3001
|
Everyday memory: self-perception and structural brain correlates in a healthy elderly population. J Int Neuropsychol Soc 2010; 16:1115-26. [PMID: 20946708 DOI: 10.1017/s1355617710001025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mapping the cerebral structural correlates of age-related cognitive decline is a growing area of research. The aim of the present study was to investigate the relationship between healthy elderly's perceived memory functioning in daily life, neuropsychological test performance on a standardized test on verbal memory, and cortical thickness and subcortical volumes in brain regions implicated in memory networks, including the medial temporal lobe (MTL). Eighty-three healthy and cognitively well-functioning volunteers aged 60-85 years underwent MRI scans, Everyday Memory Questionnaire (EMQ), and neuropsychological assessment. Both self-perceived memory in daily life related to attention and executive functions and an objective measure of verbal recall (CVLT) were, independently, associated with thickness of the left MTL. The two cognitive variables were uncorrelated, and including both measures in the model nearly doubled the amount of explained variance on MTL thickness. This suggests that measures of perceived everyday memory might substantially inform and supplement studies investigating the relationships between neuropsychological test performance and brain morphology. The results are consistent with a bigger-is-better relationship in the MTL and suggest that EMQ and neuropsychological test performance have detectable and comparable structural correlates in a region critically involved in memory functions in the well-functioning elderly.
Collapse
|
3002
|
Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia. Schizophr Res 2010; 123:153-9. [PMID: 20822884 PMCID: PMC2975427 DOI: 10.1016/j.schres.2010.07.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/24/2010] [Accepted: 07/26/2010] [Indexed: 11/22/2022]
Abstract
The dorsolateral prefrontal cortex (DLPFC) is a brain region that has figured prominently in studies of schizophrenia and working memory, yet the exact neuroanatomical localization of this brain region remains to be defined. DLPFC primarily involves the superior frontal gyrus and middle frontal gyrus (MFG). The latter, however is not a single neuroanatomical entity but instead is comprised of rostral (anterior, middle, and posterior) and caudal regions. In this study we used structural MRI to develop a method for parcellating MFG into its component parts. We focused on this region of DLPFC because it includes BA46, a region involved in working memory. We evaluated volume differences in MFG in 20 patients with chronic schizophrenia and 20 healthy controls. Mid-rostral MFG (MR-MFG) was delineated within the rostral MFG using anterior and posterior neuroanatomical landmarks derived from cytoarchitectonic definitions of BA46. Gray matter volumes of MR-MFG were then compared between groups, and a significant reduction in gray matter volume was observed (p<0.008), but not in other areas of MFG (i.e., anterior or posterior rostral MFG, or caudal regions of MFG). Our results demonstrate that volumetric alterations in MFG gray matter are localized exclusively to MR-MFG. 3D reconstructions of the cortical surface made it possible to follow MFG into its anterior part, where other approaches have failed. This method of parcellation offers a more precise way of measuring MR-MFG that will likely be important in further documentation of DLPFC anomalies in schizophrenia.
Collapse
|
3003
|
Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS One 2010; 5:e13664. [PMID: 21060689 PMCID: PMC2965124 DOI: 10.1371/journal.pone.0013664] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/24/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by motor neuron degeneration. How this disease affects the central motor network is largely unknown. Here, we combined for the first time structural and functional imaging measures on the motor network in patients with ALS and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS Structural measures included whole brain cortical thickness and diffusion tensor imaging (DTI) of crucial motor tracts. These structural measures were combined with functional connectivity analysis of the motor network based on resting state fMRI. Focal cortical thinning was observed in the primary motor area in patients with ALS compared to controls and was found to correlate with disease progression. DTI revealed reduced FA values in the corpus callosum and in the rostral part of the corticospinal tract. Overall functional organisation of the motor network was unchanged in patients with ALS compared to healthy controls, however the level of functional connectedness was significantly correlated with disease progression rate. Patients with increased connectedness appear to have a more progressive disease course. CONCLUSIONS/SIGNIFICANCE We demonstrate structural motor network deterioration in ALS with preserved functional connectivity measures. The positive correlation between functional connectedness of the motor network and disease progression rate could suggest spread of disease along functional connections of the motor network.
Collapse
|
3004
|
Possin KL, Laluz VR, Alcantar OZ, Miller BL, Kramer JH. Distinct neuroanatomical substrates and cognitive mechanisms of figure copy performance in Alzheimer's disease and behavioral variant frontotemporal dementia. Neuropsychologia 2010; 49:43-8. [PMID: 21029744 DOI: 10.1016/j.neuropsychologia.2010.10.026] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 10/16/2010] [Accepted: 10/19/2010] [Indexed: 12/13/2022]
Abstract
Figure copy is the most common method of visual spatial assessment in dementia evaluations, but performance on this test may be multifactorial. We examined the neuroanatomical substrates of figure copy performance in 46 patients with Alzheimer's disease (AD) and 48 patients with the behavioral variant of Frontotemporal dementia (bvFTD). A group of 94 neurologically healthy controls were studied for comparison. In AD, poor figure copy correlated significantly with right parietal cortex volumes but not with right dorsolateral prefrontal cortex volumes, whereas in bvFTD, figure copy performance correlated significantly with right dorsolateral prefrontal cortex volumes and there was only a trend with right parietal cortex volumes. The cognitive processes associated with figure copy performance also differed by diagnostic group such that figure copy was associated with spatial perception and attention in AD and with spatial planning and working memory in bvFTD. Spatial planning accounted for unique variance in the figure copy performance of bvFTD even after accounting for spatial perception, attention, and working memory. These results suggest that figure copy performance in AD and bvFTD is not anatomically specific and is differentially impacted by bottom-up and top-down aspects of visual spatial processing. Alternative methods of visual spatial assessment for dementia evaluations are proposed.
Collapse
Affiliation(s)
- Katherine L Possin
- University of California, 350 Parnassus Ste. 905, San Francisco, CA 94143-1207, United States.
| | | | | | | | | |
Collapse
|
3005
|
Raij T, Ahveninen J, Lin FH, Witzel T, Jääskeläinen IP, Letham B, Israeli E, Sahyoun C, Vasios C, Stufflebeam S, Hämäläinen M, Belliveau JW. Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices. Eur J Neurosci 2010; 31:1772-82. [PMID: 20584181 DOI: 10.1111/j.1460-9568.2010.07213.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we report early cross-sensory activations and audiovisual interactions at the visual and auditory cortices using magnetoencephalography (MEG) to obtain accurate timing information. Data from an identical fMRI experiment were employed to support MEG source localization results. Simple auditory and visual stimuli (300-ms noise bursts and checkerboards) were presented to seven healthy humans. MEG source analysis suggested generators in the auditory and visual sensory cortices for both within-modality and cross-sensory activations. fMRI cross-sensory activations were strong in the visual but almost absent in the auditory cortex; this discrepancy with MEG possibly reflects the influence of acoustical scanner noise in fMRI. In the primary auditory cortices (Heschl's gyrus) the onset of activity to auditory stimuli was observed at 23 ms in both hemispheres, and to visual stimuli at 82 ms in the left and at 75 ms in the right hemisphere. In the primary visual cortex (Calcarine fissure) the activations to visual stimuli started at 43 ms and to auditory stimuli at 53 ms. Cross-sensory activations thus started later than sensory-specific activations, by 55 ms in the auditory cortex and by 10 ms in the visual cortex, suggesting that the origins of the cross-sensory activations may be in the primary sensory cortices of the opposite modality, with conduction delays (from one sensory cortex to another) of 30-35 ms. Audiovisual interactions started at 85 ms in the left auditory, 80 ms in the right auditory and 74 ms in the visual cortex, i.e., 3-21 ms after inputs from the two modalities converged.
Collapse
Affiliation(s)
- Tommi Raij
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Bldg 149, 13 St, Charlestown, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3006
|
Salat DH, Chen JJ, van der Kouwe AJ, Greve DN, Fischl B, Rosas HD. Hippocampal degeneration is associated with temporal and limbic gray matter/white matter tissue contrast in Alzheimer's disease. Neuroimage 2010; 54:1795-802. [PMID: 20965261 DOI: 10.1016/j.neuroimage.2010.10.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/17/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022] Open
Abstract
Recent studies have demonstrated alterations in cortical gray to white matter tissue contrast with nondemented aging and in individuals with Alzheimer's disease (AD). However, little information exists about the clinical relevance of such changes. It is possible that changes in MRI tissue contrast occur via independent mechanisms from those traditionally used in the assessment of AD associated degeneration such as hippocampal degeneration measured by more traditional volumetric magnetic resonance imaging (MRI). We created cortical surface models of 95 cognitively healthy individuals and 98 individuals with AD to characterize changes in regional gray and white matter T1-weighted signal intensities in dementia and to evaluate how such measures related to classically described hippocampal and cortical atrophy. We found a reduction in gray matter to white matter tissue contrast throughout portions of medial and lateral temporal cortical regions as well as in anatomically associated regions including the posterior cingulate, precuneus, and medial frontal cortex. Decreases in tissue contrast were associated with hippocampal volume, however, the regional patterns of these associations differed for demented and nondemented individuals. In nondemented controls, lower hippocampal volume was associated with decreased gray/white matter tissue contrast globally across the cortical mantle. In contrast, in individuals with AD, selective associations were found between hippocampal volume and tissue contrast in temporal and limbic tissue. These results demonstrate that there are strong regional changes in neural tissue properties in AD which follow a spatial pattern including regions known to be affected from pathology studies. Such changes are associated with traditional imaging metrics of degeneration and may provide a unique biomarker of the tissue loss that occurs as a result of AD.
