301
|
Abstract
What I'd like to do in this chapter is to share with you my recollections from the earliest days of coronin research and then to provide an overview of the still-developing story of this fascinating family of proteins.
Collapse
|
302
|
Yu MY, Ho MK, Liu AM, Wong YH. Mutations on the Switch III region and the alpha3 helix of Galpha16 differentially affect receptor coupling and regulation of downstream effectors. J Mol Signal 2008; 3:17. [PMID: 19025606 PMCID: PMC2613389 DOI: 10.1186/1750-2187-3-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 11/22/2008] [Indexed: 12/18/2022] Open
Abstract
Background Gα16 can activate phospholipase Cβ (PLCβ) directly like Gαq. It also couples to tetratricopeptide repeat 1 (TPR1) which is linked to Ras activation. It is unknown whether PLCβ and TPR1 interact with the same regions on Gα16. Previous studies on Gαq have defined two minimal clusters of amino acids that are essential for the coupling to PLCβ. Cognate residues in Gα16 might also be essential for interacting with PLCβ, and possibly contribute to TPR1 interaction and other signaling events. Results Alanine mutations were introduced to the two amino acid clusters (246–248 and 259–260) in the switch III region and α3 helix of Gα16. Regulations of PLCβ and STAT3 were partially weakened by each cluster mutant. A mutant harboring mutations at both clusters generally produced stronger suppressions. Activation of Jun N-terminal kinase (JNK) by Gα16 was completely abolished by mutating either clusters. Contrastingly, phosphorylations of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) were not significantly affected by these mutations. The interactions between the mutants and PLCβ2 and TPR1 were also reduced in co-immunoprecipitation assays. Coupling between G16 and different categories of receptors was impaired by the mutations, with the effect of switch III mutations being more pronounced than those in the α3 helix. Mutations of both clusters almost completely abolished the receptor coupling and prevent receptor-induced Gβγ release. Conclusion The integrity of the switch III region and α3 helix of Gα16 is critical for the activation of PLCβ, STAT3, and JNK but not ERK or NF-κB. Binding of Gα16 to PLCβ2 or TPR1 was reduced by the mutations of either cluster. The same region could also differentially affect the effectiveness of receptor coupling to G16. The studied region was shown to bear multiple functionally important roles of G16.
Collapse
Affiliation(s)
- May Ym Yu
- Department of Biochemistry, Molecular Neuroscience Center and Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | | | | | | |
Collapse
|
303
|
Willard FS, Zheng Z, Guo J, Digby GJ, Kimple AJ, Conley JM, Johnston CA, Bosch D, Willard MD, Watts VJ, Lambert NA, Ikeda SR, Du Q, Siderovski DP. A point mutation to Galphai selectively blocks GoLoco motif binding: direct evidence for Galpha.GoLoco complexes in mitotic spindle dynamics. J Biol Chem 2008; 283:36698-710. [PMID: 18984596 DOI: 10.1074/jbc.m804936200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterotrimeric G-protein Galpha subunits and GoLoco motif proteins are key members of a conserved set of regulatory proteins that influence invertebrate asymmetric cell division and vertebrate neuroepithelium and epithelial progenitor differentiation. GoLoco motif proteins bind selectively to the inhibitory subclass (Galphai) of Galpha subunits, and thus it is assumed that a Galphai.GoLoco motif protein complex plays a direct functional role in microtubule dynamics underlying spindle orientation and metaphase chromosomal segregation during cell division. To address this hypothesis directly, we rationally identified a point mutation to Galphai subunits that renders a selective loss-of-function for GoLoco motif binding, namely an asparagine-to-isoleucine substitution in the alphaD-alphaE loop of the Galpha helical domain. This GoLoco-insensitivity ("GLi") mutation prevented Galphai1 association with all human GoLoco motif proteins and abrogated interaction between the Caenorhabditis elegans Galpha subunit GOA-1 and the GPR-1 GoLoco motif. In contrast, the GLi mutation did not perturb any other biochemical or signaling properties of Galphai subunits, including nucleotide binding, intrinsic and RGS protein-accelerated GTP hydrolysis, and interactions with Gbetagamma dimers, adenylyl cyclase, and seven transmembrane-domain receptors. GoLoco insensitivity rendered Galphai subunits unable to recruit GoLoco motif proteins such as GPSM2/LGN and GPSM3 to the plasma membrane, and abrogated the exaggerated mitotic spindle rocking normally seen upon ectopic expression of wild type Galphai subunits in kidney epithelial cells. This GLi mutation should prove valuable in establishing the physiological roles of Galphai.GoLoco motif protein complexes in microtubule dynamics and spindle function during cell division as well as to delineate potential roles for GoLoco motifs in receptor-mediated signal transduction.
Collapse
Affiliation(s)
- Francis S Willard
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Edwards RA, Lee MS, Tsutakawa SE, Williams RS, Tainer JA, Glover JNM. The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50. Biochemistry 2008; 47:11446-56. [PMID: 18842000 PMCID: PMC2654182 DOI: 10.1021/bi801115g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/20/2008] [Indexed: 12/19/2022]
Abstract
The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF-50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins. Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.
Collapse
Affiliation(s)
| | | | | | | | | | - J. N. Mark Glover
- Address correspondence to this author. Tel: (780) 492-2136. Fax: (780) 492-0886. E-mail:
| |
Collapse
|
305
|
Xu Y, Chen Y, Zhang P, Jeffrey PD, Shi Y. Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell 2008; 31:873-85. [PMID: 18922469 DOI: 10.1016/j.molcel.2008.08.006] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/14/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
Protein phosphatase 2A (PP2A) regulates many essential aspects of cellular physiology. Members of the regulatory B/B55/PR55 family are thought to play a key role in the dephosphorylation of Tau, whose hyperphosphorylation contributes to Alzheimer's disease. The underlying mechanisms of the PP2A-Tau connection remain largely enigmatic. Here, we report the complete reconstitution of a Tau dephosphorylation assay and the crystal structure of a heterotrimeric PP2A holoenzyme involving the regulatory subunit Balpha. We show that Balpha specifically and markedly facilitates dephosphorylation of the phosphorylated Tau in our reconstituted assay. The Balpha subunit comprises a seven-bladed beta propeller, with an acidic, substrate-binding groove located in the center of the propeller. The beta propeller latches onto the ridge of the PP2A scaffold subunit with the help of a protruding beta hairpin arm. Structure-guided mutagenesis studies revealed the underpinnings of PP2A-mediated dephosphorylation of Tau.
Collapse
Affiliation(s)
- Yanhui Xu
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
306
|
Phylogenetic, structural and functional relationships between WD- and Kelch-repeat proteins. Subcell Biochem 2008; 48:6-19. [PMID: 18925367 DOI: 10.1007/978-0-387-09595-0_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The beta-propeller domain is a widespread protein organizational motif. Typically, beta-propeller proteins are encoded by repeated sequences where each repeat unit corresponds to a twisted beta-sheet structural motif; these beta-sheets are arranged in a circle around a central axis to generate the beta-propeller structure. Two superfamilies of beta-propeller proteins, the WD-repeat and Kelch-repeat families, exhibit similarities not only in structure, but, remarkably, also in the types of molecular functions they perform. While it is unlikely that WD and Kelch repeats evolved from a common ancestor, their evolution into diverse families of similar function may reflect the evolutionary advantages of the stable core beta-propeller fold. In this chapter, we examine the relationships between these two widespread protein families, emphasizing recently published work relating to the structure and function of both Kelch and WD-repeat proteins.
Collapse
|
307
|
Abstract
The WD-repeat-containing proteins form a very large family that is diverse in both its function and domain structure. Within all these proteins the WD-repeat domains are thought to have two common features: the domain folds into a beta propeller; and the domains form a platform without any catalytic activity on which multiple protein complexes assemble reversibly. The fact that these proteins play such key roles in the formation of protein-protein complexes in nearly all the major pathways and organelles unique to eukaryotic cells has two important implications. It supports both their ancient and proto eukaryotic origins and supports a likely association with many genetic diseases.
Collapse
Affiliation(s)
- Temple F Smith
- BioMolecular Engineering Research Center, College of Engineering, Boston University, 36 Cummington Street, Boston, MA 02215, USA.
| |
Collapse
|
308
|
Kosloff M, Alexov E, Arshavsky VY, Honig B. Electrostatic and lipid anchor contributions to the interaction of transducin with membranes: mechanistic implications for activation and translocation. J Biol Chem 2008; 283:31197-207. [PMID: 18782760 PMCID: PMC2576562 DOI: 10.1074/jbc.m803799200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterotrimeric G protein transducin is a key component of the
vertebrate phototransduction cascade. Transducin is peripherally attached to
membranes of the rod outer segment, where it interacts with other proteins at
the membrane-cytosol interface. However, upon sustained activation by light,
the dissociated Gtα and
Gβ1γ1 subunits of transducin translocate from
the outer segment to other parts of the rod cell. Here we used a computational
approach to analyze the interaction strength of transducin and its subunits
with acidic lipid bilayers, as well as the range of orientations that they are
allowed to occupy on the membrane surface. Our results suggest that the
combined constraints of electrostatics and lipid anchors substantially limit
the rotational degrees of freedom of the membrane-bound transducin
heterotrimer. This may contribute to a faster transducin activation rate by
accelerating transducin-rhodopsin complex formation. Notably, the membrane
interactions of the dissociated transducin subunits are very different from
those of the heterotrimer. As shown previously,
Gβ1γ1 experiences significant attractive
interactions with negatively charged membranes, whereas our new results
suggest that Gtα is electrostatically repelled by such
membranes. We suggest that this repulsion could facilitate the membrane
dissociation and intracellular translocation of Gtα.
