301
|
Analysis of the Effect of Processing Conditions on Physical Properties of Thermally Set Cellulose Hydrogels. MATERIALS 2019; 12:ma12071066. [PMID: 30939751 PMCID: PMC6479291 DOI: 10.3390/ma12071066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
Abstract
Cellulose-based hydrogels were prepared by dissolving cellulose in aqueous sodium hydroxide (NaOH)/urea solutions and casting it into complex shapes by the use of sacrificial templates followed by thermal gelation of the solution. Both the gelling temperatures used (40–80 °C), as well as the method of heating by either induction in the form of a water bath and hot press or radiation by microwaves could be shown to have a significant effect on the compressive strength and modulus of the prepared hydrogels. Lower gelling temperatures and shorter heating times were found to result in stronger and stiffer gels. Both the effect of physical cross-linking via the introduction of additional non-dissolving cellulosic material, as well as chemical cross-linking by the introduction of epichlorohydrin (ECH), and a combination of both applied during the gelation process could be shown to affect both the mechanical properties and microstructure of the hydrogels. The added cellulose acts as a physical-cross-linking agent strengthening the hydrogen-bond network as well as a reinforcing phase improving the mechanical properties. However, chemical cross-linking of an unreinforced gel leads to unfavourable bonding and cellulose network formation, resulting in drastically increased pore sizes and reduced mechanical properties. In both cases, chemical cross-linking leads to larger internal pores.
Collapse
|
302
|
Kundu D, Banerjee T. Carboxymethyl Cellulose-Xylan Hydrogel: Synthesis, Characterization, and in Vitro Release of Vitamin B 12. ACS OMEGA 2019; 4:4793-4803. [PMID: 31459663 PMCID: PMC6648921 DOI: 10.1021/acsomega.8b03671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/20/2019] [Indexed: 05/31/2023]
Abstract
The current work reports the synthesis of carboxymethyl cellulose (CMC) and xylan-based homopolymerized as well as copolymerized hydrogels using an ethylene glycol diglycidyl ether cross-linker in alkaline medium. The hydrogels are physically characterized by the swelling ratio and gel fraction. The morphological observation of hydrogels reveals the porous structure for the copolymerized gels. The rheological behavior of the gels elaborates that the copolymerized CMC-xylan gel synthesized in a 1:1 molar ratio has superior strain-bearing ability and possesses the shortest gelation temperature and time. Vitamin B12 here is used as the model vitamin to be loaded in the hydrogels and subsequent studies involving the in vitro release in artificial gastric fluid (AGF, pH = 1.2), artificial intestinal fluid (AIF, pH = 6.8), and phosphate-buffered saline (PBS, pH = 7.4). The synthesized gels show a cumulative release of 19-28% in AGF, 80-88% in AIF, and 93-98% in PBS, independently. Further, the highest cumulative release of 93-99% is recorded for all gels when in vitro release is performed in successive buffers, that is, first in AGF, followed by AIF and PBS.
Collapse
|
303
|
Vahidzadeh R, Khorram M, Shariati A. Model modification for equilibrium swelling of highly branched polyamine macromonomers. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-018-2438-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
304
|
Long L, Shen F, Wang F, Tian D, Hu J. Synthesis, characterization and enzymatic surface roughing of cellulose/xylan composite films. Carbohydr Polym 2019; 213:121-127. [PMID: 30879651 DOI: 10.1016/j.carbpol.2019.02.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
Upgrading renewable cellulose biopolymer to various high-value material/chemical is of great importance in building a sustainable bio-economy. This work assessed the technical feasibility of fabricating transparent cellulose/xylan composite films using facile solution-casting method. More importantly, this work also initially assessed the technical potential of xylanase treatment to selectively modify the surface of the obtained composite films with the goal of extending their applications. When bleached Kraft xylan addition was lower than 20 wt%, the composite films could still retain their original mechanical and structural advantages. Xylanase treatment specifically removed 26.0% and 32.3% xylan of the composite films with an enzyme loading of 2 and 5 mg g-1 cellulose, respectively. It was shown that xylan component was heterogeneously located in the surface of the composite films during film-casting process, which allowed the subsequent surface etching/roughing at nanoscale using facile xylanase treatment without compromising their structural advantages.