Collapse
Affiliation(s)
- D H Salat
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MGH Department of Radiology, Charlestown, MA 02129-2060, USA.
| | | | | | | | | | | |
Collapse
|
3007
|
Strangman GE, O'Neil-Pirozzi TM, Supelana C, Goldstein R, Katz DI, Glenn MB. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury. Front Hum Neurosci 2010; 4:182. [PMID: 21048895 PMCID: PMC2967347 DOI: 10.3389/fnhum.2010.00182] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/07/2010] [Indexed: 01/28/2023] Open
Abstract
Cognitive deficits following traumatic brain injury (TBI) commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS). Primary outcome measures (HVLT, RBMT) were collected at the time of the MRI scan, immediately following therapy, and again at 1-month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores). We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.
Collapse
Affiliation(s)
- Gary E Strangman
- Department of Psychiatry, Harvard Medical School Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
3008
|
Tremblay P, Small SL. From language comprehension to action understanding and back again. ACTA ACUST UNITED AC 2010; 21:1166-77. [PMID: 20940222 DOI: 10.1093/cercor/bhq189] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A controversial question in cognitive neuroscience is whether comprehension of words and sentences engages brain mechanisms specific for decoding linguistic meaning or whether language comprehension occurs through more domain-general sensorimotor processes. Accumulating behavioral and neuroimaging evidence suggests a role for cortical motor and premotor areas in passive action-related language tasks, regions that are known to be involved in action execution and observation. To examine the involvement of these brain regions in language and nonlanguage tasks, we used functional magnetic resonance imaging (fMRI) on a group of 21 healthy adults. During the fMRI session, all participants 1) watched short object-related action movies, 2) looked at pictures of man-made objects, and 3) listened to and produced short sentences describing object-related actions and man-made objects. Our results are among the first to reveal, in the human brain, a functional specialization within the ventral premotor cortex (PMv) for observing actions and for observing objects, and a different organization for processing sentences describing actions and objects. These findings argue against the strongest version of the simulation theory for the processing of action-related language.
Collapse
Affiliation(s)
- Pascale Tremblay
- Department of Neurology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
3009
|
Abstract
OBJECTIVES Previous research has attributed older adults' difficulty with perceiving speech in noise to peripheral hearing loss. However, recent studies have suggested a more complex picture and implicate the central nervous system in sensation and sensory deficits. This study examines the relationship between the neuroanatomical structure of cognitive brain regions and the ability to perceive speech in noise in older adults. In particular, the neuroanatomical characteristics of the left ventral and dorsal prefrontal cortex (PFC) are considered relative to standard measures of hearing in noise. DESIGN The participants were 15 older and 14 younger right-handed native speakers of American English who had no neurologic deficits and scored better than normal on standardized cognitive tests. We measured the participants' peripheral hearing ability and their ability to perceive speech in noise using established tests. Anatomical magnetic resonance images were taken and analyzed to extract regional volumes and thicknesses of several key neuroanatomical structures. RESULTS Younger adults had better hearing sensitivity and better speech perception in noise ability than older adults. For the older adults only, the volume of the left pars triangularis and the cortical thickness of the left superior frontal gyrus were significant predictors of performance on the speech in noise test. DISCUSSION These findings suggest that, in addition to peripheral structures, the central nervous system also contributes to the ability to perceive speech in noise. In older adults, a decline in the relative volume and cortical thickness of the PFC during aging can therefore be a factor in a declining ability to perceive speech in a naturalistic environment. These findings are consistent with the decline-compensation hypothesis, which states that a decline in sensory processing caused by cognitive aging can be accompanied by an increase in the recruitment of more general cognitive areas as a means of compensation. We found that a larger PFC volume may compensate for declining peripheral hearing. Clinically, recognizing the contribution of the cerebral cortex expands treatment possibilities for hearing loss in older adults beyond peripheral hearing aids to include strategies for improving cognitive function. We conclude by considering several mechanisms by which the PFC may facilitate speech perception in noise, including inhibitory control, attention, cross-modal compensation, word prediction and phonological working memory, although no definitive conclusion can be drawn.
Collapse
|
3010
|
Derakhshan M, Caramanos Z, Giacomini PS, Narayanan S, Maranzano J, Francis SJ, Arnold DL, Collins DL. Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. Neuroimage 2010; 52:1261-7. [DOI: 10.1016/j.neuroimage.2010.05.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/16/2010] [Accepted: 05/12/2010] [Indexed: 11/28/2022] Open
|
3011
|
Hippocampal-cortical structural connectivity disruptions in schizophrenia: An integrated perspective from hippocampal shape, cortical thickness, and integrity of white matter bundles. Neuroimage 2010; 52:1181-9. [DOI: 10.1016/j.neuroimage.2010.05.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/08/2010] [Accepted: 05/16/2010] [Indexed: 11/22/2022] Open
|
3012
|
Oliveira PPDM, Valente KD, Shergill SS, Leite CDC, Amaro E. Cortical thickness reduction of normal appearing cortex in patients with polymicrogyria. J Neuroimaging 2010; 20:46-52. [PMID: 19453835 DOI: 10.1111/j.1552-6569.2009.00372.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To examine cortical thickness and volumetric changes in the cortex of patients with polymicrogyria, using an automated image analysis algorithm. METHODS Cortical thickness of patients with polymicrogyria was measured using magnetic resonance imaging (MRI) cortical surface-based analysis and compared with age- and sex-matched healthy subjects. We studied 3 patients with disorder of cortical development (DCD), classified as polymicrogyria, and 15 controls. Two experienced neuroradiologists performed a conventional visual assessment of the MRIs. The same data were analyzed using an automated algorithm for tissue segmentation and classification. Group and individual average maps of cortical thickness differences were produced by cortical surface-based statistical analysis. RESULTS Patients with polymicrogyria showed increased thickness of the cortex in the same areas identified as abnormal by radiologists. We also identified a reduction in the volume and thickness of cortex within additional areas of apparently normal cortex relative to controls. CONCLUSIONS Our findings indicate that there may be regions of reduced cortical thickness, which appear normal from radiological analysis, in the cortex of patients with polymicrogyria. This finding suggests that alterations in neuronal migration may have an impact in the cortical formation of the cortical areas that are visually normal. These areas are associated or occur concurrently with polymicrogyria.
Collapse
Affiliation(s)
- Pedro Paulo de Magalhães Oliveira
- Neuroimagem Funcional (NIF), Departamento de Radiologia da Faculdade de Medicina do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
3013
|
Landré L, Destrieux C, Baudry M, Barantin L, Cottier JP, Martineau J, Hommet C, Isingrini M, Belzung C, Gaillard P, Camus V, El Hage W. Preserved subcortical volumes and cortical thickness in women with sexual abuse-related PTSD. Psychiatry Res 2010; 183:181-6. [PMID: 20688488 DOI: 10.1016/j.pscychresns.2010.01.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 08/04/2009] [Accepted: 01/28/2010] [Indexed: 01/08/2023]
Abstract
Posttraumatic stress disorder (PTSD) has been frequently associated with volumetric reductions of grey matter structures (e.g. hippocampus and anterior cingulate), but these results remain controversial, especially in female non-combat-related samples. The present study aimed at exploring whole-brain structures in women with sexual abuse-related PTSD on the basis of cortical and subcortical structure comparisons to a matched pair sample that was well-controlled. Seventeen young women who had experienced sexual abuse and who had a diagnosis of chronic PTSD based on the Clinician Administered PTSD Scale for DSM-IV and 17 healthy controls individually matched for age and years of education were consecutively recruited. Both groups underwent structural magnetic resonance imaging and psychiatric assessment of the main disorders according to Axis I of DSM-IV. The resulting scans were analyzed using automated cortical and subcortical volumetric quantifications. Compared with controls, PTSD subjects displayed normal global and regional brain volumes and cortical thicknesses. Our results indicate preserved subcortical volumes and cortical thickness in a sample of female survivors of sexual abuse with PTSD. The authors discuss potential differences between neural mechanisms of sexual abuse-related PTSD and war-related PTSD.
