301
|
Vaccine implants: current status and recent advancements. Emerg Top Life Sci 2020; 4:319-330. [DOI: 10.1042/etls20200164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023]
Abstract
Implants have long been used in the field of drug delivery as controlled release vehicles and are now being investigated as single-shot vaccine technologies. Implants have shown great promise, minimizing the need for multiple immunizations while stimulating potent immune responses with reduced doses of vaccine. Synchronous release of vaccine components from implants over an appropriate period of time is important in order to avoid issues including immune tolerance, sequestration or deletion. Traditionally, implants require surgical implantation and removal, which can be a barrier to their widespread use. Degradable and in situ implants are now being developed that can be administered using minimally invasive subcutaneous or intramuscular injection techniques. Injectable hydrogels remain the most commonly studied approach for sustained vaccine delivery due to their ease of administration and tunable degradation properties. Despite exciting advancements in the field of vaccine implants, few technologies have progressed to clinical trials. To increase the likelihood of clinical translation of vaccine implants, strategic testing of disease-relevant antigens in appropriate species is essential. In this review, the significance of vaccine implants and the different types of implants being developed to deliver vaccines are discussed.
Collapse
|
302
|
Seino H, Kawaguchi N, Arai Y, Ozawa N, Hamada K, Nagao N. Investigation of partially myristoylated carboxymethyl chitosan, an amphoteric-amphiphilic chitosan derivative, as a new material for cosmetic and dermal application. J Cosmet Dermatol 2020; 20:2332-2340. [PMID: 33174289 PMCID: PMC8359406 DOI: 10.1111/jocd.13833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/24/2020] [Accepted: 11/05/2020] [Indexed: 01/02/2023]
Abstract
Background Cationic amphiphilic chitosan derivatives can form polymeric micelles, which are useful cosmetic materials, but they form polyion complexes with anionic polymers, which can cause formulation difficulties. Aims This study aimed to evaluate the usefulness of partially myristoylated carboxymethyl chitosan, an amphoteric‐amphiphilic chitosan derivative, as a new material for cosmetics in the absence of a surfactant comprising an anionic polymer. Methods An anionic polymer and 1,2‐decanediol (an antimicrobial agent)‐containing partially myristoylated carboxymethyl chitosan nanoemulsified lotion and glabridin (an antimelanogenic agent)‐containing partially myristoylated carboxymethyl chitosan polymeric micelle were prepared using a pressure homogenization method. The release of interleukin‐1α, cell viability, and melanogenesis inhibition was evaluated on a human skin model. Antimicrobial activity was evaluated using agar dilution method. Results A mixture of partially myristoylated carboxymethyl chitosan and carboxyvinyl polymer did not form a polyion complex, but it formed a hydrophilic gel. The anionic polymer‐containing partially myristoylated carboxymethyl chitosan nanoemulsified formulation was stable, with no decrease in cell viability and horny layer exfoliation, which are typically observed with Tween 60. Compared with the formulation with methyl paraben (0.2%), the formulation to which 1,2‐decanediol (0.05%) was added improved the antibacterial activity against methicillin‐resistant Staphylococcus aureus and Propionibacterium acnes; however, no interleukin‐1α upregulation was observed. The glabridin‐containing partially myristoylated carboxymethyl chitosan polymeric micelles enhanced melanogenesis inhibition and percutaneous glabridin delivery to the epidermis compared with conventional emulsified micelles. Conclusions These results suggest that partially myristoylated carboxymethyl chitosan‐forming polymeric micelles, in combination with 1,2‐decanediol and glabridin, may be useful for surfactant‐free cosmetic emulsions.
Collapse
Affiliation(s)
| | | | - Yukari Arai
- Central R & D Laboratory, Pias Corporation, Kobe, Japan
| | | | | | - Norio Nagao
- Faculty of Life and Environmental Science, Prefectural University of Hiroshima, Shobara, Japan
| |
Collapse
|
303
|
Geanaliu-Nicolae RE, Andronescu E. Blended Natural Support Materials-Collagen Based Hydrogels Used in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5641. [PMID: 33321865 PMCID: PMC7764196 DOI: 10.3390/ma13245641] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023]
Abstract
Due to their unique properties-the are biocompatible, easily accessible, and inexpensive with programmable properties-biopolymers are used in pharmaceutical and biomedical research, as well as in cosmetics and food. Collagen is one of the most-used biomaterials in biomedicine, being the most abundant protein in animals with a triple helices structure, biocompatible, biomimetic, biodegradable, and hemostatic. Its disadvantages are its poor mechanical and thermal properties and enzymatic degradation. In order to solve this problem and to use its benefits, collagen can be used blended with other biomaterials such as alginate, chitosan, and cellulose. The purpose of this review article is to offer a brief paper with updated information on blended collagen-based formulations and their potential application in biomedicine.
Collapse
Affiliation(s)
- Ruxandra-Elena Geanaliu-Nicolae
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | | |
Collapse
|
304
|
Zhang A, Liu Y, Qin D, Sun M, Wang T, Chen X. Research status of self-healing hydrogel for wound management: A review. Int J Biol Macromol 2020; 164:2108-2123. [DOI: 10.1016/j.ijbiomac.2020.08.109] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
|
305
|
Tommalieh M, Ibrahium HA, Awwad NS, Menazea A. Gold nanoparticles doped Polyvinyl Alcohol/Chitosan blend via laser ablation for electrical conductivity enhancement. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128814] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
306
|
Kupnik K, Primožič M, Kokol V, Leitgeb M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers (Basel) 2020; 12:E2825. [PMID: 33261198 PMCID: PMC7760654 DOI: 10.3390/polym12122825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.
Collapse
Affiliation(s)
- Kaja Kupnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
307
|
do Nascimento EG, de Azevedo EP, Alves-Silva MF, Aragão CFS, Fernandes-Pedrosa MF, da Silva-Junior AA. Supramolecular aggregates of cyclodextrins with co-solvent modulate drug dispersion and release behavior of poorly soluble corticosteroid from chitosan membranes. Carbohydr Polym 2020; 248:116724. [PMID: 32919548 DOI: 10.1016/j.carbpol.2020.116724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/13/2020] [Accepted: 06/30/2020] [Indexed: 01/29/2023]
Abstract
In this study, the ability of different beta-cyclodextrins to facilitate homogeneous dispersion of triamcinolone acetonide (TA) into chitosan membranes is assessed. Drug loading was assessed through atomic force microscopy (AFM), scanning electron microscopy (MEV-FEG), and X-ray diffraction analyses. Drug interactions with the co-polymer were investigated with Fourier transform infrared spectroscopy, thermal analyses. Swelling assay, and in vitro drug release experiment were used to assess TA release behavior. Undispersed particles of drug were observed to remain in the simple chitosan membranes. Hydroxypropyl-β-cyclodextrin enabled the dispersion of TA into chitosan membranes and subsequent sustained drug release. In addition, the membrane performance as a drug delivery device is improved by adding specified amounts of the co-solvent triethanolamine. The experimental data presented in this study confirm the utility of our novel and alternative approach for obtaining a promising device for slow and controlled release of glucocorticoids, such as triamcinolone acetonide, for topical ulcerations.