Collapse
Affiliation(s)
- Lingfeng Long
- Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Fei Wang
- Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, T2N 1N4, Canada
| |
Collapse
|
305
|
Bochek AM, Shevchuk IL, Gavrilova II, Lebedeva MF, Lavrent’ev VK, Panarin EF. Properties of Composite Films of Hydroxyethyl Cellulose and Hydroxypropyl Cellulose with Poly-N-methyl-N-vinylacetamide. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x18060019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
306
|
Amani A, Montazer M, Mahmoudirad M. Synthesis of applicable hydrogel corn silk/ZnO nanocomposites on polyester fabric with antimicrobial properties and low cytotoxicity. Int J Biol Macromol 2019; 123:1079-1090. [DOI: 10.1016/j.ijbiomac.2018.11.093] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/08/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
|
307
|
Baron RI, Bercea M, Avadanei M, Lisa G, Biliuta G, Coseri S. Green route for the fabrication of self-healable hydrogels based on tricarboxy cellulose and poly(vinyl alcohol). Int J Biol Macromol 2019; 123:744-751. [DOI: 10.1016/j.ijbiomac.2018.11.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
|
308
|
Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:1989-2006. [PMID: 30637497 DOI: 10.1007/s00253-018-09602-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.
Collapse
|
309
|
Ghosh T, Katiyar V. Cellulose-Based Hydrogel Films for Food Packaging. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
310
|
Synthesis of Cellulose-Based Hydrogels: Preparation, Formation, Mixture, and Modification. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
311
|
Morphological Characterization of Hydrogels. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
312
|
Ribeiro AM, Magalhães M, Veiga F, Figueiras A. Cellulose-Based Hydrogels in Topical Drug Delivery: A Challenge in Medical Devices. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
313
|
Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med 2019; 4:96-115. [PMID: 30680322 PMCID: PMC6336672 DOI: 10.1002/btm2.10124] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibility, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional groups that allow facile chemical modifications with other biomaterials or biomolecules. Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degradation, high viscosity, and reduced solubility in concentrated aqueous media have limited its applications and encouraged the development of gelatin-based composite hydrogels. The drawbacks of gelatin may be surmounted by synergistically combining it with a wide range of polysaccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM, which largely contains proteoglycans or glycoproteins. Moreover, gelatin-polysaccharide biomaterials benefit from mechanical resilience, high stability, low thermal expansion, improved hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound healing potential. Here, we discuss how combining gelatin and polysaccharides provides a promising approach for developing superior therapeutic biomaterials. We review gelatin-polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing an outlook for the future of this family of biomaterials as advanced natural therapeutics.
Collapse
Affiliation(s)
- Samson Afewerki
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
| | - Amir Sheikhi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Soundarapandian Kannan
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Nanomedicine Division, Dept. of ZoologyPeriyar UniversitySalemTamil NaduIndia
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Radiological Sciences, David Geffen School of MedicineUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Chemical and Biomolecular EngineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and TechnologyKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
314
|
Safronov AP, Adamova LV, Kurlyandskaya GV. Flory–Huggins Parameters of Guar Gum, Xanthan Gum, Agarose, and Gellan Gum in Aqueous Solutions. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
315
|
Tan TH, Lee HV, Yehya Dabdawb WA, Hamid SBBOAA. A review of nanocellulose in the drug-delivery system. MATERIALS FOR BIOMEDICAL ENGINEERING 2019:131-164. [DOI: 10.1016/b978-0-12-816913-1.00005-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
316
|
Gomes CP, Dias RCS, Costa MRPFN. Polymer Reaction Engineering Tools to Tailor Smart and Superabsorbent Hydrogels. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
317
|
|
318
|
Qiao L, Zhao L, Liang C, Du K. The construction of porous chitosan microspheres with high specific surface area by using agarose as the pore-forming agent and further functionalized application in bioseparation. J Mater Chem B 2019; 7:5510-5519. [DOI: 10.1039/c9tb01157a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adsorbents with synchronously high protein adsorption performance and a facile synthetic route are highly desired in protein separation.
Collapse
Affiliation(s)
- Liangzhi Qiao
- Department of Pharmaceutical & Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Liangshen Zhao
- Department of Pharmaceutical & Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Chao Liang
- Department of Pharmaceutical & Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|
319
|
Dai L, Cheng T, Duan C, Zhao W, Zhang W, Zou X, Aspler J, Ni Y. 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydr Polym 2019; 203:71-86. [DOI: 10.1016/j.carbpol.2018.09.027] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 09/09/2018] [Accepted: 09/14/2018] [Indexed: 01/16/2023]
|
320
|
Al-Rudainy B, Galbe M, Arcos Hernandez M, Jannasch P, Wallberg O. Impact of Lignin Content on the Properties of Hemicellulose Hydrogels. Polymers (Basel) 2018; 11:polym11010035. [PMID: 30960019 PMCID: PMC6401799 DOI: 10.3390/polym11010035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/20/2023] Open
Abstract
Hemicellulose is a promising renewable raw material for the production of hydrogels. This polysaccharide exists in large amounts in various waste streams, in which they are usually impure and heavily diluted. Several downstream processing methods can be combined to concentrate and purify the hemicellulose. However, such an approach can be costly; hence, the effect of impurities on the formation and properties of hydrogels must be determined. Lignin usually exists in these waste streams as a major impurity that is also difficult to separate. This compound can darken hydrogels and decrease their swellability and reactivity, as shown in many studies. Other properties and effects of lignin impurities are equally important for the end application of hydrogels and the overall process economy. In this work, we examined the feasibility of producing hydrogels from hemicelluloses that originated from sodium-based spent sulfite liquor. A combination of membrane filtration and anti-solvent precipitation was used to extract and purify various components. The influence of the purity of hemicellulose and the addition of lignosulfonates (emulated impurities in the downstream processing) to the crosslinking reaction mixture on the mechanical, thermal, and chemical properties of hydrogels was determined.