Collapse
|
3014
|
Huang MX, Theilmann RJ, Robb A, Angeles A, Nichols S, Drake A, D'Andrea J, Levy M, Holland M, Song T, Ge S, Hwang E, Yoo K, Cui L, Baker DG, Trauner D, Coimbra R, Lee RR. Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J Neurotrauma 2010; 26:1213-26. [PMID: 19385722 DOI: 10.1089/neu.2008.0672] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild (and some moderate) TBI can be difficult to diagnose due to lack of obvious external injuries and because the injuries are often not visible on conventional acute MRI or CT. Injured brain tissues in TBI patients generate pathological low-frequency neuronal magnetic signal (delta waves 1-4 Hz) that can be measured and localized by magnetoencephalography (MEG). We hypothesize that abnormal MEG delta waves originate from gray matter neurons that experience de-afferentation due to axonal injury to the underlying white matter fiber tracts, which is manifested on diffusion tensor imaging (DTI) as reduced fractional anisotropy. The present study used a neuroimaging approach integrating findings of magnetoencephalography (MEG) and diffusion tensor imaging (DTI), evaluating their utility in diagnosing mild TBI in 10 subjects in whom conventional CT and MRI showed no visible lesions in 9. The results show: (1) the integrated approach with MEG and DTI is more sensitive than conventional CT and MRI in detecting subtle neuronal injury in mild TBI; (2) MEG slow waves in mild TBI patients originate from cortical gray matter areas that experience de-afferentation due to axonal injuries in the white matter fibers with reduced fractional anisotropy; (3) findings from the integrated imaging approach are consistent with post-concussive symptoms; (4) in some cases, abnormal MEG delta waves were observed in subjects without obvious DTI abnormality, indicating that MEG may be more sensitive than DTI in diagnosing mild TBI.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Research, Radiology, Rehabilitation, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3015
|
Wolk DA, Dickerson BC. Fractionating verbal episodic memory in Alzheimer's disease. Neuroimage 2010; 54:1530-9. [PMID: 20832485 DOI: 10.1016/j.neuroimage.2010.09.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/02/2010] [Accepted: 09/01/2010] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to determine the neural correlates of different stages of episodic memory function and their modulation by Alzheimer's disease (AD). Several decades of work has supported the role of the medial temporal lobes (MTL) in episodic memory function. However, a more recent work, derived in part from functional neuroimaging studies, has suggested that other brain structures make up a large-scale network that appears to support successful encoding and retrieval of episodic memories. Furthermore, controversy exists as to whether dissociable MTL regions support qualitatively different aspects of memory (hippocampus: contextual memory or 'recollection'; perirhinal/lateral entorhinal cortex: item memory or 'familiarity'). There is limited neuropsychological support for these models and most work in AD only has examined free recall memory measures. We studied the relationship between performance on different stages of the Rey Auditory Verbal Learning Test (AVLT), a 15-item word list learning task, and structural MRI measures in mild AD patients. Structural measures included hippocampal volume and cortical thickness of several ROIs known to undergo atrophy in AD. Correlation and multiple regression analyses, controlling for age, education, and gender, were performed in 146 mild AD patients (MMSE 23.3±2.0). To evaluate the robustness of these relationships, similar analyses were performed with additional standardized verbal memory measures. Early immediate recall trials (e.g. Trial 1 of the AVLT) were not associated with the size of MTL regions, but correlated most strongly with inferior parietal, middle frontal gyrus, and temporal pole ROIs. After repeated exposure (e.g. Trial 5 of the AVLT), immediate recall was correlated with both MTL and a similar distribution of isocortical structures, but most strongly the temporal pole. For delayed recall, only the hippocampus correlated with performance. In contrast, for delayed recognition discrimination, the perirhinal/entorhinal cortex correlated more strongly than the hippocampus; no other isocortical regions were strongly associated with performance. Convergent results were found for immediate and delayed trials of other memory tests. The current results suggest that a richer understanding of the memory deficits in AD can be gained by examining multiple measures, which tap different aspects of memory function. Furthermore, the present findings are consistent with models hypothesizing different stages of verbal list learning map onto dissociable brain regions. These data have implications for understanding the anatomic basis of processes underlying episodic memory, particularly related to a division of labor within the medial temporal lobes and within the large-scale MTL-cortical memory network.
Collapse
Affiliation(s)
- David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
3016
|
Describing the brain in autism in five dimensions--magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 2010; 30:10612-23. [PMID: 20702694 DOI: 10.1523/jneurosci.5413-09.2010] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively. However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e.g., attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional, and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology of the condition.
Collapse
|
3017
|
Problem-solving abilities and frontal lobe cortical thickness in healthy aging and mild cognitive impairment. J Int Neuropsychol Soc 2010; 16:836-45. [PMID: 20598216 DOI: 10.1017/s135561771000069x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mild cognitive impairment (MCI) is considered a transitional state between normal aging and Alzheimer disease. Most MCI subjects present disturbances in multiple neuropsychological domains, including executive function. This study aimed at exploring frontal lobe cortical thinning in MCI and healthy controls, and its relationship with problem-solving abilities. Twenty-three MCI patients and 30 elderly controls underwent MRI and neuropsychological assessment. Cortical thickness was measured by means of FreeSurfer. Problem-solving was assessed by means of the Tower of London (TOL) task. MCI showed a global thinning of the cortex. With regard to specific regions of interest, a thinning in the left frontal lobe and the bilateral posterior cingulate gyri was found. Partial correlations, after controlling for age, education, Mini-Mental Status Examination, and non-frontal mean thickness revealed negative significant correlations between frontal lobe thickness and executive outcomes in the control group. This counterintuitive relationship was not observed in the MCI group, suggesting that the frontal cortical atrophy observed in MCI entails a specific pathology-related relationship with high-level executive outcomes that is qualitatively different from that observed in healthy aging.
Collapse
|
3018
|
Preterm birth and maternal responsiveness during childhood are associated with brain morphology in adolescence. J Int Neuropsychol Soc 2010; 16:784-94. [PMID: 20609271 DOI: 10.1017/s1355617710000585] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although supportive parenting has been shown to have positive effects on development, the neurobiological basis of supportive parenting has not been investigated. Thirty-three adolescents were systemically selected from a longitudinal study on child development based on maternal responsiveness during childhood, a measure of supportive parenting, and whether they were born term or preterm. We analyzed the effect of preterm birth on hemispheric and regional (frontal, temporal, parietal) cortical thickness and surface area using mixed-model analysis while also considering the effect of brain hemisphere (left vs. right). We then determined whether these factors were moderated by maternal responsiveness during childhood. Preterm birth was associated with regional and hemispheric differences in cortical thickness and surface area. Maternal responsiveness during childhood moderated hemispheric cortical thickness. Adolescence with mothers that were inconsistently responsive during childhood demonstrated greater overall cortical thickness and greater asymmetry in cortical thickness during adolescence as compared to adolescence with mothers who were consistently responsive or unresponsive during childhood. Maternal responsiveness and preterm birth did not interact. These data suggest that changes in brain morphology associated with preterm birth continue into adolescence and support the notion that the style of maternal-child interactions during childhood influence brain development into adolescence.
Collapse
|
3019
|
Wang Y, Saykin AJ, Pfeuffer J, Lin C, Mosier KM, Shen L, Kim S, Hutchins GD. Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T. Neuroimage 2010; 54:1188-95. [PMID: 20800097 DOI: 10.1016/j.neuroimage.2010.08.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/28/2010] [Accepted: 08/19/2010] [Indexed: 12/14/2022] Open
Abstract
Arterial spin labeling (ASL) is a promising non-invasive magnetic resonance imaging (MRI) technique for measuring regional cerebral blood flow (rCBF) or perfusion in vivo. To evaluate the feasibility of ASL as a biomarker for clinical trials, it is important to examine test-retest reproducibility. We investigated both inter- and intra-session reproducibility of perfusion MRI using a pulsed ASL (PASL) sequence PICORE Q2TIPS with an echo-planar imaging (EPI) readout. Structural MRI regions of interest (ROIs) were extracted individually by automated parcellation and segmentation methods using FreeSurfer. These cortical and subcortical ROIs were used to assess regional perfusion stability. Our results indicated regional variability in grey matter rCBF. Although rCBF measurements were characterized by intersubject variation, our results also indicated relatively less within-subject variability estimated as within-subject standard deviation (SD(W)) (intersession SD(W): 2.0 to 8.8; intrasession SD(W): 2.8 to 9.6) and acceptable reliabilities as measured using intraclass correlation coefficient (ICC) (intersession ICC: 0.68 to 0.94; intrasession ICC: 0.66 to 0.95) for regional MRI perfusion measurements using the PICORE Q2TIPS technique. Overall, our findings suggest that PASL is a technique with good within and between session reproducibility. Further reproducibility studies in target populations relevant for specific clinical trials of neurovascular related agents will be important and the present results provide a framework for such assessments.
