301
|
Advances in Mesenchymal Stem Cell-based Strategies for Cartilage Repair and Regeneration. Stem Cell Rev Rep 2014; 10:686-96. [DOI: 10.1007/s12015-014-9526-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
302
|
Oh JY, Ko JH, Lee HJ, Yu JM, Choi H, Kim MK, Wee WR, Prockop DJ. Mesenchymal Stem/Stromal Cells Inhibit the NLRP3 Inflammasome by Decreasing Mitochondrial Reactive Oxygen Species. Stem Cells 2014; 32:1553-63. [DOI: 10.1002/stem.1608] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Joo Youn Oh
- Department of Ophthalmology; Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
- Laboratory of Ocular Regenerative Medicine and Immunology; Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
| | - Jung Hwa Ko
- Department of Ophthalmology; Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
- Laboratory of Ocular Regenerative Medicine and Immunology; Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
| | - Hyun Ju Lee
- Department of Ophthalmology; Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
- Laboratory of Ocular Regenerative Medicine and Immunology; Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
| | - Ji Min Yu
- Institute for Regenerative Medicine; Texas A&M Health Science Center College of Medicine at Scott & White; Module C, Temple Texas USA
| | - Hosoon Choi
- Institute for Regenerative Medicine; Texas A&M Health Science Center College of Medicine at Scott & White; Module C, Temple Texas USA
| | - Mee Kum Kim
- Department of Ophthalmology; Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
- Laboratory of Ocular Regenerative Medicine and Immunology; Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
| | - Won Ryang Wee
- Department of Ophthalmology; Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
- Laboratory of Ocular Regenerative Medicine and Immunology; Biomedical Research Institute, Seoul National University Hospital; Seoul Korea
| | - Darwin J. Prockop
- Institute for Regenerative Medicine; Texas A&M Health Science Center College of Medicine at Scott & White; Module C, Temple Texas USA
| |
Collapse
|
303
|
Lei J, McLane LT, Curtis JE, Temenoff JS. Characterization of a multilayer heparin coating for biomolecule presentation to human mesenchymal stem cell spheroids. Biomater Sci 2014; 2:666-673. [PMID: 25126416 PMCID: PMC4128496 DOI: 10.1039/c3bm60271k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells therapies have the potential to treat many pathologies, however, controlling cell fate after implantation remains challenging. We have used a multilayer technology to graft a range of 5 μg/mL - 5 mg/mL heparin onto the surface of MSC aggregates. Heparin coating does not affect cell viability (seen through LIVE/DEAD staining), cell anti-inflammatory properties (seen through co-culture with activated monocytes)and facilitates sequestration by coated cells of a growth factor (TGF-β1) that remains bioactive. This system can maximize therapeutic potential of MSC-based treatments because the cell surface-loaded protein could both signal to the cells to influence transplanted cell fate and be released into the surrounding environment to help repair injured tissue.
Collapse
Affiliation(s)
- J Lei
- Woodruff School of Mechanical Engineering. Georgia Institute of Technology, Atlanta, Georgia, USA
| | - L T McLane
- School of Physics. Georgia Institute of Technology, Atlanta, Georgia, USA
| | - J E Curtis
- School of Physics. Georgia Institute of Technology, Atlanta, Georgia, USA ; Wallace H. Coulter Department of Biomedical Engineering. Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - J S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering. Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA ; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
304
|
Manning CN, Havlioglu N, Knutsen E, Sakiyama-Elbert SE, Silva MJ, Thomopoulos S, Gelberman RH. The early inflammatory response after flexor tendon healing: a gene expression and histological analysis. J Orthop Res 2014; 32:645-52. [PMID: 24464937 PMCID: PMC4076155 DOI: 10.1002/jor.22575] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/05/2013] [Indexed: 02/04/2023]
Abstract
Despite advances in surgical techniques over the past three decades, tendon repairs remain prone to poor clinical outcomes. Previous attempts to improve tendon healing have focused on the later stages of healing (i.e., proliferation and matrix synthesis). The early inflammatory phase of tendon healing, however, is not fully understood and its modulation during healing has not yet been studied. Therefore, the purpose of this work was to characterize the early inflammatory phase of flexor tendon healing with the goal of identifying inflammation-related targets for future treatments. Canine flexor tendons were transected and repaired using techniques identical to those used clinically. The inflammatory response was monitored for 9 days. Temporal changes in immune cell populations and gene expression of inflammation-, matrix degradation-, and extracellular matrix-related factors were examined. Gene expression patterns paralleled changes in repair-site cell populations. Of the observed changes, the most dramatic effect was a greater than 4,000-fold up-regulation in the expression of the pro-inflammatory factor IL-1β. While an inflammatory response is likely necessary for healing to occur, high levels of pro-inflammatory cytokines may result in collateral tissue damage and impaired tendon healing. These findings suggest that future tendon treatment approaches consider modulation of the inflammatory phase of healing.