Collapse
Affiliation(s)
- Basel Al-Rudainy
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Mats Galbe
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Monica Arcos Hernandez
- Department of Chemistry, Polymer, and Materials Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Patric Jannasch
- Department of Chemistry, Polymer, and Materials Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Ola Wallberg
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
321
|
Li Y, Chen M. Synthesis and characterization of curdlan/β-cyclodextrin composite hydrogels for sustained-release. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1506983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yucheng Li
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Meiling Chen
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
322
|
Wang D, Li H, Liu Z, Tang Z, Liang G, Mo F, Yang Q, Ma L, Zhi C. A Nanofibrillated Cellulose/Polyacrylamide Electrolyte-Based Flexible and Sewable High-Performance Zn-MnO 2 Battery with Superior Shear Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803978. [PMID: 30444576 DOI: 10.1002/smll.201803978] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/02/2018] [Indexed: 05/06/2023]
Abstract
There is a growing demand for flexible and wearable energy devices. How to enhance their tolerance to various mechanical stresses is a key issue. Bending, stretching, or twisting of flexible batteries has been widely researched. However, shear force is inevitably applied on the batteries during stretching, bending, and twisting. Unfortunately, thus far, research on analyzing shear resistance of solid batteries or even enhancing the shear tolerance has never been reported. Herein, a sewable Zn-MnO2 battery based on a nanofibrillated cellulose (NFC)/ployacrylamide (PAM) hydrogel, electrodeposited Zn nanoplates anode, and carbon nanotube (CNT)/α-MnO2 cathode is reported. The designed NFC/PAM hydrogel exhibits a relatively high mechanical strength with a large stretchability; the preformed NFC bone network stabilizes the large pores as channels for electrolyte diffusion. Furthermore, the effect of sewing on enhancing the shear resistance of the solid batteries is analyzed. The sewed Zn-MnO2 battery retains 88.5% of its capacity after 120 stitches, and withstands a large shear force of 43 N. The sewable and safe Zn-MnO2 is also able to be designed into a skirt and put on a toy as an energy source to power a red light emitting diode.
Collapse
Affiliation(s)
- Donghong Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hongfei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhuoxin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zijie Tang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Funian Mo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Longtao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Chengdu Research Institute, City University of Hong Kong, Chengdu, 610000, P. R. China
| |
Collapse
|
323
|
Shin JU, Gwon J, Lee SY, Yoo HS. Silver-Incorporated Nanocellulose Fibers for Antibacterial Hydrogels. ACS OMEGA 2018; 3:16150-16157. [PMID: 31458251 PMCID: PMC6643637 DOI: 10.1021/acsomega.8b02180] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/14/2018] [Indexed: 05/09/2023]
Abstract
A free-standing, antibacterial hydrogel was fabricated using silver-nanoparticle-immobilized cellulose nanofibers (CNFs) and alginate. Surface hydroxyl groups of CNFs were oxidized to carboxylate groups using (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TCNF), followed by the treatment with silver nitrate solution for surface adsorption of silver ions. In situ reduction of silver ions to produce silver nanoparticles was performed for the silver-adsorbed CNFs. Electron microscopy, X-ray diffraction, and spectroscopic analysis revealed that higher amounts of silver nanoparticles were immobilized on the surface of TCNF than on the surface of native CNF. Silver-nanoparticle-immobilized TCNF was embedded in alginate gels and silver ions from the matrix were slowly released for 7 days. Silver-nanoparticle-loaded alginate gels showed comparable antibacterial activity to silver-ions-loaded alginate gels, although the former showed a significantly lower cytotoxicity against animal cells. Thus, the antibacterial gels can potentially be applied to various skin surfaces to prevent bacterial infection while minimizing skin damage.