Collapse
Affiliation(s)
- Yang Wang
- IU Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
3020
|
Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 2010; 33:617.e1-9. [PMID: 20739099 DOI: 10.1016/j.neurobiolaging.2010.07.013] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
Normal aging is accompanied by global as well as regional structural changes. While these age-related changes in gray matter volume have been extensively studied, less has been done using newer morphological indexes, such as cortical thickness and surface area. To this end, we analyzed structural images of 216 healthy volunteers, ranging from 18 to 87 years of age, using a surface-based automated parcellation approach. Linear regressions of age revealed a concomitant global age-related reduction in cortical thickness, surface area and volume. Cortical thickness and volume collectively confirmed the vulnerability of the prefrontal cortex, whereas in other cortical regions, such as in the parietal cortex, thickness was the only measure sensitive to the pronounced age-related atrophy. No cortical regions showed more surface area reduction than the global average. The distinction between these morphological measures may provide valuable information to dissect age-related structural changes of the brain, with each of these indexes probably reflecting specific histological changes occurring during aging.
Collapse
Affiliation(s)
- Herve Lemaitre
- Clinical Brain Disorder branch, Gene Cognition and Psychosis program, NIH/NIMH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
3021
|
McCauley SR, Wilde EA, Merkley TL, Schnelle KP, Bigler ED, Hunter JV, Chu Z, Vásquez AC, Levin HS. Patterns of cortical thinning in relation to event-based prospective memory performance three months after moderate to severe traumatic brain injury in children. Dev Neuropsychol 2010; 35:318-32. [PMID: 20446135 DOI: 10.1080/87565641003696866] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
While event-based prospective memory (EB-PM) tasks are a familiar part of daily life for children, currently no data exists concerning the relation between EB-PM performance and brain volumetrics after traumatic brain injury (TBI). This study investigated EB-PM in children (7 to 17 years) with moderate to severe TBI or orthopedic injuries. Participants performed an EB-PM task and concurrently underwent neuroimaging at three months postinjury. Surface reconstruction and cortical thickness analysis were performed using FreeSurfer software. Cortical thickness was significantly correlated with EB-PM (adjusting for age). Significant thinning in the left (dorsolateral and inferior prefrontal cortex, anterior and posterior cingulate, temporal lobe, fusiform, and parahippocampal gyri), and right hemispheres (dorsolateral, inferior, and medial prefrontal cortex, cingulate, and temporal lobe) correlated positively and significantly with EB-PM performance; findings are comparable to those of functional neuroimaging and lesion studies of EB-PM.
Collapse
Affiliation(s)
- Stephen R McCauley
- Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
3022
|
Nopoulos PC, Aylward EH, Ross CA, Johnson HJ, Magnotta VA, Juhl AR, Pierson RK, Mills J, Langbehn DR, Paulsen JS. Cerebral cortex structure in prodromal Huntington disease. Neurobiol Dis 2010; 40:544-54. [PMID: 20688164 DOI: 10.1016/j.nbd.2010.07.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/01/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022] Open
Abstract
Neuroimaging studies of subjects who are gene-expanded for Huntington Disease, but not yet diagnosed (termed prodromal HD), report that the cortex is "spared," despite the decrement in striatal and cerebral white-matter volume. Measurement of whole-cortex volume can mask more subtle, but potentially clinically relevant regional changes in volume, thinning, or surface area. The current study addressed this limitation by evaluating cortical morphology of 523 prodromal HD subjects. Participants included 693 individuals enrolled in the PREDICT-HD protocol. Of these participants, 523 carried the HD gene mutation (prodromal HD group); the remaining 170 were non gene-expanded and served as the comparison group. Based on age and CAG repeat length, gene-expanded subjects were categorized as "Far from onset," "Midway to onset," "Near onset," and "already diagnosed." MRI scans were processed using FreeSurfer. Cortical volume, thickness, and surface area were not significantly different between the Far from onset group and controls. However, beginning in the Midway to onset group, the cortex showed significant volume decrement, affecting most the posterior and superior cerebral regions. This pattern progressed when evaluating the groups further into the disease process. Areas that remained mostly unaffected included ventral and medial regions of the frontal and temporal cortex. Morphologic changes were mostly in thinning as surface area did not substantially change in most regions. Early in the course of HD, the cortex shows changes that are manifest as cortical thinning and are most robust in the posterior and superior regions of the cerebrum.
Collapse
Affiliation(s)
- Peggy C Nopoulos
- Department of Psychiatry, University of Iowa Roy and Lucille Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3023
|
Dick AS, Solodkin A, Small SL. Neural development of networks for audiovisual speech comprehension. BRAIN AND LANGUAGE 2010; 114:101-14. [PMID: 19781755 PMCID: PMC2891225 DOI: 10.1016/j.bandl.2009.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/17/2009] [Accepted: 08/20/2009] [Indexed: 05/21/2023]
Abstract
Everyday conversation is both an auditory and a visual phenomenon. While visual speech information enhances comprehension for the listener, evidence suggests that the ability to benefit from this information improves with development. A number of brain regions have been implicated in audiovisual speech comprehension, but the extent to which the neurobiological substrate in the child compares to the adult is unknown. In particular, developmental differences in the network for audiovisual speech comprehension could manifest through the incorporation of additional brain regions, or through different patterns of effective connectivity. In the present study we used functional magnetic resonance imaging and structural equation modeling (SEM) to characterize the developmental changes in network interactions for audiovisual speech comprehension. The brain response was recorded while children 8- to 11-years-old and adults passively listened to stories under audiovisual (AV) and auditory-only (A) conditions. Results showed that in children and adults, AV comprehension activated the same fronto-temporo-parietal network of regions known for their contribution to speech production and perception. However, the SEM network analysis revealed age-related differences in the functional interactions among these regions. In particular, the influence of the posterior inferior frontal gyrus/ventral premotor cortex on supramarginal gyrus differed across age groups during AV, but not A speech. This functional pathway might be important for relating motor and sensory information used by the listener to identify speech sounds. Further, its development might reflect changes in the mechanisms that relate visual speech information to articulatory speech representations through experience producing and perceiving speech.
Collapse
|
3024
|
Agam Y, Joseph RM, Barton JJ, Manoach DS. Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. Neuroimage 2010; 52:336-47. [PMID: 20394829 PMCID: PMC2883672 DOI: 10.1016/j.neuroimage.2010.04.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/27/2010] [Accepted: 04/03/2010] [Indexed: 01/18/2023] Open
Abstract
Response inhibition, or the suppression of prepotent, but contextually inappropriate behaviors, is essential to adaptive, flexible responding. In autism spectrum disorders (ASD), difficulty inhibiting prepotent behaviors may contribute to restricted, repetitive behavior (RRB). Individuals with ASD consistently show deficient response inhibition while performing antisaccades, which require one to inhibit the prepotent response of looking towards a suddenly appearing stimulus (i.e., a prosaccade), and to substitute a gaze in the opposite direction. Here, we used fMRI to identify the neural correlates of this deficit. We focused on two regions that are critical for saccadic inhibition: the frontal eye field (FEF), the key cortical region for generating volitional saccades, and the dorsal anterior cingulate cortex (dACC), which is thought to exert top-down control on the FEF. We also compared ASD and control groups on the functional connectivity of the dACC and FEF during saccadic performance. In the context of an increased antisaccade error rate, ASD participants showed decreased functional connectivity of the FEF and dACC and decreased inhibition-related activation (based on the contrast of antisaccades and prosaccades) in both regions. Decreased dACC activation correlated with a higher error rate in both groups, consistent with a role in top-down control. Within the ASD group, increased FEF activation and dACC/FEF functional connectivity were associated with more severe RRB. These findings demonstrate functional abnormalities in a circuit critical for volitional ocular motor control in ASD that may contribute to deficient response inhibition and to RRB. More generally, our findings suggest reduced cognitive control over behavior by the dACC in ASD.