Collapse
Affiliation(s)
- Ednaldo Gomes do Nascimento
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Eduardo Pereira de Azevedo
- Department of Pharmacy, Federal University of Potiguar, UnP, Av. Sen. Salgado Filho, 1610, Lagoa Nova, 59056-000, Natal, RN, Brazil
| | - Mariana Farias Alves-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Cícero Flávio S Aragão
- Laboratory of Quality Control of Pharmaceuticals, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Arnóbio Antônio da Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil.
| |
Collapse
|
308
|
Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications. Int J Biol Macromol 2020; 167:1146-1155. [PMID: 33189749 DOI: 10.1016/j.ijbiomac.2020.11.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Imine dynamic hydrogels are synthesized via dual-imine bond crosslinking from O-carboxymethyl chitosan (CMCS) and a water soluble dynamer using a 'green' approach. Three dynamers are prepared through reaction of benzene-1,3,5-tricarbaldehyde and di-amino Jeffamine with molar mass of 500, 800 and 1900, respectively. Hydrogels, namely H500, H800 and H1900 are then obtained by mixing CMCS and dynamer aqueous solutions. FT-IR confirms the formation of hydrogels via imine bonding. H1900 presents larger pore size and higher storage modulus as compared to H500 and H800 due to the higher molar mass of Jeffamine linker. The hydrogels exhibit pH sensitive swelling behavior due to electrostatic attraction or repulsion in the pH range from 3 to 10. The highest swelling ratio is obtained at pH 8, reaching 7500% for H800. Self-healing of hydrogels is evidenced by rheological measurements with alternatively applied low and high strains, and by using a macroscopic approach with re-integration of injected filaments. Furthermore, the H1900 membrane exhibits outstanding antibacterial activity against an E. coli suspension at 108 CFU mL-1. Therefore, dynamic hydrogels synthesized from CMCS and Jeffamine present outstanding rheological, swelling, self-healing and antibacterial properties, and are most promising as healthcare material in wound dressing, drug delivery and tissue engineering.
Collapse
|
309
|
Development of multicomponent interpenetrating polymer network (IPN) hydrogel films based on 2-hydroxyethyl methacrylate (HEMA), acrylamide (AM), polyvinyl alcohol (PVA) and chitosan (CS) with enhanced mechanical strengths, water swelling and antibacterial properties. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104739] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
310
|
Silver nanocomposites based on the bacterial fucose-rich polysaccharide secreted by Enterobacter A47 for wound dressing applications: Synthesis, characterization and in vitro bioactivity. Int J Biol Macromol 2020; 163:959-969. [DOI: 10.1016/j.ijbiomac.2020.07.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
|
311
|
Angiogenic Potential in Biological Hydrogels. Biomedicines 2020; 8:biomedicines8100436. [PMID: 33092064 PMCID: PMC7589931 DOI: 10.3390/biomedicines8100436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrogels are three-dimensional (3D) materials able to absorb and retain water in large amounts while maintaining their structural stability. Due to their considerable biocompatibility and similarity with the body’s tissues, hydrogels are one of the most promising groups of biomaterials. The main application of these hydrogels is in regenerative medicine, in which they allow the formation of an environment suitable for cell differentiation and growth. Deriving from these hydrogels, it is, therefore, possible to obtain bioactive materials that can regenerate tissues. Because vessels guarantee the right amount of oxygen and nutrients but also assure the elimination of waste products, angiogenesis is one of the processes at the base of the regeneration of a tissue. On the other hand, it is a very complex mechanism and the parameters to consider are several. Indeed, the factors and the cells involved in this process are numerous and, for this reason, it has been a challenge to recreate a biomaterial able to adequately sustain the angiogenic process. However, in this review the focal point is the application of natural hydrogels in angiogenesis enhancing and their potential to guide this process.
Collapse
|
312
|
Hu D, Ren Q, Li Z, Zhang L. Chitosan-Based Biomimetically Mineralized Composite Materials in Human Hard Tissue Repair. Molecules 2020; 25:E4785. [PMID: 33086470 PMCID: PMC7587527 DOI: 10.3390/molecules25204785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 02/05/2023] Open
Abstract
Chitosan is a natural, biodegradable cationic polysaccharide, which has a similar chemical structure and similar biological behaviors to the components of the extracellular matrix in the biomineralization process of teeth or bone. Its excellent biocompatibility, biodegradability, and polyelectrolyte action make it a suitable organic template, which, combined with biomimetic mineralization technology, can be used to develop organic-inorganic composite materials for hard tissue repair. In recent years, various chitosan-based biomimetic organic-inorganic composite materials have been applied in the field of bone tissue engineering and enamel or dentin biomimetic repair in different forms (hydrogels, fibers, porous scaffolds, microspheres, etc.), and the inorganic components of the composites are usually biogenic minerals, such as hydroxyapatite, other calcium phosphate phases, or silica. These composites have good mechanical properties, biocompatibility, bioactivity, osteogenic potential, and other biological properties and are thus considered as promising novel materials for repairing the defects of hard tissue. This review is mainly focused on the properties and preparations of biomimetically mineralized composite materials using chitosan as an organic template, and the current application of various chitosan-based biomimetically mineralized composite materials in bone tissue engineering and dental hard tissue repair is summarized.
Collapse
Affiliation(s)
- Die Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610000, China; (D.H.); (Q.R.); (Z.L.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Qian Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610000, China; (D.H.); (Q.R.); (Z.L.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Zhongcheng Li
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610000, China; (D.H.); (Q.R.); (Z.L.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, Chengdu 610000, China; (D.H.); (Q.R.); (Z.L.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| |
Collapse
|
313
|
Dubé MA, Gabriel VA, Pakdel AS, Zhang Y. Sustainable polymer reaction engineering: Are we there yet? CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marc A. Dubé
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Vida A. Gabriel
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Amir S. Pakdel
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Yujie Zhang
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
314
|