Collapse
Affiliation(s)
- Ji Un Shin
- Department
of Biomedical Materials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jaegyoung Gwon
- Department
of Forest Products, National Institute of
Forest Science, Seoul 02455, Republic of Korea
| | - Sun-Young Lee
- Department
of Forest Products, National Institute of
Forest Science, Seoul 02455, Republic of Korea
| | - Hyuk Sang Yoo
- Department
of Biomedical Materials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
324
|
Nada AA, Soliman AAF, Aly AA, Abou-Okeil A. Stimuli-Free and Biocompatible Hydrogel via Hydrazone Chemistry: Synthesis, Characterization, and Bioassessment. STARCH-STARKE 2018. [DOI: 10.1002/star.201800243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed A. Nada
- Pre-treatment and Finishing of Cellulosic Fibers Dept.; Textile Research Division; National Research Centre (Scopus Affiliation ID 60014618); Dokki 12622 Giza Egypt
| | - Ahmed A. F. Soliman
- Pharmaceutical and Drug Industries Division; Department of Pharmacognosy; National Research Centre; Dokki, 12622 Giza Egypt
| | - Amal A. Aly
- Pre-treatment and Finishing of Cellulosic Fibers Dept.; Textile Research Division; National Research Centre (Scopus Affiliation ID 60014618); Dokki 12622 Giza Egypt
| | - Ashraf Abou-Okeil
- Pre-treatment and Finishing of Cellulosic Fibers Dept.; Textile Research Division; National Research Centre (Scopus Affiliation ID 60014618); Dokki 12622 Giza Egypt
| |
Collapse
|
325
|
Ussia M, Di Mauro A, Mecca T, Cunsolo F, Nicotra G, Spinella C, Cerruti P, Impellizzeri G, Privitera V, Carroccio SC. ZnO-pHEMA Nanocomposites: An Ecofriendly and Reusable Material for Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40100-40110. [PMID: 30358979 DOI: 10.1021/acsami.8b13029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The design of new hybrid nanocomposites based on poly(2-hydroxyethylmethacrylate) (pHEMA) graphene oxide (GO) cryosponges, wherein ZnO nanolayers have been deposited to induce photocatalytic properties, is reported here. Atomic layer deposition at low temperature is specifically selected as the deposition technique to stably anchor ZnO molecules to the pendant polymer OH groups. Furthermore, to boost the pHEMA cryogel adsorption capability versus organic dyes, GO is added during the synthetic procedure. The morphology, the crystallinity, and the chemical composition of the samples are deeply investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction analyses, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Swelling properties, mechanical performance, and adsorption kinetics models of the hybrid materials are also evaluated. Finally, the adsorption and photocatalytic performance are tested and compared for all of the samples using methylene blue as a dye. Particularly, the adsorption efficiency of ZnO/pHEMA and ZnO/pHEMA-GO nanocomposites, as well as their in situ regeneration via photocatalysis, renders such devices very appealing for advanced wastewater treatment technology.
Collapse
Affiliation(s)
- Martina Ussia
- CNR-IMM , Via Santa Sofia 64 , 95123 Catania , Italy
- Department of Physics and Astronomy , University of Catania , via Santa Sofia 64 , 95123 Catania , Italy
| | | | - Tommaso Mecca
- CNR-ICB , Via Paolo Gaifami 18 , 95126 Catania , Italy
| | | | | | | | | | | | | | - Sabrina C Carroccio
- CNR-IMM , Via Santa Sofia 64 , 95123 Catania , Italy
- CNR-IPCB , Via Paolo Gaifami 18 , 95126 Catania , Italy
| |
Collapse
|
326
|
Fu LH, Qi C, Ma MG, Wan P. Multifunctional cellulose-based hydrogels for biomedical applications. J Mater Chem B 2018; 7:1541-1562. [PMID: 32254901 DOI: 10.1039/c8tb02331j] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent decades, cellulose has been extensively investigated due to its favourable properties, such as hydrophilicity, low-cost, biodegradability, biocompatibility, and non-toxicity, which makes it a good feedstock for the synthesis of biocompatible hydrogels. The plentiful hydrophilic functional groups (such as hydroxyl, carboxyl, and aldehyde groups) in the backbone of cellulose and its derivatives can be used to prepare hydrogels easily with fascinating structures and properties, leading to burgeoning research interest in biomedical applications. This review focuses on state-of-the-art progress in cellulose-based hydrogels, which covers from their preparation methods (including chemical methods and physical methods) and physicochemical properties (such as stimuli-responsive properties, mechanical properties, and self-healing properties) to their biomedical applications, including drug delivery, tissue engineering, wound dressing, bioimaging, wearable sensors and so on. Moreover, the current challenges and future prospects for cellulose-based hydrogels in regard to their biomedical applications are also discussed at the end.