Collapse
Affiliation(s)
- CN Manning
- Dept. of Orthopaedic Surgery, Washington University, St Louis, MO
| | - N Havlioglu
- Dept. of Pathology, Saint Louis University Hospital, St Louis, MO
| | - E Knutsen
- Dept. of Orthopaedic Surgery, Washington University, St Louis, MO
| | | | - MJ Silva
- Dept. of Orthopaedic Surgery, Washington University, St Louis, MO
| | - S Thomopoulos
- Dept. of Orthopaedic Surgery, Washington University, St Louis, MO
,Corresponding Authors: Stavros Thomopoulos, Ph.D. (study design and in vivo studies), Richard H. Gelberman, M.D. (clinical relevance and surgical methods). Washington University, 425 South Euclid, Campus Box 8233, St Louis, MO 63110, Phone: 314-362-8605, Fax: 314-362-0334,
| | - RH Gelberman
- Dept. of Orthopaedic Surgery, Washington University, St Louis, MO
,Corresponding Authors: Stavros Thomopoulos, Ph.D. (study design and in vivo studies), Richard H. Gelberman, M.D. (clinical relevance and surgical methods). Washington University, 425 South Euclid, Campus Box 8233, St Louis, MO 63110, Phone: 314-362-8605, Fax: 314-362-0334,
| |
Collapse
|
305
|
Simerman AA, Perone MJ, Gimeno ML, Dumesic DA, Chazenbalk GD. A mystery unraveled: nontumorigenic pluripotent stem cells in human adult tissues. Expert Opin Biol Ther 2014; 14:917-29. [PMID: 24745973 DOI: 10.1517/14712598.2014.900538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Embryonic stem cells and induced pluripotent stem cells have emerged as the gold standard of pluripotent stem cells and the class of stem cell with the highest potential for contribution to regenerative and therapeutic application; however, their translational use is often impeded by teratoma formation, commonly associated with pluripotency. We discuss a population of nontumorigenic pluripotent stem cells, termed Multilineage Differentiating Stress Enduring (Muse) cells, which offer an innovative and exciting avenue of exploration for the potential treatment of various human diseases. AREAS COVERED This review discusses the origin of Muse cells, describes in detail their various unique characteristics, and considers future avenues of their application and investigation with respect to what is currently known of adult pluripotent stem cells in scientific literature. We begin by defining cell potency, then discuss both mesenchymal and various reported populations of pluripotent stem cells, and finally delve into Muse cells and the characteristics that set them apart from their contemporaries. EXPERT OPINION Muse cells derived from adipose tissue (Muse-AT) are efficiently, routinely and painlessly isolated from human lipoaspirate material, exhibit tripoblastic differentiation both spontaneously and under media-specific induction, and do not form teratomas. We describe qualities specific to Muse-AT cells and their potential impact on the field of regenerative medicine and cell therapy.
Collapse
Affiliation(s)
- Ariel A Simerman
- The University of California, David Geffen School of Medicine, Department of Obstetrics and Gynecology , 10833 Le Conte Ave, Box 951740, Los Angeles, CA 90095-1740 , USA +1 310 206 3670 ;
| | | | | | | | | |
Collapse
|
306
|
Kota DJ, DiCarlo B, Hetz RA, Smith P, Cox CS, Olson SD. Differential MSC activation leads to distinct mononuclear leukocyte binding mechanisms. Sci Rep 2014; 4:4565. [PMID: 24691433 PMCID: PMC3972508 DOI: 10.1038/srep04565] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Advances in the field of Multipotent Mesenchymal Stromal cell (MSC) biology have demonstrated that MSCs can improve disease outcome when ‘activated' to exert immunomodulatory effects. However, the precise mechanisms modulating MSC-immune cells interactions remain largely elusive. In here, we activated MSC based on a recent polarization paradigm, in which MSCs can be polarized towards a pro- or anti-inflammatory phenotype depending on the Toll-like receptor stimulated, to dissect the mechanisms through which MSCs physically interact with and modulate leukocytes in this context. Our data show that MSCs activated through the Toll-like receptor (TLR) 4 pathway increased VCAM-1 and ICAM-1 dependent binding of leukocytes. On the other hand, TLR3 stimulation strongly increases leukocytes affinity to MSC comparatively, through the formation of cable-like hyaluronic acid structures. In addition, TLR4 activation elicited secretion of pro-inflammatory mediators by MSCs, whereas TLR3-activated MSCs displayed a milder pro-inflammatory phenotype, similar to inactivated MSCs. However, the differently activated MSCs maintained their ability to suppress leukocyte activation at similar levels in our in vitro model, and this immunomodulatory property was shown here to be partially mediated by prostaglandin. These results reinforce the concept that alternate activation profiles control MSC responses and may impact the therapeutic use of MSCs.
Collapse
Affiliation(s)
- Daniel J Kota
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| | - Bryan DiCarlo
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| | - Robert A Hetz
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| | - Philippa Smith
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| | - Scott D Olson
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin St., MSB 5.233, Houston, TX, USA 77030
| |
Collapse
|
307
|
Maia FR, Lourenço AH, Granja PL, Gonçalves RM, Barrias CC. Effect of cell density on mesenchymal stem cells aggregation in RGD-alginate 3D matrices under osteoinductive conditions. Macromol Biosci 2014; 14:759-71. [PMID: 24585449 DOI: 10.1002/mabi.201300567] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/23/2014] [Indexed: 01/17/2023]
Abstract
Cellular activities in 3D are differentially affected by several matrix-intrinsic and extrinsic factors. This study highlights the relevance of optimizing initial cell densities when establishing 3D cultures for specific applications. Independently of the entrapping density, MSCs cultured within RGD-alginate hydrogels showed steady-state levels of metabolic activity and were in a nearly non-proliferative state, but recovered "normal" activity levels when retrieved from 3D matrices and re-cultured as monolayers. Importantly, high-densities promoted the establishment of cell-cell contacts with formation of multicellular clusters stabilized by endogenous ECM, and also stimulated MSCs osteogenic differentiation. These MSC-ECM microtissues may be used as building blocks for tissue engineering.
