2013; 4:207. [PMID: 23966947 PMCID: PMC3735979 DOI: 10.3389/fphys.2013.00207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/21/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico San Juan, Puerto Rico
| | | |
Collapse
|
258
|
Su K, Bourdette D, Forte M. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front Physiol 2013; 4:169. [PMID: 23898299 PMCID: PMC3722885 DOI: 10.3389/fphys.2013.00169] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Multiple sclerosis (MS) has traditionally been considered an autoimmune inflammatory disorder leading to demyelination and clinical debilitation as evidenced by our current standard anti-inflammatory and immunosuppressive treatment regimens. While these approaches do control the frequency of clinical relapses, they do not prevent the progressive functional decline that plagues many people with MS. Many avenues of research indicate that a neurodegenerative process may also play a significant role in MS from the early stages of disease, and one of the current hypotheses identifies mitochondrial dysfunction as a key contributing mechanism. We have hypothesized that pathological permeability transition pore (PTP) opening mediated by reactive oxygen species (ROS) and calcium dysregulation is central to mitochondrial dysfunction and neurodegeneration in MS. This focused review highlights recent evidence supporting this hypothesis, with particular emphasis on our in vitro and in vivo work with the mitochondria-targeted redox enzyme p66ShcA.
Collapse
Affiliation(s)
- Kimmy Su
- Vollum Institute, Oregon Health and Science University Portland, OR, USA ; Department of Neurology, Oregon Health and Science University Portland, OR, USA
| | | | | |
Collapse
|
259
|
Szabadkai G, Chinopoulos C. What Makes You Can Also Break You, Part II: Mitochondrial Permeability Transition Pore Formation by Dimers of the F1FO ATP-Synthase? Front Oncol 2013; 3:140. [PMID: 23755376 PMCID: PMC3667343 DOI: 10.3389/fonc.2013.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/20/2022] Open
Affiliation(s)
- Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London London, UK ; Department of Biomedical Sciences, University of Padua Padua, Italy
| | | |
Collapse
|
260
|
Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: results from the IQOLA Project. International Quality of Life Assessment. PPAR Res 1998; 2016:9282087. [PMID: 27051413 PMCID: PMC4802016 DOI: 10.1155/2016/9282087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
Activated AMPK protects the heart from cardiac ischemia-reperfusion (IR) injury and is associated with inhibition of mitochondrial permeability transition pore (PTP) opening. On the other hand, pharmacological inhibition of the PTP reduces infarct size and improves cardiac function. However, it is unclear whether beneficial effects of AMPK are mediated through the PTP and, if they are not, whether simultaneous activation of AMPK and inhibition of the PTP exert synergistic protective effects against cardiac IR injury. Here, we examined the effects of the AMPK activator, A-769662 in combination with the PTP inhibitor, sanglifehrin A (SfA) on in vivo cardiac IR. Cardiac dysfunction following IR injury was associated with decreased activity of the mitochondrial electron transport chain (ETC) and increased mitochondrial ROS and PTP opening. Administration of A-769662 or SfA individually upon reperfusion improved cardiac function, reduced infarction size, and inhibited ROS production and PTP opening. However, simultaneous administration of SfA and A-769662 did not provide synergistic improvement of postischemic recovery of cardiac and mitochondrial function, though both compounds disrupted IR-induced interaction between PPARα and CyP-D. In conclusion, A-769662 or SfA prevents PPARα interaction with CyP-D, improving cardiac outcomes and increasing mitochondrial function, and simultaneous administration of the drugs does not provide synergistic effects.
Collapse
|