Collapse
Affiliation(s)
- Lian-Hua Fu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China
| | | | | | | |
Collapse
|
327
|
Capanema NSV, Mansur AAP, Mansur HS, de Jesus AC, Carvalho SM, Chagas P, de Oliveira LC. Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications. ENVIRONMENTAL TECHNOLOGY 2018; 39:2856-2872. [PMID: 28805161 DOI: 10.1080/09593330.2017.1367845] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, new eco-friendly hydrogel adsorbents were synthesized based on carboxymethylcellulose (CMC, degree of substitution [DS] = 0.7) chemically cross-linked with citric acid (CA) using a green process in aqueous solution and applied for the adsorption of methylene blue (MB). Spectroscopic analyses demonstrated the mechanism of cross-linking through the reaction of hydroxyl functional groups from CMC with CA. These CMC hydrogels showed very distinct morphological features dependent on the extension of cross-linking and their nanomechanical properties were drastically increased by approximately 300% after cross-linking with 20% CA (e.g. elastic moduli from 80 ± 15 to 270 ± 50 MPa). Moreover, they were biocompatible using an in vitro cell viability assay in contact with human osteosarcoma-derived cells (SAOS) for 24 h. These CMC-based hydrogels exhibited adsorption efficiency above 90% (24 h) and maximum removal capacity of MB from 5 to 25 mg g-1 depending on the dye concentration (from 100 to 500 mg L-1), which was used as the model cationic organic pollutant. The adsorption of process of MB was well-fit to the pseudo-second-order kinetics model. The desorption of MB by immersion in KCl solution (3 mol L-1, 24 h) showed a typical recovery efficiency of over 60% with conceivable reuse of these CMC-based hydrogels. Conversely, CMC hydrogels repelled methyl orange dye used as model anionic pollutant, proving the mechanism of adsorption by the formation of charged polyelectrolyte/dye complexes.
Collapse
Affiliation(s)
- Nádia S V Capanema
- a Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Alexandra A P Mansur
- a Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Herman S Mansur
- a Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Anderson C de Jesus
- a Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Sandhra M Carvalho
- a Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Poliane Chagas
- b Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Luiz C de Oliveira
- b Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
328
|
Zhu R, Liu X, Song P, Wang M, Xu F, Jiang Y, Zhang X. An approach for reinforcement of paper with high strength and barrier properties via coating regenerated cellulose. Carbohydr Polym 2018; 200:100-105. [DOI: 10.1016/j.carbpol.2018.07.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 11/30/2022]
|
329
|
Irimia T, Dinu-Pîrvu CE, Ghica MV, Lupuleasa D, Muntean DL, Udeanu DI, Popa L. Chitosan-Based In Situ Gels for Ocular Delivery of Therapeutics: A State-of-the-Art Review. Mar Drugs 2018; 16:E373. [PMID: 30304825 PMCID: PMC6212818 DOI: 10.3390/md16100373] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 11/16/2022] Open
Abstract
Ocular in situ gels are a promising alternative to overcome drawbacks of conventional eye drops because they associate the advantages of solutions such as accuracy and reproducibility of dosing, or ease of administration with prolonged contact time of ointments. Chitosan is a natural polymer suitable for use in ophthalmic formulations due to its biocompatibility, biodegradability, mucoadhesive character, antibacterial and antifungal properties, permeation enhancement and corneal wound healing effects. The combination of chitosan, pH-sensitive polymer, with other stimuli-responsive polymers leads to increased mechanical strength of formulations and an improved therapeutic effect due to prolonged ocular contact time. This review describes in situ gelling systems resulting from the association of chitosan with various stimuli-responsive polymers with emphasis on the mechanism of gel formation and application in ophthalmology. It also comprises the main techniques for evaluation of chitosan in situ gels, along with requirements of safety and ocular tolerability.
Collapse
Affiliation(s)
- Teodora Irimia
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Dumitru Lupuleasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Daniela-Lucia Muntean
- Department of Analytical Chemistry and Analysis of Medicines, Faculty of Pharmacy, University of Medicine and Pharmacy of Târgu Mureş, Târgu Mureş 540138, Romania.
| | - Denisa Ioana Udeanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| |
Collapse
|
330
|
Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions. NANOMATERIALS 2018; 8:nano8100800. [PMID: 30297645 PMCID: PMC6215239 DOI: 10.3390/nano8100800] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Cellulose hydrogels are often prepared from native cellulose through a direct cellulose dissolution approach that often involves tedious process and solvent recovery problems. A self-supporting cellulose hydrogel was prepared by gelation of the TEMPO-oxidized bagasse cellulose nanofibrils (CNF) triggered by strong crosslinking between carboxylate groups and Zn2+. TEMPO process was used to generate negatively charged carboxylate groups on CNF surface to provide a high binding capability to Zn2+. Three TEMPO-oxidized CNFs of different carboxylate contents were prepared and characterized. TEM and AFM microscopes suggested that the sizes of CNFs were fined down and carboxylated cellulose nanofibrils (TOCNFs) of 5–10 nm wide, 200–500 nm long, and carboxylate contents 0.73–1.29 mmol/g were obtained. The final structures and compressive strength of hydrogels were primarily influenced by interfibril Zn2+-carboxylate interactions, following the order of TOCNFs concentration > content of carboxylate groups > concentration of zinc ions. A CO2 sensitive self-supporting cellulose hydrogel was developed as a colorimetric indicator of food spoilage for intelligent food packaging applications.