Collapse
Affiliation(s)
- F Raquel Maia
- Instituto de Engenharia Biomédica (INEB), Rua do Campo Alegre, no. 823, 4150-180, Porto, Portugal; Faculty of Engineering, Universidade do Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | | | | | | | | |
Collapse
|
308
|
Clinical consideration for mesenchymal stem cells in hematopoietic stem cell transplantation. Transplantation 2014; 96:e86-7. [PMID: 24342941 DOI: 10.1097/01.tp.0000437677.09211.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
309
|
Bartosh TJ, Ylostalo JH. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique. ACTA ACUST UNITED AC 2014; 28:2B.6.1-2B.6.23. [PMID: 24510769 DOI: 10.1002/9780470151808.sc02b06s28] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3-D culture without addition of exogenous chemicals or gene-transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, the reported lag time for activation in experimental models has prompted investigations on pre-activating the cells prior to their administration. In this protocol, standard 2-D culture-expanded MSCs are activated by aggregation into 3-D spheres using hanging-drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Further, we elucidate methods to prepare MSC-sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications.
Collapse
Affiliation(s)
- Thomas J Bartosh
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White Hospital, Temple, Texas
| | | |
Collapse
|
310
|
Gao S, Mao F, Zhang B, Zhang L, Zhang X, Wang M, Yan Y, Yang T, Zhang J, Zhu W, Qian H, Xu W. Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-κB and signal transducer and activator of transcription 3 pathways. Exp Biol Med (Maywood) 2014; 239:366-75. [PMID: 24500984 DOI: 10.1177/1535370213518169] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence has demonstrated that mesenchymal stem cells (MSCs)-mediated regulation of macrophages is critical for inflammation response and tissue injury repair. However, the underlying mechanism is not well understood. In this study, we investigated the effect of mouse bone marrow-derived MSCs on macrophages under normal and inflammatory conditions. Co-culture with MSCs or treatment with MSC-conditioned medium (MSC-CM) reduced the expression of tumor necrosis factor-α while inducing the expression of interleukin 10 (IL-10) and arginase 1 in lipopolysaccharide (LPS)-stimulated mouse RAW264.7 cells and splenic CD11b(+) cells. MSC-CM treatment increased the expression of CD206, a marker of alternatively activated M2 macrophages, in RAW264.7 cells. In addition, MSC-CM promoted the proliferation and migration of RAW264.7 cells. MSC-CM treatment activated signal transducer and activator of transcription 3 (STAT3) but inhibited nuclear factor-κB (NF-κB) pathways in LPS-stimulated RAW264.7 cells. Moreover, STAT3 inhibitor S3I-201 antagonized the induction of IL-10, arginase 1, and CD206 by MSC-CM in RAW264.7 cells. Conclusively, our findings suggest that mouse MSCs induce macrophage M2 activation through the NF-κB and STAT3 pathways.
Collapse
Affiliation(s)
- Shuo Gao
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Tsuboi N, Maruyama S, Matsuo S, Imai E. A ray of light in the dark: alternative approaches to the assessment and treatment of ischemic nephropathy. Nephrol Dial Transplant 2014; 29:228-31. [DOI: 10.1093/ndt/gft463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
312
|
Gao L, Liu F, Tan L, Liu T, Chen Z, Shi C. The immunosuppressive properties of non-cultured dermal-derived mesenchymal stromal cells and the control of graft-versus-host disease. Biomaterials 2014; 35:3582-8. [PMID: 24468404 DOI: 10.1016/j.biomaterials.2014.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/07/2014] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) have been developed for the prevention and treatment of graft-versus-host disease (GVHD). Non-cultured natural MSCs are considered ideal, as they better maintain their biological and therapeutic properties. The skin is the largest organ in the body and constitutes an interesting alternative to bone marrow for the generation of MSCs. Large numbers of dermal-derived-MSCs (DMSCs) can be easily generated without culturing in vitro, but their therapeutic effects still remain unclear. In this study, we described for the first time the use of non-cultured DMSCs for controlling GVHD in an MHC-mismatched mouse model and investigated their immunomodulatory effects. Our results showed that non-cultured mouse DMSCs decreased the incidence and severity of acute GVHD during MHC-mismatched stem cell transplantation in mice. This effect was mediated by the inhibition of splenic cell (SPC) proliferation and the enhancement of Treg cells. Consistent with the results in vivo, the results in vitro showed that human DMSCs inhibited the proliferation of peripheral blood mononuclear cells (PBMCs) by inhibiting the proliferation of CD3(+) T cells. hDMSCs prevented PBMCs from entering S phase, suppressed the activation of CD3(+) T cells and increased Treg proportions. In conclusion, DMSCs should be considered as a novel MSC source for the control of refractory GVHD.
Collapse
Affiliation(s)
- Li Gao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China; Department of Hematology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Fei Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Tao Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Zelin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China.
| |
Collapse
|
313
|
Huang GS, Hsieh PS, Tseng CS, Hsu SH. The substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomater Sci 2014; 2:1652-1660. [DOI: 10.1039/c4bm00053f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ADSC spheroids derived on various biomaterials present different in vitro properties, which may explain their different efficacies in cartilage repair.