Moreover, based on similarities in sequence and electrostatic properties, we
propose that the properties described for transducin are common to its
homologs within the Gi subfamily. In a broader view, this work
exemplifies how the activity-dependent association and dissociation of a G
protein can change both the affinity for membranes and the range of allowed
orientations, thereby modulating G protein function.
Collapse
Affiliation(s)
- Mickey Kosloff
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
309
|
Preininger AM, Parello J, Meier SM, Liao G, Hamm HE. Receptor-mediated changes at the myristoylated amino terminus of Galpha(il) proteins. Biochemistry 2008; 47:10281-93. [PMID: 18771287 DOI: 10.1021/bi800741r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCRs) catalyze nucleotide release in heterotrimeric G proteins, the slow step in G protein activation. G i/o family proteins are permanently, cotranslationally myristoylated at the extreme amino terminus. While myristoylation of the amino terminus has long been known to aid in anchoring G i proteins to the membrane, the role of myristoylation with regard to interaction with activated receptors is not known. Previous studies have characterized activation-dependent changes in the amino terminus of Galpha proteins in solution [Medkova, M. (2002) Biochemistry 41, 9963-9972; Preininger, A. M. (2003) Biochemistry 42, 7931-7941], but changes in the environment of specific residues within the Galpha i1 amino terminus during receptor-mediated G i activation have not been reported. Using site-specific fluorescence labeling of individual residues along a stretch of the Galpha il amino terminus, we found specific changes in the environment of these residues upon interaction with the activated receptor and following GTPgammaS binding. These changes map to a distinct surface of the amino-terminal helix opposite the Gbetagamma binding interface. The receptor-dependent fluorescence changes are consistent with a myristoylated amino terminus in the proximity of the membrane and/or receptor. Myristoylation affects both the rate and intensity of receptor activation-dependent changes detected at several residues along the amino terminus (with no significant effect on the rate of receptor-mediated GTPgammaS binding). This work demonstrates that the myristoylated amino terminus of Galpha il proteins undergoes receptor-mediated changes during the dynamic process of G protein signaling.
Collapse
Affiliation(s)
- Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | |
Collapse
|
310
|
Iwanami N, Higuchi T, Sasano Y, Fujiwara T, Hoa VQ, Okada M, Talukder SR, Kunimatsu S, Li J, Saito F, Bhattacharya C, Matin A, Sasaki T, Shimizu N, Mitani H, Himmelbauer H, Momoi A, Kondoh H, Furutani-Seiki M, Takahama Y. WDR55 is a nucleolar modulator of ribosomal RNA synthesis, cell cycle progression, and teleost organ development. PLoS Genet 2008; 4:e1000171. [PMID: 18769712 PMCID: PMC2515640 DOI: 10.1371/journal.pgen.1000171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 07/17/2008] [Indexed: 01/07/2023] Open
Abstract
The thymus is a vertebrate-specific organ where T lymphocytes are generated. Genetic programs that lead to thymus development are incompletely understood. We previously screened ethylnitrosourea-induced medaka mutants for recessive defects in thymus development. Here we report that one of those mutants is caused by a missense mutation in a gene encoding the previously uncharacterized protein WDR55 carrying the tryptophan-aspartate-repeat motif. We find that WDR55 is a novel nucleolar protein involved in the production of ribosomal RNA (rRNA). Defects in WDR55 cause aberrant accumulation of rRNA intermediates and cell cycle arrest. A mutation in WDR55 in zebrafish also leads to analogous defects in thymus development, whereas WDR55-null mice are lethal before implantation. These results indicate that WDR55 is a nuclear modulator of rRNA synthesis, cell cycle progression, and embryonic organogenesis including teleost thymus development.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Tomokazu Higuchi
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Yumi Sasano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Toshinobu Fujiwara
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Vu Q. Hoa
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Minoru Okada
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Sadiqur R. Talukder
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Sanae Kunimatsu
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Jie Li
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Fumi Saito
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Chitralekha Bhattacharya
- Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Angabin Matin
- Department of Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Takashi Sasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
- GSP Center, The Leading Institute of Keio University, Tsukuba, Japan
| | - Nobuyoshi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
- GSP Center, The Leading Institute of Keio University, Tsukuba, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | | | - Akihiro Momoi
- Developmental Mutants Group, Kondoh Differentiation Signaling Project, Japan Science and Technology Agency, Kyoto, Japan
| | - Hisato Kondoh
- Developmental Mutants Group, Kondoh Differentiation Signaling Project, Japan Science and Technology Agency, Kyoto, Japan
| | - Makoto Furutani-Seiki
- Developmental Mutants Group, Kondoh Differentiation Signaling Project, Japan Science and Technology Agency, Kyoto, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| |
Collapse
|
311
|
Ullah H, Scappini EL, Moon AF, Williams LV, Armstrong DL, Pedersen LC. Structure of a signal transduction regulator, RACK1, from Arabidopsis thaliana. Protein Sci 2008; 17:1771-80. [PMID: 18715992 DOI: 10.1110/ps.035121.108] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The receptor for activated C-kinase 1 (RACK1) is a highly conserved WD40 repeat scaffold protein found in a wide range of eukaryotic species from Chlamydymonas to plants and humans. In tissues of higher mammals, RACK1 is ubiquitously expressed and has been implicated in diverse signaling pathways involving neuropathology, cellular stress, protein translation, and developmental processes. RACK1 has established itself as a scaffold protein through physical interaction with a myriad of signaling proteins ranging from kinases, phosphatases, ion channels, membrane receptors, G proteins, IP3 receptor, and with widely conserved structural proteins associated with the ribosome. In the plant Arabidopsis thaliana, RACK1A is implicated in diverse developmental and environmental stress pathways. Despite the functional conservation of RACK1-mediated protein-protein interaction-regulated signaling modes, the structural basis of such interactions is largely unknown. Here we present the first crystal structure of a RACK1 protein, RACK1 isoform A from Arabidopsis thaliana, at 2.4 A resolution, as a C-terminal fusion of the maltose binding protein. The structure implicates highly conserved surface residues that could play critical roles in protein-protein interactions and reveals the surface location of proposed post-transcriptionally modified residues. The availability of this structure provides a structural basis for dissecting RACK1-mediated cellular signaling mechanisms in both plants and animals.
Collapse
Affiliation(s)
- Hemayet Ullah
- Department of Biology, Howard University, Washington, DC 20059, USA
| | | | | | | | | | | |
Collapse
|
312
|
Katadae M, Hagiwara K, Wada A, Ito M, Umeda M, Casey PJ, Fukada Y. Interacting targets of the farnesyl of transducin gamma-subunit. Biochemistry 2008; 47:8424-33. [PMID: 18636747 PMCID: PMC2646881 DOI: 10.1021/bi800359h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G protein gamma-subunits are isoprenylated and carboxyl methylated at the C-terminal cysteine residue, and the set of the posttranslational modifications is indispensable for the function of the photoreceptor G protein transducin (Talpha/Tbetagamma). To explore farnesyl-mediated molecular interactions, we investigated molecular targets of a Tbetagamma analogue that was engineered to have a photoreactive farnesyl analogue, (3-azidophenoxy)geranyl (POG), covalently bound to the C-terminal cysteine of Tgamma. POG-modified Tbetagamma was further subjected to modification by methylation at the C-terminal carboxyl group, which copies a complete set of the known posttranscriptional modifications of Tbetagamma. Photoaffinity labeling experiment with the photoreactive Tbetagamma analogue in its free form indicated that the POG moiety of Tgamma interacted with Tbeta. In the trimeric Talpha/Tbetagamma complex, the POG moiety was cross-linked with Talpha in addition to concurrent affinity labeling of Tbeta. When photoreactive Tbetagamma was reconstituted with Talpha and light-activated rhodopsin (Rh*) in rod outer segment (ROS) membranes, the POG moiety interacted with not only Talpha and Tbeta but also Rh* and membrane phospholipids. The cross-linked phospholipid species was analyzed by ELISA employing a variety of lipid-binding probes, which revealed phosphatidylethanolamine (PE) and phosphatidylserine (PS) as selective phospholipids for POG interaction in the ROS membranes. These results demonstrate that the modifying group of Tgamma plays an active role in protein-protein and protein-membrane interactions and suggest that the farnesyl-PE/PS interaction may support the efficient formation of the signaling ternary complex between transducin and Rh*.