Collapse
|
331
|
Batista RA, Espitia PJP, Quintans JDSS, Freitas MM, Cerqueira MÂ, Teixeira JA, Cardoso JC. Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym 2018; 205:106-116. [PMID: 30446085 DOI: 10.1016/j.carbpol.2018.10.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/16/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Hydrogels are three-dimensional, hydrophilic networks, comprising polymeric chains linked through physical or chemical bonds. In the area of food, hydrogels have great potential to be used in food packaging systems or as carriers of bioactive components. This paper reviews the nature of hydrogels, their 3D network conformation, their functional properties, and their potential applications in food packaging systems. Regarding their potential food packaging applications, hydrogels can present a conformation which allows their use as part of a packaging system to control the humidity generated by food products with high water content. Moreover, the incorporation of nanoparticles into hydrogels may grant them antimicrobial activity. Finally, although the current research in this field is still limited, the results obtained so far are promising for innovative and potential applications in the food field, which also include their integration into intelligent food packaging systems and their direct incorporation into food matrices as a flavor carrier system.
Collapse
Affiliation(s)
- Rejane Andrade Batista
- Tiradentes University, Northeast Biotechnology Network (PGP - RENORBIO) - Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | | | | | - Mayanna Machado Freitas
- Tiradentes University, Northeast Biotechnology Network (PGP - RENORBIO) - Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Miguel Ângelo Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | - José António Teixeira
- Center of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Juliana Cordeiro Cardoso
- Tiradentes University, Northeast Biotechnology Network (PGP - RENORBIO) - Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil; Institute of Technology and Research - Av. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil.
| |
Collapse
|
332
|
Liu P, Mai C, Zhang K. Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1718-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
333
|
Yin X, Kang W, Song S, Huang Z, Hou X, Yang H. Stabilization mechanism of CO2 foam reinforced by regenerated cellulose. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.07.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
334
|
Pan Y, Wang J, Cai P, Xiao H. Dual-responsive IPN hydrogel based on sugarcane bagasse cellulose as drug carrier. Int J Biol Macromol 2018; 118:132-140. [DOI: 10.1016/j.ijbiomac.2018.06.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 02/02/2023]
|
335
|
Biopolymer-Based Composite Materials Prepared Using Ionic Liquids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 168:133-176. [PMID: 30242432 DOI: 10.1007/10_2018_78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Biopolymer-based composite materials have many potential applications in biomedical, pharmaceutical, environmental, biocatalytic, and bioelectronic fields, owing to their inherent biocompatibility and biodegradability. When used as solvents, ionic liquids can be used to fabricate biopolymers such as polysaccharides and proteins into various forms, including molded shapes, films, fibers, and beads. This article summarizes the processes for preparing biopolymer-based composite materials using ionic liquids. The processes include biopolymer dissolution using ionic liquids, regeneration of the biopolymer by an anti-solvent, formation of shapes, and drying of the regenerated biopolymer. In particular, the preparation and applications of biopolymer blend-based composite materials containing two or more biopolymers are addressed.