Collapse
Affiliation(s)
- Yigal Agam
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129 Harvard Medical School, Boston, MA 02215
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
| | - Jason J.S. Barton
- Departments of Neurology, Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dara S. Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129 Harvard Medical School, Boston, MA 02215
| |
Collapse
|
3025
|
Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Güntert A, Proitsi P, Powell J, Causevic M, Killick R, Lunnon K, Lynham S, Broadstock M, Choudhry F, Howlett DR, Williams RJ, Sharp SI, Mitchelmore C, Tunnard C, Leung R, Foy C, O'Brien D, Breen G, Furney SJ, Ward M, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Hodges A, Murphy DGM, Parkins S, Richardson JC, Resnick SM, Ferrucci L, Wong DF, Zhou Y, Muehlboeck S, Evans A, Francis PT, Spenger C, Lovestone S. Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. ACTA ACUST UNITED AC 2010; 67:739-48. [PMID: 20603455 DOI: 10.1001/archgenpsychiatry.2010.78] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT Blood-based analytes may be indicators of pathological processes in Alzheimer disease (AD). OBJECTIVE To identify plasma proteins associated with AD pathology using a combined proteomic and neuroimaging approach. DESIGN Discovery-phase proteomics to identify plasma proteins associated with correlates of AD pathology. Confirmation and validation using immunodetection in a replication set and an animal model. SETTING A multicenter European study (AddNeuroMed) and the Baltimore Longitudinal Study of Aging. PARTICIPANTS Patients with AD, subjects with mild cognitive impairment, and healthy controls with standardized clinical assessments and structural neuroimaging. MAIN OUTCOME MEASURES Association of plasma proteins with brain atrophy, disease severity, and rate of clinical progression. Extension studies in humans and transgenic mice tested the association between plasma proteins and brain amyloid. RESULTS Clusterin/apolipoprotein J was associated with atrophy of the entorhinal cortex, baseline disease severity, and rapid clinical progression in AD. Increased plasma concentration of clusterin was predictive of greater fibrillar amyloid-beta burden in the medial temporal lobe. Subjects with AD had increased clusterin messenger RNA in blood, but there was no effect of single-nucleotide polymorphisms in the gene encoding clusterin with gene or protein expression. APP/PS1 transgenic mice showed increased plasma clusterin, age-dependent increase in brain clusterin, as well as amyloid and clusterin colocalization in plaques. CONCLUSIONS These results demonstrate an important role of clusterin in the pathogenesis of AD and suggest that alterations in amyloid chaperone proteins may be a biologically relevant peripheral signature of AD.
Collapse
Affiliation(s)
- Madhav Thambisetty
- King's College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, England
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3026
|
King RD, Brown B, Hwang M, Jeon T, George AT. Fractal dimension analysis of the cortical ribbon in mild Alzheimer's disease. Neuroimage 2010; 53:471-9. [PMID: 20600974 DOI: 10.1016/j.neuroimage.2010.06.050] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/05/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022] Open
Abstract
Fractal analysis methods are used to quantify the complexity of the human cerebral cortex. Many recent studies have focused on high resolution three-dimensional reconstructions of either the outer (pial) surface of the brain or the junction between the gray and white matter, but ignore the structure between these surfaces. This study uses a new method to incorporate the entire cortical thickness. Data were obtained from the Alzheimer's Disease (AD) Neuroimaging Initiative database (Control N=35, Mild AD N=35). Image segmentation was performed using a semi-automated analysis program. The fractal dimension of three cortical models (the pial surface, gray/white surface and entire cortical ribbon) were calculated using a custom cube-counting triangle-intersection algorithm. The fractal dimension of the cortical ribbon showed highly significant differences between control and AD subjects (p<0.001). The inner surface analysis also found smaller but significant differences (p<0.05). The pial surface dimensionality was not significantly different between the two groups. All three models had a significant positive correlation with the cortical gyrification index (r>0.55, p<0.001). Only the cortical ribbon had a significant correlation with cortical thickness (r=0.832, p<0.001) and the Alzheimer's Disease Assessment Scale cognitive battery (r=-0.513, p=0.002). The cortical ribbon dimensionality showed a larger effect size (d=1.12) in separating control and mild AD subjects than cortical thickness (d=1.01) or gyrification index (d=0.84). The methodological change shown in this paper may allow for further clinical application of cortical fractal dimension as a biomarker for structural changes that accrue with neurodegenerative diseases.
Collapse
|
3027
|
Poldrack RA. Region of interest analysis for fMRI. Soc Cogn Affect Neurosci 2010; 2:67-70. [PMID: 18985121 DOI: 10.1093/scan/nsm006] [Citation(s) in RCA: 520] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/20/2007] [Indexed: 11/13/2022] Open
Abstract
A common approach to the analysis of fMRI data involves the extraction of signal from specified regions of interest (or ROI's). Three approaches to ROI analysis are described, and the strengths and assumptions of each method are outlined.
Collapse
Affiliation(s)
- Russell A Poldrack
- Department of Psychology, and Brain Research Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3028
|
van den Heuvel MP, Hulshoff Pol HE. Specific somatotopic organization of functional connections of the primary motor network during resting state. Hum Brain Mapp 2010; 31:631-44. [PMID: 19830684 DOI: 10.1002/hbm.20893] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regions of the primary motor network are known to show a high level of spontaneous functional connectivity during rest. Resting-state functional magnetic resonance imaging (fMRI) studies have reported the left and right motor cortex to form a single resting-state network, without examining the specific organization of the functional connections between subregions of the primary motor network. The primary motor cortex has a somatotopic organization, clearly separating regions that control our feet from regions that control our fingers and other body parts. In this study, 3 T resting-state fMRI time-series of 46 healthy subjects were acquired; and for all subregions along the precentral gyrus, the location of the maximum level of functional connectivity within the contralateral primary motor cortex was computed, together with whole brain functional connectivity maps, to examine a possible somatotopic organization of the functional connections of the motor network. Subregions of the primary motor cortex were found to be most strongly functionally linked to regions in the contralateral hemisphere with a similar spatial location along the contralateral primary motor cortex as the selected seed regions. On the basis of the knowledge of a somatopic organization of the primary motor network, these findings suggest that functional subregions of the motor network are one-on-one linked to their functional homolog in the contralateral hemisphere and organized in a somatotopic fashion. Examining the specific organization of the functional connections within the primary motor network could enhance our overall understanding of the organization of resting-state functional communication within the brain.
Collapse
Affiliation(s)
- Martijn P van den Heuvel
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands.
| | | |
Collapse
|
3029
|
Benoit MM, Raij T, Lin FH, Jääskeläinen IP, Stufflebeam S. Primary and multisensory cortical activity is correlated with audiovisual percepts. Hum Brain Mapp 2010; 31:526-38. [PMID: 19780040 DOI: 10.1002/hbm.20884] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion.
Collapse
Affiliation(s)
- Margo McKenna Benoit
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02114, USA.
| | | | | | | | | |
Collapse
|
3030
|
Fornito A, Zalesky A, Bullmore ET. Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci 2010; 4:22. [PMID: 20592949 PMCID: PMC2893703 DOI: 10.3389/fnsys.2010.00022] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/19/2010] [Indexed: 11/13/2022] Open
Abstract
Graph analysis has become an increasingly popular tool for characterizing topological properties of brain connectivity networks. Within this approach, the brain is modeled as a graph comprising N nodes connected by M edges. In functional magnetic resonance imaging (fMRI) studies, the nodes typically represent brain regions and the edges some measure of interaction between them. These nodes are commonly defined using a variety of regional parcellation templates, which can vary both in the volume sampled by each region, and the number of regions parcellated. Here, we sought to investigate how such variations in parcellation templates affect key graph analytic measures of functional brain organization using resting-state fMRI in 30 healthy volunteers. Seven different parcellation resolutions (84, 91, 230, 438, 890, 1314, and 4320 regions) were investigated. We found that gross inferences regarding network topology, such as whether the brain is small-world or scale-free, were robust to the template used, but that both absolute values of, and individual differences in, specific parameters such as path length, clustering, small-worldness, and degree distribution descriptors varied considerably across the resolutions studied. These findings underscore the need to consider the effect that a specific parcellation approach has on graph analytic findings in human fMRI studies, and indicate that results obtained using different templates may not be directly comparable.
Collapse
Affiliation(s)
- Alex Fornito
- Department of Psychiatry, Brain Mapping Unit, University of Cambridge UK
| | | | | |
Collapse
|
3031
|
Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 2010; 53:1-15. [PMID: 20547229 DOI: 10.1016/j.neuroimage.2010.06.010] [Citation(s) in RCA: 1954] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 11/15/2022] Open
Abstract
Precise localization of sulco-gyral structures of the human cerebral cortex is important for the interpretation of morpho-functional data, but requires anatomical expertise and is time consuming because of the brain's geometric complexity. Software developed to automatically identify sulco-gyral structures has improved substantially as a result of techniques providing topologically correct reconstructions permitting inflated views of the human brain. Here we describe a complete parcellation of the cortical surface using standard internationally accepted nomenclature and criteria. This parcellation is available in the FreeSurfer package. First, a computer-assisted hand parcellation classified each vertex as sulcal or gyral, and these were then subparcellated into 74 labels per hemisphere. Twelve datasets were used to develop rules and algorithms (reported here) that produced labels consistent with anatomical rules as well as automated computational parcellation. The final parcellation was used to build an atlas for automatically labeling the whole cerebral cortex. This atlas was used to label an additional 12 datasets, which were found to have good concordance with manual labels. This paper presents a precisely defined method for automatically labeling the cortical surface in standard terminology.