Collapse
Affiliation(s)
- Maiko Katadae
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
313
|
Suganuma T, Pattenden SG, Workman JL. Diverse functions of WD40 repeat proteins in histone recognition. Genes Dev 2008; 22:1265-8. [PMID: 18483215 DOI: 10.1101/gad.1676208] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
WD40 repeat proteins have been shown to bind the histone H3 tail at the center of their beta-propeller structure. In contrast, in this issue of Genes & Development, Song and colleagues (pp. 1313-1318) demonstrate that the WD40 repeat protein p55 binds a structured region of H4 through a novel binding pocket on the side of beta-propeller, illustrating a diversity of histone recognition by WD40 repeat proteins.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
314
|
Buscarlet M, Perin A, Laing A, Brickman JM, Stifani S. Inhibition of cortical neuron differentiation by Groucho/TLE1 requires interaction with WRPW, but not Eh1, repressor peptides. J Biol Chem 2008; 283:24881-8. [PMID: 18611861 DOI: 10.1074/jbc.m800722200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In both invertebrates and vertebrates, transcriptional co-repressors of the Groucho/transducin-like Enhancer of split (Gro/TLE) family regulate a number of developmental mechanisms, including neuronal differentiation. The pleiotropic activity of Gro/TLE depends on context-specific interactions with a variety of DNA-binding proteins. Most of those factors engage Gro/TLE through two different types of short peptide motifs, the WRP(W/Y) tetrapeptide and the Engrailed homology 1 (Eh1) sequence (FXIXXIL). The aim of this study was to elucidate the contribution of WRP(W/Y) and Eh1 motifs to mammalian Gro/TLE anti-neurogenic activity. Here we describe point mutations within the C-terminal WD40 repeat domain of Gro/TLE1 that do not perturb protein folding but disrupt the ability of Gro/TLE1 to inhibit the differentiation of cerebral cortex neural progenitor cells into neurons. One of those mutations, L743F, selectively blocks binding to Hes1, an anti-neurogenic basic helix-loop-helix protein that harbors a WRPW motif. In contrast, the L743F mutation does not disrupt binding to Engrailed1 and FoxG1, which both contain Eh1 motifs, nor to Tcf3, which binds to the Gro/TLE N terminus. These results demonstrate that the recruitment of transcription factors harboring WRP(W/Y) tetrapeptides is essential to the anti-neurogenic function of Gro/TLE1.
Collapse
Affiliation(s)
- Manuel Buscarlet
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
315
|
N-terminal polybasic motifs are required for plasma membrane localization of Galpha(s) and Galpha(q). Cell Signal 2008; 20:1900-10. [PMID: 18647648 DOI: 10.1016/j.cellsig.2008.06.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/25/2008] [Accepted: 06/27/2008] [Indexed: 11/22/2022]
Abstract
Heterotrimeric G proteins typically localize at the cytoplasmic face of the plasma membrane where they interact with heptahelical receptors. For G protein alpha subunits, multiple membrane targeting signals, including myristoylation, palmitoylation, and interaction with betagamma subunits, facilitate membrane localization. Here we show that an additional membrane targeting signal, an N-terminal polybasic region, plays a key role in plasma membrane localization of non-myristoylated alpha subunits. Mutations of N-terminal basic residues in alpha(s) and alpha(q) caused defects in plasma membrane localization, as assessed through immunofluorescence microscopy and biochemical fractionations. In alpha(s), mutation of four basic residues to glutamine was sufficient to cause a defect, whereas in alpha(q) a defect in membrane localization was not observed unless nine basic residues were mutated to glutamine or if three basic residues were mutated to glutamic acid. betagamma co-expression only partially rescued the membrane localization defects; thus, the polybasic region is also important in the context of the heterotrimer. Introduction of a site for myristoylation into the polybasic mutants of alpha(s) and alpha(q) recovered strong plasma membrane localization, indicating that myristoylation and polybasic motifs may have complementary roles as membrane targeting signals. Loss of plasma membrane localization coincided with defects in palmitoylation. The polybasic mutants of alpha(s) and alpha(q) were still capable of assuming activated conformations and stimulating second messenger production, as demonstrated through GST-RGS4 interaction assays, cAMP assays, and inositol phosphate assays. Electrostatic interactions with membrane lipids have been found to be important in plasma membrane targeting of many proteins, and these results provide evidence that basic residues play a role in localization of G protein alpha subunits.
Collapse
|
316
|
Abstract
G protein betagamma subunits are central participants in G protein-coupled receptor signaling pathways. They interact with receptors, G protein alpha subunits and downstream targets to coordinate multiple, different GPCR functions. Much is known about the biology of Gbetagamma subunits but mysteries remain. Here, we will review what is known about general aspects of structure and function of Gbetagamma as well as discuss emerging mechanisms for regulation of Gbetagamma signaling. Recent data suggest that Gbetagamma is a potential therapeutic drug target. Thus, a thorough understanding of the molecular and physiological functions of Gbetagamma has significant implications.
Collapse
Affiliation(s)
- A V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| |
Collapse
|
317
|
Natochin M, Moussaif M, Artemyev NO. Probing the mechanism of rhodopsin-catalyzed transducin activation. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00221.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
318
|
Abstract
Heterotrimeric G proteins couple the activation of heptahelical receptors at the cell surface to the intracellular signaling cascades that mediate the physiological responses to extracellular stimuli. G proteins are molecular switches that are activated by receptor-catalyzed GTP for GDP exchange on the G protein alpha subunit, which is the rate-limiting step in the activation of all downstream signaling. Despite the important biological role of the receptor-G protein interaction, relatively little is known about the structure of the complex and how it leads to nucleotide exchange. This chapter will describe what is known about receptor and G protein structure and outline a strategy for assembling the current data into improved models for the receptor-G protein complex that will hopefully answer the question as to how receptors flip the G protein switch.
Collapse
Affiliation(s)
- William M Oldham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
319
|
Abstract
Heterotrimeric G proteins dissociate into their component Galpha and Gbetagamma subunits when these proteins are activated in solution. Until recently, it has not been known if subunit dissociation also occurs in cells. The development of optical methods to study G protein activation in live cells has made it possible to demonstrate heterotrimer dissociation at the plasma membrane. However, subunit dissociation is far from complete, and many active [guanosine triphosphate (GTP)-bound] heterotrimers are intact in a steady state. This unexpectedly reluctant dissociation calls for inclusion of a GTP-bound heterotrimeric state in models of the G protein cycle and places renewed emphasis on the relation between subunit dissociation and effector activation.
Collapse
Affiliation(s)
- Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2300, USA.
| |
Collapse
|
320
|
Thomas CJ, Tall GG, Adhikari A, Sprang SR. Ric-8A catalyzes guanine nucleotide exchange on G alphai1 bound to the GPR/GoLoco exchange inhibitor AGS3. J Biol Chem 2008; 283:23150-60. [PMID: 18541531 DOI: 10.1074/jbc.m802422200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubule pulling forces that govern mitotic spindle movement of chromosomes are tightly regulated by G-proteins. A host of proteins, including Galpha subunits, Ric-8, AGS3, regulators of G-protein signalings, and scaffolding proteins, coordinate this vital cellular process. Ric-8A, acting as a guanine nucleotide exchange factor, catalyzes the release of GDP from various Galpha.GDP subunits and forms a stable nucleotide-free Ric-8A:Galpha complex. AGS3, a guanine nucleotide dissociation inhibitor (GDI), binds and stabilizes Galpha subunits in their GDP-bound state. Because Ric-8A and AGS3 may recognize and compete for Galpha.GDP in this pathway, we probed the interactions of a truncated AGS3 (AGS3-C; containing only the residues responsible for GDI activity), with Ric-8A:Galpha(il) and that of Ric-8A with the AGS3-C:Galpha(il).GDP complex. Pulldown assays, gel filtration, isothermal titration calorimetry, and rapid mixing stopped-flow fluorescence spectroscopy indicate that Ric-8A catalyzes the rapid release of GDP from AGS3-C:Galpha(i1).GDP. Thus, Ric-8A forms a transient ternary complex with AGS3-C:Galpha(i1).GDP. Subsequent dissociation of AGS3-C and GDP from Galpha(i1) yields a stable nucleotide free Ric-8A.Galpha(i1) complex that, in the presence of GTP, dissociates to yield Ric-8A and Galpha(i1).GTP. AGS3-C does not induce dissociation of the Ric-8A.Galpha(i1) complex, even when present at very high concentrations. The action of Ric-8A on AGS3:Galpha(i1).GDP ensures unidirectional activation of Galpha subunits that cannot be reversed by AGS3.