Collapse
|
336
|
Singh P, Medronho B, Santos TD, Nunes-Correia I, Granja P, Miguel MG, Lindman B. On the viability, cytotoxicity and stability of probiotic bacteria entrapped in cellulose-based particles. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
337
|
Effect of ionic strength on solution and drilling fluid properties of ionic polysaccharides: A comparative study between Na-carboxymethylcellulose and Na-kappa-carrageenan responses. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
338
|
Effect of vitamin derivatives on gelation rate and gel strength of methylcellulose. Carbohydr Polym 2018; 196:414-421. [DOI: 10.1016/j.carbpol.2018.05.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/25/2018] [Accepted: 05/12/2018] [Indexed: 12/27/2022]
|
339
|
Temperature and pH responsive cellulose filament/poly (NIPAM-co-AAc) hybrids as novel adsorbent towards Pb(II) removal. Carbohydr Polym 2018; 195:495-504. [DOI: 10.1016/j.carbpol.2018.04.082] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 02/08/2023]
|
340
|
Kabir SMF, Sikdar PP, Haque B, Bhuiyan MAR, Ali A, Islam MN. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater 2018; 7:153-174. [PMID: 30182344 PMCID: PMC6173681 DOI: 10.1007/s40204-018-0095-0] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022] Open
Abstract
Hydrogels based on cellulose comprising many organic biopolymers including cellulose, chitin, and chitosan are the hydrophilic material, which can absorb and retain a huge proportion of water in the interstitial sites of their structures. These polymers feature many amazing properties such as responsiveness to pH, time, temperature, chemical species and biological conditions besides a very high-water absorption capacity. Biopolymer hydrogels can be manipulated and crafted for numerous applications leading to a tremendous boom in research during recent times in scientific communities. With the growing environmental concerns and an emergent demand, researchers throughout the globe are concentrating particularly on naturally derived hydrogels due to their biocompatibility, biodegradability and abundance. Cellulose-based hydrogels are considered as useful biocompatible materials to be used in medical devices to treat, augment or replace any tissue, organ, or help function of the body. These hydrogels also hold a great promise for applications in agricultural activity, as smart materials and some other useful industrial purposes. This review offers an overview of the recent and contemporary research regarding physiochemical properties of cellulose-based hydrogels along with their applications in multidisciplinary areas including biomedical fields such as drug delivery, tissue engineering and wound healing, healthcare and hygienic products as well as in agriculture, textiles and industrial applications as smart materials.
Collapse
Affiliation(s)
- S M Fijul Kabir
- Department of Textiles, Apparel Design and Merchandising, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Partha P Sikdar
- Department of Textiles, Merchandising and Interiors, University of Georgia, Athens, GA, 30602, USA
| | - B Haque
- College of Textile Engineering, University of Chittagong, Chittagong, 4331, Bangladesh
| | - M A Rahman Bhuiyan
- Department of Textile Engineering, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| | - A Ali
- Department of Textile Engineering, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| | - M N Islam
- Department of Chemistry, Dhaka University of Engineering and Technology, DUET, Gazipur, 1700, Bangladesh
| |
Collapse
|
341
|
Li Y, Han M, Wang Y, Liu Q, Zhao W, Su B, Zhao C. A mussel-inspired approach towards heparin-immobilized cellulose gel beads for selective removal of low density lipoprotein from whole blood. Carbohydr Polym 2018; 202:116-124. [PMID: 30286984 DOI: 10.1016/j.carbpol.2018.08.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 02/05/2023]
Abstract
In this study, we report a mussel-inspired approach to fabricate heparin-immobilized cellulose (HeTaCe) gel beads with self-anticoagulative and biocompatible properties which can selectively remove low density lipoprotein (LDL) from whole blood directly. First, a phase inversion technique was applied to prepare cellulose gel beads. Then the as-prepared gel beads were dipped into a mixed solution of heparin and tannic acid in phosphate buffered saline (PBS, pH 8.5) to obtain HeTaCe gel beads. Blood compatibility experiments indicated that the HeTaCe gel beads could suppress complement activation as well as contact activation and prolong the clotting times to the upper detect limits (activated partial thromboplastin time >600 s and thrombin time >180 s) of the automated blood coagulation analyzer. An ideal adsorption capacity of LDL in vitro was achieved by the HeTaCe gel beads with an amount of 79.1 mg/g. Besides, dynamic column adsorption test further demonstrated a selective adsorption of LDL without a significant reduction of high density lipoprotein (HDL) in a simulative hemoperfusion system. It is believed that the HeTaCe gel beads will be quite appealing to future clinical practice aiming at lowering LDL and improving the outcomes of patients with high cardiovascular risk.
Collapse
Affiliation(s)
- Yupei Li
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mei Han
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yilin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Liu
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Baihai Su
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
342
|
Xing C, Chen S, Liang X, Liu Q, Qu M, Zou Q, Li J, Tan H, Liu L, Fan D, Zhang H. Two-Dimensional MXene (Ti 3C 2)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27631-27643. [PMID: 30058793 DOI: 10.1021/acsami.8b08314] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two-dimensional (2D) MXenes have recently been shown to be promising for applications in anticancer photothermal therapy (PTT), owing to their outstanding photothermal performance. However, as with the other inorganic 2D nanomaterials, the MXene-based nanoplatforms lack the appropriate biocompatibility and stability in physiological conditions, targeting capability, and controlled release of drug, for cancer therapy. Fabricating a smart MXene-based nanoplatform for the treatment of cancer therefore remains a challenge. In this work, composite hydrogels based on cellulose and Ti3C2 MXene, were synthesized for the first time. We have shown that the cellulose/MXene composite hydrogels possess rapid response near-infrared-stimulated characteristics, which present as a continuous dynamic process in water. As a result, when loaded with the anticancer drug doxorubicin hydrochloride (DOX), the cellulose/MXene hydrogels are capable of significantly accelerating the DOX release. This behavior is attributed to the expansion of the pores within the three-dimensional cellulose-based networks, triggered by illumination with an 808 nm light. Capitalizing on their excellent photothermal performance and controlled, sustained release of DOX, the cellulose/MXene hydrogels are utilized as a multifunctional nanoplatform for tumor treatment by intratumoral injection. The results showed that the combination of PTT and prolonged adjuvant chemotherapy delivered using this nanoplatform was highly efficient for instant tumor destruction and for suppressing tumor relapse, demonstrating the potential of the nanoplatform for application in cancer therapy. Our work not only opens the door for the fabrication of smart MXene-based nanocomposites, along with their promising application against cancer, but also paves the way for the development of other inorganic 2D composites for applications in biomedicine.