Collapse
Affiliation(s)
- Guo-Shiang Huang
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei, Taiwan
| | - Pai-Shan Hsieh
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei, Taiwan
| | - Ching-Shiow Tseng
- Department of Mechanical Engineering
- National Central University
- Taoyuan, Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei, Taiwan
| |
Collapse
|
314
|
Sart S, Tsai AC, Li Y, Ma T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:365-80. [PMID: 24168395 DOI: 10.1089/ten.teb.2013.0537] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) are primary candidates in cell therapy and tissue engineering and are being tested in clinical trials for a wide range of diseases. Originally isolated and expanded as plastic adherent cells, MSCs have intriguing properties of in vitro self-assembly into three-dimensional (3D) aggregates reminiscent of skeletal condensation in vivo. Recent studies have shown that MSC 3D aggregation improved a range of biological properties, including multilineage potential, secretion of therapeutic factors, and resistance against ischemic condition. Hence, the formation of 3D MSC aggregates has been explored as a novel strategy to improve cell delivery, functional activation, and in vivo retention to enhance therapeutic outcomes. This article summarizes recent reports of MSC aggregate self-assembly, characterization of biological properties, and their applications in preclinical models. The cellular and molecular mechanisms underlying MSC aggregate formation and functional activation are discussed, and the areas that warrant further investigation are highlighted. These analyses are combined to provide perspectives for identifying the controlling mechanisms and refining the methods of aggregate fabrication and expansion for clinical applications.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | | | | | | |
Collapse
|
315
|
Zimmermann JA, McDevitt TC. Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion. Cytotherapy 2013; 16:331-45. [PMID: 24219905 DOI: 10.1016/j.jcyt.2013.09.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/27/2013] [Accepted: 09/19/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) exhibit the inherent potential to regulate multiple signaling pathways and cell types that contribute to the pathogenesis of inflammatory and immune diseases. However, more recent studies have suggested that the secretion of immunomodulatory factors by MSCs can be enhanced by three-dimensional aggregation or pro-inflammatory cytokine treatment. METHODS Human MSC spheroids were formed by forced aggregation into agarose micro-wells and subsequently cultured in either minimal essential medium alpha supplemented with fetal bovine serum or serum-free, defined MesenCult-XF medium (STEMCELL Technologies, Vancouver, Canada). A subset of the spheroids were treated with pro-inflammatory cytokines interferon (IFN)-γ or tumor necrosis factor (TNF)-α or both for 4 days. Immunomodulatory factor (prostaglandin E2, indoleamine 2,3-dioxygenase, transforming growth factor-β1 and interleukin-6) secretion was quantified after 4 days of culture, and the immunomodulatory activity of MSCs was assessed by quantifying activated macrophage expression of TNF-α after trans-well co-culture. RESULTS Culturing human MSCs as three-dimensional aggregates increased secretion of immunomodulatory paracrine factors, which was enhanced further by treatment with IFN-γ and TNF-α, demonstrating that these parameters can synergistically enhance endogenous human MSC immunomodulatory properties. However, immunomodulatory factor secretion was found to be highly dependent on the composition of cell culture medium. Human MSCs cultured in MesenCult-XF medium displayed significantly less expression of prostaglandin E2, indoleamine 2,3-dioxygenase, transforming growth factor-β1 and interleukin-6 compared with human MSCs cultured in medium supplemented with fetal bovine serum. Finally, pre-conditioning of human MSC spheroids with IFN-γ and TNF-α resulted in greater immunomodulatory activity in a macrophage co-culture assay. CONCLUSIONS Altogether, engineering the environment of human MSCs to develop pre-conditioning strategies for enhancing human MSC immunomodulation may be a simple approach for improving MSC-based therapies for the treatment of inflammatory and immune diseases.
Collapse
Affiliation(s)
- Joshua A Zimmermann
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - Todd C McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
316
|
Bustos ML, Huleihel L, Meyer EM, Donnenberg AD, Donnenberg VS, Sciurba JD, Mroz L, McVerry BJ, Ellis BM, Kaminski N, Rojas M. Activation of human mesenchymal stem cells impacts their therapeutic abilities in lung injury by increasing interleukin (IL)-10 and IL-1RN levels. Stem Cells Transl Med 2013; 2:884-95. [PMID: 24089414 PMCID: PMC3808203 DOI: 10.5966/sctm.2013-0033] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an important cause of morbidity and mortality, with no currently effective therapies. Several preclinical studies have shown that human mesenchymal stem cells (hMSCs) have therapeutic potential for patients with ARDS because of their immunomodulatory properties. The clinical use of hMSCs has some limitations, such as the extensive manipulation required to isolate the cells from bone marrow aspirates and the heterogeneity in their anti-inflammatory effect in animal models and clinical trials. The objective of this study was to improve the protective anti-inflammatory capacity of hMSCs by evaluating the consequences of preactivating hMSCs before use in a murine model of ARDS. We injected endotoxemic mice with minimally manipulated hMSCs isolated from the bone marrow of vertebral bodies with or without prior activation with serum from ARDS patients. Minimally manipulated hMSCs were more efficient at reducing lung inflammation compared with isolated and in vitro expanded hMSCs obtained from bone marrow aspirates. Where the most important effect was observed was with the activated hMSCs, independent of their source, which resulted in increased expression of interleukin (IL)-10 and IL-1 receptor antagonist (RN), which was associated with enhancement of their protective capacity by reduction of the lung injury score, development of pulmonary edema, and accumulation of bronchoalveolar lavage inflammatory cells and cytokines compared with nonactivated cells. This study demonstrates that a low manipulation during hMSC isolation and expansion increases, together with preactivation prior to the therapeutic use of hMSCs, would ensure an appropriate immunomodulatory phenotype of the hMSCs, reducing the heterogeneity in their anti-inflammatory effect.
