251
|
Molecular Biomarkers of Malignant Transformation in Head and Neck Dysplasia. Cancers (Basel) 2022; 14:cancers14225581. [PMID: 36428690 PMCID: PMC9688631 DOI: 10.3390/cancers14225581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) and its treatments are associated with substantial morbidity, often resulting in cosmetic deformity and loss of physiologic functions including speech and swallowing. Despite advancements in treatment, 5-year survival rates for mucosal malignancies remain below 70%. Effective prevention of HNSCC demands an understanding of the molecular pathways of carcinogenesis. Specifically, defining features of pre-cancerous dysplastic lesions that indicate a better or worse prognosis is necessary to help identify patients who are likely to develop a carcinoma and allow a more aggressive approach to management. There remains a need for identification of biomarkers that can provide both early prognostic and predictive value in clinical decision-making by serving as both therapeutic targets as well as predictors of therapy response. Here, we comprehensively review the most frequently altered molecular biomarkers of malignant transformation in head and neck dysplasia. These markers are involved in a wide range of cellular processes in head and neck carcinogenesis, including extracellular matrix degradation, cell motility and invasion, cell-cell adhesion, solute transport, immortalization, metabolism, the cell cycle and apoptosis, transcription, and cell signaling.
Collapse
|
252
|
Xiao M, Zhang X, Zhang D, Deng S, Zheng A, Du F, Shen J, Yue L, Yi T, Xiao Z, Zhao Y. Complex interaction and heterogeneity among cancer stem cells in head and neck squamous cell carcinoma revealed by single-cell sequencing. Front Immunol 2022; 13:1050951. [PMID: 36451812 PMCID: PMC9701714 DOI: 10.3389/fimmu.2022.1050951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) have been characterized to be responsible for multidrug resistance, metastasis, recurrence, and immunosuppressive in head and neck squamous cell carcinoma (HNSCC). However, the diversity of CSCs remains to be investigated. In this study, we aimed to determine the heterogeneity of CSCs and its effect on the formation of tumor microenvironment (TME). METHODS We depicted the landscape of HNSCC transcriptome profile by single-cell RNA-sequencing analysis of 20 HNSCC tissues from public databases, to reveal the Cell components, trajectory changes, signaling network, malignancy status and functional enrichment of CSCs within tumors. RESULTS Immune checkpoint molecules CD276, LILRB2, CD47 were significantly upregulated in CSCs, enabling host antitumor response to be weakened or damaged. Notably, naive CSCs were divided to 2 different types of cells with different functions, exhibiting functional diversity. In addition, CSCs underwent self-renewal and tumor metastasis activity through WNT and ncWNT signaling. Among them, Regulon regulators (IRF1_394g, IRF7_160g, NFKB1_12g, NFKB2_33g and STAT1_356g) were activated in subgroups 2 and 3, suggesting their pivotal roles in the inflammatory response process in tumors. Among all CSCs, naive CSCs appear to be the most malignant resulting in a worse prognosis. CONCLUSIONS Our study reveals the major signal transduction and biological function of CSCs during HNSCC progression, highlighting the heterogeneity of CSCs and their underlying mechanisms in the formation of an immunosuppressive TME. Therefore, our study about heterogeneity of CSCs in HNSCC can bring new insights for the treatment of HNSCC.
Collapse
Affiliation(s)
- Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinyi Zhang
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Lin Yue
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
253
|
Chen W, Wang R, Zhao Y, Li Y, Wang X, Peng W, Bai S, Zheng M, Liu M, Cheng B. CD44v6+ Hepatocellular Carcinoma Cells Maintain Stemness Properties through Met/cJun/Nanog Signaling. Stem Cells Int 2022; 2022:5853707. [PMID: 36387747 PMCID: PMC9663228 DOI: 10.1155/2022/5853707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/07/2024] Open
Abstract
Cancer stem cells (CSCs) are characterized by their self-renewal and differentiation abilities. CD44v6 is a novel CSC marker that can activate various signaling pathways. Here, we hypothesized that the HGF/Met signaling pathway promotes stemness properties in CD44v6+ hepatocellular carcinoma (HCC) cells via overexpression of the transcription factor, cJun, thus representing a valuable target for HCC therapy. Magnetic activated cell sorting was used to separate the CD44v6+ from CD44v6- cells, and Met levels were regulated using lentiviral particles and the selective Met inhibitor, PHA665752. An orthotopic liver xenograft tumor model was used to assess the self-renewal ability of CD44v6+ cells in immunodeficient NOD/SCID mice. Luciferase reporter and chromatin immunoprecipitation assays were also conducted using cJun-overexpressing 293 T cells to identify the exact binding site of cJun in the Nanog promoter. Our data demonstrate that CD44v6 is an ideal surface marker of liver CSCs. CD44v6+ HCC cells express higher levels of Met and possess self-renewal and tumor growth abilities. Xenograft liver tumors were smaller in nude mice injected with shMet HCC cells. Immunohistochemical analysis of liver tissue specimens revealed that high Met levels in HCC cells were associated with poor patient prognosis. Further, a cJun binding site was identified 1700 bp upstream of the Nanog transcription start site and mutation of the cJun binding site reduced Nanog expression. In conclusion, the HGF/Met signaling pathway is important for maintenance of stemness in CD44v6+ HCC cells by enhancing expression of cJun, which binds 1700 bp upstream of the Nanog transcription start site.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Yawen Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China 563003
| | - Xiju Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Digestive Endoscopy, The Affiliated Hospital of Guizhou Medical University, Guiyi Street No. 28, Guiyang, Guizhou, China 550000
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Gastroenterology and Hepatology, Taikang Tongji Wuhan Hospital, Wuhan, China 430050
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| |
Collapse
|
254
|
Yang F, Wei P, Yang M, Chen W, Zhao B, Li W, Wang J, Qiu L, Chen J. Redox-sensitive hyaluronic acid-ferrocene micelles delivering doxorubicin for enhanced tumor treatment by synergistic chemo/chemodynamic therepay. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
255
|
Jang G, Oh J, Jun E, Lee J, Kwon JY, Kim J, Lee SH, Kim SC, Cho SY, Lee C. Direct cell-to-cell transfer in stressed tumor microenvironment aggravates tumorigenic or metastatic potential in pancreatic cancer. NPJ Genom Med 2022; 7:63. [PMID: 36302783 PMCID: PMC9613679 DOI: 10.1038/s41525-022-00333-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic cancer exhibits a characteristic tumor microenvironment (TME) due to enhanced fibrosis and hypoxia and is particularly resistant to conventional chemotherapy. However, the molecular mechanisms underlying TME-associated treatment resistance in pancreatic cancer are not fully understood. Here, we developed an in vitro TME mimic system comprising pancreatic cancer cells, fibroblasts and immune cells, and a stress condition, including hypoxia and gemcitabine. Cells with high viability under stress showed evidence of increased direct cell-to-cell transfer of biomolecules. The resulting derivative cells (CD44high/SLC16A1high) were similar to cancer stem cell-like-cells (CSCs) with enhanced anchorage-independent growth or invasiveness and acquired metabolic reprogramming. Furthermore, CD24 was a determinant for transition between the tumorsphere formation or invasive properties. Pancreatic cancer patients with CD44low/SLC16A1low expression exhibited better prognoses compared to other groups. Our results suggest that crosstalk via direct cell-to-cell transfer of cellular components foster chemotherapy-induced tumor evolution and that targeting of CD44 and MCT1(encoded by SLC16A1) may be useful strategy to prevent recurrence of gemcitabine-exposed pancreatic cancers.
Collapse
Affiliation(s)
- Giyong Jang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Eunsung Jun
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jieun Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi-do, 13620, Republic of Korea
| | - Jee Young Kwon
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Bio-Information Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Charles Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea. .,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea. .,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
| |
Collapse
|
256
|
Losurdo P, de Manzini N, Palmisano S, Grassi M, Parisi S, Rizzolio F, Tierno D, Biasin A, Grassi C, Truong NH, Grassi G. Potential Application of Small Interfering RNA in Gastro-Intestinal Tumors. Pharmaceuticals (Basel) 2022; 15:1295. [PMID: 36297407 PMCID: PMC9612316 DOI: 10.3390/ph15101295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
Despite the progress made in the diagnoses and therapy of gastrointestinal cancers, these diseases are still plagued by a high mortality. Thus, novel therapeutic approaches are urgently required. In this regard, small interfering RNA (siRNA), double-stranded RNA molecules able to specifically target the mRNA of pathological genes, have the potential to be of therapeutic value. To be effective in the human body, siRNAs need to be protected against degradation. Additionally, they need to target the tumor, leaving the normal tissue untouched in an effort to preserve organ function. To accomplish these tasks, siRNAs have been formulated with smart delivery systems such has polymers and lipids. While siRNA protection is not particularly difficult to achieve, their targeting of tumor cells remains problematic. Here, after introducing the general features of gastrointestinal cancers, we describe siRNA characteristics together with representative delivery systems developed for gastrointestinal cancers. Afterward, we present a selection of research papers employing siRNAs against upper- and lower- gastrointestinal cancers. For the liver, we also consider papers using siRNAs to combat liver cirrhosis, a relevant risk factor for liver cancer development. Finally, we present a brief description of clinical trials employing siRNAs for gastrointestinal cancers.