Hashemi SS, Rajabi SS, Mahmoudi R, Ghanbari A, Zibara K, Barmak MJ. Polyurethane/chitosan/hyaluronic acid scaffolds: providing an optimum environment for fibroblast growth. J Wound Care 2020; 29:586-596. [PMID: 33052794 DOI: 10.12968/jowc.2020.29.10.586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Biodegradable polymers can replace damaged tissue components using tissue engineering techniques. The objective of this study is to determine an optimum environment for polymer scaffolds to improve the proliferation of fibroblast cells capable of wound repair. METHOD In this study, the addition of polysaccharides, such as chitosan (CH) or hyaluronic acid (HA), to a polyurethane (PU) polymer was evaluated using different methods to determine if they affect scaffold morphology and cell activity of fibroblasts prepared from human foreskin tissues. Mechanical properties, such as tensile strength, contact angle and swelling test, were used to check the physical and mechanical properties of the scaffold. Fibroblast growth was also measured at 24, 48 and 72 hours. RESULTS Scanning electron microscopy (SEM) determined that a 3:1 ratio of PU/CH scaffold, developed by electrospinning, allowed the formation of a uniform structure in scaffold fibres. Physical mechanical tests showed that PU electrospun scaffolds were not modified by the addition of CH. The mean stretch and mean water absorption increased significantly using the PU/CH scaffold, compared with the PU scaffold. However, the mean tensile strength and the mean contact angle, used to study space and porosity, did not differ between scaffolds. Fourier transform infrared spectroscopy confirmed the functional groups (-OH, -NH and -C=O) in the PU/CH scaffold, compared with PU or CH chemical structures alone. HA was then added to CH and PU/CH scaffolds to evaluate the growth of fibroblast cells. Results showed that cell viability and the number of cells, using MTT and trypan blue exclusion assay, respectively, increased significantly at 24, 48 and 72 hours of culture in PU/CH/HA scaffold compared to HA, CH/HA, and PU/HA. Moreover, PU/HA at 48 and 72 hours also increased cell viability and cell numbers compared to HA and CH/HA scaffolds. However, scaffolds at 72 hours had limited space for cell growth. Moreover, SEM data demonstrated that fibroblasts were able to proliferate, penetrate, migrate and survive on PU/HA and PU/CH/HA three-dimensional scaffolds, especially during the first 48 hours. Furthermore, 4',6-diamidino-2-phenylindole (DAPI) staining confirmed that fibroblasts could penetrate PU scaffolds and showed higher cell viability and lower cellular damage in PU/CH/HA, compared to CH/HA and PU/HA scaffolds. Finally, flow cytometry using CD90 and CD105 surface markers revealed that >90% of cells isolated from the human dermis were fibroblasts. CONCLUSION In summary, PU/HA and PU/CH/HA scaffolds were found to be biocompatible and provided a suitable environment for the growth and proliferation of fibroblasts, which filled and covered all pores between the fibres. The new scaffold used in this study, made of synthetic and natural polymers, is a good candidate for applications in tissue engineering. It is therefore recommended to use PU in grafts or in wound dressing.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Somayeh Rajabi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Kazem Zibara
- PRASE, DSST, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
315
|
He Q, Kusumi R, Kimura S, Kim UJ, Wada M. Cationic hydrogels prepared from regioselectively azidated (1→3)-α-d-glucan via crosslinking and amination: Physical and adsorption properties. Carbohydr Polym 2020; 245:116543. [PMID: 32718638 DOI: 10.1016/j.carbpol.2020.116543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/18/2020] [Accepted: 05/31/2020] [Indexed: 10/24/2022]
Abstract
Cationic hydrogels with amino groups were successfully prepared using (1→3)-α-d-glucan synthesized by glucosyltransferase J (GtfJ) cloned from Streptococcus salivarius through a three-step reaction: (i) Azido groups were regioselectively introduced at the C6 position of (1→3)-α-d-glucan by a bromination-azidation process (degree of substitution 0.94), (ii) Azido groups were partially crosslinked with 1,8-nonadiyne via a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, (iii) Azido groups that were unused for crosslinking were reduced to amino groups by sodium borohydride (NaBH4). The introduction of amino groups was confirmed quantitatively and qualitatively by elemental, Fourier transform infrared (FT-IR), and nuclear magnetic resonance (NMR) analyses. These cationic hydrogels showed a specific adsorption ability for bovine serum albumin (BSA) over a wide pH range of 4.5-8.0 due to their high pH values at the point of zero charge (pHpzc 8.80-8.92).
Collapse
Affiliation(s)
- Qinfeng He
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Ryosuke Kusumi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Satoshi Kimura
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan; Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| | - Ung-Jin Kim
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| | - Masahisa Wada
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan; Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| |
Collapse
|
316
|
Shahzadi L, Bashir M, Tehseen S, Zehra M, Mehmood A, Chaudhry AA, Rehman IU, Yar M. Thyroxine impregnated chitosan-based dressings stimulate angiogenesis and support fast wounds healing in rats: Potential clinical candidates. Int J Biol Macromol 2020; 160:296-306. [DOI: 10.1016/j.ijbiomac.2020.05.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
|
317
|
Vedovatto S, Facchini JC, Batista RK, Paim TC, Lionzo MIZ, Wink MR. Development of chitosan, gelatin and liposome film and analysis of its biocompatibility in vitro. Int J Biol Macromol 2020; 160:750-757. [PMID: 32479938 DOI: 10.1016/j.ijbiomac.2020.05.229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 01/16/2023]
Abstract
A film of chitosan, gelatin and liposome has been designed for dermatological applications. Several adaptations were required throughout development to facilitate in vitro analysis, physicochemical characterization and biocompatibility evaluation. The final version of the film was characterized by differential scanning calorimetry, evaluation of swelling and scanning electron microscopy. The biocompatibility of the film was assessed by investigating cellular parameters of three types of human cells by direct contact or through films extracts: I) primary culture of adipose-derived mesenchymal stromal cells (ADCSs) and melanoma cell lines were used to test cell adhesion and morphology by direct cell culture on the material; II) ADSCs and immortalized keratinocytes were used in cell viability assay using different films extracts. The film showed physicochemical characteristics that favored cellular input, being suitable for in vitro analysis, which allowed its biocompatible characteristics such as the absence of toxicity to be verified without causing significant morphological changes in ADSCs and melanoma cell line. Altogether, these results suggest that the material has a potential application for drug delivery and promotion of skin tissue repair and is therefore worthwhile for further investigations using preclinical models to cover dermal lesions.
Collapse
Affiliation(s)
- Samlai Vedovatto
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jordano C Facchini
- Laboratório de Farmacociências, Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Raquel K Batista
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Thaís C Paim
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Ismenia Z Lionzo
- Laboratório de Farmacociências, Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Márcia R Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
318
|
Ding H, Li B, Liu Z, Liu G, Pu S, Feng Y, Jia D, Zhou Y. Nonswelling injectable chitosan hydrogel via UV crosslinking induced hydrophobic effect for minimally invasive tissue engineering. Carbohydr Polym 2020; 252:117143. [PMID: 33183602 DOI: 10.1016/j.carbpol.2020.117143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023]
Abstract
Injectable chitosan hydrogels exhibit excellent biological properties for application in biomedical engineering, however most of these hydrogels have limited applicability because "Swelling" can induce volume expansion of conventional hydrogels implanted in the body damages the surrounding tissues. Here, we report a new "Nonswelling" pentenyl chitosan (PTL-CS) hydrogel via N‒acylation reaction to graft an UV crosslinkable short hydrophobic alkyl chain (n‒pentenyl groups). The incorporated pentenyl groups can be crosslinked by UV irradiation to form hydrophobic chains via combination termination, which generate strong hydrophobic effect to extrude the excess water in hydrogel, resulting in a "Nonswelling" state at biological temperature. Furthermore, the PTL-CS solution showed no cytotoxicity in vitro and minimally invasive treatment in vivo demonstrated the PTL-CS hydrogel no adverse effects in a rat model. The nonswelling injectable and UV crosslinkable chitosan hydrogel hold potential applications in smart biomaterials and biological engineering as well as providing a new natural hydrogel in minimally invasive tissue engineering..