Collapse
Affiliation(s)
- Martha L. Bustos
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Luai Huleihel
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Ernest M. Meyer
- Division of Hematology/Oncology, Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Albert D. Donnenberg
- Division of Hematology/Oncology, Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Vera S. Donnenberg
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
- Division of Thoracic and Foregut Surgery, Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph D. Sciurba
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Lyle Mroz
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Bryon M. Ellis
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Naftali Kaminski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
- the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
317
|
Chondrogenic differentiation increases antidonor immune response to allogeneic mesenchymal stem cell transplantation. Mol Ther 2013; 22:655-667. [PMID: 24184966 DOI: 10.1038/mt.2013.261] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/28/2013] [Indexed: 01/01/2023] Open
Abstract
Allogeneic mesenchymal stem cells (allo-MSCs) have potent regenerative and immunosuppressive potential and are being investigated as a therapy for osteoarthritis; however, little is known about the immunological changes that occur in allo-MSCs after ex vivo induced or in vivo differentiation. Three-dimensional chondrogenic differentiation was induced in an alginate matrix, which served to immobilize and potentially protect MSCs at the site of implantation. We show that allogeneic differentiated MSCs lost the ability to inhibit T-cell proliferation in vitro, in association with reduced nitric oxide and prostaglandin E2 secretion. Differentiation altered immunogenicity as evidenced by induced proliferation of allogeneic T cells and increased susceptibility to cytotoxic lysis by allo-specific T cells. Undifferentiated or differentiated allo-MSCs were implanted subcutaneously, with and without alginate encapsulation. Increased CD3(+) and CD68(+) infiltration was evident in differentiated and splenocyte encapsulated implants only. Without encapsulation, increased local memory T-cell responses were detectable in recipients of undifferentiated and differentiated MSCs; however, only differentiated MSCs induced systemic memory T-cell responses. In recipients of encapsulated allogeneic cells, only differentiated allo-MSCs induced memory T-cell responses locally and systemically. Systemic alloimmune responses to differentiated MSCs indicate immunogenicity regardless of alginate encapsulation and may require immunosuppressive therapy for therapeutic use.
Collapse
|
318
|
Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ 2013; 21:216-25. [PMID: 24185619 PMCID: PMC3890955 DOI: 10.1038/cdd.2013.158] [Citation(s) in RCA: 567] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from almost all tissues and effectively expanded in vitro. Although their true in situ properties and biological functions remain to be elucidated, these in vitro expanded cells have been shown to possess potential to differentiate into specific cell lineages. It is speculated that MSCs in situ have important roles in tissue cellular homeostasis by replacing dead or dysfunctional cells. Recent studies have demonstrated that in vitro expanded MSCs of various origins have great capacity to modulate immune responses and change the progression of different inflammatory diseases. As tissue injuries are often accompanied by inflammation, inflammatory factors may provide cues to mobilize MSCs to tissue sites with damage. Before carrying out tissue repair functions, MSCs first prepare the microenvironment by modulating inflammatory processes and releasing various growth factors in response to the inflammation status. In this review, we focus on the crosstalk between MSCs and immune responses and their potential clinical applications, especially in inflammatory diseases.
Collapse
Affiliation(s)
- S Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - N Xie
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - W Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - B Yuan
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Beijing 100050, China
| | - Y Shi
- 1] Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China [2] Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
319
|
Bartosh TJ, Ylöstalo JH, Bazhanov N, Kuhlman J, Prockop DJ. Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells 2013; 31:2443-56. [PMID: 23922312 PMCID: PMC3834191 DOI: 10.1002/stem.1499] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/13/2013] [Accepted: 07/15/2013] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem/precursor cells (MSC) are similar to some other stem/progenitor cells in that they compact into spheres when cultured in hanging drops or on nonadherent surfaces. Assembly of MSC into spheres alters many of their properties, including enhanced secretion of factors that mediate inflammatory and immune responses. Here we demonstrated that MSC spontaneously aggregated into sphere-like structures after injection into a subcutaneous air pouch or the peritoneum of mice. The structures were similar to MSC spheres formed in cultures demonstrated by the increased expression of genes for inflammation-modulating factors TSG6, STC1, and COX2, a key enzyme in production of PGE2. To identify the signaling pathways involved, hanging drop cultures were used to follow the time-dependent changes in the cells as they compacted into spheres. Among the genes upregulated were genes for the stress-activated signaling pathway for IL1α/β, and the contact-dependent signaling pathway for Notch. An inhibitor of caspases reduced the upregulation of IL1A/B expression, and inhibitors of IL1 signaling decreased production of PGE2, TSG6, and STC1. Also, inhibition of IL1A/B expression and secretion of PGE2 negated the anti-inflammatory effects of MSC spheres on stimulated macrophages. Experiments with γ-secretase inhibitors suggested that Notch signaling was also required for production of PGE2 but not TSG6 or STC1. The results indicated that assembly of MSC into spheres triggers caspase-dependent IL1 signaling and the secretion of modulators of inflammation and immunity. Similar aggregation in vivo may account for some of the effects observed with administration of the cells in animal models.
Collapse
Affiliation(s)
- Thomas J. Bartosh
- Texas A & M Health Science Center College of Medicine, Institute for Regenerative Medicine at Scott & White, 5701 Airport Rd., Module C, Temple, TX 76502
| | - Joni H. Ylöstalo
- Texas A & M Health Science Center College of Medicine, Institute for Regenerative Medicine at Scott & White, 5701 Airport Rd., Module C, Temple, TX 76502
| | - Nikolay Bazhanov
- Texas A & M Health Science Center College of Medicine, Institute for Regenerative Medicine at Scott & White, 5701 Airport Rd., Module C, Temple, TX 76502
| | - Jessica Kuhlman
- Texas A & M Health Science Center College of Medicine, Institute for Regenerative Medicine at Scott & White, 5701 Airport Rd., Module C, Temple, TX 76502
| | - Darwin J. Prockop
- Texas A & M Health Science Center College of Medicine, Institute for Regenerative Medicine at Scott & White, 5701 Airport Rd., Module C, Temple, TX 76502
| |
Collapse
|
320
|
Chen WW, Blurton-Jones M. Concise review: Can stem cells be used to treat or model Alzheimer's disease? Stem Cells 2013; 30:2612-8. [PMID: 22997040 DOI: 10.1002/stem.1240] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/03/2012] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of age-related dementia, affecting over 5 million people in the U.S. alone. AD patients suffer from progressive neurodegeneration that gradually impairs their memory, ability to learn, and carry out daily activities. Unfortunately, current therapies for AD are largely palliative and several promising drug candidates have failed in recent clinical trials. There is therefore an urgent need to improve our understanding of AD pathogenesis, create innovative and predictive models, and develop new and effective therapies. In this review, we will discuss the potential of stem cells to aid in these challenging endeavors. Because of the widespread nature of AD pathology, cell-replacement strategies have been viewed as an incredibly challenging and unlikely treatment approach. Yet recent work shows that transplantation of neural stem cells (NSCs) can improve cognition, reduce neuronal loss, and enhance synaptic plasticity in animal models of AD. Interestingly, the mechanisms that mediate these effects appear to involve neuroprotection and trophic support rather than neuronal replacement. Stem cells may also offer a powerful new approach to model and study AD. Patient-derived induced pluripotent stem cells, for example, may help to advance our understanding of disease mechanisms. Likewise, studies of human embryonic and NSCs are helping to decipher the normal functions of AD-related genes; revealing intriguing roles in neural development.