Collapse
Affiliation(s)
- Pasquale Losurdo
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Nicolò de Manzini
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Silvia Palmisano
- Surgical Clinic Unit, Department of Medical and Surgical Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, 34127 Trieste, Italy
| | - Salvatore Parisi
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, 33081 Aviano, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, 33081 Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, 34127 Trieste, Italy
| | - Chiara Grassi
- Degree Course in Medicine, University of Trieste, 34100 Trieste, Italy
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, VNUHCM—University of Science, Ho Chi Minh City 700000, Vietnam
- Laboratory of Stem Cell Research and Application, VNUHCM—University of Science, Ho Chi Minh City 700000, Vietnam
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
257
|
Basak D, Gregori L, Johora F, Deb S. Preclinical and Clinical Research Models of Prostate Cancer: A Brief Overview. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101607. [PMID: 36295041 PMCID: PMC9605520 DOI: 10.3390/life12101607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
The incidence and mortality from prostate cancer (PCa) are on the rise which poses a major public health concern worldwide. In this narrative review, we have summarized the characteristics of major in vitro and in vivo PCa models including their utility in developing treatment strategies. Androgens, particularly, testosterone and dihydrotestosterone (DHT) activate the androgen receptor (AR) signaling pathway that facilitates the development and progression of castration resistant PCa. Several enzymes namely, CYP17A1, HSD17B, and SRD5A are essential to furnishing DHT from dehydroepiandrosterone in the classical pathway while DHT is formed from androstanediol in the backdoor pathway. The advancement in delineating the molecular heterogeneity of PCa has been possible through the development of several in vitro and in vivo research models. Generally, tissue culture models are advantageous to understand PCa biology and investigate the efficacy and toxicity of novel agents; nevertheless, animal models are indispensable to studying the PCa etiology and treatment since they can simulate the tumor microenvironment that plays a central role in initiation and progression of the disease. Moreover, the availability of several genetically engineered mouse models has made it possible to study the metastasis process. However, the conventional models are not devoid of limitations. For example, the lack of heterogeneity in tissue culture models and the variation of metastatic characteristics in xenograft models are obviously challenging. Additionally, due to the racial and ethnic disparities in PCa pathophysiology, a new model that can represent PCa encompassing different ethnicities is urgently needed. New models should continue to evolve to address the genetic and molecular complexities as well as to further elucidate the finer details of the steroidogenic pathway associated with PCa.
Collapse
|
258
|
Lavorgna TR, Hussein M, Issa PP, Toraih E, Kandil E. Ultraviolet Light Exposure Decreases Thyroid Cancer Risk: A National Perspective. Biomedicines 2022; 10:biomedicines10102452. [PMID: 36289713 PMCID: PMC9598664 DOI: 10.3390/biomedicines10102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV) light has been reported to have both pro-oncogenic and anti-oncogenic effects. Since patient pigmentation can influence the role of UV light exposure, we thought to investigate the recent trends in thyroid cancer incidence and survival with an emphasis on patient race and UV exposure. Patients diagnosed with thyroid cancer from the Surveillance, Epidemiology, and End Results (SEER) database were identified. A total of 284,178 patients were enrolled. Data were stratified according to population sex, race, and state. UV exposure data in Watt-Hours Per Square Meter for the state were obtained from the National Cancer Institute Cancer Atlas. Thyroid cancer incidence rate varied by race, ranging from 14.9 cases per 100,000 in Asian or Pacific Islanders and 14.7 per 100,000 in Caucasians, to 8.7 per 100,000 in African American and 8.0 per 100,000 in Native Americans. UV exposure was negatively correlated with thyroid cancer incidence when analyzed across all populations (r = −0.299, p = 0.035). UV exposure was most steeply negatively correlated with thyroid cancer rates in Black populations (r = −0.56, p < 0.001). Despite this, Black men had the worst 5-year survival rate when compared to other ethnic populations. Overall, UV exposure does not increase the risk of thyroid cancer and may serve as a protective factor in the development of thyroid cancer.
Collapse
Affiliation(s)
| | - Mohammad Hussein
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Peter P. Issa
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Eman Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +1-504-988-2301; Fax: +1-504-988-4762
| | - Emad Kandil
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
259
|
Wang J, Yang B, Lv C, Chen T, Sun L, Sun L, Hao J, Ding F, Wang T, Jiang J, Qin Y. Amino porphyrin-peptide assemblies induce ribosome damage and cancer stem cell inhibition for an enhanced photodynamic therapy. Biomaterials 2022; 289:121812. [PMID: 36152516 DOI: 10.1016/j.biomaterials.2022.121812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of tumor cells with the properties of tumorigenesis, multilineage differentiation potential and self-renewal, which is the driving force of tumor recurrence and metastasis. However, targeting CSCs is still the main challenge in cancer therapy due to their rapid growth and fast mutation rate. Herein, we developed a simple strategy of photodynamic therapy (PDT) targeting CSCs, dependent on much more abundant ribosomes in CSCs. The interactions between positively charged nanoparticles with negatively charged nucleic acids architectures in cancer cells could lead ribosomes targeting as well as CSCs targeting. The co-assembly of simple amino porphyrin (m-TAPP) with short peptide (Fmoc-L3-OMe) formed nanoparticles (NPs) with good biocompatibility and photoactivity, became positively charged due to low pH value of tumour microenvironment, and efficiently accessed cancer cell ribosome, approached cancer cell nuclei, therefore enriched in the fast-amplifying CSCs. The inhibitive effect on CSCs by m-TAPP assemblies was verified by the significant reduction of CSCs markers CD44, CD133 and ribosome amount in cancer cells and tissues. Upon light irradiation, the NPs induced ROS generation to provoke destructive cancer cell ribosome damage and subsequent apoptosis to prevent tumor growth markedly. Based on the assemblies of small organic molecules, our study not only achieves ribosome degradation induced cancer cells apoptosis, but also indicates new possibility of performing CSCs targeting PDT.
Collapse
Affiliation(s)
- Jian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Chaofan Lv
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tiancheng Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lixin Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lei Sun
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Junfeng Hao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Fang Ding
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
260
|
DiNatale A, Castelli MS, Nash B, Meucci O, Fatatis A. Regulation of Tumor and Metastasis Initiation by Chemokine Receptors. J Cancer 2022; 13:3160-3176. [PMID: 36118530 PMCID: PMC9475358 DOI: 10.7150/jca.72331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor-initiating cells (TICs) are a rare sub-population of cells within the bulk of a tumor that are major contributors to tumor initiation, metastasis, and chemoresistance. TICs have a stem-cell-like phenotype that is dictated by the expression of master regulator transcription factors, including OCT4, NANOG, and SOX2. These transcription factors are expressed via activation of multiple signaling pathways that drive cancer initiation and progression. Importantly, these same signaling pathways can be activated by select chemokine receptors. Chemokine receptors are increasingly being revealed as major drivers of the TIC phenotype, as their signaling can lead to activation of stemness-controlling transcription factors. Additionally, the cell surface expression of chemokine receptors provides a unique therapeutic target to disrupt signaling pathways that control the expression of master regulator transcription factors and the TIC phenotype. This review summarizes the master regulator transcription factors known to dictate the TIC phenotype, along with the complex signaling pathways that can mediate their expression and the chemokine receptors that are most upstream of this phenotype.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present Address: Janssen Oncology, Spring House, PA, USA
| | - Maria Sofia Castelli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present address: Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Immune Cell Regulation & Targeting, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
261
|
Grandi F, Miot HA, Rocha RM, Gomes CMS, Queiroz‐Hazarbassanov N, Montoya‐Florez LM, Cogliati B, Rocha NS. Immunophenotypic and molecular profile of cancer stem‐cell markers in ex vivo canine transmissible venereal tumour (CTVT). Vet Med Sci 2022; 8:2297-2306. [DOI: 10.1002/vms3.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Fabrizio Grandi
- Department of Pathology, Botucatu Medical School Universidade Estadual Paulista, UNESP Botucatu São Paulo Brazil
| | - Hélio Amante Miot
- Department of Dermatology and Radiotherapy Botucatu Medical School Universidade Estadual Paulista, UNESP Botucatu São Paulo Brazil
| | | | | | | | | | - Bruno Cogliati
- Department of Pathology School of Veterinary Medicine and Animal Science University of Sao Paulo São Paulo Brazil
| | - Noeme Sousa Rocha
- Department of Pathology, Botucatu Medical School Universidade Estadual Paulista, UNESP Botucatu São Paulo Brazil
| |
Collapse
|
262
|
Composition, Biogenesis, and Role of Exosomes in Tumor Development. Stem Cells Int 2022; 2022:8392509. [PMID: 36117723 PMCID: PMC9481374 DOI: 10.1155/2022/8392509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
The role of exosomes and their mechanism of action at the tumor site have received increasing attention. These microvesicles are produced by a wide range of cells including mesenchymal stem cells (MSCs) and immune cells. In particular, tumor cells release remarkable amounts of exosomes which spread to distant organs through the blood and enhance the possibility of tumor metastasis. In spite of results on tumor promoting properties, there are reports demonstrating the tumor inhibiting effects of exosomes depending on the type of the tumor and cell source. This review aims to have a comprehensive appraisal on the biogenesis, composition, and isolation of exosomes and then highlights the current knowledge of their role in cancer progression or inhibition by special focusing on MSC's exosomes (MSC-EXOs).
Collapse
|
263
|
Huang J, Li Y, Zheng M, He H, Xu D, Tian D. RNF126 contributes to stem cell-like properties and metastasis in hepatocellular carcinoma through ubiquitination and degradation of LKB1. Hum Cell 2022; 35:1869-1884. [PMID: 36068398 DOI: 10.1007/s13577-022-00782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/27/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the malignant tumors with the worst prognosis, and tumor recurrence and metastasis are the main factors leading to poor prognosis of HCC patients. Accumulating studies show that RNF126, ring finger protein 126, is involved in the pathological process of many tumors. However, the biological function and exact molecular mechanism of RNF126 in HCC remain unclear. In this study, we investigated the role of RNF126 in the pathogenesis of HCC. By analyzing database and verifying with our clinical specimens, it was found that RNF126 was highly expressed in HCC tissues, which is associated with shorter overall survival and higher recurrence rate. Overexpressed RNF126 can significantly promote the proliferation, migration, invasion and angiogenesis of HCC cells, whereas knockdown RNF126 can reverse this effect. Mechanically, RNF126 down-regulates liver kinase B1 (LKB1) expression by ubiquitination of LKB1 to weaken its stability, thereby significantly promoting stem-cell-like activity, migration, and angiogenesis of HCC. Notably, consistent with in vitro results, RNF126 was stably transformed in Hep3B and subcutaneously injected into nude mice. In established mouse xenograft models, tumor growth can be effectively inhibited and the occurrence of lung metastasis is reduced. In HCC, RNF126 may down-regulate LKB1 through ubiquitination, thus becoming a powerful prognostic biomarker and a recognized tumor suppressor. Therefore, our study may provide a promising new therapeutic strategy for targeting RNF126 for HCC patients.