Collapse
Affiliation(s)
- Celestine J Thomas
- Division of Biological Science, University of Montana, Missoula, Montana 59812, USA
| | | | | | | |
Collapse
|
321
|
Smrcka AV, Lehmann DM, Dessal AL. G protein betagamma subunits as targets for small molecule therapeutic development. Comb Chem High Throughput Screen 2008; 11:382-95. [PMID: 18537559 PMCID: PMC2688719 DOI: 10.2174/138620708784534761] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G proteins mediate the action of G protein coupled receptors (GPCRs), a major target of current pharmaceuticals and a major target of interest in future drug development. Most pharmaceutical interest has been in the development of selective GPCR agonists and antagonists that activate or inhibit specific GPCRs. Some recent thinking has focused on the idea that some pathologies are the result of the actions of an array of GPCRs suggesting that targeting single receptors may have limited efficacy. Thus, targeting pathways common to multiple GPCRs that control critical pathways involved in disease has potential therapeutic relevance. G protein betagamma subunits released from some GPCRs upon receptor activation regulate a variety of downstream pathways to control various aspects of mammalian physiology. There is evidence from cell- based and animal models that excess Gbetagamma signaling can be detrimental and blocking Gbetagamma signaling has salutary effects in a number of pathological models. Gbetagamma regulates downstream pathways through modulation of enzymes that produce cellular second messengers or through regulation of ion channels by direct protein-protein interactions. Thus, blocking Gbetagamma functions requires development of small molecule agents that disrupt Gbetagamma protein interactions with downstream partners. Here we discuss evidence that small molecule targeting Gbetagamma could be of therapeutic value. The concept of disruption of protein-protein interactions by targeting a "hot spot" on Gbetagamma is delineated and the biochemical and virtual screening strategies for identification of small molecules that selectively target Gbetagamma functions are outlined. Evaluation of the effectiveness of virtual screening indicates that computational screening enhanced identification of true Gbetagamma binding molecules. However, further refinement of the approach could significantly improve the yield of Gbetagamma binding molecules from this screen that could result in multiple candidate leads for future drug development.
Collapse
Affiliation(s)
- Alan V Smrcka
- Department of Pharmacology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
322
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
323
|
Abstract
Signalling by heterotrimeric G proteins is often isoform-specific, meaning certain effectors are regulated exclusively by one family of heterotrimers. For example, in excitable cells inwardly rectifying potassium (GIRK) channels are activated by G betagamma dimers derived specifically from G(i/o) heterotrimers. Since all active heterotrimers are thought to dissociate and release free G betagamma dimers, it is unclear why these channels respond primarily to dimers released by G(i/o) heterotrimers. We reconstituted GIRK channel activation in cells where we could quantify heterotrimer expression at the plasma membrane, GIRK channel activation, and heterotrimer dissociation. We find that G(oA) heterotrimers are more effective activators of GIRK channels than G(s) heterotrimers when comparable amounts of each are available. We also find that active G(oA) heterotrimers dissociate more readily than active G(s) heterotrimers. Differential dissociation may thus provide a simple explanation for G alpha-specific activation of GIRK channels and other G betagamma-sensitive effectors.
Collapse
Affiliation(s)
- Gregory J Digby
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30809, USA
| | | | | |
Collapse
|
324
|
Sayar K, Uğur Ö, Liu T, Hilser VJ, Onaran O. Exploring allosteric coupling in the alpha-subunit of heterotrimeric G proteins using evolutionary and ensemble-based approaches. BMC STRUCTURAL BIOLOGY 2008; 8:23. [PMID: 18454845 PMCID: PMC2422842 DOI: 10.1186/1472-6807-8-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 05/02/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND Allosteric coupling, which can be defined as propagation of a perturbation at one region of the protein molecule (such as ligand binding) to distant sites in the same molecule, constitutes the most general mechanism of regulation of protein function. However, unlike molecular details of ligand binding, structural elements involved in allosteric effects are difficult to diagnose. Here, we identified allosteric linkages in the alpha-subunits of heterotrimeric G proteins, which were evolved to transmit membrane receptor signals by allosteric mechanisms, by using two different approaches that utilize fundamentally different and independent information. RESULTS We analyzed: 1) correlated mutations in the family of G protein alpha-subunits, and 2) cooperativity of the native state ensemble of the Galphai1 or transducin. The combination of these approaches not only recovered already-known details such as the switch regions that change conformation upon nucleotide exchange, and those regions that are involved in receptor, effector or Gbetagamma interactions (indicating that the predictions of the analyses can be viewed with a measure of confidence), but also predicted new sites that are potentially involved in allosteric communication in the Galpha protein. A summary of the new sites found in the present analysis, which were not apparent in crystallographic data, is given along with known functional and structural information. Implications of the results are discussed. CONCLUSION A set of residues and/or structural elements that are potentially involved in allosteric communication in Galpha is presented. This information can be used as a guide to structural, spectroscopic, mutational, and theoretical studies on the allosteric network in Galpha proteins, which will provide a better understanding of G protein-mediated signal transduction.
Collapse
Affiliation(s)
- Kemal Sayar
- Ankara University Faculty of Medicine, Department of Pharmacology and Clinical Pharmacology, Sıhhiye 06100, Ankara, Turkey
- Ankara University Faculty of Medicine, and Molecular Biology and Technology Research and Development Unit, Sıhhiye 06100, Ankara, Turkey
| | - Özlem Uğur
- Ankara University Faculty of Medicine, Department of Pharmacology and Clinical Pharmacology, Sıhhiye 06100, Ankara, Turkey
| | - Tong Liu
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555-1068 USA
| | - Vincent J Hilser
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555-1068 USA
| | - Ongun Onaran
- Ankara University Faculty of Medicine, Department of Pharmacology and Clinical Pharmacology, Sıhhiye 06100, Ankara, Turkey
- Ankara University Faculty of Medicine, and Molecular Biology and Technology Research and Development Unit, Sıhhiye 06100, Ankara, Turkey
| |
Collapse
|
325
|
WDR1 presence in the songbird basilar papilla. Hear Res 2008; 240:102-11. [PMID: 18514449 DOI: 10.1016/j.heares.2008.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/26/2008] [Accepted: 03/21/2008] [Indexed: 11/16/2022]
Abstract
WD40 repeat 1 protein (WDR1) was first reported in the acoustically injured chicken inner ear, and bioinformatics revealed that WDR1 has numerous WD40 repeats, important for protein-protein interactions. It has significant homology to actin interacting protein 1 (Aip1) in several lower species such as yeast, roundworm, fruitfly and frog. Several studies have shown that Aip1 binds cofilin/actin depolymerizing factor, and that these interactions are pivotal for actin disassembly via actin filament severing and actin monomer capping. However, the role of WDR1 in auditory function has yet to be determined. WDR1 is typically restricted to hair cells of the normal avian basilar papilla, but is redistributed towards supporting cells after acoustic overstimulation, suggesting that WDR1 may be involved in inner ear response to noise stress. One aim of the present study was to resolve the question as to whether stress factors, other than intense sound, could induce changes in WDR1 presence in the affected avian inner ear. Several techniques were used to assess WDR1 presence in the inner ears of songbird strains, including Belgian Waterslager (BW) canary, an avian strain with degenerative hearing loss thought to have a genetic basis. Reverse transcription, followed by polymerase chain reactions with WDR1-specific primers, confirmed WDR1 presence in the basilar papillae of adult BW, non-BW canaries, and zebra finches. Confocal microscopy examinations, following immunocytochemistry with anti-WDR1 antibody, localized WDR1 to the hair cell cytoplasm along the avian sensory epithelium. In addition, little, if any, staining by anti-WDR1 antibody was observed among supporting cells in the chicken or songbird ear. The present observations confirm and extend the early findings of WDR1 localization in hair cells, but not in supporting cells, in the normal avian basilar papilla. However, unlike supporting cells in the acoustically damaged chicken basilar papilla, the inner ear of the BW canary showed little, if any, WDR1 up-regulation in supporting cells. This may be due to the fact that the BW canary already has established hearing loss and/or to the possibility that the mechanism(s) involved in BW hearing loss may not be related to WDR1.
Collapse
|
326
|
Gupta V, Alonso JL, Sugimori T, Essafi M, Issafi M, Xiong JP, Arnaout MA. Role of the beta-subunit arginine/lysine finger in integrin heterodimer formation and function. THE JOURNAL OF IMMUNOLOGY 2008; 180:1713-8. [PMID: 18209068 DOI: 10.4049/jimmunol.180.3.1713] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Formation of the integrin alphabeta heterodimer is essential for cell surface expression and function. At the core of the alphabeta interface is a conserved Arg/Lys "finger" from the beta-subunit that inserts into a cup-like "cage" formed of two layers of aromatic residues in the alpha-subunit. We evaluated the role of this residue in heterodimer formation in an alphaA-lacking and an alphaA-containing integrin alphaVbeta3 and alphaMbeta2 (CD11b/CD18), respectively. Arg261 of beta3 was mutated to Ala or Glu; the corresponding Lys252 of beta2 was mutated to Ala, Arg, Glu, Asp, or Phe; and the effects on heterodimer formation in each integrin examined by ELISA and immunoprecipitation in HEK 293 cells cotransfected with plasmids encoding the alpha- and beta-subunits. The Arg261Glu (but not Arg261Ala) substitution significantly impaired cell surface expression and heterodimer formation of alphaVbeta3. Although Lys252Arg, and to a lesser extent Lys252Ala, were well tolerated, each of the remaining substitutions markedly reduced cell surface expression and heterodimer formation of CD11b/CD18. Lys252Arg and Lys252Ala integrin heterodimers displayed a significant increase in binding to the physiologic ligand iC3b. These data demonstrate an important role of the Arg/Lys finger in formation of a stable integrin heterodimer, and suggest that subtle changes at this residue affect the activation state of the integrin.