Collapse
Affiliation(s)
- Chenyang Xing
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Shiyou Chen
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Xin Liang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
- College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Quan Liu
- Department of Hepatobiliary and Pancreatic Surgery , Shenzhen People's Hospital, Second Clinical Medical College of Jinan University , Shenzhen 518060 Guangdong Province , China
| | - Mengmeng Qu
- Research Center for Clinical & Translational Medicine , Beijing 302 Hospital , Beijing 100039 , China
| | - Qingshuang Zou
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Jihao Li
- Shanghai Institute of Applied Physics , Chinese Academy of Sciences , No. 2019, Jialuo Road , Jiading District, Shanghai 201800 , China
| | - Hui Tan
- Shenzhen Key Laboratory of Neurosurgery , The First Affiliated Hospital of Shenzhen University , Shenzhen 518035 , China
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery , Shenzhen People's Hospital, Second Clinical Medical College of Jinan University , Shenzhen 518060 Guangdong Province , China
| | - Dianyuan Fan
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| |
Collapse
|
343
|
In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. Int J Biol Macromol 2018; 115:1211-1217. [DOI: 10.1016/j.ijbiomac.2018.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 11/22/2022]
|
344
|
Ali A, Ahmed S. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6940-6967. [PMID: 29878765 DOI: 10.1021/acs.jafc.8b01052] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry , Jamia Millia Islamia , New Delhi , 110025 , India
| | - Shakeel Ahmed
- Department of Chemistry , Government Degree College Mendhar , Jammu , Jammu and Kashmir , 185211 , India
- Higher Education Department , Government of Jammu and Kashmir , Jammu , 180001 , India
| |
Collapse
|
345
|
Mohammadzadeh Pakdel P, Peighambardoust SJ. A review on acrylic based hydrogels and their applications in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:123-143. [PMID: 29602074 DOI: 10.1016/j.jenvman.2018.03.076] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/26/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
The acrylic based hydrogels have attracted the attention of many researchers in the field of pollutants adsorption such as dyes and metal cations due to their high swelling and adsorption capacities. This review introduces acrylic based hydrogels and focuses on their adsorption properties. We first described the methods for synthesizing hydrogels. Usual methods of characterization of acrylic based hydrogels such as swelling, adsorption capacity and desorption efficiency of the pollutants have been investigated. In addition, the adsorption isotherm and kinetic models which determine the mechanism of pollutants' adsorption by hydrogels have been introduced and relations that determine the values of thermodynamic parameters which define accomplishment of adsorption process have been investigated. In the following sections, a perfect insight has been provided on natural and synthetic acrylic based hydrogels. The effective parameters of swelling and adsorption by acrylic based hydrogels have been reviewed and the mechanism of pollutant's adsorption by acrylic based hydrogels has been discussed.
Collapse
|
346
|
Rational design of novel water-soluble ampholytic cellulose derivatives. Int J Biol Macromol 2018; 114:363-372. [DOI: 10.1016/j.ijbiomac.2018.03.147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 11/19/2022]
|
347
|
Caccamo MT, Zammuto V, Gugliandolo C, Madeleine-Perdrillat C, Spanò A, Magazù S. Thermal restraint of a bacterial exopolysaccharide of shallow vent origin. Int J Biol Macromol 2018; 114:649-655. [DOI: 10.1016/j.ijbiomac.2018.03.160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 10/17/2022]
|
348
|
Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:50-59. [DOI: 10.1016/j.msec.2018.02.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/01/2017] [Accepted: 02/16/2018] [Indexed: 01/16/2023]
|
349
|
Bashari A, Rouhani Shirvan A, Shakeri M. Cellulose-based hydrogels for personal care products. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4290] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Azadeh Bashari
- Textile Engineering Department; Amirkabir University of Technology; Tehran Iran
| | | | - Mina Shakeri
- Textile Engineering Department; Amirkabir University of Technology; Tehran Iran
- Department of materials Engineering; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
350
|
Wu QX, Guan YX, Yao SJ. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1723-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|