Collapse
Affiliation(s)
- Christophe Destrieux
- Inserm U930, Tours, France; Université François Rabelais de Tours, Faculté de Médecine, IFR 135 Imagerie fonctionnelle , Tours, France.
| | | | | | | |
Collapse
|
3032
|
Turner JA, Mejino JLV, Brinkley JF, Detwiler LT, Lee HJ, Martone ME, Rubin DL. Application of neuroanatomical ontologies for neuroimaging data annotation. Front Neuroinform 2010; 4:10. [PMID: 20725521 PMCID: PMC2912099 DOI: 10.3389/fninf.2010.00010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 04/29/2010] [Indexed: 11/13/2022] Open
Abstract
The annotation of functional neuroimaging results for data sharing and re-use is particularly challenging, due to the diversity of terminologies of neuroanatomical structures and cortical parcellation schemes. To address this challenge, we extended the Foundational Model of Anatomy Ontology (FMA) to include cytoarchitectural, Brodmann area labels, and a morphological cortical labeling scheme (e.g., the part of Brodmann area 6 in the left precentral gyrus). This representation was also used to augment the neuroanatomical axis of RadLex, the ontology for clinical imaging. The resulting neuroanatomical ontology contains explicit relationships indicating which brain regions are "part of" which other regions, across cytoarchitectural and morphological labeling schemas. We annotated a large functional neuroimaging dataset with terms from the ontology and applied a reasoning engine to analyze this dataset in conjunction with the ontology, and achieved successful inferences from the most specific level (e.g., how many subjects showed activation in a subpart of the middle frontal gyrus) to more general (how many activations were found in areas connected via a known white matter tract?). In summary, we have produced a neuroanatomical ontology that harmonizes several different terminologies of neuroanatomical structures and cortical parcellation schemes. This neuroanatomical ontology is publicly available as a view of FMA at the Bioportal website. The ontological encoding of anatomic knowledge can be exploited by computer reasoning engines to make inferences about neuroanatomical relationships described in imaging datasets using different terminologies. This approach could ultimately enable knowledge discovery from large, distributed fMRI studies or medical record mining.
Collapse
Affiliation(s)
| | - Jose L. V. Mejino
- Structural Informatics Group, Department of Biological Structure, University of WashingtonSeattle, WA, USA
| | - James F. Brinkley
- Structural Informatics Group, Department of Biological Structure, University of WashingtonSeattle, WA, USA
| | - Landon T. Detwiler
- Structural Informatics Group, Department of Biological Structure, University of WashingtonSeattle, WA, USA
| | | | | | - Daniel L. Rubin
- Department of Radiology, Stanford UniversityStanford, CA, USA
| |
Collapse
|
3033
|
Tosun D, Schuff N, Truran-Sacrey D, Shaw LM, Trojanowski JQ, Aisen P, Peterson R, Weiner MW. Relations between brain tissue loss, CSF biomarkers, and the ApoE genetic profile: a longitudinal MRI study. Neurobiol Aging 2010; 31:1340-54. [PMID: 20570401 DOI: 10.1016/j.neurobiolaging.2010.04.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/17/2022]
Abstract
Previously it was reported that Alzheimer's disease (AD) patients have reduced beta amyloid (Abeta(1-42)) and elevated total tau (t-tau) and phosphorylated tau (p-tau(181p)) in the cerebrospinal fluid (CSF), suggesting that these same measures could be used to detect early AD pathology in healthy elderly individuals and those with mild cognitive impairment (MCI). In this study, we tested the hypothesis that there would be an association among rates of regional brain atrophy, the CSF biomarkers Abeta(1-42), t-tau, and p-tau(181p) and apolipoprotein E (ApoE) epsilon4 status, and that the pattern of this association would be diagnosis-specific. Our findings primarily showed that lower CSF Abeta(1-42) and higher tau concentrations were associated with increased rates of regional brain tissue loss and the patterns varied across the clinical groups. Taken together, these findings demonstrate that CSF biomarker concentrations are associated with the characteristic patterns of structural brain changes in healthy elderly and mild cognitive impairment subjects that resemble to a large extent the pathology seen in AD. Therefore, the finding of faster progression of brain atrophy in the presence of lower Abeta(1-42) levels and higher tau levels supports the hypothesis that CSF Abeta(1-42) and tau are measures of early AD pathology. Moreover, the relationship among CSF biomarkers, ApoE epsilon4 status, and brain atrophy rates are regionally varying, supporting the view that the genetic predisposition of the brain to beta amyloid and tau mediated pathology is regional and disease stage specific.
Collapse
Affiliation(s)
- Duygu Tosun
- Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, CA 94121, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
3034
|
Greene SJ, Killiany RJ. Subregions of the inferior parietal lobule are affected in the progression to Alzheimer's disease. Neurobiol Aging 2010; 31:1304-11. [PMID: 20570398 DOI: 10.1016/j.neurobiolaging.2010.04.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 11/24/2022]
Abstract
Changes in several regions within the brain have been associated with progression from healthy aging to Alzheimer's disease (AD), including the hippocampus, entorhinal cortex, and the inferior parietal lobule (IPL). In this study, the IPL was divided into three subregions: the gyrus, the banks of the sulcus, and the fundus to determine if these regions are independent of medial temporal regions in the progression of AD. Participants of the Alzheimer's disease Neuroimaging Initiative (Alzheimer's disease Neuroimaging initiative (ADNI); n = 54) underwent a structural magnetic resonance imaging (MRI) scan and neuropsychological examination, and were categorized as normal controls, mild cognitively impaired (MCI), or AD. FreeSurfer was initially used to identify the boundaries of the IPL. Each subregion was then manually traced based on FreeSurfer curvature intensities. Multivariate analyses of variance were used to compare groups. Results suggest that changes in thickness of the banks of the inferior parietal lobule are occurring early in the progression from normal to MCI, followed by changes in the gyrus and fundus, and these measures are related to neuropsychological performance.
Collapse
Affiliation(s)
- Sarah J Greene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
3035
|
Abstract
We describe a method for atlas-based segmentation of structural MRI for calculation of magnetic fieldmaps. CT data sets are used to construct a probabilistic atlas of the head and corresponding MR is used to train a classifier that segments soft tissue, air, and bone. Subject-specific fieldmaps are computed from the segmentations using a perturbation field model. Previous work has shown that distortion in echo-planar images can be corrected using predicted fieldmaps. We obtain results that agree well with acquired fieldmaps: 90% of voxel shifts from predicted fieldmaps show subvoxel disagreement with those computed from acquired fieldmaps. In addition, our fieldmap predictions show statistically significant improvement following inclusion of the atlas.
Collapse
|
3036
|
Abstract
Human cortical folding pattern has been studied for decades. This paper proposes a gyrus scale folding pattern analysis technique via cortical surface profiling. Firstly, we sample the cortical surface into 2D profiles and model them using power function. This step provides both the flexibility of representing arbitrary shape by profiling and the compactness of representing shape by parametric modeling. Secondly, based on the estimated model parameters, we extract affine-invariant features on the cortical surface and apply the affinity propagation clustering algorithm to parcellate the cortex into regions with different shape patterns. Finally, a second-round surface profiling is performed on the parcellated cortical regions, and the number of hinges is detected to describe the gyral folding pattern. Experiments demonstrate that our method could successfully classify human gyri into 2-hinge, 3-hinge and 4-hinge gyri. The proposed method has the potential to significantly contribute to automatic segmentation and recognition of cortical gyri.
Collapse
|
3037
|
Ghosh SS, Kakunoori S, Augustinack J, Nieto-Castanon A, Kovelman I, Gaab N, Christodoulou JA, Triantafyllou C, Gabrieli JDE, Fischl B. Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. Neuroimage 2010; 53:85-93. [PMID: 20621657 DOI: 10.1016/j.neuroimage.2010.05.075] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/11/2010] [Accepted: 05/27/2010] [Indexed: 11/20/2022] Open
Abstract
Understanding the neurophysiology of human cognitive development relies on methods that enable accurate comparison of structural and functional neuroimaging data across brains from people of different ages. A fundamental question is whether the substantial brain growth and related changes in brain morphology that occur in early childhood permit valid comparisons of brain structure and function across ages. Here we investigated whether valid comparisons can be made in children from ages 4 to 11, and whether there are differences in the use of volume-based versus surface-based registration approaches for aligning structural landmarks across these ages. Regions corresponding to the calcarine sulcus, central sulcus, and Sylvian fissure in both the hemispheres were manually labeled on T1-weighted structural magnetic resonance images from 31 children ranging in age from 4.2 to 11.2years old. Quantitative measures of shape similarity and volumetric-overlap of these manually labeled regions were calculated when brains were aligned using a 12-parameter affine transform, SPM's nonlinear normalization, a diffeomorphic registration (ANTS), and FreeSurfer's surface-based registration. Registration error for normalization into a common reference framework across participants in this age range was lower than commonly used functional imaging resolutions. Surface-based registration provided significantly better alignment of cortical landmarks than volume-based registration. In addition, registering children's brains to a common space does not result in an age-associated bias between older and younger children, making it feasible to accurately compare structural properties and patterns of brain activation in children from ages 4 to 11.