Collapse
Affiliation(s)
- Vineet Gupta
- Division of Nephrology, Leukocyte Biology and Inflammation Program, Structural Biology Program, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
327
|
Layden BT, Saengsawang W, Donati RJ, Yang S, Mulhearn DC, Johnson ME, Rasenick MM. Structural model of a complex between the heterotrimeric G protein, Gsalpha, and tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:964-73. [PMID: 18373982 DOI: 10.1016/j.bbamcr.2008.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/17/2022]
Abstract
A number of studies have demonstrated interplay between the cytoskeleton and G protein signaling. Many of these studies have determined a specific interaction between tubulin, the building block of microtubules, and G proteins. The alpha subunits of some heterotrimeric G proteins, including Gsalpha, have been shown to interact strongly with tubulin. Binding of Galpha to tubulin results in increased dynamicity of microtubules due to activation of GTPase of tubulin. Tubulin also activates Gsalpha via a direct transfer of GTP between these molecules. Structural insight into the interaction between tubulin and Gsalpha was required, and was determined, in this report, through biochemical and molecular docking techniques. Solid phase peptide arrays suggested that a portion of the amino terminus, alpha2-beta4 (the region between switch II and switch III) and alpha3-beta5 (just distal to the switch III region) domains of Gsalpha are important for interaction with tubulin. Molecular docking studies revealed the best-fit models based on the biochemical data, showing an interface between the two molecules that includes the adenylyl cyclase/Gbetagamma interaction regions of Gsalpha and the exchangeable nucleotide-binding site of tubulin. These structural models explain the ability of tubulin to facilitate GTP exchange on Galpha and the ability of Galpha to activate tubulin GTPase.
Collapse
Affiliation(s)
- Brian T Layden
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
328
|
Rakotobe D, Violot S, Hong SS, Gouet P, Boulanger P. Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed beta-propeller domain of the HIV-1 cellular interactor EED. Virol J 2008; 5:32. [PMID: 18302803 PMCID: PMC2292171 DOI: 10.1186/1743-422x-5-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 02/27/2008] [Indexed: 11/29/2022] Open
Abstract
Background The human EED protein, a member of the superfamily of Polycomb group proteins, is involved in multiple cellular protein complexes. Its C-terminal domain, which is common to the four EED isoforms, contains seven repeats of a canonical WD-40 motif. EED is an interactor of three HIV-1 proteins, matrix (MA), integrase (IN) and Nef. An antiviral activity has been found to be associated with isoforms EED3 and EED4 at the late stage of HIV-1 replication, due to a negative effect on virus assembly and genomic RNA packaging. The aim of the present study was to determine the regions of the EED C-terminal core domain which were accessible and available to protein interactions, using three-dimensional (3D) protein homology modelling with a WD-40 protein of known structure, and epitope mapping of anti-EED antibodies. Results Our data suggested that the C-terminal domain of EED was folded as a seven-bladed β-propeller protein. During the completion of our work, crystallographic data of EED became available from co-crystals of the EED C-terminal core with the N-terminal domain of its cellular partner EZH2. Our 3D-model was in good congruence with the refined structural model determined from crystallographic data, except for a unique α-helix in the fourth β-blade. More importantly, the position of flexible loops and accessible β-strands on the β-propeller was consistent with our mapping of immunogenic epitopes and sites of interaction with HIV-1 MA and IN. Certain immunoreactive regions were found to overlap with the EZH2, MA and IN binding sites, confirming their accessibility and reactivity at the surface of EED. Crystal structure of EED showed that the two discrete regions of interaction with MA and IN did not overlap with each other, nor with the EZH2 binding pocket, but were contiguous, and formed a continuous binding groove running along the lateral face of the β-propeller. Conclusion Identification of antibody-, MA-, IN- and EZH2-binding sites at the surface of the EED isoform 3 provided a global picture of the immunogenic and protein-protein interacting regions in the EED C-terminal domain, organized as a seven-bladed β-propeller protein. Mapping of the HIV-1 MA and IN binding sites on the 3D-model of EED core predicted that EED-bound MA and IN ligands would be in close vicinity at the surface of the β-propeller, and that the occurrence of a ternary complex MA-EED-IN would be possible.
Collapse
Affiliation(s)
- Dina Rakotobe
- Laboratoire de Virologie & Pathologie Humaine, Université Lyon I & CNRS FRE-3011, Faculté de Médecine Laennec, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
329
|
The same mutation in Gsalpha and transducin alpha reveals behavioral differences between these highly homologous G protein alpha-subunits. Proc Natl Acad Sci U S A 2008; 105:2363-8. [PMID: 18258741 DOI: 10.1073/pnas.0712261105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutating Arg-238 to Glu (R238E) in the switch 3 region of a transducin alpha (*Talpha) in which 27 aa of the GTPase domain have been replaced with those of the alpha-subunit of the inhibitory G protein 1 (Gi1alpha), was reported to create an alpha-subunit that is resistant to activation by GTPgammaS, is devoid of resident nucleotide, and has dominant negative (DN) properties. In an attempt to create a DN stimultory G protein alpha (Gsalpha) with a single mutation we created Gsalpha-R265E, equivalent to *Talpha-R238E. Gsalpha-R265E has facilitated activation by GTPgammaS, a slightly facilitated activation by GTP but much reduced receptor plus GTP stimulated activation, and an apparently unaltered ability to interact with receptor as seen in ligand binding studies. Further, the activity profile of Gsalpha-R265E is that of an alpha-subunit with unaltered or increased GTPase activity. The only change in Gsalpha that is similar to that in *Talpha is that the apparent affinity for guanine nucleotides is decreased in both proteins. The molecular basis of the changed properties are discussed based on the known crystal structure of Gsalpha and the changes introduced by the same mutation in a *Talpha (Gtalpha*) with only 23 aa from Gi1alpha. Gtalpha*-R238E, with four fewer mutations in switch 3, was reported to show no evidence of DN properties, is activated by GTPgammaS, and has reduced GTPase activity. The data highlight a critical role for the switch 3 region in setting overall properties of signal-transducing GTPases.
Collapse
|
330
|
Zhang HG, Li XH, Zhou JZ, Liu Y, Jia Y, Yuan ZB. G(alphaq)-protein carboxyl terminus imitation polypeptide GCIP-27 attenuates cardiac hypertrophy in vitro and in vivo. Clin Exp Pharmacol Physiol 2008; 34:1276-81. [PMID: 17973867 DOI: 10.1111/j.1440-1681.2007.04716.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Various G(q)-protein-coupled receptors, such as alpha(1)-adrenoceptors, angiotension AT(1) receptors, endothelin ET(A) receptors, neuropeptide Y(1) receptors etc., contribute to cardiac hypertrophy. In G-protein signalling pathways, the carboxyl terminus of the G(alpha) subunit plays a vital role within G-protein-receptor interaction. The present study was designed to explore the effects of the synthetic G(alphaq) carboxyl terminal imitation peptide GCIP-27 on cardiac hypertrophy. 2. Hypertrophy of rat cultured cardiomyocytes was induced by noradrenaline (NA) or angiotensin (Ang) II in vitro. Protein content, [(3)H] incorporation and [Ca(2+)](i) were determined in cardiomyocytes cultured with GCIP-27. Three in vivo animal models of cardiac hypertrophy were prepared using intraperitoneal injections of NA in mice and rats and suprarenal abdominal aortic stenosis in rats. After treatment with GCIP-27 (10-100 microg/L) for 15 or 20 days, indices of cardiac hypertrophy were measured. The effect of GCIP-27 on the mRNA expression of c-fos and c-jun was detected using reverse transcription-polymerase chain reaction. 3. At 10-100 microg/L, GCIP-27 significantly decreased protein content and [(3)H]-leucine incorporation in cultured cardiomyocytes compared with 1 micromol/L NA- and 1 micromol/L AngII-treated groups. After treatment with GCIP-27 (10, 30 or 100 microg/kg) for 15 days, the heart index (HI) and left ventricular index (LVI) in mice decreased significantly compared with the NA control group. In rats, GCIP-27 significantly reduced HI and LVI compared with the NA and aortic stenosis groups. Moreover, [Ca(2+)](i) in cardiomyocytes in the GCIP-27 (3, 10, 30 microg/L)-treated groups was lower than that in the control groups. Expression of c-fos and c-jun mRNA decreased significantly in the myocardium from 5-45 microg/L GCIP-27-treated rats compared with NA controls. 4. The results indicate that GCIP-27 can attenuate cardiac hypertrophy effectively in various models in vitro and in vivo.