Collapse
Affiliation(s)
- Haichang Ding
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Zonglin Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China.
| | - Yujie Feng
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment Institution, Harbin Institute of Technology, Harbin, 150001, PR China; Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, PR China
| |
Collapse
|
319
|
Montaser A, Rehan M, El-Senousy W, Zaghloul S. Designing strategy for coating cotton gauze fabrics and its application in wound healing. Carbohydr Polym 2020; 244:116479. [DOI: 10.1016/j.carbpol.2020.116479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
|
320
|
Zhao M, Zhou H, Chen L, Hao L, Chen H, Zhou X. Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide. Carbohydr Polym 2020; 243:116433. [DOI: 10.1016/j.carbpol.2020.116433] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/16/2020] [Accepted: 05/08/2020] [Indexed: 01/15/2023]
|
321
|
Moradi S, Barati A, Tonelli AE, Hamedi H. Effect of clinoptilolite on structure and drug release behavior of chitosan/thyme oil
γ‐Cyclodextrin
inclusion compound hydrogels. J Appl Polym Sci 2020. [DOI: 10.1002/app.49822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sara Moradi
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Markazi Iran
| | - Abolfazl Barati
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Markazi Iran
| | - Alan E. Tonelli
- Textile Engineering Chemistry and Science, Fiber and Polymer Science Program, College of Textiles North Carolina State University Raleigh North Carolina USA
| | - Hamid Hamedi
- Textile Engineering Chemistry and Science, Fiber and Polymer Science Program, College of Textiles North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
322
|
Chuysinuan P, Thanyacharoen T, Thongchai K, Techasakul S, Ummartyotin S. Preparation of chitosan/hydrolyzed collagen/hyaluronic acid based hydrogel composite with caffeic acid addition. Int J Biol Macromol 2020; 162:1937-1943. [PMID: 32827618 DOI: 10.1016/j.ijbiomac.2020.08.139] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
In this work, biopolymer hydrogels were synthesized by mixing hyaluronic acid, hydrolyzed collagen, and chitosan through a solvent evaporation method and incorporating them with caffeic acid as an antioxidant agent. The obtained caffeic acid-loaded chitosan/hydrolyzed collagen/hyaluronic acid hydrogels were characterized by X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. No significant change on structural and thermal properties was observed. Furthermore, scanning electron microscope reported that the surface morphology of the hydrogels was smooth, and no significant change in porosity was observed after the addition of hyaluronic acid. With high amount of hyaluronic acid, the swelling behaviour was superiority. The hydrogels showed an initial burst release of caffeic acid (~70%) within 60 min, followed by a gradual release of up to 80% by 480 min. The release was slightly higher with the presence of hyaluronic acid. In addition, DPPH, ABTS+, and FRAP assays revealed that the caffeic acid-loaded hyaluronic acid/hydrolyzed collagen/chitosan hydrogels exhibited antioxidant activity. Thus, these composites could potentially be used as dressing materials with antioxidant activity.
Collapse
Affiliation(s)
- Piyachat Chuysinuan
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54, Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand.
| | - Thanyaluck Thanyacharoen
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54, Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Kitiyaporn Thongchai
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, 99, Phahonyothin Road, Klong Nueng, Klong Luang, Patumtani 12120, Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54, Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, 99, Phahonyothin Road, Klong Nueng, Klong Luang, Patumtani 12120, Thailand.
| |
Collapse
|
323
|
Muller C, Berber E, Lutzweiler G, Ersen O, Bahri M, Lavalle P, Ball V, Vrana NE, Barthes J. Polyarginine Decorated Polydopamine Nanoparticles With Antimicrobial Properties for Functionalization of Hydrogels. Front Bioeng Biotechnol 2020; 8:982. [PMID: 32974312 PMCID: PMC7461895 DOI: 10.3389/fbioe.2020.00982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Polydopamine (PDA) nanoparticles are versatile structures that can be stabilized with proteins. In this study, we have demonstrated the feasibility of developing PDA/polypeptides complexes in the shape of nanoparticles. The polypeptide can also render the nanoparticle functional. Herein, we have developed antimicrobial nanoparticles with a narrow size distribution by decorating the polydopamine particles with a chain-length controlled antimicrobial agent Polyarginine (PAR). The obtained particles were 3.9 ± 1.7 nm in diameter and were not cytotoxic at 1:20 dilution and above. PAR-decorated nanoparticles have exhibited a strong antimicrobial activity against S. aureus, one of the most common pathogen involved in implant infections. The minimum inhibitory concentration is 5 times less than the cytotoxicity levels. Then, PAR-decorated nanoparticles have been incorporated into gelatin hydrogels used as a model of tissue engineering scaffolds. These nanoparticles have given hydrogels strong antimicrobial properties without affecting their stability and biocompatibility while improving their mechanical properties (modulus of increased storage). Decorated polydopamine nanoparticles can be a versatile tool for the functionalization of hydrogels in regenerative medicine applications by providing bioactive properties.
Collapse
Affiliation(s)
- Céline Muller
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
| | - Emine Berber
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
| | - Gaetan Lutzweiler
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron, Strasbourg, France
| | - Ovidiu Ersen
- IPCMS, Institut de Physique et de Chimie des Matériaux de Strasbourg, CNRS-UMRS 7504, Strasbourg, France
| | - Mounib Bahri
- IPCMS, Institut de Physique et de Chimie des Matériaux de Strasbourg, CNRS-UMRS 7504, Strasbourg, France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
| | - Vincent Ball
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Nihal E. Vrana
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
- Spartha Medical, Strasbourg, France
| | - Julien Barthes
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
| |
Collapse
|
324
|
Quesada HB, de Araújo TP, Vareschini DT, de Barros MASD, Gomes RG, Bergamasco R. Chitosan, alginate and other macromolecules as activated carbon immobilizing agents: A review on composite adsorbents for the removal of water contaminants. Int J Biol Macromol 2020; 164:2535-2549. [PMID: 32805286 DOI: 10.1016/j.ijbiomac.2020.08.118] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Activated carbon (AC) is widely used in water treatment, however, it has some technical disadvantages, such as its high cost and difficulty to recover. To overcome these drawbacks, AC particles have been encapsulated within a polymeric support, mainly chitosan and alginate-based. The use of these biological macromolecules results in composites with lower-cost, superior mechanical properties, and higher number of functional groups, advantages that have been attracted the attention of the scientific community. However, the number of publications is relatively low, demonstrating an important research gap yet to be investigated. Thus, this paper aims to review the recent studies concerning the use of chitosan, alginate and other macromolecules as AC immobilizing agents, describing the synthesis methods, characterization analyses and adsorption studies, focusing on the main advantages, disadvantages, gaps and future perspectives. Throughout the review it was verified that the composites were able to remove several water contaminants, mainly dyes and heavy metals, with high efficiency. Synergistic effects were detected, indicating the role of both polymers and AC, which increased the spectrum of contaminants capable of being adsorbed. Finally, it was observed a gap in column experiments, suggesting that future studies are essential to elucidate the applications in the industrial perspective.