Collapse
Affiliation(s)
- Satrajit S Ghosh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3038
|
Lee AKC, Hämäläinen MS, Dyckman KA, Barton JJS, Manoach DS. Saccadic preparation in the frontal eye field is modulated by distinct trial history effects as revealed by magnetoencephalography. Cereb Cortex 2010; 21:245-53. [PMID: 20522539 DOI: 10.1093/cercor/bhq057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Optimizing outcomes involves rapidly and continuously adjusting behavior based on context. While most behavioral studies focus on immediate task conditions, responses to events are also influenced by recent history. We used magnetoencephalography and a saccadic paradigm to investigate the neural bases of 2 trial history effects that are well characterized in the behavioral eye movement literature: task-switching and the prior-antisaccade effect. We found that switched trials were associated with increased errors and transient increases in activity in the frontal eye field (FEF) and anterior cingulate cortex early in the preparatory period. These activity changes are consistent with active reconfiguration of the task set, a time-limited process that is triggered by the instructional cue. Following an antisaccade versus prosaccade, there was increased activity in the FEF and prefrontal cortex that persisted into the preparatory period of the subsequent trial, and saccadic latencies were prolonged. We attribute these effects to persistent inhibition of the ocular motor response system from the prior antisaccade. These findings refine our understanding of how trial history interacts with current task demands to adjust responses. Such dynamic modulations of neural activity and behavior by recent experience are at the heart of adaptive flexible behavior.
Collapse
Affiliation(s)
- Adrian K C Lee
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
3039
|
Groen W, Teluij M, Buitelaar J, Tendolkar I. Amygdala and hippocampus enlargement during adolescence in autism. J Am Acad Child Adolesc Psychiatry 2010; 49:552-60. [PMID: 20494265 DOI: 10.1016/j.jaac.2009.12.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/13/2009] [Accepted: 01/06/2010] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The amygdala and hippocampus are key components of the neural system mediating emotion perception and regulation and are thought to be involved in the pathophysiology of autism. Although some studies in children with autism suggest that there is an enlargement of amygdala and hippocampal volume, findings in adolescence are sparse. METHOD We measured amygdala and hippocampus volume in a homogeneous group of adolescents with autism (12 through 18 years; n = 23) and compared them with an age-, sex-, and IQ-matched control group (n = 29) using a validated automated segmentation procedure in 1.5-T magnetic resonance images. All analyses were adjusted for total brain volume. RESULTS Repeated-measures analysis revealed a significant group x hemisphere x brain structure interaction (p = .038), even when corrected for total brain volume. Post-hoc analysis showed that the right amygdala and left hippocampus were significantly enlarged (p = .010; p = .015) in the autism compared with the control group. There were no significant correlations between age and amygdala or hippocampus volume. CONCLUSIONS The abnormal enlargement of the amygdala and hippocampus in adolescents with autism adds to previous findings of enlargement of these structures in children with autism. This may reflect increased activity of these structures and thereby altered emotion perception and regulation. Our results could therefore be interpreted in light of developmental adaptation of the autistic brain to a continuous overflow of emotional learning experiences.
Collapse
Affiliation(s)
- Wouter Groen
- Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
3040
|
Raj A, Mueller SG, Young K, Laxer KD, Weiner M. Network-level analysis of cortical thickness of the epileptic brain. Neuroimage 2010; 52:1302-13. [PMID: 20553893 DOI: 10.1016/j.neuroimage.2010.05.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/16/2010] [Indexed: 11/29/2022] Open
Abstract
Temporal lobe epilepsy (TLE) characterized by an epileptogenic focus in the medial temporal lobe is the most common form of focal epilepsy. However, the seizures are not confined to the temporal lobe but can spread to other, anatomically connected brain regions where they can cause similar structural abnormalities as observed in the focus. The aim of this study was to derive whole-brain networks from volumetric data and obtain network-centric measures, which can capture cortical thinning characteristic of TLE and can be used for classifying a given MRI into TLE or normal, and to obtain additional summary statistics that relate to the extent and spread of the disease. T1-weighted whole-brain images were acquired on a 4-T magnet in 13 patients with TLE with mesial temporal lobe sclerosis (TLE-MTS), 14 patients with TLE with normal MRI (TLE-no), and 30 controls. Mean cortical thickness and curvature measurements were obtained using the FreeSurfer software. These values were used to derive a graph, or network, for each subject. The nodes of the graph are brain regions, and edges represent disease progression paths. We show how to obtain summary statistics like mean, median, and variance defined for these networks and to perform exploratory analyses like correlation and classification. Our results indicate that the proposed network approach can improve accuracy of classifying subjects into two groups (control and TLE) from 78% for non-network classifiers to 93% using the proposed approach. We also obtain network "peakiness" values using statistical measures like entropy and complexity-this appears to be a good characterizer of the disease and may have utility in surgical planning.
Collapse
Affiliation(s)
- A Raj
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
3041
|
Gyral folding pattern analysis via surface profiling. Neuroimage 2010; 52:1202-14. [PMID: 20472071 DOI: 10.1016/j.neuroimage.2010.04.263] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/18/2010] [Accepted: 04/28/2010] [Indexed: 11/23/2022] Open
Abstract
Folding is an essential shape characteristic of the human cerebral cortex. Descriptors of cortical folding patterns have been studied for decades. However, many previous studies are either based on local shape descriptors such as curvature, or based on global descriptors such as gyrification index or spherical wavelets. This paper proposes a gyrus-scale folding pattern analysis technique via cortical surface profiling. Firstly, we sample the cortical surface into 2D profiles and model them using a power function. This step provides both the flexibility of representing arbitrary shape by profiling and the compactness of representing shape by parametric modeling. Secondly, based on the estimated model parameters, we extract affine-invariant features on the cortical surface, and apply the affinity propagation clustering algorithm to parcellate the cortex into cortical regions with strict hierarchy and smooth transitions among them. Finally, a second-round surface profiling is performed on the parcellated cortical surface, and the number of hinges is detected to describe the gyral folding pattern. We have applied the surface profiling method to two normal brain datasets and a schizophrenia patient dataset. The experimental results demonstrate that the proposed method can accurately classify human gyri into 2-hinge, 3-hinge and 4-hinge patterns. The distribution of these folding patterns on brain lobes and the relationship between fiber density and gyral folding patterns are further investigated. Results from the schizophrenia dataset are consistent with commonly found abnormality in former studies by others, which demonstrates the potential clinical applications of the proposed technique.
Collapse
|
3042
|
Alterations in multiple measures of white matter integrity in normal women at high risk for Alzheimer's disease. Neuroimage 2010; 52:1487-94. [PMID: 20493952 DOI: 10.1016/j.neuroimage.2010.05.036] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/12/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022] Open
Abstract
There is evidence that disruption of white matter (WM) microstructure is an early event in the course of Alzheimer's disease (AD). However, the neurobiological bases of WM microstructural declines in presymptomatic AD are unknown. In the present study we address this issue using a multimodal imaging approach to the study of presymptomatic AD. Participants were 37 high-risk (both family history of dementia and one or more APOE4 alleles) women and 20 low-risk (neither family history nor APOE4) women. Groups were matched for age, education, neuropsychological performance, and vascular factors that could affect white matter. Whole-brain analyses of diffusion tensor imaging data [including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA) and radial diffusivity (DR)] and volumetric comparisons of medial temporal lobe (MTL) structures were conducted. Results indicated equivalent entorhinal cortex and hippocampal volumes between risk groups. Nevertheless, the high risk group showed decreased microstructural integrity in WM tracts with direct and secondary connections to the MTL. The predominant alteration in WM integrity in the high AD-risk group was decreased FA not solely driven by either DA or DR changes alone in regions where no MD changes were observed. A second pattern observed in a smaller number of regions involved decreased FA and increased DR. These results suggest that disconnection of MTL-neocortical fiber pathways represents a very early event in the course of AD and suggest that demyelination may represent one contributing mechanism.