Collapse
Affiliation(s)
- Hai-Gang Zhang
- Institute of Materia Medica, Faculty of Basic Medicine, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
331
|
Neuwald AF. Galpha Gbetagamma dissociation may be due to retraction of a buried lysine and disruption of an aromatic cluster by a GTP-sensing Arg Trp pair. Protein Sci 2008; 16:2570-7. [PMID: 17962409 DOI: 10.1110/ps.073098107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The heterotrimeric G protein alpha subunit (Galpha) functions as a molecular switch by cycling between inactive GDP-bound and active GTP-bound states. When bound to GDP, Galpha interacts with high affinity to a complex of the beta and gamma subunits (Gbetagamma), but when bound to GTP, Galpha dissociates from this complex to activate downstream signaling pathways. Galpha's state is communicated to other cellular components via conformational changes within its switch I and II regions. To identify key determinants of Galpha's function as a signaling pathway molecular switch, a Bayesian approach was used to infer the selective constraints that most distinguish Galpha and closely related Arf family GTPases from distantly related translational and metabolic GTPases. The strongest of these constraints are imposed on seven residues within or near the switch II region. Likewise, constraints imposed on Galpha but not on other, closely related molecular switches correspond to four nearby residues. These constraints are explained by a proposed mechanism for GTP-induced dissociation of Galpha from Gbetagamma where an Arg-Trp pair senses the presence of bound GTP leading to conformational retraction of a nearby lysine and to disruption of an aromatic cluster. Within a complex of Gialpha, Gibetagamma, and GDP, this lysine establishes greater surface contact with Gibeta than does any other residue in Gialpha, whereas the aromatic cluster packs against a highly conserved tryptophan in Gibeta that establishes greater surface contact with Gialpha than does any other residue in Gibeta. Other structural features associated with Galpha functional divergence further support the proposed mechanism.
Collapse
|
332
|
Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 2008; 9:60-71. [PMID: 18043707 DOI: 10.1038/nrm2299] [Citation(s) in RCA: 833] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heterotrimeric G proteins have a crucial role as molecular switches in signal transduction pathways mediated by G-protein-coupled receptors. Extracellular stimuli activate these receptors, which then catalyse GTP-GDP exchange on the G protein alpha-subunit. The complex series of interactions and conformational changes that connect agonist binding to G protein activation raise various interesting questions about the structure, biomechanics, kinetics and specificity of signal transduction across the plasma membrane.
Collapse
|
333
|
Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J. Structural basis of EZH2 recognition by EED. Structure 2007; 15:1306-15. [PMID: 17937919 DOI: 10.1016/j.str.2007.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 08/20/2007] [Accepted: 08/21/2007] [Indexed: 11/30/2022]
Abstract
The WD-repeat domain is a highly conserved recognition module in eukaryotes involved in diverse cellular processes. It is still not well understood how the bottom of a WD-repeat domain recognizes its binding partners. The WD-repeat-containing protein EED is one component of the PRC2 complex that possesses histone methyltransferase activity required for gene repression. Here we report the crystal structure of EED in complex with a 30 residue peptide from EZH2. The structure reveals that the peptide binds to the bottom of the WD-repeat domain of EED. The structural determinants of EZH2-EED interaction are present not only in EZH2 and EZH1 but also in its Drosophila homolog E(Z), suggesting that the recognition of ESC by E(Z) in Drosophila employs similar structural motifs. Structure-based mutagenesis identified critical residues from both EED and EZH2 for their interaction. The structure presented here may provide a template for understanding of how WD-repeat proteins recognize their interacting proteins.
Collapse
Affiliation(s)
- Zhifu Han
- National Institute of Biological Sciences, Beijing 102206, China
| | | | | | | | | | | |
Collapse
|
334
|
Smith KJ, Baillie GS, Hyde EI, Li X, Houslay TM, McCahill A, Dunlop AJ, Bolger GB, Klussmann E, Adams DR, Houslay MD. 1H NMR structural and functional characterisation of a cAMP-specific phosphodiesterase-4D5 (PDE4D5) N-terminal region peptide that disrupts PDE4D5 interaction with the signalling scaffold proteins, beta-arrestin and RACK1. Cell Signal 2007; 19:2612-24. [PMID: 17900862 DOI: 10.1016/j.cellsig.2007.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/26/2007] [Indexed: 01/29/2023]
Abstract
The unique 88 amino acid N-terminal region of cAMP-specific phosphodiesterase-4D5 (PDE4D5) contains overlapping binding sites conferring interaction with the signaling scaffold proteins, betaarrestin and RACK1. A 38-mer peptide, whose sequence reflected residues 12 through 49 of PDE4D5, encompasses the entire N-terminal RACK1 Interaction Domain (RAID1) together with a portion of the beta-arrestin binding site. (1)H NMR and CD analyses indicate that this region has propensity to form a helical structure. The leucine-rich hydrophobic grouping essential for RACK1 interaction forms a discrete hydrophobic ridge located along a single face of an amphipathic alpha-helix with Arg34 and Asn36, which also play important roles in RACK1 binding. The Asn22/Pro23/Trp24/Asn26 grouping, essential for RACK1 interaction, was located at the N-terminal head of the amphipathic helix that contained the hydrophobic ridge. RAID1 is thus provided by a distinct amphipathic helical structure. We suggest that the binding of PDE4D5 to the WD-repeat protein, RACK1, may occur in a manner akin to the helix-helix interaction shown for G(gamma) binding to the WD-repeat protein, G(beta). A more extensive section of the PDE4D5 N-terminal sequence (Thr11-Ala85) is involved in beta-arrestin binding. Several residues within the RAID1 helix contribute to this interaction however. We show here that these residues form a focused band around the centre of the RAID1 helix, generating a hydrophobic patch (from Leu29, Val30 and Leu33) flanked by polar/charged residues (Asn26, Glu27, Asp28, Arg34). The interaction with beta-arrestin exploits a greater circumference on the RAID1 helix, and involves two residues (Glu27, Asp28) that do not contribute to RACK1 binding. In contrast, the interaction of RACK1 with RAID1 is extended over a greater length of the helix and includes Leu37/Leu38, which do not contribute to beta-arrestin binding. A membrane-permeable, stearoylated Val12-Ser49 38-mer peptide disrupted the interaction of both beta-arrestin and RACK1 with endogenous PDE4D5 in HEKB2 cells, whilst a cognate peptide with a Glu27Ala substitution selectively failed to disrupt PDE4D5/RACK1 interaction. The stearoylated Val12-Ser49 38-mer peptide enhanced the isoprenaline-stimulated PKA phosphorylation of the beta(2)-adrenergic receptors (beta(2)AR) and its activation of ERK, whilst the Glu27Ala peptide was ineffective in both these regards.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists
- Adrenergic beta-Agonists/pharmacology
- Amino Acid Sequence
- Arrestins/chemistry
- Arrestins/metabolism
- Binding Sites
- Cell Line
- Circular Dichroism
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Epithelial Cells/drug effects
- Epithelial Cells/enzymology
- Epithelial Cells/metabolism
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/metabolism
- Humans
- Hydrophobic and Hydrophilic Interactions
- Isoproterenol/pharmacology
- Models, Molecular
- Molecular Sequence Data
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Peptides/pharmacology
- Phosphoric Diester Hydrolases/chemistry
- Phosphoric Diester Hydrolases/metabolism
- Phosphorylation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors for Activated C Kinase
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Signal Transduction
- beta-Arrestins
Collapse
Affiliation(s)
- K John Smith
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, PO Box 363, B15 2TT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Massaro S, Zlateva T, Torre V, Quaroni L. Detection of molecular processes in the intact retina by ATR-FTIR spectromicroscopy. Anal Bioanal Chem 2007; 390:317-22. [DOI: 10.1007/s00216-007-1710-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
|
336
|
Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 2007; 14:1025-1040. [PMID: 17984965 PMCID: PMC4691843 DOI: 10.1038/nsmb1338] [Citation(s) in RCA: 1112] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histones comprise the major protein component of chromatin, the scaffold in which the eukaryotic genome is packaged, and are subject to many types of post-translational modifications (PTMs), especially on their flexible tails. These modifications may constitute a 'histone code' and could be used to manage epigenetic information that helps extend the genetic message beyond DNA sequences. This proposed code, read in part by histone PTM-binding 'effector' modules and their associated complexes, is predicted to define unique functional states of chromatin and/or regulate various chromatin-templated processes. A wealth of structural and functional data show how chromatin effector modules target their cognate covalent histone modifications. Here we summarize key features in molecular recognition of histone PTMs by a diverse family of 'reader pockets', highlighting specific readout mechanisms for individual marks, common themes and insights into the downstream functional consequences of the interactions. Changes in these interactions may have far-reaching implications for human biology and disease, notably cancer.