Collapse
Affiliation(s)
- Jie Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Kunming, 650102, Yunnan, China.
| | - Yan Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Kunming, 650102, Yunnan, China
| | - Mengyao Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Kunming, 650102, Yunnan, China
| | - Haiyu He
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Kunming, 650102, Yunnan, China
| | - Dingwei Xu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Kunming, 650102, Yunnan, China
| | - Daguang Tian
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Kunming, 650102, Yunnan, China
| |
Collapse
|
264
|
Chen W, Wang H, Lu Y, Huang Y, Xuan Y, Li X, Guo T, Wang C, Lai D, Wu S, Zhao W, Mai H, Li H, Wang B, Ma X, Zhang X. GTSE1 promotes tumor growth and metastasis by attenuating of KLF4 expression in clear cell renal cell carcinoma. J Transl Med 2022; 102:1011-1022. [PMID: 36775416 DOI: 10.1038/s41374-022-00797-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors and is characterized by a poor prognosis. Although G2- and S -phase expressed-1 (GTSE1) is known to be involved in the progression and metastasis of various cancers, its significance and mechanism in ccRCC remain unknown. In the present study, we found that GTSE1 was overexpressed in ccRCC tissues, especially in metastatic samples. Moreover, high GTSE1 expression was positively correlated with higher pT stage, tumor size, clinical stage, and WHO/ISUP grade and worse prognosis. And GTSE1 expression served as an independent prognostic factor for overall survival (OS). In addition, GTSE1 knockdown inhibited ccRCC cell proliferation, migration, and invasion, and enhanced cell apoptosis in vitro and in vivo. GTSE1 was crucial for epithelial-mesenchymal transition (EMT) in ccRCC. Mechanistically, GTSE1 depletion could upregulate the expression of Krüppel-like factor 4 (KLF4), which acts as a tumor suppressor in ccRCC. Downregulation of KLF4 effectively rescued the inhibitory effect induced by GTSE1 knockdown and reversed the EMT process. Overall, our results revealed that GTSE1 served as an oncogene regulating EMT through KLF4 in ccRCC, and that GTSE1 could also serve as a novel prognostic biomarker and may represent a promising therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Weihao Chen
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanfeng Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongliang Lu
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yan Huang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yundong Xuan
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiubin Li
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Tao Guo
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Paediatrics, the Seventh Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Chenfeng Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Dong Lai
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Shengpan Wu
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenlei Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Haixing Mai
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, China
| | - Hongzhao Li
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Baojun Wang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xin Ma
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xu Zhang
- Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
265
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
266
|
Nguyen A, Kim AH, Kang MK, Park NH, Kim RH, Kim Y, Shin KH. Chronic Alcohol Exposure Promotes Cancer Stemness and Glycolysis in Oral/Oropharyngeal Squamous Cell Carcinoma Cell Lines by Activating NFAT Signaling. Int J Mol Sci 2022; 23:ijms23179779. [PMID: 36077186 PMCID: PMC9456298 DOI: 10.3390/ijms23179779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol consumption is associated with an increased risk of several cancers, including oral/oropharyngeal squamous cell carcinoma (OSCC). Alcohol also enhances the progression and aggressiveness of existing cancers; however, its underlying molecular mechanism remains elusive. Especially, the local carcinogenic effects of alcohol on OSCC in closest contact with ingestion of alcohol are poorly understood. We demonstrated that chronic ethanol exposure to OSCC increased cancer stem cell (CSC) populations and their stemness features, including self-renewal capacity, expression of stem cell markers, ALDH activity, and migration ability. The ethanol exposure also led to a significant increase in aerobic glycolysis. Moreover, increased aerobic glycolytic activity was required to support the stemness phenotype of ethanol-exposed OSCC, suggesting a molecular coupling between cancer stemness and metabolic reprogramming. We further demonstrated that chronic ethanol exposure activated NFAT (nuclear factor of activated T cells) signaling in OSCC. Functional studies revealed that pharmacological and genetic inhibition of NFAT suppressed CSC phenotype and aerobic glycolysis in ethanol-exposed OSCC. Collectively, chronic ethanol exposure promotes cancer stemness and aerobic glycolysis via activation of NFAT signaling. Our study provides a novel insight into the roles of cancer stemness and metabolic reprogramming in the molecular mechanism of alcohol-mediated carcinogenesis.
Collapse
Affiliation(s)
- Anthony Nguyen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Anna H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Mo K. Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Reuben H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Yong Kim
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Broad Stem Cell Research Center, Los Angeles, CA 90095, USA
- Correspondence: (Y.K.); (K.-H.S.)
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Correspondence: (Y.K.); (K.-H.S.)
| |
Collapse
|
267
|
Hu JL, Yierfulati G, Wang LL, Yang BY, Lv QY, Chen XJ. Identification of potential models for predicting progestin insensitivity in patients with endometrial atypical hyperplasia and endometrioid endometrial cancer based on ATAC-Seq and RNA-Seq integrated analysis. Front Genet 2022; 13:952083. [PMID: 36092919 PMCID: PMC9459090 DOI: 10.3389/fgene.2022.952083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Objective: The aim of this study was to establish predictive models based on the molecular profiles of endometrial lesions, which might help identify progestin-insensitive endometrial atypical hyperplasia (EAH) or endometrioid endometrial cancer (EEC) patients before progestin-based fertility-preserving treatment initiation. Methods: Endometrial lesions from progestin-sensitive (PS, n = 7) and progestin-insensitive (PIS, n = 7) patients were prospectively collected before progestin treatment and then analyzed by ATAC-Seq and RNA-Seq. Potential chromatin accessibility and expression profiles were compared between the PS and PIS groups. Candidate genes were identified by bioinformatics analyses and literature review. Then expanded samples (n = 35) were used for validating bioinformatics data and conducting model establishment. Results: ATAC-Seq and RNA-Seq data were separately analyzed and then integrated for the subsequent research. A total of 230 overlapping differentially expressed genes were acquired from ATAC-Seq and RNA-Seq integrated analysis. Further, based on GO analysis, REACTOME pathways, transcription factor prediction, motif enrichment, Cytoscape analysis and literature review, 25 candidate genes potentially associated with progestin insensitivity were identified. Finally, expanded samples were used for data verification, and based on these data, three predictive models comprising 9 genes (FOXO1, IRS2, PDGFC, DIO2, SOX9, BCL11A, APOE, FYN, and KLF4) were established with an overall predictive accuracy above 90%. Conclusion: This study provided potential predictive models that might help identify progestin-insensitive EAH and EEC patients before fertility-preserving treatment.
Collapse
Affiliation(s)
- Jia-Li Hu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Gulinazi Yierfulati
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Lu-Lu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Bing-Yi Yang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Qiao-Ying Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Qiao-Ying Lv, ; Xiao-Jun Chen,
| | - Xiao-Jun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Qiao-Ying Lv, ; Xiao-Jun Chen,
| |
Collapse
|
268
|
Haldavnekar R, Venkatakrishnan K, Tan B. Cancer Stem Cell Derived Extracellular Vesicles with Self-Functionalized 3D Nanosensor for Real-Time Cancer Diagnosis: Eliminating the Roadblocks in Liquid Biopsy. ACS NANO 2022; 16:12226-12243. [PMID: 35968931 DOI: 10.1021/acsnano.2c02971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid biopsy for determining the presence of cancer and the underlying tissue of origin is crucial to overcome the limitations of existing tissue biopsy and imaging-based techniques by capturing critical information from the dynamic tumor heterogeneity. A newly emerging liquid biopsy with extracellular vesicles (EVs) is gaining momentum, but its clinical relevance is in question due to the biological and technical challenges posed by existing technologies. The biological barriers of existing technologies include the inability to generate fundamental details of molecular structure, chemical composition as well as functional variations in EVs by gathering simultaneous information on multiple intra-EV molecules, unavailability of holistic qualitative analysis, in addition to the inability to identify tissue of origin. Technological barriers include reliance on EV isolation with a few labeled biomarkers, resulting in the inability to generate comprehensive information on the disease. A more favorable approach would be to generate holistic information on the disease without the use of labels. Such a marker-free diagnosis is impossible with the existing liquid biopsy due to the unavailability clinically validated cancer stem cells (CSC)-specific markers and dependence of existing technologies on EV isolation, undermining the clinical relevance of EV-based liquid biopsy. Here, CSC EVs were employed as an independent liquid biopsy modality. We hypothesize that tracking the signals of CSCs in peripheral blood with CSC EVs will provide a reliable solution for accurate cancer diagnosis, as CSC are the originators of tumor contributing to tumor heterogeneity. We report nanoengineered 3D sensors of extremely small nano-scaled probes self-functionalized for SERS, enabling integrative molecular and functional profiling of otherwise undetectable CSC EVs. A substantially enhanced SERS and ultralow limit of detection (10 EVs per 10 μL) were achieved. This was attributed to the efficient probe-EV interaction due to the 3D networks of nanoprobes, ensuring simultaneous detection of multiple EV signals. We experimentally demonstrate the crucial role of CSC EVs in cancer diagnosis. We then completed a pilot validation of this modality for cancer detection as well as for identification of the tissue of origin. An artificial neural network distinguished cancer from noncancer with 100% sensitivity and 100% specificity for three hard to detect cancers (breast, lung, and colorectal cancer). Binary classification to distinguish one tissue of origin against all other achieved 100% accuracy, while simultaneous identification of all three tissues of origin with multiclass classification achieved up to 79% accuracy. This noninvasive tool may complement existing cancer diagnostics, treatment monitoring as well as longitudinal disease monitoring by validation with a large cohort of clinical samples.