Collapse
Affiliation(s)
- Wesley W Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697-4545, USA
| | | |
Collapse
|
321
|
Wang H, Nagai A, Sheikh AM, Liang XY, Yano S, Mitaki S, Ishibashi Y, Kobayashi S, Kim SU, Yamaguchi S. Human mesenchymal stem cell transplantation changes proinflammatory gene expression through a nuclear factor-κB-dependent pathway in a rat focal cerebral ischemic model. J Neurosci Res 2013; 91:1440-9. [PMID: 23996632 DOI: 10.1002/jnr.23267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/20/2013] [Accepted: 06/01/2013] [Indexed: 12/16/2022]
Abstract
Previous studies have demonstrated the immunomodulatory functions of mesenchymal stem cells (MSCs) in cerebral ischemic rats. However, the underlying mechanisms are unclear. The purpose of this study is to investigate the effects of MSC transplantation on transcriptional regulations of proinflammatory genes in cerebral ischemia. Transient ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male Sprague-Dawley rats. After 24 hr, vehicle (PBS) or a human MSC line (B10) was transplanted intravenously. The neurological deficits, infarct volume, cellular accumulations, and gene expression changes were monitored by means of behavior tests, MRI, immunohistochemistry, Western blotting, laser capture microdissection, and real-time PCR. In the core area of the B10 transplantation group, the number of ED1-positive macrophage/microglia was decreased compared with the PBS group. In the core, nuclear factor-κB (NF-κB) was decreased, although CCAAT/enhancer-binding protein β was not changed; both were expressed mainly in ED1-positive macrophage/microglia. Likewise, mRNAs of NF-κB-dependent genes including interleukin-1β, MCP-1, and inducible nitric oxide synthase were decreased in ED1-positive and Iba-1-positive macrophage/microglia in the B10 transplantation group. Moreover, upstream receptors of the NF-κB pathway, including CD40 and Toll-like receptor 2 (TLR2), were decreased. Immunofluorescence results showed that, in the B10 transplantation group, the percentages of NF-κB-positive, CD40-positive, and TLR2-positive cells were decreased in ED1-positive macrophage/microglia. Furthermore, NF-κB-positive cells in the CD40- or TLR2-expressing cell population were decreased in the B10 transplantation group. This study demonstrates that B10 transplantation inhibits NF-κB activation, possibly through inhibition of CD40 and TLR2, which might be responsible for the inhibition of proinflammatory gene expression in macrophage/microglia in the infarct lesion.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Soluble interleukin-6 receptor-mediated innate immune response to DNA and RNA viruses. J Virol 2013; 87:11244-54. [PMID: 23946454 DOI: 10.1128/jvi.01248-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The interleukin-6 (IL-6) receptor, which exists as membrane-bound and soluble forms, plays critical roles in the immune response. The soluble IL-6 receptor (sIL6R) has been identified as a potential therapeutic target for preventing coronary heart disease. However, little is known about the role of this receptor during viral infection. In this study, we show that sIL6R, but not IL-6, is induced by viral infection via the cyclooxygenase-2 pathway. Interestingly, sIL6R, but not IL-6, exhibited extensive antiviral activity against DNA and RNA viruses, including hepatitis B virus, influenza virus, human enterovirus 71, and vesicular stomatitis virus. No synergistic effects on antiviral action were observed by combining sIL6R and IL-6. Furthermore, sIL6R mediated antiviral action via the p28 pathway and induced alpha interferon (IFN-α) by promoting the nuclear translocation of IFN regulatory factor 3 (IRF3) and NF-κB, which led to the activation of downstream IFN effectors, including 2',5'-oligoadenylate synthetase (OAS), double-stranded RNA-dependent protein kinase (PKR), and myxovirus resistance protein (Mx). Thus, our results demonstrate that sIL6R, but not IL-6, plays an important role in the host antiviral response.
Collapse
|
323
|
Ulrich D, Muralitharan R, Gargett CE. Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther 2013; 13:1387-400. [PMID: 23930703 DOI: 10.1517/14712598.2013.826187] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Bone marrow is a widely used source of mesenchymal stem cells (MSCs) for cell-based therapies. Recently, endometrium - the highly regenerative lining of the uterus - and menstrual blood have been identified as more accessible sources of MSCs. These uterine MSCs include two related cell types: endometrial MSCs (eMSCs) and endometrial regenerative cells (ERCs). AREAS COVERED The properties of eMSCs and ERCs and their application in preclinical in vitro and in vivo studies for pelvic organ prolapse, heart disorders and ischemic conditions are reviewed. Details of the first clinical Phase I and Phase II studies will be provided. EXPERT OPINION The authors report that eMSCs and ERCs are a readily available source of adult stem cells. Both eMSCs and ERCs fulfill the key MSC criteria and have been successfully used in preclinical models to treat various diseases. Data on clinical trials are sparse. More research is needed to determine the mechanism of action of eMSCs and ERCs in these regenerative medicine models and to determine the long-term benefits and any adverse effects after their administration.