Collapse
Affiliation(s)
- Sean D Taverna
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Haitao Li
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Alexander J Ruthenburg
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - C David Allis
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
337
|
Strickfaden SC, Pryciak PM. Distinct roles for two Galpha-Gbeta interfaces in cell polarity control by a yeast heterotrimeric G protein. Mol Biol Cell 2007; 19:181-97. [PMID: 17978098 DOI: 10.1091/mbc.e07-04-0385] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae mating pheromones trigger dissociation of a heterotrimeric G protein (Galphabetagamma) into Galpha-guanosine triphosphate (GTP) and Gbetagamma. The Gbetagamma dimer regulates both mitogen-activated protein (MAP) kinase cascade signaling and cell polarization. Here, by independently activating the MAP kinase pathway, we studied the polarity role of Gbetagamma in isolation from its signaling role. MAP kinase signaling alone could induce cell asymmetry but not directional growth. Surprisingly, active Gbetagamma, either alone or with Galpha-GTP, could not organize a persistent polarization axis. Instead, following pheromone gradients (chemotropism) or directional growth without pheromone gradients (de novo polarization) required an intact receptor-Galphabetagamma module and GTP hydrolysis by Galpha. Our results indicate that chemoattractant-induced cell polarization requires continuous receptor-Galphabetagamma communication but not modulation of MAP kinase signaling. To explore regulation of Gbetagamma by Galpha, we mutated Gbeta residues in two structurally distinct Galpha-Gbeta binding interfaces. Polarity control was disrupted only by mutations in the N-terminal interface, and not the Switch interface. Incorporation of these mutations into a Gbeta-Galpha fusion protein, which enforces subunit proximity, revealed that Switch interface dissociation regulates signaling, whereas the N-terminal interface may govern receptor-Galphabetagamma coupling. These findings raise the possibility that the Galphabetagamma heterotrimer can function in a partially dissociated state, tethered by the N-terminal interface.
Collapse
Affiliation(s)
- Shelly C Strickfaden
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
338
|
Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA. Scaffolding proteins in G-protein signaling. J Mol Signal 2007; 2:13. [PMID: 17971232 PMCID: PMC2211295 DOI: 10.1186/1750-2187-2-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/30/2007] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins are ubiquitous signaling partners of seven transmembrane-domain G-protein-coupled receptors (GPCRs), the largest (and most important pharmacologically) receptor family in mammals. A number of scaffolding proteins have been identified that regulate various facets of GPCR signaling. In this review, we summarize current knowledge concerning those scaffolding proteins that are known to directly bind heterotrimeric G proteins, and discuss the composition of the protein complexes they assemble and their effects on signal transduction. Emerging evidence about possible ways of regulation of activity of these scaffolding proteins is also discussed.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S, Wolcott Ave, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
339
|
Srinivasan V, Netz DJ, Webert H, Mascarenhas J, Pierik AJ, Michel H, Lill R. Structure of the Yeast WD40 Domain Protein Cia1, a Component Acting Late in Iron-Sulfur Protein Biogenesis. Structure 2007; 15:1246-57. [DOI: 10.1016/j.str.2007.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/02/2007] [Accepted: 08/09/2007] [Indexed: 11/25/2022]
|
340
|
Angelova K, Fanelli F, Puett D. Contributions of intracellular loops 2 and 3 of the lutropin receptor in Gs coupling. Mol Endocrinol 2007; 22:126-38. [PMID: 17872379 PMCID: PMC2194637 DOI: 10.1210/me.2007-0352] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A number of amino acids essential for Gs coupling, i.e. hot spots, were identified after in vitro Ala-scanning mutagenesis of the cytosolic extensions of helices 3, 5, and 6 and of intracellular loops 2 and 3 (IL2 and IL3) of the human LH receptor (LHR). Consistent with the results of in vitro experiments involving ligand binding and ligand-mediated signaling in transiently transfected human embryonic kidney 293 cells, computational modeling of the isolated receptor and of the receptor-G protein complexes suggests an important role of the cytosolic extension of helix 3 and the N-terminal portion of the IL2 in Gs(alpha) interaction, whereas the contribution of IL3 is marginal. Mapping the hot spots into the computational models of LHR and the LHR-Gs complexes allowed for a distinction between receptor sites required for intramolecular structural changes (i.e. I460, T461, H466, and I549) and receptor sites more likely involved in G protein recognition (i.e. R464, T467, I468, Y470, Y550, and D564). The latter sites include the highly conserved arginine of the (E/D)R(Y/W) motif, which is therefore likely to be a receptor recognition point for Gs rather than a switch of receptor activation. The results of in vitro and in silico experiments carried out in this study represent the first comprehensive delineation of functionality of the individual residues in the intracellular domains of LHR and establish potential switches of receptor activation as well as a map of the primary receptor recognition sites for Gs. A novel way to consider constitutively active mutants was inferred from this study, i.e. receptor states with improved complementarity for the G protein compared to the wild-type receptor.
Collapse
Affiliation(s)
- Krassimira Angelova
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | |
Collapse
|
341
|
Stanley WA, Fodor K, Marti-Renom MA, Schliebs W, Wilmanns M. Protein translocation into peroxisomes by ring-shaped import receptors. FEBS Lett 2007; 581:4795-802. [PMID: 17884042 DOI: 10.1016/j.febslet.2007.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/04/2007] [Indexed: 12/27/2022]
Abstract
Folded and functional proteins destined for translocation from the cytosol into the peroxisomal matrix are recognized by two different peroxisomal import receptors, Pex5p and Pex7p. Both cargo-loaded receptors dock on the same translocon components, followed by cargo release and receptor recycling, as part of the complete translocation process. Recent structural and functional evidence on the Pex5p receptor has provided insight on the molecular requirements of specific cargo recognition, while the remaining processes still remain largely elusive. Comparison of experimental structures of Pex5p and a structural model of Pex7p reveal that both receptors are built by ring-like arrangements with cargo binding sites, central to the respective structures. Although, molecular insight into the complete peroxisomal translocon still remains to be determined, emerging data allow to deduce common molecular principles that may hold for other translocation systems as well.
Collapse
Affiliation(s)
- Will A Stanley
- ARC Plant Energy Biology Centre M316, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | | | | | |
Collapse
|
342
|
Mancia F, Hendrickson WA. Expression of recombinant G-protein coupled receptors for structural biology. MOLECULAR BIOSYSTEMS 2007; 3:723-34. [PMID: 17882334 DOI: 10.1039/b713558k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Filippo Mancia
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
343
|
Nikolov EN, Ivanova-Nikolova TT. Dynamic Integration of α-Adrenergic and Cholinergic Signals in the Atria. J Biol Chem 2007; 282:28669-28682. [PMID: 17684011 DOI: 10.1074/jbc.m703677200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous heptahelical receptors use activation of heterotrimeric G proteins to convey a multitude of extracellular signals to appropriate effector molecules in the cell. Both high specificity and correct integration of these signals are required for reliable cell function. Yet the molecular machineries that allow each cell to merge information flowing across different receptors are not well understood. Here we demonstrate that G protein-regulated inwardly rectifying K(+) (GIRK) channels can operate as dynamic integrators of alpha-adrenergic and cholinergic signals in atrial myocytes. Acting at the last step of the cholinergic signaling cascade, these channels are activated by direct interactions with betagamma subunits of the inhibitory G proteins (G betagamma), and efficiently translate M(2) muscarinic acetylcholine receptor (M2R) activation into membrane hyperpolarization. The parallel activation of alpha-adrenergic receptors imposed a distinctive "signature" on the function of M2R-activated GIRK1/4 channels, affecting both the probability of G betagamma binding to the channel and its desensitization. This modulation of channel function was correlated with a parallel depletion of G beta and protein phosphatase 1 from the oligomeric GIRK1 complexes. Such plasticity of the immediate GIRK signaling environment suggests that multireceptor integration involves large protein networks undergoing dynamic changes upon receptor activation.
Collapse
Affiliation(s)
- Emil N Nikolov
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Tatyana T Ivanova-Nikolova
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.
| |
Collapse
|
344
|
Tanaka-Kunishima M, Ishida Y, Takahashi K, Honda M, Oonuma T. Ancient intron insertion sites and palindromic genomic duplication evolutionally shapes an elementally functioning membrane protein family. BMC Evol Biol 2007; 7:143. [PMID: 17708769 PMCID: PMC1999503 DOI: 10.1186/1471-2148-7-143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 08/20/2007] [Indexed: 12/28/2022] Open
Abstract
Background In spite of the recent accumulation of genomic data, the evolutionary pathway in the individual genes of present-day living taxa is still elusive for most genes. Among ion channels, inward K+ rectifier (IRK) channels are the fundamental and well-defined protein group. We analyzed the genomic structures of this group and compared them among a phylogenetically wide range with our sequenced Halocynthia roretzi, a tunicate, IRK genomic genes. Results A total of 131 IRK genomic genes were analyzed. The phylogenic trees of amino acid sequences revealed a clear diversification of deuterostomic IRKs from protostomic IRKs and suggested that the tunicate IRKs are possibly representatives of the descendants of ancestor forms of three major groups of IRKs in the vertebrate. However, the exon-intron structures of the tunicate IRK genomes showed considerable similarities to those of Caenorhabditis. In the vertebrate clade, the members in each major group increased at least four times those in the tunicate by various types of global gene duplication. The generation of some major groups was inferred to be due to anti-tandem (palindromic) duplication in early history. The intron insertion points greatly decreased during the evolution of the vertebrates, remaining as a unique conservation of an intron insertion site in the portion of protein-protein interaction within the coding regions of all vertebrate G-protein-activated IRK genes. Conclusion From the genomic survey of a family of IRK genes, it was suggested that the ancient intron insertion sites and the unique palindromic genomic duplication evolutionally shaped this membrane protein family.