Collapse
Affiliation(s)
- Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nanocharacterization Laboratory, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nanocharacterization Laboratory, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Nanocharacterization Laboratory, Faculty of Engineering and Architectural Sciences, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
269
|
Przybycień P, Gąsior-Perczak D, Placha W. Cannabinoids and PPAR Ligands: The Future in Treatment of Polycystic Ovary Syndrome Women with Obesity and Reduced Fertility. Cells 2022; 11:cells11162569. [PMID: 36010645 PMCID: PMC9406585 DOI: 10.3390/cells11162569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabinoids (CBs) are used to treat chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis spasticity. Recently, the medicinal use of CBs has attracted increasing interest as a new therapeutic in many diseases. Data indicate a correlation between CBs and PPARs via diverse mechanisms. Both the endocannabinoid system (ECS) and peroxisome proliferator-activated receptors (PPARs) may play a significant role in PCOS and PCOS related disorders, especially in disturbances of glucose-lipid metabolism as well as in obesity and fertility. Taking into consideration the ubiquity of PCOS in the human population, it seems indispensable to search for new potential therapeutic targets for this condition. The aim of this review is to examine the relationship between metabolic disturbances and obesity in PCOS pathology. We discuss current and future therapeutic interventions for PCOS and related disorders, with emphasis on the metabolic pathways related to PCOS pathophysiology. The link between the ECS and PPARs is a promising new target for PCOS, and we examine this relationship in depth.
Collapse
Affiliation(s)
- Piotr Przybycień
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Danuta Gąsior-Perczak
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Wojciech Placha
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Correspondence: ; Tel.: +48-12-422-74-00
| |
Collapse
|
270
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
271
|
Huang W, Wen F, Gu P, Liu J, Xia Y, Li Y, Zhou J, Song S, Ruan S, Gu S, Chen X, Shu P. The inhibitory effect and mechanism of Yi-qi-hua-yu-jie-du decoction on the drug resistance of gastric cancer stem cells based on ABC transporters. Chin Med 2022; 17:93. [PMID: 35941687 PMCID: PMC9361523 DOI: 10.1186/s13020-022-00647-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 01/12/2023] Open
Abstract
Background The drug resistance of tumor stem cells is an obstacle in gastric cancer (GC) treatment and the high expression of ABC transporters is a classic reason for drug resistance. This study aimed to construct a reliable GC drug-resistant stem cell model and explore the inhibitory effect and mechanism of Yi-qi-hua-yu-jie-du medicated serum (YQHY) on the drug resistance of GC stem cells based on ABC transporters. Methods The tumor stemness biomarker CD44 was primary identification from WGCNA. The magnetic-activated cell sorting (MACS) method was used to separate CD44( +)BGC823/5-Fu (BGC823/5–Fu-CSCs) cells and the stemness characteristics were verified from multiple dimensions. Then, the drug resistance index and expression of ABC transporter genes MDR1 and MRP1 were detected in CD44(−)/CD44(+) cells. The inhibition and apoptosis rates of the cells administrated with YQHY or/and 5-Fu were calculated to confirm that YQHY can suppress the drug resistance of BGC823/5-Fu-CSCs. Afterwards, the effects of YQHY on the expression of MDR1 and MRP1 and the activation of the PI3K/Akt/Nrf2 pathway were observed. Finally, under the administration of IGF-1 (the activator of PI3K/Akt pathway) and Nrf2 siRNA, the mechanism of YQHY on reversing the drug resistance of BGC823/5–Fu-CSCs through inhibiting the expression of MDR1 and MRP1 via PI3K/Akt/Nrf2 was verified. Results CD44 was a reliable GC stemness biomarker and can be applied to construct the drug-resistant GC stem cell model CD44(+)BGC823/5-Fu. The growth rate, cell proliferation index, soft agar colony formation, expression of stemness specific genes and tumorigenesis ability of CD44(+)BGC823/5-Fu cells were significantly higher than those of CD44(−)BGC823/5-Fu cells. BGC823/5–Fu-CSCs exhibited strong drug resistance to 5-Fu and high expression of ABC transporter genes MDR1 and MRP1 compared to CD44(-) cells. YQHY increased the inhibition and apoptosis rates to efficiently inhibit the drug resistance of BGC823/5–Fu-CSCs. Meanwhile, it suppressed the expression of MDR1 and MRP1 and restrained the activation of PI3K/Akt/Nrf2 signaling pathway. Finally, it was found that IGF-1 partially restored the activation of PI3K/Akt/Nrf2 pathway, alleviated the inhibition of MDR1 and MRP1, blocked the proliferation-inhibitory and apoptosis-promotion effects. YQHY and si-Nrf2 synergistically suppressed the MDR1/MRP1 expression and the drug resistance of BGC823/5–Fu-CSCs. Conclusions CD44 was a reliable GC stemness biomarker, and the high expression of ABC transporter genes MDR1 and MRP1 was an important feature of drug-resistant stem cells. YQHY inhibited the MDR1 and MRP1 expression via PI3K/Akt/Nrf2 pathway, thus reversing the drug resistance of BGC823/5–Fu-CSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00647-y.
Collapse
Affiliation(s)
- Wenjie Huang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Wen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peixing Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiatong Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Xia
- Department of Respiratory, Wujin Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Ye Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayu Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Song
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ruan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suping Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoxue Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Shu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China. .,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
272
|
Cancer Stem Cell Markers in Rhabdomyosarcoma in Children. Diagnostics (Basel) 2022; 12:diagnostics12081895. [PMID: 36010245 PMCID: PMC9406733 DOI: 10.3390/diagnostics12081895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The aim of the present study was to assess the cancer stem cell (CSC) markers CD24, CD44, CD133, and ALDH1A1 in rhabdomyosarcoma (RMS) in children and to define their prognostic role in this group of patients. (2) Methods: The study material was archival tissue specimens collected from 49 patients under 18 years of age and who had been diagnosed with RMS. Immunohistochemistry (IHC) was used to evaluate the expression of the selected CSC markers in the tumor tissue. Expression was evaluated using a semiquantitative IRS scale based on the one developed by Remmele and Stenger and was correlated with the clinical and pathomorphological parameters of prognostic importance in RMS. (3) Results: Expression of the selected CSC markers CD24, CD44, CD133, and ALDH1A1 was demonstrated in 83.7%, 55.1%, 81.6%, and 100% of the RMS patients, respectively. The expression of all of the assessed CSC markers was statistically significantly higher in the study group versus the control group. No significant correlation was found between the expression of the selected CSC markers and clinical and pathological prognostic factors that were analyzed. The expression of the CSC markers did not have a significant influence on RMS survival rates. (4) Conclusions: The results of the conducted study confirm the expression of selected CSC markers in rhabdomyosarcoma tissue in children. The study did not support the prognostic relevance of the expression of any of the assessed CSC markers. However, further studies are needed to fully understand the relevance of the selected CSC markers in RMS carcinogenesis.
Collapse
|
273
|
Ivanova EL, Costa B, Eisemann T, Lohr S, Boskovic P, Eichwald V, Meckler J, Jugold M, Orian-Rousseau V, Peterziel H, Angel P. CD44 expressed by myeloid cells promotes glioma invasion. Front Oncol 2022; 12:969787. [PMID: 35992852 PMCID: PMC9386454 DOI: 10.3389/fonc.2022.969787] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/07/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors in adulthood with a median survival of only 15 months. This poor prognosis is related to GBM’s ability to extensively infiltrate the surrounding brain parenchyma resulting in diffuse spread of neoplastic cells in the brain, responsible for high rate of recurrence. CD44 (Cluster of Differentiation 44) is a transmembrane protein, overexpressed in multiple cancer types, including gliomas, and implicated in cell motility, proliferation and angiogenesis. Multiple studies have investigated the role of CD44 in GBM cells and have highlighted a link between tumor malignancy and CD44 expression. However up to date, little is known of the role of CD44 on cells from the tumor microenvironment (TME). Here, we have investigated a potential role of CD44 in the TME in regards to GBM invasiveness. Using an ex-vivo organotypic brain slice invasion assay, we show that absence of CD44 from the TME impairs the ability of glioma cells to invade the surrounding brain parenchyma. By deleting CD44 in the astrocytic, endothelial and myeloid compartments, we show that it is specifically CD44 expression in myeloid cells that is responsible for the observed phenotype. Combining in vivo studies in cell-specific knock-out mice and in vitro analyses on primary microglia we demonstrate that myeloid CD44 is implicated in Toll Like Receptor 2 signaling and is a major regulator of Matrix metalloproteinase 9 expression.
Collapse
Affiliation(s)
- Ekaterina L. Ivanova
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Costa
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanja Eisemann
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina Lohr
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavle Boskovic
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktoria Eichwald
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Meckler
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Jugold
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Veronique Orian-Rousseau
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Heike Peterziel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
- *Correspondence: Peter Angel,
| |
Collapse
|
274
|
Mori C, Lee JY, Tokumoto M, Satoh M. Cadmium Toxicity Is Regulated by Peroxisome Proliferator-Activated Receptor δ in Human Proximal Tubular Cells. Int J Mol Sci 2022; 23:ijms23158652. [PMID: 35955783 PMCID: PMC9369238 DOI: 10.3390/ijms23158652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. Renal proximal tubule disorder is the main symptom of Cd chronic poisoning. Our previous study demonstrated that Cd inhibits the total activities of peroxisome proliferator-activated receptor (PPAR) transcription factors in human and rat proximal tubular cells. In this study, we investigated the involvement of PPAR in Cd renal toxicity using the HK-2 human proximal tubular cell line. Among PPAR isoform genes, only PPARD knockdown significantly showed resistance to Cd toxicity in HK-2 cells. The transcriptional activity of PPARδ was decreased not only by PPARD knockdown but also by Cd treatment. DNA microarray analysis showed that PPARD knockdown changed the expression of apoptosis-related genes in HK-2 cells. PPARD knockdown decreased apoptosis signals and caspase-3 activity induced by Cd treatment. PPARD knockdown did not affect the intracellular Cd level after Cd treatment. These results suggest that PPARδ plays a critical role in the modification of susceptibility to Cd renal toxicity and that the apoptosis pathway may be involved in PPARδ-related Cd toxicity.