Collapse
|
3043
|
Computational analysis of cerebral cortex. Neuroradiology 2010; 52:691-8. [DOI: 10.1007/s00234-010-0715-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
|
3044
|
Heckemann RA, Keihaninejad S, Aljabar P, Rueckert D, Hajnal JV, Hammers A. Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage 2010; 51:221-7. [PMID: 20114079 DOI: 10.1016/j.neuroimage.2010.01.072] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/15/2010] [Accepted: 01/21/2010] [Indexed: 11/26/2022] Open
|
3045
|
Espeseth T, Westlye LT, Walhovd KB, Fjell AM, Endestad T, Rootwelt H, Reinvang I. Apolipoprotein E ε4-related thickening of the cerebral cortex modulates selective attention. Neurobiol Aging 2010; 33:304-322.e1. [PMID: 20382449 DOI: 10.1016/j.neurobiolaging.2009.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 09/19/2009] [Accepted: 12/27/2009] [Indexed: 10/19/2022]
Abstract
APOE ε4 carriers have thicker cortex in several neocortical areas than ε4 noncarriers (Espeseth T., Westlye L.T., Fjell A.M., Walhovd K.B., Rootwelt H., Reinvang I., 2008. Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E ε4. Neurobiol. Aging 29, 329-340). To investigate potential physiological and cognitive correlates of these anatomical effects structural magnetic resonance imaging (MRI) data were obtained from 20 APOE ε3 homozygotes and 20 ε4 hetero- and homozygotes, and event-related potentials (ERPs) were recorded during a selective attention task (i.e. three-stimulus oddball). Several areas in both hemispheres were thicker in ε4 carriers than in noncarriers. ε4 carriers also had lower amplitudes to distractors (P3a) and lower target detection accuracy than noncarriers. Mean thickness in cortical areas were correlated with P3a amplitudes, which in turn correlated with accuracy. Path analyses showed that APOE-related difference in accuracy was mediated by APOE-related differences in cortical thickness and P3a amplitudes. The results suggest that APOE ε4 modulates the structural integrity of critical nodes in brain attentional networks.
Collapse
Affiliation(s)
- Thomas Espeseth
- Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
3046
|
Zhong J, Phua DYL, Qiu A. Quantitative evaluation of LDDMM, FreeSurfer, and CARET for cortical surface mapping. Neuroimage 2010; 52:131-41. [PMID: 20381626 DOI: 10.1016/j.neuroimage.2010.03.085] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/27/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022] Open
Abstract
Cortical surface mapping has been widely used to compensate for individual variability of cortical shape and topology in anatomical and functional studies. While many surface mapping methods were proposed based on landmarks, curves, spherical or native cortical coordinates, few studies have extensively and quantitatively evaluated surface mapping methods across different methodologies. In this study we compared five cortical surface mapping algorithms, including large deformation diffeomorphic metric mapping (LDDMM) for curves (LDDMM-curve), for surfaces (LDDMM-surface), multi-manifold LDDMM (MM-LDDMM), FreeSurfer, and CARET, using 40 MRI scans and 10 simulated datasets. We computed curve variation errors and surface alignment consistency for assessing the mapping accuracy of local cortical features (e.g., gyral/sulcal curves and sulcal regions) and the curvature correlation for measuring the mapping accuracy in terms of overall cortical shape. In addition, the simulated datasets facilitated the investigation of mapping error distribution over the cortical surface when the MM-LDDMM, FreeSurfer, and CARET mapping algorithms were applied. Our results revealed that the LDDMM-curve, MM-LDDMM, and CARET approaches best aligned the local curve features with their own curves. The MM-LDDMM approach was also found to be the best in aligning the local regions and cortical folding patterns (e.g., curvature) as compared to the other mapping approaches. The simulation experiment showed that the MM-LDDMM mapping yielded less local and global deformation errors than the CARET and FreeSurfer mappings.
Collapse
Affiliation(s)
- Jidan Zhong
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
3047
|
Lyu I, Seong JK, Shin SY, Im K, Roh JH, Kim MJ, Kim GH, Kim JH, Evans AC, Na DL, Lee JM. Spectral-based automatic labeling and refining of human cortical sulcal curves using expert-provided examples. Neuroimage 2010; 52:142-57. [PMID: 20363334 DOI: 10.1016/j.neuroimage.2010.03.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/26/2010] [Accepted: 03/26/2010] [Indexed: 11/17/2022] Open
Abstract
We present a spectral-based method for automatically labeling and refining major sulcal curves of a human cerebral cortex. Given a set of input (unlabeled) sulcal curves automatically extracted from a cortical surface and a collection of expert-provided examples (labeled sulcal curves), our objective is to identify the input major sulcal curves and assign their neuroanatomical labels, and then refines these curves based on the expert-provided example data, without employing any atlas-based registration scheme as preprocessing. In order to construct the example data, neuroanatomists manually labeled a set of 24 major sulcal curves (12 each for the left and right hemispheres) for each individual subject according to a precise protocol. We collected 30 sets of such curves from 30 subjects. Given the raw input sulcal curve set of a subject, we choose the most similar example curve to each input curve in the set to label and refine the latter according to the former. We adapt a spectral matching algorithm to choose the example curve by exploiting the sulcal curve features and their relationship. The high dimensionality of sulcal curve data in spectral matching is addressed by using their multi-resolution representations, which greatly reduces time and space complexities. Our method provides consistent labeling and refining results even under high variability of cortical sulci across the subjects. Through experiments we show that the results are comparable in accuracy to those done manually. Most output curves exhibited accuracy values higher than 80%, and the mean accuracy values of the curves in the left and the right hemispheres were 84.69% and 84.58%, respectively.
Collapse
Affiliation(s)
- Ilwoo Lyu
- Computer Science Department, KAIST, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3048
|
Chang YL, Bondi MW, Fennema-Notestine C, McEvoy LK, Hagler DJ, Jacobson MW, Dale AM. Brain substrates of learning and retention in mild cognitive impairment diagnosis and progression to Alzheimer's disease. Neuropsychologia 2010; 48:1237-47. [PMID: 20034503 PMCID: PMC2851550 DOI: 10.1016/j.neuropsychologia.2009.12.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/09/2009] [Accepted: 12/16/2009] [Indexed: 11/16/2022]
Abstract
Understanding the underlying qualitative features of memory deficits in mild cognitive impairment (MCI) can provide critical information for early detection of Alzheimer's disease (AD). This study sought to investigate the utility of both learning and retention measures in (a) the diagnosis of MCI, (b) predicting progression to AD, and (c) examining their underlying brain morphometric correlates. A total of 607 participants were assigned to three MCI groups (high learning-low retention; low learning-high retention; low learning-low retention) and one control group (high learning-high retention) based on scores above or below a 1.5 SD cutoff on learning and retention indices of the Rey Auditory Verbal Learning Test. Our results demonstrated that MCI individuals with predominantly a learning deficit showed a widespread pattern of gray matter loss at baseline, whereas individuals with a retention deficit showed more focal gray matter loss. Moreover, either learning or retention measures provided good predictive value for longitudinal clinical outcome over two years, although impaired learning had modestly better predictive power than impaired retention. As expected, impairments in both measures provided the best predictive power. Thus, the conventional practice of relying solely on the use of delayed recall or retention measures in studies of amnestic MCI misses an important subset of older adults at risk of developing AD. Overall, our results highlight the importance of including learning measures in addition to retention measures when making a diagnosis of MCI and for predicting clinical outcome.
Collapse
Affiliation(s)
- Yu-Ling Chang
- Department of Psychiatry, University of California, San Diego, 8950 Villa La Jolla Drive Suite C101, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
3049
|
An automated strategy for the delineation and parcellation of commissural pathways suitable for clinical populations utilising high angular resolution diffusion imaging tractography. Neuroimage 2010; 50:1044-53. [DOI: 10.1016/j.neuroimage.2010.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/05/2010] [Accepted: 01/07/2010] [Indexed: 11/22/2022] Open
|
3050
|
Isaacs EB, Fischl BR, Quinn BT, Chong WK, Gadian DG, Lucas A. Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res 2010; 67:357-62. [PMID: 20035247 PMCID: PMC2939272 DOI: 10.1203/pdr.0b013e3181d026da] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although observational findings linking breast milk to higher scores on cognitive tests may be confounded by factors associated with mothers' choice to breastfeed, it has been suggested that one or more constituents of breast milk facilitate cognitive development, particularly in preterms. Because cognitive scores are related to head size, we hypothesized that breast milk mediates cognitive effects by affecting brain growth. We used detailed data from a randomized feeding trial to calculate percentage of expressed maternal breast milk (%EBM) in the infant diet of 50 adolescents. MRI scans were obtained (mean age=15 y 9 mo), allowing volumes of total brain (TBV) and white and gray matter (WMV, GMV) to be calculated. In the total group, %EBM correlated significantly with verbal intelligence quotient (VIQ); in boys, with all IQ scores, TBV and WMV. VIQ was, in turn, correlated with WMV and, in boys only, additionally with TBV. No significant relationships were seen in girls or with gray matter. These data support the hypothesis that breast milk promotes brain development, particularly white matter growth. The selective effect in males accords with animal and human evidence regarding gender effects of early diet. Our data have important neurobiological and public health implications and identify areas for future mechanistic study.
Collapse
Affiliation(s)
- Elizabeth B Isaacs
- Childhood Nutrition Research Centre and Radiology and Physics Unit, University College London Institute of Child Health, and Department of Radiology, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3JH, United Kingdom.
| | | | | | | | | | | |
Collapse
|