Collapse
Affiliation(s)
- Daniela Ulrich
- Monash University, Monash Institute of Medical Research, The Ritchie Centre , 27-31 Wright Street, PO Box 5418, Clayton, Melbourne, 3168 , Australia
| | | | | |
Collapse
|
324
|
Glim JE, van Egmond M, Niessen FB, Everts V, Beelen RHJ. Detrimental dermal wound healing: what can we learn from the oral mucosa? Wound Repair Regen 2013; 21:648-60. [PMID: 23927738 DOI: 10.1111/wrr.12072] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 06/01/2013] [Indexed: 12/11/2022]
Abstract
Wounds in adults are frequently accompanied by scar formation. This scar can become fibrotic due to an imbalance between extracellular matrix (ECM) synthesis and ECM degradation. Oral mucosal wounds, however, heal in an accelerated fashion, displaying minimal scar formation. The exact mechanisms of scarless oral healing are yet to be revealed. This review highlights possible mechanisms involved in the difference between scar-forming dermal vs. scarless oral mucosal wound healing. Differences were found in expression of ECM components, such as procollagen I and tenascin-C. Oral wounds contained fewer immune mediators, blood vessels, and profibrotic mediators but had more bone marrow-derived cells, a higher reepithelialization rate, and faster proliferation of fibroblasts compared with dermal wounds. These results form a basis for further research that should be focused on the relations among ECM, immune cells, growth factors, and fibroblast phenotypes, as understanding scarless oral mucosal healing may ultimately lead to novel therapeutic strategies to prevent fibrotic scars.
Collapse
Affiliation(s)
- Judith E Glim
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands; Department of Plastic and Reconstructive Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
325
|
Mesenchymal stem cells in the treatment of pediatric diseases. World J Pediatr 2013; 9:197-211. [PMID: 23929252 DOI: 10.1007/s12519-013-0425-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND In recent years, the incredible interests in mesenchymal stem cells have boosted the expectations of both patients and physicians. Unlike embryonic stem cells, neither their procurement nor their use is deemed controversial. Moreover, their immunomodulatory capacity coupled with low immunogenicity has opened up their allogenic use, consequently broadening the possibilities for their application. In May 2012, Canadian health regulators approved Prochymal, the first mesenchymal stem cells-based drug, for acute graft-versus-host diseases in children who have failed to respond to steroid treatment. The aim of this article is to review the recent advances in mesenchymal stem cells for pediatric diseases. DATA SOURCES A literature review was performed on PubMed from 1966 to 2013 using the MeSH terms "mesenchymal stem cells", "clinical trials" and "children". Additional articles were identified by a hand search of the references list in the initial search. RESULTS The following categories are described: general properties, mechanisms of action, graft-versus-host diseases, cardiovascular diseases, liver diseases, inflammatory bowel diseases, osteoarticular diseases, autoimmune diseases, type 1 diabetes, and lung diseases. CONCLUSIONS Mesenchymal stem cells, owing to their availability, immunomodulatory properties, low immunogenicity, and therapeutic potential, have become one of the most attractive options for the treatment of a wide range of diseases. It is expected to see more and more clinical trials and applications of mesenchymal stem cells for pediatric diseases in the near future.
Collapse
|
326
|
Effect of ex vivo culture conditions on immunosuppression by human mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:154919. [PMID: 23862134 PMCID: PMC3687591 DOI: 10.1155/2013/154919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 01/01/2023]
Abstract
A microarray analysis was performed to investigate whether ex vivo culture conditions affect the characteristics of MSCs. Gene expression profiles were mainly influenced by the level of cell confluence rather than initial seeding density. The analysis showed that 276 genes were upregulated and 230 genes downregulated in MSCs harvested at ~90% versus ~50% confluence (P < 0.05, FC > 2). The genes that were highly expressed in MSCs largely corresponded to chemotaxis, inflammation, and immune responses, indicating direct or indirect involvement in immunomodulatory functions. Specifically, PTGES and ULBP1 were up-regulated in MSCs harvested at high density. Treatment of MSCs with PTGES or ULBP1 siRNA reversed their inhibition of T-cell proliferation in vitro. The culture conditions such as cell confluence at harvest seem to be important for gene expression profile of MSCs; therefore, the results of this study may provide useful guidelines for the harvest of MSCs that can appropriately suppress the immune response.
Collapse
|
327
|
|
328
|
Abstract
PURPOSE OF REVIEW Mesenchymal stromal cells (MSCs) possess unique immunomodulatory features. MSCs dampen effector T-cell response while promoting the emergence of regulatory T cells. By skewing this balance, MSC could represent the ideal strategy for tolerance induction in organ transplantation. Here we review recent evidence on the efficacy of MSC-based therapy in experimental models of solid organ transplantation as well as the early clinical experiences in kidney transplantation. RECENT FINDINGS MSC infusion in experimental models of solid organ transplantation resulted in a Treg-mediated tolerance. MSC also synergized with low-dose or transient pharmacological immunosuppression in inducing long-term graft survival indicating that these cells could allow safe minimization of maintenance drug therapy. Early results from clinical studies in kidney transplant recipients reported encouraging results on the immunoregulatory effect of MSC, although posttransplant MSC infusion could associate with acute graft dysfunction (engraftment syndrome). SUMMARY Immunoregulatory functions of MSC are not fixed but rather the result of microenvironment they encounter in vivo. Further studies are needed to establish how and wherein these cells have to be administered and how they may function to safely modulate host immune response in vivo in clinical transplant setting.