Collapse
|
275
|
Sihombing UHM, Andrijono, Purwoto G, Gandamihardja S, Harahap AR, Rustamadji P, Kekalih A, Widyawati R, Fuady DR. Expression of CD44+/CD24-, RAD6 and DDB2 on chemotherapy response in ovarian Cancer: A prospective flow cytometry study. Gynecol Oncol Rep 2022; 42:101005. [PMID: 35707599 PMCID: PMC9189034 DOI: 10.1016/j.gore.2022.101005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
Dear editor of Gynecologic Oncology Reports, these are the research highlights: CD44+/CD24- overexpression in blood circulation is associated with ovarian cancer chemoresistance. RAD6 overexpression in blood circulation is associated with ovarian cancer chemoresistance. CD44+/CD24- expression in blood circulation is a good predictor of ovarian cancer chemoresistance.
Backgrounds Ovarian cancer is the 8th deadliest common cancer in women around the world. Almost all ovarian cancer patients would experience chemoresistance, recurrence, and poor prognosis after cytoreductive surgery and platinum-based chemotherapy. Chemoresistant cancer cells have characteristic expressions of cancer stem cell proteins (CSCs) CD44+/CD24-, RAD6 and DDB2. The increased expression of CD44+/CD24-, RAD6, and decreased DDB2 are believed to be associated with chemoresistance, recurrence, and poor prognosis of the disease. Thus, this study’s objective is to analyze the correlation between the expression of CD44+/CD24-, RAD6 and DDB2 with ovarian cancer chemoresistance. Materials and methods This study was conducted with a prospective cohort of 64 patients who is divided into two groups (32 patients in each group) at the Obstetrics-gynecology and pathology department of Cipto Mangunkusumo, Tarakan, Dharmais, and Fatmawati Hospital. All suspected ovarian cancer patients underwent cytoreductive debulking and histopathological examination. Chemotherapy was given for six series followed by six months of observation. After the observation, we determined the therapy’s response with the RECIST Criteria (Response Criteria in Solid Tumors) and then classified the results into chemoresistant or chemosensitive groups. Flow cytometry blood tests were then performed to examine the expression of CD44+/CD24-, RAD6 and DDB2. Results There was a significant relationship between increased levels of CD44+/CD24-, and RAD6 (p < 0.05) levels with the chemoresistance of ovarian cancer. The logistic regression test showed that the CD44+/CD24– was better marker. Conclusions These results indicate that CD44+/CD24 and RAD6 expressions are significantly associated with ovarian cancer chemoresistance, and CD44+/CD24- is the better marker to predict ovarian cancer chemoresistance.
Collapse
|
276
|
Zhang W, Huang X. Stem cell membrane-camouflaged targeted delivery system in tumor. Mater Today Bio 2022; 16:100377. [PMID: 35967738 PMCID: PMC9364095 DOI: 10.1016/j.mtbio.2022.100377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
|
277
|
CD109 Is a Critical Determinant of EGFR Expression and Signaling, and Tumorigenicity in Squamous Cell Carcinoma Cells. Cancers (Basel) 2022; 14:cancers14153672. [PMID: 35954339 PMCID: PMC9367592 DOI: 10.3390/cancers14153672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Squamous cell carcinoma (SCC) is one of the leading causes of cancer-related deaths worldwide. CD109 is overexpressed in many cancers including SCC. Although a pro-tumorigenic role for CD109 has been shown in non-SCC cancers, and in one type of SCC, the mechanisms and signaling pathways reported are discrepant. (2) Methods: The CD109-EGFR interaction and CD109-mediated regulation of EGFR expression, signaling, and stemness were studied using microarray, immunoblot, immunoprecipitation, qPCR, immunofluorescence, and/or spheroid formation assays. The role of CD109 in tumor progression and metastasis was studied using xenograft tumor growth and metastatic models. (3) Results: We establish the in vivo tumorigenicity of CD109 in vulvar SCC cells and demonstrate that CD109 is an essential regulator of EGFR expression at the mRNA and protein levels and of EGFR/AKT signaling in vulvar and hypopharyngeal SCC cells. Furthermore, we show that the mechanism involves EGFR-CD109 heteromerization and colocalization, leading to the stabilization of EGFR levels. Additionally, we demonstrate that the maintenance of epithelial morphology and in vitro tumorigenicity of SCC cells require CD109 localization to the cell surface. (4) Conclusions: Our study identifies an essential role for CD109 in vulvar SCC progression. We demonstrate that CD109 regulates SCC cellular stemness and epithelial morphology via a cell-surface CD109-EGFR interaction, stabilization of EGFR levels and EGFR/AKT signaling.
Collapse
|
278
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
279
|
Kwizera EA, Ou W, Lee S, Stewart S, Shamul JG, Xu J, Tait N, Tkaczuk KHR, He X. Greatly Enhanced CTC Culture Enabled by Capturing CTC Heterogeneity Using a PEGylated PDMS-Titanium-Gold Electromicrofluidic Device with Glutathione-Controlled Gentle Cell Release. ACS NANO 2022; 16:11374-11391. [PMID: 35797466 PMCID: PMC9649890 DOI: 10.1021/acsnano.2c05195] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The circulating tumor cells (CTCs, the root cause of cancer metastasis and poor cancer prognosis) are very difficult to culture for scale-up in vitro, which has hampered their use in cancer research/prognosis and patient-specific therapeutic development. Herein, we report a robust electromicrofluidic chip for not only efficient capture of heterogeneous (EpCAM+ and CD44+) CTCs with high purity but also glutathione-controlled gentle release of the CTCs with high efficiency and viability. This is enabled by coating the polydimethylsiloxane (PDMS) surface in the device with a 10 nm gold layer through a 4 nm titanium coupling layer, for convenient PEGylation and linkage of capture antibodies via the thiol-gold chemistry. Surprisingly, the percentage of EpCAM+ mammary CTCs can be as low as ∼35% (∼70% on average), showing that the commonly used approach of capturing CTCs with EpCAM alone may miss many EpCAM- CTCs. Furthermore, the CD44+ CTCs can be cultured to form 3D spheroids efficiently for scale-up. In contrast, the CTCs captured with EpCAM alone are poor in proliferation in vitro, consistent with the literature. By capture of the CTC heterogeneity, the percentage of stage IV patients whose CTCs can be successfully cultured/scaled up is improved from 12.5% to 68.8%. These findings demonstrate that the common practice of CTC capture with EpCAM alone misses the CTC heterogeneity including the critical CD44+ CTCs. This study may be valuable to the procurement and scale-up of heterogeneous CTCs, to facilitate the understanding of cancer metastasis and the development of cancer metastasis-targeted personalized cancer therapies conveniently via the minimally invasive liquid/blood biopsy.
Collapse
Affiliation(s)
- Elyahb A Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sojeong Lee
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Nancy Tait
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Katherine H R Tkaczuk
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
280
|
Liao C, Wang Q, An J, Chen J, Li X, Long Q, Xiao L, Guan X, Liu J. CD44 Glycosylation as a Therapeutic Target in Oncology. Front Oncol 2022; 12:883831. [PMID: 35936713 PMCID: PMC9351704 DOI: 10.3389/fonc.2022.883831] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The interaction of non-kinase transmembrane glycoprotein CD44 with ligands including hyaluronic acid (HA) is closely related to the occurrence and development of tumors. Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin, TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-κB/NANOG and other signaling pathways, thereby having a profound impact on the tumor microenvironment and tumor cell fate. However, the glycosylation of CD44 is complex and largely unknown, and the current understanding of how CD44 glycosylation affects tumors is limited. These issues must be addressed before targeted CD44 glycosylation can be applied to treat human cancers.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
281
|
Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev 2022; 51:6065-6086. [PMID: 35770998 PMCID: PMC9289890 DOI: 10.1039/d0cs01414a] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/25/2022]
Abstract
The application of metal-organic frameworks (MOFs) in drug delivery has advanced rapidly over the past decade, showing huge progress in the development of novel systems. Although a large number of versatile MOFs that can carry and release multiple compounds have been designed and tested, one of the main limitations to their translation to the clinic is the limited biological understanding of their interaction with cells and the way they penetrate them. This is a crucial aspect of drug delivery, as MOFs need to be able not only to enter into cells but also to release their cargo in the correct intracellular location. While small molecules can enter cells by passive diffusion, nanoparticles (NPs) usually require an energy-dependent process known as endocytosis. Importantly, the fate of NPs after being taken up by cells is dependent on the endocytic pathways they enter through. However, no general guidelines for MOF particle internalization have been established due to the inherent complexity of endocytosis as a mechanism, with several factors affecting cellular uptake, namely NP size and surface chemistry. In this review, we cover recent advances regarding the understanding of the mechanisms of uptake of nano-sized MOFs (nanoMOFs)s, their journey inside the cell, and the importance of biological context in their final fate. We examine critically the impact of MOF physicochemical properties on intracellular trafficking and successful cargo delivery. Finally, we highlight key unanswered questions on the topic and discuss the future of the field and the next steps for nanoMOFs as drug delivery systems.
Collapse
Affiliation(s)
- Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Salame Haddad
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Zihan Mei
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| |
Collapse
|
282
|
Zheng S, Luo J, Xie S, Lu S, Liu Q, Xiao H, Luo W, Huang Y, Liu K. Tumor budding of cervical squamous cell carcinoma: epithelial-mesenchymal transition-like cancer stem cells? PeerJ 2022; 10:e13745. [PMID: 35860042 PMCID: PMC9291004 DOI: 10.7717/peerj.13745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 01/17/2023] Open
Abstract
Recent evidence indicates that cancer stem cells (CSCs) are the origin of cancers. Scientists have identified CSCs in various tumors and have suggested the existence of a variety of states of CSCs. The existence of epithelial-mesenchymal transition (EMT)-like CSCs has been confirmed in vitro, but they have not been identified in vivo. Tumor budding was defined as single cell or clusters of ≤ 5 cells at the invasive front of cancers. Such tumor budding is hypothesized to be closely related to EMT and linked to CSCs, especially to those migrating at the invasive front. Therefore, tumor budding has been proposed to represent EMT-like stem cells. However, this hypothesis has not yet been proven. Thus, we studied the expression of EMT markers, certain CSC markers of tumor budding, and the tumor center of cervical squamous cell carcinoma (CxSCC). We performed tissue chip analyses of 95 primary CxSCCs from patients. Expression of EMT and CSC markers (E-cadherin, β-catenin, vimentin, Ki67, CD44, SOX2 , and ALDH1A1) in a set of tumor samples on tissue chips (87 cases of tumor budding/the main tumor body) were evaluated by immunohistochemistry. We found that the cell-membranous expression of β-catenin was stronger in the main tumor body than in tumor buds. Compared with the main tumor body, tumor buds had reduced proliferative activity as measured by Ki67. Moreover, vimentin expression was high and E-cadherin expression was low in tumor buds. Expression of EMT-related markers suggested that tumor buds were correlated with EMT. We noted that CxSCC tumor buds had a CD44negative/low/SOX2high/ALDH1A1high staining pattern, indicating that tumor buds of CxSCC present CSC-like immunophenotypic features. Taken together, our data indicate that tumor buds in CxSCC may represent EMT-like CSCs in vivo.