Collapse
Affiliation(s)
- Heloise Beatriz Quesada
- State University of Maringa, Department of Chemical Engineering, Maringa 87020-900, Parana, Brazil
| | - Thiago Peixoto de Araújo
- State University of Maringa, Department of Chemical Engineering, Maringa 87020-900, Parana, Brazil.
| | - Daniel Tait Vareschini
- State University of Maringa, Department of Chemical Engineering, Maringa 87020-900, Parana, Brazil.
| | | | - Raquel Guttierres Gomes
- State University of Maringa, Department of Food Engineering, Maringa 87020-900, Parana, Brazil
| | - Rosângela Bergamasco
- State University of Maringa, Department of Chemical Engineering, Maringa 87020-900, Parana, Brazil.
| |
Collapse
|
325
|
Ren T, Gan J, Zhou L, Chen H. Physically Crosslinked Hydrogels Based on Poly (Vinyl Alcohol) and Fish Gelatin for Wound Dressing Application: Fabrication and Characterization. Polymers (Basel) 2020; 12:E1729. [PMID: 32748896 PMCID: PMC7465127 DOI: 10.3390/polym12081729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
We developed the interpenetrating double network composite hydrogel based on poly (vinyl alcohol) (PVA) and fish gelatin (FG) via thermal treatment and repeated freeze-thawing. A function of salicylic acid was incorporated into the hydrogel to improve its antibacterial properties. The color values, water contents, water evaporation rate, and swelling behavior were investigated. The drug-loading performance of the composite hydrogel was demonstrated by loading salicylic acid in various hydrogel systems. Moreover, the cumulative dissolution percentage of salicylic acid and the antibacterial activity of composite hydrogel were carried out. The results revealed that as FG concentration increased from 0% to 3.75% (w/v), gels changed from white to slight yellow and the swelling ratio increased from 54% to 83% (within 8 h). The presence of FG decreased the water content of gels which ranged from 86% to 89% and also decreased water evaporation rate. All gels presented the swelling index within 0.5-1.0, indicating a non-Fickian diffusion mechanism. The drug sustained dissolution behavior of pure PVA and composite hydrogel showed the same trend. Besides, the presence of the obvious bacteriostatic zones means that drug-loaded composite hydrogels have an effective antibacterial property. These results demonstrated that PVA/FG-based interpenetrating hydrogel is an appropriate biomaterial for drug-carrying wound dressing application.
Collapse
Affiliation(s)
- Teng Ren
- Marine College, Shandong University, Wenhua West Road, Gao Strict, Weihai 264209, China; (T.R.); (L.Z.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gan
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Liping Zhou
- Marine College, Shandong University, Wenhua West Road, Gao Strict, Weihai 264209, China; (T.R.); (L.Z.)
| | - Hao Chen
- Marine College, Shandong University, Wenhua West Road, Gao Strict, Weihai 264209, China; (T.R.); (L.Z.)
| |
Collapse
|
326
|
Facile preparation of self-assembled chitosan-based composite hydrogels with enhanced adsorption performances. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
327
|
Development of inter-polymeric complex of anionic polysaccharides, alginate/k-carrageenan bio-platform for burn dressing. Int J Biol Macromol 2020; 157:83-95. [DOI: 10.1016/j.ijbiomac.2020.04.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
|
328
|
Sun X, Ma C, Gong W, Ma Y, Ding Y, Liu L. Biological properties of sulfanilamide-loaded alginate hydrogel fibers based on ionic and chemical crosslinking for wound dressings. Int J Biol Macromol 2020; 157:522-529. [DOI: 10.1016/j.ijbiomac.2020.04.210] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
|
329
|
Richa, Roy Choudhury A. pH mediated rheological modulation of chitosan hydrogels. Int J Biol Macromol 2020; 156:591-597. [PMID: 32289416 DOI: 10.1016/j.ijbiomac.2020.04.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
Chitosan (CS) hydrogels are used widely for multifarious applications in diverse fields due to the property of pH responsiveness. This study aims to explain the sensitivity of CS hydrogels to alteration in pH due to change in the concentration of acetic acid, which is a solvent for CS. Studies on changes in rheological properties in this regard are still scarce. The present study evaluated the change in rheological properties of the CS hydrogels by studying the flow behaviour, creep recovery and thixotropic property. The obtained data were used to fit mathematical models, like power law model and Herschel-Bulkley model to gain a vivid understanding of the rheological properties of CS hydrogel. Overall analyses revealed that the CS hydrogels, irrespective of the pH, were highly elastic in nature and exhibited significant creep recovery. However, the steady flow behaviour and thixotropy varied substantially with variation in pH.
Collapse
Affiliation(s)
- Richa
- Biochemical Engineering Research & Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector 39A, Chandigarh 160036, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector 39A, Chandigarh 160036, India.
| |
Collapse
|
330
|
Zhong Y, Xiao H, Seidi F, Jin Y. Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules 2020; 21:2983-3006. [PMID: 32672446 DOI: 10.1021/acs.biomac.0c00760] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wound healing is usually accompanied by bacterial infection. The excessive use of synthetic antibiotics leads to drug resistance, posing a significant threat to human health. Hydrogel-based wound dressings aimed at mitigating bacterial infections have emerged as an effective wound treatment. The review presented herein particularly focuses on the hydrogels originating from natural polymers. To further enhance the performance of wound dressings, various strategies and approaches have been developed to endow the hydrogels with excellent broad-spectrum antibacterial activity. Those that are summarized in the current review are the hydrogels with intrinsic or stimuli-triggered bactericidal properties and others that serve as vehicles for loading antibacterial agents without synthetic antibiotics. Specific attention is paid to antimicrobial mechanisms and the antibacterial performance of hydrogels. Practical antibacterial applications to accelerate the wound healing employing these antibiotic-free hydrogels are also introduced along with the discussion on the current challenges and perspectives leading to new technologies.
Collapse
Affiliation(s)
- Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
331
|
Lopez-Carrizales M, Mendoza-Mendoza E, Peralta-Rodriguez RD, Pérez-Díaz MA, Portales-Pérez D, Magaña-Aquino M, Aragón-Piña A, Infante-Martínez R, Barriga-Castro ED, Sánchez-Sánchez R, Martinez-Castañon GA, Martinez-Gutierrez F. Characterization, antibiofilm and biocompatibility properties of chitosan hydrogels loaded with silver nanoparticles and ampicillin: an alternative protection to central venous catheters. Colloids Surf B Biointerfaces 2020; 196:111292. [PMID: 32777661 DOI: 10.1016/j.colsurfb.2020.111292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to generate novel chitosan hydrogels (CHs) loaded with silver nanoparticles (AgNPs) and ampicillin (AMP) to prevent early formation of biofilms. AgNPs and CHs were characterized by UV-Vis, DLS, TEM, rheology, FT-IR, Raman, and SEM. The antibiofilm effect of the formulations was investigated against four multidrug-resistant and extensively drug-resistant pathogens using a colony biofilm, a high cell density and gradients model. Also, their hemostatic properties and cytotoxic effect were evaluated. Rheology results showed that CHs with AgNPs and AMP are typical non-Newtonian pseudoplastic fluids. The CH with 25 ppm of AgNPs and 50 ppm AMP inhibited the formation of biofilms of Acinetobacter baumannii, Enterococcus faecium and Staphylococcus epidermidis, while a ten-fold increase of the antimicrobial's concentration was needed to inhibit the biofilm of the β-lactamase positive Enterobacter cloacae. Further, CH with 250 ppm of AgNPs and 500 ppm AMP showed anticoagulant effect, and it was shown that all formulations were biocompatible. Besides to previous reports that described the bioadhesion properties of chitosan, these results suggest that AgNPs and AMP CHs loaded could be used as prophylactic treatment in patients with central venous catheter (CVC), inhibiting the formation of biofilms in their early stages, in addition to their anticoagulant effect and biocompatibility, those properties could keep the functionality of CVC helping to prevent complications such as sepsis and thrombosis.