Collapse
Affiliation(s)
- Motoko Tanaka-Kunishima
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo, MZC204-8588, Japan
| | - Yoshihiro Ishida
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo, MZC204-8588, Japan
| | - Kunitaro Takahashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo, MZC204-8588, Japan
| | - Motoo Honda
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo, MZC204-8588, Japan
| | - Takashi Oonuma
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo, MZC204-8588, Japan
| |
Collapse
|
345
|
Johnston CA, Siderovski DP. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol Pharmacol 2007; 72:219-30. [PMID: 17430994 DOI: 10.1124/mol.107.034348] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) serve as catalytic activators of heterotrimeric G-proteins (Galphabetagamma) by exchanging GTP for the bound GDP on the Galpha subunit. This guanine nucleotide exchange factor activity of GPCRs is the initial step in the G-protein cycle and determines the onset of various intracellular signaling pathways that govern critical physiological responses to extracellular cues. Although the structural basis for many steps in the G-protein nucleotide cycle have been made clear over the past decade, the precise mechanism for receptor-mediated G-protein activation remains incompletely defined. Given that these receptors have historically represented a set of rich drug targets, a more complete understanding of their mechanism of action should provide further avenues for drug discovery. Several models have been proposed to explain the communication between activated GPCRs and Galphabetagamma leading to the structural changes required for guanine nucleotide exchange. This review is focused on the structural biology of G-protein signal transduction with an emphasis on the current hypotheses regarding Galphabetagamma activation. We highlight several recent results shedding new light on the structural changes in Galpha that may underlie GDP release.
Collapse
Affiliation(s)
- Christopher A Johnston
- Department of Pharmacology, University of North Carolina at Chapel Hill, CB# 7365, Chapel Hill, NC 27599-7365, USA
| | | |
Collapse
|
346
|
Pedone KH, Hepler JR. The Importance of N-terminal Polycysteine and Polybasic Sequences for G14α and G16α Palmitoylation, Plasma Membrane Localization, and Signaling Function. J Biol Chem 2007; 282:25199-212. [PMID: 17620339 DOI: 10.1074/jbc.m610297200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane targeting of G protein alpha (Galpha) subunits is essential for competent receptor-to-G protein signaling. Many Galpha are tethered to the plasma membrane by covalent lipid modifications at their N terminus. Additionally, it is hypothesized that Gq family members (Gqalpha,G11alpha,G14alpha, and G16alpha) in particular utilize a polybasic sequence of amino acids in their N terminus to promote membrane attachment and protein palmitoylation. However, this hypothesis has not been tested, and nothing is known about other mechanisms that control subcellular localization and signaling properties of G14alpha and G16alpha. Here we report critical biochemical factors that mediate membrane attachment and signaling function of G14alpha and G16alpha. We find that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences in their N termini and that the polycysteine sequence along with the adjacent polybasic region are both important for G16alpha-mediated signaling at the plasma membrane. Surprisingly, the isolated N termini of G14alpha and G16alpha expressed as peptides fused to enhanced green fluorescent protein each exhibit differential requirements for palmitoylation and membrane targeting; individual cysteine residues, but not the polybasic regions, determine lipid modification and subcellular localization. However, full-length G16alpha, more so than G14alpha, displays a functional dependence on single cysteines for membrane localization and activity, and its full signaling potential depends on the integrity of the polybasic sequence. Together, these findings indicate that G14alpha and G16alpha are palmitoylated at distinct polycysteine sequences, and that the adjacent polybasic domain is not required for Galpha palmitoylation but is important for localization and functional activity of heterotrimeric G proteins.
Collapse
Affiliation(s)
- Katherine H Pedone
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
347
|
Weinstein LS, Xie T, Zhang QH, Chen M. Studies of the regulation and function of the Gs alpha gene Gnas using gene targeting technology. Pharmacol Ther 2007; 115:271-91. [PMID: 17588669 PMCID: PMC2031856 DOI: 10.1016/j.pharmthera.2007.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 01/14/2023]
Abstract
The heterotrimeric G protein alpha-subunit G(s)alpha is ubiquitously expressed and mediates receptor-stimulated intracellular cAMP generation. Its gene Gnas is a complex imprinted gene which uses alternative promoters and first exons to generate other gene products, including the G(s)alpha isoform XL alpha s and the chromogranin-like protein NESP55, which are specifically expressed from the paternal and maternal alleles, respectively. G(s)alpha itself is imprinted in a tissue-specific manner, being biallelically expressed in most tissues but paternally silenced in a few tissues. Gene targeting of specific Gnas transcripts demonstrates that heterozygous mutation of G(s)alpha on the maternal (but not the paternal) allele leads to early lethality, perinatal subcutaneous edema, severe obesity, and multihormone resistance, while the paternal mutation leads to only mild obesity and insulin resistance. These parent-of-origin differences are the consequence of tissue-specific G(s)alpha imprinting. XL alpha s deficiency leads to a perinatal suckling defect and a lean phenotype with increased insulin sensitivity. The opposite metabolic effects of G(s)alpha and XL alpha s deficiency are associated with decreased and increased sympathetic nervous system activity, respectively. NESP55 deficiency has no metabolic consequences. Other gene targeting experiments have shown Gnas to have 2 independent imprinting domains controlled by 2 different imprinting control regions. Tissue-specific G(s)alpha knockout models have identified important roles for G(s)alpha signaling pathways in skeletal development, renal function, and glucose and lipid metabolism. Our present knowledge gleaned from various Gnas gene targeting models are discussed in relation to the pathogenesis of human disorders with mutation or abnormal imprinting of the human orthologue GNAS.
Collapse
Affiliation(s)
- Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20854, USA.
| | | | | | | |
Collapse
|
348
|
Niranjan T, Guo X, Victor J, Lu A, Hirsch JP. Kelch repeat protein interacts with the yeast Galpha subunit Gpa2p at a site that couples receptor binding to guanine nucleotide exchange. J Biol Chem 2007; 282:24231-8. [PMID: 17584745 DOI: 10.1074/jbc.m702595200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kelch repeat-containing proteins Krh1p and Krh2p are negative regulators of the Gpa2p signaling pathway that directly interact with the G protein alpha-subunit Gpa2p in the yeast Saccharomyces cerevisiae. A screen was carried out to identify Gpa2p variants that are defective in their ability to bind Krh1p but retain the ability to bind another Gpa2p-interacting protein, Ime2p. This screen identified amino acids Gln-419 and Asn-425 as being important for the interaction between Gpa2p and Krh1p. Gpa2p variants with changes at these positions are defective for Krh1p binding in vivo. Cells containing these forms of Gpa2p display decreased heat shock resistance and increased expression of a gene required for pseudohyphal growth. These findings indicate that the substitutions at positions 419 and 425 confer a degree of constitutive activity to the Gpa2p alpha-subunit. Residues Gln-419 and Asn-425 are located in the beta6-alpha5 loop and alpha5 helix of Gpa2p, which is the region that couples receptor binding to guanine nucleotide exchange. The results suggest that binding of Gpa2p to Krh1p does not resemble the binding of Galpha subunits to either Gbeta subunits or effectors, but it instead represents a novel type of functional interaction.
Collapse
Affiliation(s)
- Thiruvur Niranjan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
349
|
Suga H, Haga T. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits. Neurochem Int 2007; 51:140-64. [PMID: 17659814 DOI: 10.1016/j.neuint.2007.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.
Collapse
Affiliation(s)
- Hinako Suga
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
350
|
Oldham WM, Van Eps N, Preininger AM, Hubbell WL, Hamm HE. Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Proc Natl Acad Sci U S A 2007; 104:7927-32. [PMID: 17463080 PMCID: PMC1876549 DOI: 10.1073/pnas.0702623104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins function as molecular relays that mediate signal transduction from heptahelical receptors in the cell membrane to intracellular effector proteins. Crystallographic studies have demonstrated that guanine nucleotide exchange on the Galpha subunit causes specific conformational changes in three key "switch" regions of the protein, which regulate binding to Gbetagamma subunits, receptors, and effector proteins. In the present study, nitroxide side chains were introduced at sites within the switch I region of Galphai to explore the structure and dynamics of this region throughout the G protein cycle. EPR spectra obtained for each of the Galpha(GDP), Galpha(GDP)betagamma heterotrimer and Galpha(GTPgammaS) conformations are consistent with the local environment observed in the corresponding crystal structures. Binding of the heterotrimer to activated rhodopsin to form the nucleotide-free (empty) complex, for which there is no crystal structure, causes prominent changes relative to the heterotrimer in the structure of switch I and contiguous sequences. The data identify a putative pathway of allosteric changes triggered by receptor binding and, together with previously published data, suggest elements of a mechanism for receptor-catalyzed nucleotide exchange.
Collapse
Affiliation(s)
- William M. Oldham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600; and
| | - Ned Van Eps
- Jules Stein Eye Institute, Department of Ophthalmology and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Anita M. Preininger
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600; and
| | - Wayne L. Hubbell
- Jules Stein Eye Institute, Department of Ophthalmology and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600; and
| |
Collapse
|