Collapse
Affiliation(s)
- Shaoqiu Zheng
- Department of Pathology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Jing Luo
- Department of Pelvic Radiotherapy, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Shoucheng Xie
- Department of Pathology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Shanming Lu
- Department of Pathology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Qinghua Liu
- Department of Pathology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Huanqin Xiao
- Department of Pathology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Wenjuan Luo
- Department of Pathology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Yanfang Huang
- Department of Pathology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Kun Liu
- Department of Pathology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| |
Collapse
|
283
|
Near-Infrared Photoimmunotherapy for Thoracic Cancers: A Translational Perspective. Biomedicines 2022; 10:biomedicines10071662. [PMID: 35884975 PMCID: PMC9312913 DOI: 10.3390/biomedicines10071662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
The conventional treatment of thoracic tumors includes surgery, anticancer drugs, radiation, and cancer immunotherapy. Light therapy for thoracic tumors has long been used as an alternative; conventional light therapy also called photodynamic therapy (PDT) has been used mainly for early-stage lung cancer. Recently, near-infrared photoimmunotherapy (NIR-PIT), which is a completely different concept from conventional PDT, has been developed and approved in Japan for the treatment of recurrent and previously treated head and neck cancer because of its specificity and effectiveness. NIR-PIT can apply to any target by changing to different antigens. In recent years, it has become clear that various specific and promising targets are highly expressed in thoracic tumors. In combination with these various specific targets, NIR-PIT is expected to be an ideal therapeutic approach for thoracic tumors. Additionally, techniques are being developed to further develop NIR-PIT for clinical practice. In this review, NIR-PIT is introduced, and its potential therapeutic applications for thoracic cancers are described.
Collapse
|
284
|
Regulation of Tissue Factor by CD44 Supports Coagulant Activity in Breast Tumor Cells. Cancers (Basel) 2022; 14:cancers14133288. [PMID: 35805061 PMCID: PMC9266039 DOI: 10.3390/cancers14133288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Metastasis and thromboembolic complications are the main cause of cancer-associated death. An overexpression of coagulation factors, and particularly Tissue factor, by tumor cells is a key event implicated in this observed hypercoagulability. Tissue Factor is indeed a cellular initiator of the coagulation cascade which has been associated with aggressive tumor phenotypes such as those characteristic of Epithelial-Mesenchymal Transitions (EMTs) and Cancer Stem Cells (CSCs). Understanding molecular mechanisms controlling Tissue Factor overexpression in those tumor phenotypes is thus an important aspect of cancer research. We show here that CD44 (a transmembrane marker of CSC and EMT phenotypes) contributes to regulate TF expression at a transcriptional level, thereby supporting procoagulant properties in tumor cells that facilitate their metastatic spread. Abstract Previous work identified Tissue Factor (TF), a key activator of the coagulation cascade, as a gene induced in cellular contexts of Epithelial-Mesenchymal Transitions (EMTs), providing EMT+ Circulating Tumor Cells (CTCs) with coagulant properties that facilitate their metastatic seeding. Deciphering further molecular aspects of TF regulation in tumor cells, we report here that CD44 and TF coexpress in EMT contexts, and that CD44 acts as a regulator of TF expression supporting procoagulant properties and metastatic seeding. A transcriptional regulatory mechanism bridging CD44 to TF expression was further evidenced. Comparing different TF –promoter luciferase reporter constructs, we indeed found that the shortest -111 pb TF promoter fragment harboring three Specificity Protein 1 (Sp1) binding sites is still responsive to CD44 silencing. The observation that (i) mutation within Sp1 binding sites decreased the basal activity of the -111 pb TF promoter construct, (ii) CD44 silencing decreased Sp1 protein and mRNA levels and (iii) Sp1 silencing diminished TF expression further points to Sp1 as a key mediator linking CD44 to TF regulation. All together, these data thus report a transcriptional regulatory mechanism of TF expression by CD44 supporting procoagulant activity and metastatic competence of CTCs.
Collapse
|
285
|
Karthik KV, Rajalingam A, Shivashankar M, Ganjiwale A. Recursive Feature Elimination-based Biomarker Identification for Open Neural Tube Defects. Curr Genomics 2022; 23:195-206. [PMID: 36777008 PMCID: PMC9878829 DOI: 10.2174/1389202923666220511162038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Open spina bifida (myelomeningocele) is the result of the failure of spinal cord closing completely and is the second most common and severe birth defect. Open neural tube defects are multifactorial, and the exact molecular mechanism of the pathogenesis is not clear due to disease complexity for which prenatal treatment options remain limited worldwide. Artificial intelligence techniques like machine learning tools have been increasingly used in precision diagnosis. Objective: The primary objective of this study is to identify key genes for open neural tube defects using a machine learning approach that provides additional information about myelomeningocele in order to obtain a more accurate diagnosis. Materials and Methods: Our study reports differential gene expression analysis from multiple datasets (GSE4182 and GSE101141) of amniotic fluid samples with open neural tube defects. The sample outliers in the datasets were detected using principal component analysis (PCA). We report a combination of the differential gene expression analysis with recursive feature elimination (RFE), a machine learning approach to get 4 key genes for open neural tube defects. The features selected were validated using five binary classifiers for diseased and healthy samples: Logistic Regression (LR), Decision tree classifier (DT), Support Vector Machine (SVM), Random Forest classifier (RF), and K-nearest neighbour (KNN) with 5-fold cross-validation. Results: Growth Associated Protein 43 (GAP43), Glial fibrillary acidic protein (GFAP), Repetin (RPTN), and CD44 are the important genes identified in the study. These genes are known to be involved in axon growth, astrocyte differentiation in the central nervous system, post-traumatic brain repair, neuroinflammation, and inflammation-linked neuronal injuries. These key genes represent a promising tool for further studies in the diagnosis and early detection of open neural tube defects. Conclusion: These key biomarkers help in the diagnosis and early detection of open neural tube defects, thus evaluating the progress and seriousness in diseases condition. This study strengthens previous literature sources of confirming these biomarkers linked with open NTD's. Thus, among other prenatal treatment options present until now, these biomarkers help in the early detection of open neural tube defects, which provides success in both treatment and prevention of these defects in the advanced stage.
Collapse
Affiliation(s)
| | - Aruna Rajalingam
- Department of Life Science, Bangalore University, Bangalore, India
| | | | - Anjali Ganjiwale
- Department of Life Science, Bangalore University, Bangalore, India
| |
Collapse
|
286
|
Solimando AG, Da Vià MC, Bolli N, Steinbrunn T. The Route of the Malignant Plasma Cell in Its Survival Niche: Exploring “Multiple Myelomas”. Cancers (Basel) 2022; 14:cancers14133271. [PMID: 35805041 PMCID: PMC9265748 DOI: 10.3390/cancers14133271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic outcomes. Nevertheless, some subgroups of patients include those with particularly unfavorable prognoses. Biological stratification can be used to categorize patient-, disease- or therapy-related factors, or alternatively, these biological determinants can be included in a dynamic model that customizes a given treatment to a specific patient. Genetic heterogeneity and current knowledge enforce a systematic and comprehensive bench-to-bedside approach. Given the increasing role of cancer stem cells (CSCs) in better characterizing the pathogenesis of solid and hematological malignancies, disease relapse, and drug resistance, identifying and describing CSCs is of paramount importance in the management of MM. Even though the function of CSCs is well-known in other cancer types, their role in MM remains elusive. With this review, we aim to provide an update on MM homing and resilience in the bone marrow micro milieu. These data are particularly interesting for clinicians facing unmet medical needs while designing novel treatment approaches for MM.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| | - Matteo Claudio Da Vià
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
| | - Niccolò Bolli
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Torsten Steinbrunn
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| |
Collapse
|
287
|
Guo K, Duan J, Lu J, Xiao L, Han L, Zeng S, Tang X, Li W, Huang L, Zhang Y. TNF-α-inducing protein of Helicobacter pylori promotes EMT and cancer stem-like cells properties via activation of Wnt/β-catenin signaling pathway in gastric cancer cells. Pathog Dis 2022; 80:6626024. [PMID: 35776950 DOI: 10.1093/femspd/ftac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor-α-inducing protein (Tipα) is a newly identified toxin, which promotes the inflammation and carcinogenesis caused by Helicobacter pylori (H. pylori). However, its mechanism of pathogenesis is still unclear. To investigate the carcinogenic mechanisms of Tipα, SGC7901 cells and SGC7901-derived cancer stem-like cells (CSCs) were stimulated by recombinant Tipα protein with or without Wnt/β-catenin signaling inhibitor XAV939. qRT-PCR and Western blotting were employed to detect expression of epithelial-mesenchymal transition (EMT), CSCs markers, and downstream target genes of this signaling pathway. The cell migration ability was measured by wound healing assay and transwell assay. Our results indicated that Tipα promoted CSC properties of SGC7901 spheroids, including increased expression of CSC specific surface markers CD44, Oct4, Nanog, and an increased capacity for self-renewal. Tipα activated Wnt/β-catenin signaling in both SGC7901 cells or CSCs. Furthermore, Tipα induced the EMT and increased the expressions of downstream target genes of this signaling, including c-myc, cyclin D1, and CD44. However, XAV939 pretreatment inhibited Tipα-induced EMT and CSC properties in SGC7901 cells or CSCs. These results suggest that Tipα promotes EMT and CSC-like properties in gastric cancer cells through activation of Wnt/β-catenin signaling pathway, thereby accelerating the progression of gastric cancer.