Collapse
|
329
|
Kim J, Ma T. Endogenous extracellular matrices enhance human mesenchymal stem cell aggregate formation and survival. Biotechnol Prog 2013; 29:441-51. [PMID: 23296993 DOI: 10.1002/btpr.1686] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/07/2012] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem or stromal cell (hMSC) therapies have promise across a wide range of diseases. However, inefficient cell delivery and low cell survival at injury sites reduce efficacy and are the major barriers in hMSC-based therapy. Formation of three-dimensional (3D) hMSC aggregates has been found to activate hMSC functions from enhancing secretion of therapeutic factors for improving cell migration and survival. As the stromal cells in bone marrow, hMSCs are significant sources of extracellular matrix (ECM) proteins and growth factors, which form an interactive microenvironment to influence hMSC fate via paracrine and autocrine actions. To date, however, the impact of the extracellular microenvironment on hMSC properties in the aggregates remains unknown. In the present study, we investigated the role of endogenous ECM matrices on hMSC aggregate formation and survival under ischemic stress. The results demonstrated that the preservation of endogenous ECM in the aggregates formed by thermal lifting (termed TLAs) as opposed to the aggregates formed by enzymatically detached hMSCs (termed EDAs) enhanced cell proliferation, multilineage potential, and survival under ischemic stress. The improved cell proliferation and viability in the TLAs is attributed to the incorporation of endogenous ECM proteins in the TLAs and their promitotic and antioxidant properties. The results demonstrate a novel method for the formation of hMSC aggregates via thermal responsive surface and highlight the significant contribution of the ECM in preserving hMSC properties in the 3D aggregates.
Collapse
Affiliation(s)
- Junho Kim
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
| | | |
Collapse
|
330
|
Shim JH, Lee TR, Shin DW. Enrichment and characterization of human dermal stem/progenitor cells by intracellular granularity. Stem Cells Dev 2013; 22:1264-74. [PMID: 23336432 DOI: 10.1089/scd.2012.0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells from the dermis would be an attractive cell source for therapeutic purposes as well as studying the process of skin aging. Several studies have reported that human dermal stem/progenitor cells (hDSPCs) with multipotent properties exist within the dermis of adult human skin. However, these cells have not been well characterized, because methods for their isolation or enrichment have not yet been optimized. In the present study, we enriched high side scatter (SSC(high))-hDSPCs from normal human dermal fibroblasts using a structural characteristic, intracellular granularity, as a sorting parameter. The SSC(high)-hDSPCs had high in vitro proliferation properties and expressed high levels of SOX2 and S100B, similar to previously identified mouse SOX2+ hair follicle dermal stem cells. The SSC(high)-hDSPCs could differentiate into not only mesodermal cell types, for example, adipocytes, chondrocytes, and osteoblasts, but also neuroectodermal cell types, such as neural cells. In addition, the SSC(high)-hDSPCs exhibited no significant differences in the expression of nestin, vimentin, SNAI2, TWIST1, versican, and CORIN compared with non-hDSPCs. These cells are therefore different from the previously identified multipotent fibroblasts and skin-derived progenitors. In this study, we suggest that hDSPCs can be enriched by using characteristic of their high intracellular granularity, and these SSC(high)-hDSPCs exhibit high in vitro proliferation and differentiation potentials.
Collapse
Affiliation(s)
- Joong Hyun Shim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | | | | |
Collapse
|
331
|
Emerging strategies for spatiotemporal control of stem cell fate and morphogenesis. Trends Biotechnol 2012; 31:78-84. [PMID: 23219200 DOI: 10.1016/j.tibtech.2012.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 01/20/2023]
Abstract
Stem cell differentiation is regulated by the complex interplay of multiple parameters, including adhesive intercellular interactions, cytoskeletal and extracellular matrix remodeling, and gradients of agonists and antagonists that individually and collectively vary as a function of spatial locale and temporal stages of development. Current approaches to direct stem cell differentiation focus on systematically understanding the relative influences of microenvironmental perturbations and simultaneously engineering platforms aimed at recapitulating physicochemical aspects of tissue morphogenesis. This review focuses on novel approaches to control the spatiotemporal dynamics of stem cell signaling and morphogenic remodeling to direct the differentiation of stem cells and develop functional tissues for in vitro screening and regenerative medicine technologies.
Collapse
|
332
|
Abstract
Multipotent mesenchymal stromal cells (MSCs) have generated considerable interest in the fields of regenerative medicine, cell therapy and immune modulation. Over the past 5 years, the initial observations that MSCs could enhance regeneration and modulate immune responses have been significantly advanced and we now have a clearer picture of the effects that MSCs have on the immune system particularly in the context of inflammatory-mediated disorders. A number of mechanisms of action have been reported in MSC immunomodulation, which encompass the secretion of soluble factors, induction of anergy, apoptosis, regulatory T cells and tolerogenic dendritic cells. It is clear that MSCs modulate both innate and adaptive responses and evidence is now emerging that the local microenvironment is key in the activation or licensing of MSCs to become immunosuppressive. More recently, studies have suggested that MSCs have the capacity to sense their environment and have a role in pathogen clearance in conjunction with the resolution of insult or injury. This review focuses on the mechanisms of MSC immunomodulation discussing the multistep process of MSC localisation at sites of inflammation, the cross talk between MSCs and the local microenvironment as well as the subsequent mechanisms of action used to resolve inflammation.
Collapse
|