Collapse
Affiliation(s)
- Montserrat Lopez-Carrizales
- Posgrado en Ciencias Farmacobiológicas, Facultad de Ciencias Químicas (FCQ), Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Esmeralda Mendoza-Mendoza
- Centro de Investigación y Estudios de Posgrado, FCQ, UASLP, Av. Dr. Manuel Nava No.6, Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico; Cátedras-CONACYT, Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, UASLP, Sierra Leona No. 550, Lomas, CP 28210, San Luis Potosí, S.L.P., Mexico
| | - René D Peralta-Rodriguez
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, CP 25294, Saltillo, Coahuila, Mexico
| | - Mario A Pérez-Díaz
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco 289, Arenal Tepepan, CP 14389, Ciudad de México, Mexico; Laboratorio de Biomembranas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, CP 11340, Ciudad de México, Mexico
| | - Diana Portales-Pérez
- Posgrado en Ciencias Farmacobiológicas, Facultad de Ciencias Químicas (FCQ), Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Martín Magaña-Aquino
- Hospital Central Dr. Ignacio Morones Prieto, Av. Venustiano Carranza No. 2395, CP 78290, San Luis Potosí, S.L.P., Mexico
| | - Antonio Aragón-Piña
- Instituto de Metalurgia, UASLP, Av. Sierra Leona No. 550, Lomas 2ª sección, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Ramiro Infante-Martínez
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, CP 25294, Saltillo, Coahuila, Mexico
| | - Enrique D Barriga-Castro
- Departamento de Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, CP 25294, Saltillo, Coahuila, Mexico
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco 289, Arenal Tepepan, CP 14389, Ciudad de México, Mexico
| | - Gabriel A Martinez-Castañon
- Laboratorio de Nanobiomateriales, Facultad de Estomatología, UASLP, Av. Dr. Manuel Nava No. 2 Zona Universitaria, CP 78290, San Luis Potosí, S.L.P., Mexico
| | - Fidel Martinez-Gutierrez
- Posgrado en Ciencias Farmacobiológicas, Facultad de Ciencias Químicas (FCQ), Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6 Zona Universitaria, CP 78210, San Luis Potosí, S.L.P., Mexico; Centro de Investigación en Ciencias de la Salud y Biomedicina, UASLP, Sierra Leona No. 550, Lomas, CP 28210, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
332
|
Popescu R, Ghica MV, Dinu-Pîrvu CE, Anuța V, Lupuliasa D, Popa L. New Opportunity to Formulate Intranasal Vaccines and Drug Delivery Systems Based on Chitosan. Int J Mol Sci 2020; 21:ijms21145016. [PMID: 32708704 PMCID: PMC7404068 DOI: 10.3390/ijms21145016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
In an attempt to develop drug delivery systems that bypass the blood–brain barrier (BBB) and prevent liver and intestinal degradation, it was concluded that nasal medication meets these criteria and can be used for drugs that have these drawbacks. The aim of this review is to present the influence of the properties of chitosan and its derivatives (mucoadhesion, permeability enhancement, surface tension, and zeta potential) on the development of suitable nasal drug delivery systems and on the nasal bioavailability of various active pharmaceutical ingredients. Interactions between chitosan and proteins, lipids, antigens, and other molecules lead to complexes that have their own applications or to changing characteristics of the substances involved in the bond (conformational changes, increased stability or solubility, etc.). Chitosan and its derivatives have their own actions (antibacterial, antifungal, immunostimulant, antioxidant, etc.) and can be used as such or in combination with other molecules from the same class to achieve a synergistic effect. The applicability of the properties is set out in the second part of the paper, where nasal formulations based on chitosan are described (vaccines, hydrogels, nanoparticles, nanostructured lipid carriers (NLC), powders, emulsions, etc.).
Collapse
Affiliation(s)
- Roxana Popescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
- Correspondence:
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy ”Carol Davila”, 020956 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| |
Collapse
|
333
|
Schneible JD, Young AT, Daniele MA, Menegatti S. Chitosan Hydrogels for Synergistic Delivery of Chemotherapeutics to Triple Negative Breast Cancer Cells and Spheroids. Pharm Res 2020; 37:142. [PMID: 32661774 PMCID: PMC7983306 DOI: 10.1007/s11095-020-02864-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE This study aimed to develop a hydrogel system for treating aggressive triple negative breast cancer (TNBC) via kinetically-controlled delivery of the synergistic drug pair doxorubicin (DOX) and gemcitabine (GEM). A 2D assay was adopted to evaluate therapeutic efficacy by determining combination index (CI), and a 3D assay using cancer spheroids was implemented to assess the potential for translation in vivo. METHODS The release of DOX and GEM from an acetylated-chitosan (ACS, degree of acetylation χAc = 40 ± 5%) was characterized to identify a combined drug loading that affords release kinetics and dose that are therapeutically synergistic. The selected DOX/GEM-ACS formulation was evaluated in vitro with 2-D and 3-D models of TNBC to determine the combination index (CI) and the tumor volume reduction, respectively. RESULTS Therapeutically desired release dosages and kinetics of GEM and DOX were achieved. When evaluated with a 2-D model of TNBC, the hydrogel afforded a CI of 0.14, indicating a stronger synergism than concurrent administration of DOX and GEM (CI = 0.23). Finally, the therapeutic hydrogel accomplished a notable volume reduction of the cancer spheroids (up to 30%), whereas the corresponding dosages of free drugs only reduced growth rate. CONCLUSIONS The ACS hydrogel delivery system accomplishes drug release kinetics and molar ratio that affords strong therapeutically synergism. These results, in combination with the choice of ACS as affordable and highly abundant source material, provide a strong pre-clinical demonstration of the potential of the proposed system for complementing surgical resection of aggressive solid tumors.
Collapse
Affiliation(s)
- John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA
| | - M A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA.
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina, USA.
| | - S Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
- Biomanufacturing Training and Education Center, North Carolina State University, 850 Oval Dr, Raleigh, North Carolina, USA.
| |
Collapse
|
334
|
Physicochemical Investigations of Chitosan-Based Hydrogels Containing Aloe Vera Designed for Biomedical Use. MATERIALS 2020; 13:ma13143073. [PMID: 32660077 PMCID: PMC7412484 DOI: 10.3390/ma13143073] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
In this work, synthesis and investigations on chitosan-based hydrogels modified with Aloe vera juice are presented. These materials were synthesized by UV radiation. Investigations involved analysis of chemical structure by FTIR spectroscopy, sorption properties in physiological liquids, strength properties by texture analyzer, surface topography by Atomic Force Microscopy (AFM technique), and in vitro cytotoxicity by MTT test using L929 murine fibroblasts. Particular attention was focused both on determining the impact of the amount and the molecular weight of the crosslinker used for the synthesis as well as on the introduced additive on the properties of hydrogels. It was proven that modified hydrogels exhibited higher swelling ability. Introduced additive affected the tensile strength of hydrogels—modified materials showed 23% higher elongation. The greater amount of the crosslinker used in the synthesis, the more compact the structure, leading to the lower elasticity and lower sorption of hydrogels was reported. Above 95%, murine fibroblasts remained viable after 24 h incubation with hydrogels. It indicates that tested materials did not exhibit cytotoxicity toward these lines. Additionally, materials with Aloe vera juice were characterized by lower surface roughness. Conducted investigations allowed us to state that such modified hydrogels may be considered as useful for biomedical purposes.