Collapse
Affiliation(s)
- Kaiyun Guo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Jie Duan
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Jingwen Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Lingqiao Xiao
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Liang Han
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Shasha Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Xin Tang
- School of Nursing, University of South China, Hengyang 421001, Hunan, China
| | - Wenjing Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Lijun Huang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| | - Yan Zhang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang 421001, Hunan, China
| |
Collapse
|
288
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
289
|
Abstract
Mucin domains are densely O-glycosylated modular protein domains found in various extracellular and transmembrane proteins. Mucin-domain glycoproteins play important roles in many human diseases, such as cancer and cystic fibrosis, but the scope of the mucinome remains poorly defined. Recently, we characterized a bacterial O-glycoprotease, StcE, and demonstrated that an inactive point mutant retains binding selectivity for mucin-domain glycoproteins. In this work, we leverage inactive StcE to selectively enrich and identify mucin-domain glycoproteins from complex samples like cell lysate and crude ovarian cancer patient ascites fluid. Our enrichment strategy is further aided by an algorithm to assign confidence to mucin-domain glycoprotein identifications. This mucinomics platform facilitates detection of hundreds of glycopeptides from mucin domains and highly overlapping populations of mucin-domain glycoproteins from ovarian cancer patients. Ultimately, we demonstrate our mucinomics approach can reveal key molecular signatures of cancer from in vitro and ex vivo sources. Mucin-domain glycoproteins are densely O-glycosylated proteins with unique secondary structure that imparts a large influence on cellular environments. Here, the authors develop a technique to selectively enrich and characterize mucin-domain glycoproteins from cell lysate and patient biofluids.
Collapse
|
290
|
Yang L, Yang J, Jacobson B, Gilbertsen A, Smith K, Higgins L, Guerrero C, Xia H, Henke CA, Lin J. SFPQ Promotes Lung Cancer Malignancy via Regulation of CD44 v6 Expression. Front Oncol 2022; 12:862250. [PMID: 35707369 PMCID: PMC9190464 DOI: 10.3389/fonc.2022.862250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) contribute to tumor pathogenesis and elicit antitumor immune responses in tumor microenvironments. Nuclear proteins might be the main players in these processes. In the current study, combining spatial proteomics with ingenuity pathway analysis (IPA) in lung non-small cell (NSC) cancer MSCs, we identify a key nuclear protein regulator, SFPQ (Splicing Factor Proline and Glutamine Rich), which is overexpressed in lung cancer MSCs and functions to promote MSCs proliferation, chemical resistance, and invasion. Mechanistically, the knockdown of SFPQ reduces CD44v6 expression to inhibit lung cancer MSCs stemness, proliferation in vitro, and metastasis in vivo. The data indicates that SFPQ may be a potential therapeutic target for limiting growth, chemotherapy resistance, and metastasis of lung cancer.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minneapolis, Minneapolis, MN, United States.,The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - LeeAnn Higgins
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Candace Guerrero
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.,The Immunotherapy Research Laboratory, Department of Otolaryngology, Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
291
|
Fernández-Tabanera E, Melero-Fernández de Mera RM, Alonso J. CD44 In Sarcomas: A Comprehensive Review and Future Perspectives. Front Oncol 2022; 12:909450. [PMID: 35785191 PMCID: PMC9247467 DOI: 10.3389/fonc.2022.909450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
It is widely accepted that the tumor microenvironment, particularly the extracellular matrix, plays an essential role in the development of tumors through the interaction with specific protein-membrane receptors. One of the most relevant proteins in this context is the transmembrane protein CD44. The role of CD44 in tumor progression, invasion, and metastasis has been well established in many cancers, although a comprehensive review concerning its role in sarcomas has not been published. CD44 is overexpressed in most sarcomas and several in vitro and in vivo experiments have shown a direct effect on tumor progression, dissemination, and drug resistance. Moreover, CD44 has been revealed as a useful marker for prognostic and diagnostic (CD44v6 isoform) in osteosarcoma. Besides, some innovative treatments such as HA-functionalized liposomes therapy have become an excellent CD44-mediated intracellular delivery system for osteosarcoma. Unfortunately, the reduced number of studies deciphering the prognostic/diagnostic value of CD44 in other sarcoma subgroups, neither than osteosarcoma, in addition to the low number of patients involved in those studies, have produced inconclusive results. In this review, we have gone through the information available on the role of CD44 in the development, maintenance, and progression of sarcomas, analyzing their implications at the prognostic, therapeutic, and mechanistic levels. Moreover, we illustrate how research involving the specific role of CD44 in the different sarcoma subgroups could suppose a chance to advance towards a more innovative perspective for novel therapies and future clinical trials.
Collapse
Affiliation(s)
- Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Raquel M. Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (U758; CB06/07/1009; CIBERER-ISCIII), Madrid, Spain
- *Correspondence: Javier Alonso,
| |
Collapse
|
292
|
Yao W, Hou J, Liu G, Wu F, Yan Q, Guo L, Wang C. LncRNA CBR3-AS1 promotes osteosarcoma progression through the network of miR-140-5p/DDX54-NUCKS1-mTOR signaling pathway. Mol Ther Oncolytics 2022; 25:189-200. [PMID: 35592388 PMCID: PMC9092395 DOI: 10.1016/j.omto.2022.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA (lncRNA) CBR3-AS1 (termed as CBR3-AS1) has been reported to be upregulated in several cancers including osteosarcoma. Its positive impact on the proliferation, migration, and invasion of osteosarcoma cells has been unveiled; nevertheless, whether it also affects the stemness and epithelial-mesenchymal transition (EMT) of osteosarcoma cells is unclear. The purpose for this study was to explore the effects of CBR3-AS1 on the stemness and EMT of osteosarcoma cells as well as its underlying mechanism. qRT-PCR and western blot were applied to detect target gene expression. Function assays were conducted to evaluate the effect of genes on the stemness and EMT of osteosarcoma cells. Mechanism assays were done to verify the association among different genes. In vivo assays were also performed. The obtained data showed that CBR3-AS1 demonstrated a high expression in osteosarcoma cells. CBR3-AS1 could promote stemness and EMT of osteosarcoma cells as well as osteosarcoma tumor growth. Mechanically, CBR3-AS1 sponged miR-140-5p and recruited DDX54 to upregulate NUCKS1, thus activating the mTOR signaling pathway. Furthermore, NUCKS1 could facilitate stemness and EMT of osteosarcoma cells. In summary, this study reveals that CBR3-AS1 exerts an oncogenic role in osteosarcoma through modulating the network of the miR-140-5p/DDX54-NUCKS1-mTOR signaling pathway.
Collapse
Affiliation(s)
- Weitao Yao
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Jingyu Hou
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Guoqing Liu
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Fangxing Wu
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Qiang Yan
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Liangyu Guo
- Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), 127 Dongming Road, Zhengzhou City, Henan Province, 450000, China
| | - Chuchu Wang
- School of Life Science, Zhengzhou University, 100 Science Avenue, Zhengzhou City, Henan Province, 450001, China
| |
Collapse
|
293
|
Vahala D, Choi YS. Modelling the Tumor Microenvironment: Recapitulating Nano- and Micro-Scale Properties that Regulate Tumor Progression. Front Cell Dev Biol 2022; 10:908799. [PMID: 35800896 PMCID: PMC9254080 DOI: 10.3389/fcell.2022.908799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer remains a significant burden with 1 in 8 women affected and metastasis posing a significant challenge for patient survival. Disease progression involves remodeling of the extracellular matrix (ECM). In breast cancer, tissue stiffness increases owing to an increase in collagen production by recruited cancer-associated fibroblasts (CAFs). These stromal modifications are notable during primary tumor growth and have a dualistic action by creating a hard capsule to prevent penetration of anti-cancer therapies and forming a favorable environment for tumor progression. Remodeling of the tumor microenvironment immediately presented to cells can include changes in protein composition, concentration and structural arrangement and provides the first mechanical stimuli in the metastatic cascade. Not surprisingly, metastatic cancer cells possess the ability to mechanically adapt, and their adaptability ensures not only survival but successful invasion within altered environments. In the past decade, the importance of the microenvironment and its regulatory role in diseases have gained traction and this is evident in the shift from plastic culture to the development of novel biomaterials that mimic in vivo tissue. With these advances, elucidations can be made into how ECM remodeling and more specifically, altered cell-ECM adhesions, regulate tumor growth and cancer cell plasticity. Such enabling tools in mechanobiology will identify fundamental mechanisms in cancer progression that eventually help develop preventative and therapeutic treatment from a clinical perspective. This review will focus on current platforms engineered to mimic the micro and nano-properties of the tumor microenvironment and subsequent understanding of mechanically regulated pathways in cancer.
Collapse
|
294
|
Marolt U, Paradiž Leitgeb E, Pohorec V, Lipovšek S, Venglovecz V, Gál E, Ébert A, Menyhárt I, Potrč S, Gosak M, Dolenšek J, Stožer A. Calcium imaging in intact mouse acinar cells in acute pancreas tissue slices. PLoS One 2022; 17:e0268644. [PMID: 35657915 PMCID: PMC9165796 DOI: 10.1371/journal.pone.0268644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
The physiology and pathophysiology of the exocrine pancreas are in close connection to changes in intra-cellular Ca2+ concentration. Most of our knowledge is based on in vitro experiments on acinar cells or acini enzymatically isolated from their surroundings, which can alter their structure, physiology, and limit our understanding. Due to these limitations, the acute pancreas tissue slice technique was introduced almost two decades ago as a complementary approach to assess the morphology and physiology of both the endocrine and exocrine pancreas in a more conserved in situ setting. In this study, we extend previous work to functional multicellular calcium imaging on acinar cells in tissue slices. The viability and morphological characteristics of acinar cells within the tissue slice were assessed using the LIVE/DEAD assay, transmission electron microscopy, and immunofluorescence imaging. The main aim of our study was to characterize the responses of acinar cells to stimulation with acetylcholine and compare them with responses to cerulein in pancreatic tissue slices, with special emphasis on inter-cellular and inter-acinar heterogeneity and coupling. To this end, calcium imaging was performed employing confocal microscopy during stimulation with a wide range of acetylcholine concentrations and selected concentrations of cerulein. We show that various calcium oscillation parameters depend monotonically on the stimulus concentration and that the activity is rather well synchronized within acini, but not between acini. The acute pancreas tissue slice represents a viable and reliable experimental approach for the evaluation of both intra- and inter-cellular signaling characteristics of acinar cell calcium dynamics. It can be utilized to assess many cells simultaneously with a high spatiotemporal resolution, thus providing an efficient and high-yield platform for future studies of normal acinar cell biology, pathophysiology, and screening pharmacological substances.