Collapse
|
335
|
A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances. Carbohydr Polym 2020; 247:116743. [PMID: 32829862 DOI: 10.1016/j.carbpol.2020.116743] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Tough and conductive hydrogels are promising materials for various applications. However, it remains a great challenge to develop an integrated hydrogel combining outstanding mechanical, conductive, and self-healing performances. Herein, we prepared a conductive, self-healing, and tough hydrogel by constructing synergistic multiple interaction among montmorillonite (MMT), Poly (acrylamide-co-acrylonitrile) (P(AAm-co-AN)), xanthan gum (XG) and ferric ion (Fe3+). The obtained xanthan gum/montmorillonite/Poly (acrylamide-co-acrylonitrile) (XG/MMT/PAAm) hydrogels showed high strain stress (0.48 MPa) and compressive stress (5.9 MPa) as well as good shape recovery after multiple loading-unloading cycle tests. Moreover, the XG/MMT/PAAm hydrogels have distinctive features such as remarkable resistance to fatigue and harsh environments, insensitivity to notch, conductive, biocompatible, pH-dependent swelling behaviors and self-healing. Therefore, the as-fabricated hydrogel delivers a new prospect for its applications in various fields, such as flexible conductive device and tissue engineering.
Collapse
|
336
|
Chang YH, Tseng CC, Chao CY, Chen CH, Lin SY, Du JK. Mg-Zn-Ca Alloys for Hemostasis Clips for Vessel Ligation: In Vitro and In Vivo Studies of Their Degradation and Response. MATERIALS 2020; 13:ma13133039. [PMID: 32646030 PMCID: PMC7372433 DOI: 10.3390/ma13133039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 01/02/2023]
Abstract
To control the degradation rate of magnesium (Mg) alloys, chitosan (CHI) and L-glutamic acid (LGA) were used as coatings on Mg-Zn-Ca alloys via dip coating. In this study, either two or seven CHI/LGA layers were applied as a coating on Mg-2.8Zn-0.8Ca alloy (ZX31) and Mg-2.8Zn-0.8Ca hemostasis clips (ZX31 clips). The morphologies, compositions, and surface roughness of the specimens were characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, and surface measurement devices. The degradation rates and behavior of the specimens were evaluated by immersing them in simulated body fluids and by applying these ZX31 clips on rabbits’ uterine tubes for five weeks. The specimen with seven layers (ZX31(CHI/LGA)7) exhibited improved corrosion behavior when compared with ZX31 or ZX31(CHI/LGA)2, with a reduced degradation rate of the Mg alloy in a simulated body environment. In vivo experiments showed that ZX31 clips exhibited good biocompatibilities in each group but could not maintain the clamping function for five weeks. The weight loss of ZX31(CHI/LGA)7 was significantly lower than that of the other groups. Consequently, it was verified that CHI can be used as a protective layer on a magnesium alloy surface via in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Yen-Hao Chang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chun Chieh Tseng
- Combination Medical Device Technology Division, Medical Devices and Opto-Electronics Equipment Department, Metal Industries Research & Development Centre, Lujhu Township, Kaohsiung 82151, Taiwan;
| | - Chih-Yeh Chao
- Department of Mechanical Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chung-Hwan Chen
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-Y.L.)
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sung-Yen Lin
- Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-H.C.); (S.-Y.L.)
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Je-Kang Du
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
337
|
Effect of Celox® Powder on Initial Hemostasis After Cardiac Catheterization in Pediatric Patients with Congenital Heart Disease: A Prospective Study. IRANIAN JOURNAL OF PEDIATRICS 2020. [DOI: 10.5812/ijp.95784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Ordinary pressure dressing for hemostasis after cardiac catheterization is time consuming and might cause some problems, such as pain or loss of blood, which has to be controlled, particularly in pediatric patient. Using Celox® (chitosan) powder dressing might cause quicker initial hemostasis. Methods: In this prospective study, we assessed Celox® powder among patients in hospitals affiliated with Shiraz University of Medical Sciences, from November 2017 to February 2018. The patients were stratified in two groups. The case group included patients for whom Celox® powder was used along with sterile gauze pressure at the puncture site to achieve hemostasis, and the control group those in whom hemostasis was achieved by standard sterile gauze pressure method. Results: Sixty patients under 16 years of age with congenital heart diseases were evaluated and underwent cardiac catheterization. We stratified the patients in two groups called case (30 patients) and control group (30 patients). Considering both arterial and venous initial hemostasis, in the case group, the minimum and maximum, median and mean coagulation time were less than those in the control group; however, the initial hemostasis was statistically significant only in venipuncture site. Also, the venous coagulation time was shorter among the patients weighing less than 10 kilograms in comparison to those with higher weight. In the case group, using Celox® stirred hemostasis toward the lower percentiles, but based on 50th percentile, the distribution in each group was identical. Conclusions: Celox® powder dressing in children led to reduced coagulation time in venipuncture site, and we might recommend utilizing this type of dressing for venous hemostasis in children after venipuncture.
Collapse
|
338
|
Keshavarz AH, Montazer M, Soleimani N. In situ synthesis of polyamidoamine/β-cyclodextrin/silver nanocomposites on polyester fabric tailoring drug delivery and antimicrobial properties. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
339
|
El Hariri El Nokab M, van der Wel PC. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydr Polym 2020; 240:116276. [DOI: 10.1016/j.carbpol.2020.116276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/22/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
|
340
|
Wang F, Zhang Q, Huang K, Li J, Wang K, Zhang K, Tang X. Preparation and characterization of carboxymethyl cellulose containing quaternized chitosan for potential drug carrier. Int J Biol Macromol 2020; 154:1392-1399. [DOI: 10.1016/j.ijbiomac.2019.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
|
341
|
Duceac IA, Verestiuc L, Dimitriu CD, Maier V, Coseri S. Design and Preparation of New Multifunctional Hydrogels Based on Chitosan/Acrylic Polymers for Drug Delivery and Wound Dressing Applications. Polymers (Basel) 2020; 12:E1473. [PMID: 32630040 PMCID: PMC7407571 DOI: 10.3390/polym12071473] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
The dynamic evolution of materials with medical applications, particularly for drug delivery and wound dressing applications, gives impetus to design new proposed materials, among which, hydrogels represent a promising, powerful tool. In this context, multifunctional hydrogels have been obtained from chemically modified chitosan and acrylic polymers as cross-linkers, followed by subsequent conjugation with arginine. The hydrogels were finely tuned considering the variation of the synthetic monomer and the preparation conditions. The advantage of using both natural and synthetic polymers allowed porous networks with superabsorbent behavior, associated with a non-Fickian swelling mechanism. The in vitro release profiles for ibuprofen and the corresponding kinetics were studied, and the results revealed a swelling-controlled release. The biodegradability studies in the presence of lysozyme, along with the hemostatic evaluation and the induced fibroblast and stem cell proliferation, have shown that the prepared hydrogels exhibit characteristics that make them suitable for local drug delivery and wound dressing.