Collapse
Affiliation(s)
- Urška Marolt
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Saška Lipovšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Attila Ébert
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - István Menyhárt
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Stojan Potrč
- Clinical department for abdominal and general surgery, University Medical Centre Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- * E-mail: (UM); (JD); (AS)
| |
Collapse
|
295
|
Qu Q, Xin Y, Xu Y, Yuan Y, Deng K. Imaging and Clinicopathological Features of Acinar Cell Carcinoma. Front Oncol 2022; 12:888679. [PMID: 35747811 PMCID: PMC9209696 DOI: 10.3389/fonc.2022.888679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acinar cell carcinoma (ACC) is a rare pancreatic epithelial malignancy that poses a significant threat. However, there are few related clinical studies. The present study aimed to analyze the imaging and pathological features of ACC to provide a reference for better diagnosis and treatment planning. METHODS Thirty-nine with ACC, referred to Qianfoshan Hospital, Qilu Hospital and Provincial Hospital in Shandong Province from December 2012 to December 2020, were enrolled. Their imaging and clinicopathological features were analyzed. They were followed up for 1 year, and Cox regression was used to analyze the factors affecting patient prognosis. RESULTS ACC was more common in the middle-aged and elderly and peaked at approximately 60 years. The clinical manifestations of the patients were mostly flatulence and upper abdomen pain. The tumor was located in the head of the pancreas in 19 cases, with an average size of 5.8 cm. We found nerve invasion and liver metastasis in one case each. 8 patients showed irregular amorphous tumor calcification on plain computed tomography and 5 showed high and low signals on T1- and T2-weighted images, respectively. Immunohistochemistry revealed 100.0% positive rates for CK, β-catenin, and Ki-67. Thirty-three patients underwent surgical resection, and the 2-year overall mortality rate was 25.6%. Cox analysis revealed that smoking was an independent risk factor affecting patient prognosis. CONCLUSION An in-depth understanding of the imaging and clinicopathological features of ACC is conducive to better diagnosis and treatment planning for ACC and subsequent improvement in patient prognosis.
Collapse
Affiliation(s)
- Qianqian Qu
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| | - Yinghui Xin
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yifan Xu
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| | - Yao Yuan
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Kai Deng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| |
Collapse
|
296
|
Zeng C, Qi G, Shen Y, Li W, Zhu Q, Yang C, Deng J, Lu W, Liu Q, Jin J. DPEP1 promotes drug resistance in colon cancer cells by forming a positive feedback loop with ASCL2. Cancer Med 2022; 12:412-424. [PMID: 35670012 PMCID: PMC9844606 DOI: 10.1002/cam4.4926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Drug resistance is an important factor affecting the efficacy of chemotherapy in patients with colon cancer. However, clinical markers for diagnosing drug resistance of tumor cells are not only a few in number, but also low in specificity, and the mechanism of action of tumor cell drug resistance remains unclear. METHODS Dipeptidase 1 (DPEP1) expression was analyzed using the cancer genome atlas (TCGA) and genotype-Tissue Expression pan-cancer data. Survival analysis was performed using the survival package in R software to assess the prognostic value of DPEP1 expression in colon cancer. Correlation and Venn analyses were adopted to identify key genes. Immunohistochemistry, western blot, qRT-PCR, Co-immunoprecipitation, and dual-luciferase reporter experiments were carried out to explore the underlying associations between DPEP1 and Achaete scute-like 2 (ASCL2). MTT assays were used to evaluate the role of DPEP1 and ASCL2 in colon cancer drug resistance. RESULTS DPEP1 was highly expressed in colon cancer tissues. DPEP1 expression correlated negatively with disease-specific survival but not with overall survival. Bioinformatics analysis and experiments showed that the expressions of DPEP1 and ASCL2 in colon cancer tissues were markedly positively correlated. Mechanistic research indicated that DPEP1 enhanced the stability of protein ASCL2 by inhibiting its ubiquitination-mediated degradation. In turn, ASCL2 functioned as a transcription factor to activate the transcriptional activity of the DPEP1 gene and boost its expression. Furthermore, DPEP1 also could enhance the expression of colon cancer stem cell markers (LGR5, CD133, and CD44), which strengthened the tolerance of colon cancer cells to chemotherapy drugs. CONCLUSIONS Our findings reveal that the DPEP1 enhances the stemness of tumor cells by forming a positive feedback loop with ASCL2 to improve resistance to chemotherapy drugs.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina
| | - Guoping Qi
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina
| | - Ying Shen
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Wenjing Li
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Qi Zhu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Chunxia Yang
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Jianzhong Deng
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Wenbin Lu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Qian Liu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Jianhua Jin
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| |
Collapse
|
297
|
Zheng M, Gao R. Vitamin D: A Potential Star for Treating Chronic Pancreatitis. Front Pharmacol 2022; 13:902639. [PMID: 35734414 PMCID: PMC9207250 DOI: 10.3389/fphar.2022.902639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory and fibrotic disease of the pancreas. The incidence of CP is increasing worldwide but the effective therapies are lacking. Hence, it is necessary to identify economical and effective agents for the treatment of CP patients. Vitamin D (VD) and its analogues have been confirmed as pleiotropic regulators of cell proliferation, apoptosis, differentiation and autophagy. Clinical studies show that VD deficiency is prevalent in CP patients. However, the correlation between VD level and the risk of CP remains controversial. VD and its analogues have been demonstrated to inhibit pancreatic fibrosis by suppressing the activation of pancreatic stellate cells and the production of extracellular matrix. Limited clinical trials have shown that the supplement of VD can improve VD deficiency in patients with CP, suggesting a potential therapeutic value of VD in CP. However, the mechanisms by which VD and its analogues inhibit pancreatic fibrosis have not been fully elucidated. We are reviewing the current literature concerning the risk factors for developing CP, prevalence of VD deficiency in CP, mechanisms of VD action in PSC-mediated fibrogenesis during the development of CP and potential therapeutic applications of VD and its analogues in the treatment of CP.
Collapse
|
298
|
Jiang T, Wei F, Xie K. Clinical significance of pancreatic ductal metaplasia. J Pathol 2022; 257:125-139. [PMID: 35170758 DOI: 10.1002/path.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Fang Wei
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| |
Collapse
|
299
|
Hafiz S, Xavierselvan M, Gokalp S, Labadini D, Barros S, Duong J, Foster M, Mallidi S. Eutectic Gallium-Indium Nanoparticles for Photodynamic Therapy of Pancreatic Cancer. ACS APPLIED NANO MATERIALS 2022; 5:6125-6139. [PMID: 35655927 PMCID: PMC9150699 DOI: 10.1021/acsanm.1c04353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 05/04/2023]
Abstract
Developing a cancer theranostic nanoplatform with diagnosis and treatment capabilities to effectively treat tumors and reduce side effects is of great significance. Herein, we present a drug delivery strategy for photosensitizers based on a new liquid metal nanoplatform that leverages the tumor microenvironment to achieve photodynamic therapeutic effects in pancreatic cancer. Eutectic gallium indium (EGaIn) nanoparticles were successfully conjugated with a water-soluble cancer targeting ligand, hyaluronic acid, and a photosensitizer, benzoporphyrin derivative, creating EGaIn nanoparticles (EGaPs) via a simple green sonication method. The prepared sphere-shaped EGaPs, with a core-shell structure, presented high biocompatibility and stability. EGaPs had greater cellular uptake, manifested targeting competence, and generated significantly higher intracellular ROS. Further, near-infrared light activation of EGaPs demonstrated their potential to effectively eliminate cancer cells due to their single oxygen generation capability. Finally, from in vivo studies, EGaPs caused tumor regression and resulted in 2.3-fold higher necrosis than the control, therefore making a good vehicle for photodynamic therapy. The overall results highlight that EGaPs provide a new way to assemble liquid metal nanomaterials with different ligands for enhanced cancer therapy.
Collapse
Affiliation(s)
- Sabrina
S. Hafiz
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Marvin Xavierselvan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Sumeyra Gokalp
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Daniela Labadini
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Sebastian Barros
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Jeanne Duong
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle Foster
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Srivalleesha Mallidi
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
300
|
Deguelin Attenuates Non-Small-Cell Lung Cancer Cell Metastasis by Upregulating PTEN/KLF4/EMT Signaling Pathway. DISEASE MARKERS 2022; 2022:4090346. [PMID: 35637651 PMCID: PMC9148257 DOI: 10.1155/2022/4090346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer and a major cause of cancer mortality worldwide. Deguelin plays a vital inhibitory role in NSCLC initiation and development. However, the downstream mechanism of deguelin-suppressed metastasis of NSCLC cells is still not completely understood. Interestingly, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and Krüppel-like factor 4 (KLF4) also contribute to inhibition of metastasis in NSCLC cells. Here, we demonstrated that deguelin significantly upregulated PTEN and KLF4 expressions and PTEN positively upregulated KLF4 expression in NSCLC cells including A549 and PC9 cells. Moreover, overexpressions of PTEN and KLF4 inhibited the migration and invasion of NSCLC cells, an effect similar to that of deguelin. Furthermore, overexpressions of PTEN and KLF4 could suppress the epithelial-mesenchymal transition (EMT), an effect also similar to that of deguelin. Additionally, deguelin displayed a significant antitumor ability by upregulating PTEN and KLF4 expressions in mice model with NSCLC cells. Together, these results indicated that deguelin could be a potential therapeutic agent through upregulating PTEN and KLF4 expressions for NSCLC therapy.
Collapse
|