Collapse
Affiliation(s)
- Ioana A. Duceac
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania;
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13 M. Kogalniceanu Street, 700454 Iasi, Romania
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13 M. Kogalniceanu Street, 700454 Iasi, Romania
| | - Cristina D. Dimitriu
- Department of Morpho-Functional Sciences, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Vasilica Maier
- Department of Textiles and Leather Chemical Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Sergiu Coseri
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania;
| |
Collapse
|
342
|
Stoica AE, Chircov C, Grumezescu AM. Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2853. [PMID: 32630503 PMCID: PMC7345019 DOI: 10.3390/ma13122853] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Globally, the fourth most prevalent devastating form of trauma are burn injuries. Ideal burn wound dressings are fundamental to facilitate the wound healing process and decrease pain in lower time intervals. Conventional dry dressing treatments, such as those using absorbent gauze and/or absorbent cotton, possess limited therapeutic effects and require repeated dressing changes, which further aggravate patients' suffering. Contrariwise, hydrogels represent a promising alternative to improve healing by assuring a moisture balance at the burn site. Most studies consider hydrogels as ideal candidate materials for the synthesis of wound dressings because they exhibit a three-dimensional (3D) structure, which mimics the natural extracellular matrix (ECM) of skin in regard to the high-water amount, which assures a moist environment to the wound. There is a wide variety of polymers that have been used, either alone or blended, for the fabrication of hydrogels designed for biomedical applications focusing on treating burn injuries. The aim of this paper is to provide an up-to-date overview of hydrogels applied in burn wound dressings.
Collapse
Affiliation(s)
| | | | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.E.S.); (C.C.)
| |
Collapse
|
343
|
Mussel-inspired antimicrobial gelatin/chitosan tissue adhesive rapidly activated in situ by H 2O 2/ascorbic acid for infected wound closure. Carbohydr Polym 2020; 247:116692. [PMID: 32829820 DOI: 10.1016/j.carbpol.2020.116692] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/16/2020] [Accepted: 06/24/2020] [Indexed: 02/05/2023]
Abstract
The development of minimally invasive surgery has created a demand for ideal medical adhesives exhibiting biocompatibility, biodegradability, antimicrobial activity, and strong adhesion to tissues in wet environments. However, as clinically approved surgical tissue glues suffer from poor adhesion activation, limited adhesion strength, and toxicity, novel tissue glues are highly sought after. Herein, a mussel-inspired injectable hydrogel was prepared from catechol- and methacrylate-modified chitosan/gelatin and shown to exhibit biocompatibility, inherent antimicrobial activity, and good adhesion to wet tissues. Moreover, as this gel could be applied onto tissue surfaces and cured in situ within seconds of body contact by a biocompatible and multifunctional redox initiator (H2O2-ascorbic acid), it was concluded to be a promising surgical sealant and wound dressing (even for infected wounds) accelerating wound healing.
Collapse
|
344
|
Ji H, Song X, Cheng H, Luo L, Huang J, He C, Yin J, Zhao W, Qiu L, Zhao C. Biocompatible In Situ Polymerization of Multipurpose Polyacrylamide-Based Hydrogels on Skin via Silver Ion Catalyzation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31079-31089. [PMID: 32571008 DOI: 10.1021/acsami.0c02495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Xin Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Huitong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Longbo Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jianbo Huang
- Department of Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, People’s Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jiarui Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Li Qiu
- Department of Ultrasound, West China Hospital of Sichuan University, No.37 Guo Xue Xiang, Chengdu 610041, People’s Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
345
|
Nešović K, Mišković‐Stanković V. A comprehensive review of the polymer‐based hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katarina Nešović
- Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | | |
Collapse
|
346
|
Wu L, Lu X, Morrow BR, Li F, Hong L. Synthesis and Evaluation of Chitosan‐Heparin‐Minocycline Composite Membranes for Potential Antibacterial Applications. STARCH-STARKE 2020. [DOI: 10.1002/star.201900254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Linfeng Wu
- College of DentistryUniversity of Tennessee Health Science Center Memphis TN 38163 USA
| | - Xiao Lu
- College of DentistryUniversity of Tennessee Health Science Center Memphis TN 38163 USA
- Department of PsychologyUniversity of Toronto 100 St. George Street, Sidney Smith Hall Toronto ON M5S 3G3 Canada
| | - Brian R. Morrow
- College of DentistryUniversity of Tennessee Health Science Center Memphis TN 38163 USA
| | - Feng Li
- Harrison School of PharmacyAuburn University Auburn AL 36849 USA
| | - Liang Hong
- College of DentistryUniversity of Tennessee Health Science Center Memphis TN 38163 USA
| |
Collapse
|
347
|
Liao J, Huang H. Review on Magnetic Natural Polymer Constructed Hydrogels as Vehicles for Drug Delivery. Biomacromolecules 2020; 21:2574-2594. [DOI: 10.1021/acs.biomac.0c00566] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
348
|
Fox CS, Berry HA, Pedigo S. Development and Characterization of Calmodulin-Based Copolymeric Hydrogels. Biomacromolecules 2020; 21:2073-2086. [PMID: 32320226 DOI: 10.1021/acs.biomac.0c00043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, there has been growing interest in harnessing genetically engineered polymers to develop responsive biomaterials, such as hydrogels. Unlike their synthetic counterparts, genetically engineered polymers are produced without the use of toxic reagents and can easily be programmed to incorporate desirable hydrogel properties, including bioactivity, biodegradability, and monodispersity. Herein, we report the development of a copolymeric hydrogel that is based on the calcium-dependent protein, calmodulin (CaM). For our system, CaM and M13, a CaM-binding peptide, were incorporated into genetically engineered polymers with intervening linkers containing cleavable sequences. Spectroscopic and multiple-particle tracking (MPT) studies demonstrate that these polymers self-assemble through calcium-stabilized, noncovalent crosslinking to form a soft viscoelastic material. MPT further revealed that gelation is concentration-dependent. Collagenase digests show that the protein polymers are selectively degraded through specific cleavage. The modularity and stimuli-responsiveness of this system suggest its potential as a flexible scaffold for biomedical applications.
Collapse
Affiliation(s)
- Christopher S Fox
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Hunter A Berry
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Susan Pedigo
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
349
|
Maschmeyer T, Luque R, Selva M. Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials. Chem Soc Rev 2020; 49:4527-4563. [PMID: 32510068 DOI: 10.1039/c9cs00653b] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Currently, the Earth is subjected to environmental pressure of unprecedented proportions in the history of mankind. The inexorable growth of the global population and the establishment of large urban areas with increasingly higher expectations regarding the quality of life are issues demanding radically new strategies aimed to change the current model, which is still mostly based on linear economy approaches and fossil resources towards innovative standards, where both energy and daily use products and materials should be of renewable origin and 'made to be made again'. These concepts have inspired the circular economy vision, which redefines growth through the continuous valorisation of waste generated by any production or activity in a virtuous cycle. This not only has a positive impact on the environment, but builds long-term resilience, generating business, new technologies, livelihoods and jobs. In this scenario, among the discards of anthropogenic activities, biodegradable waste represents one of the largest and highly heterogeneous portions, which includes garden and park waste, food processing and kitchen waste from households, restaurants, caterers and retail premises, and food plants, domestic and sewage waste, manure, food waste, and residues from forestry, agriculture and fisheries. Thus, this review specifically aims to survey the processes and technologies for the recovery of fish waste and its sustainable conversion to high added-value molecules and bio(nano)materials.
Collapse
Affiliation(s)
- Thomas Maschmeyer
- F11 - School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Rafael Luque
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, P. R. China
| | - Maurizio Selva
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino, 155 - 30175 - Venezia Mestre, Italy.
| |
Collapse
|
350
|
More N, Ranglani D, Kharche S, Kapusetti G. Electrospun mat of thermal‐treatment‐induced nanocomposite hydrogel of polyvinyl alcohol and cerium oxide for biomedical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Namdev More
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Deepak Ranglani
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Shubham Kharche
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Govinda Kapusetti
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| |
Collapse
|