301
|
Le RK, Das P, Mahan KM, Anderson SA, Wells T, Yuan JS, Ragauskas AJ. Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus. AMB Express 2017; 7:185. [PMID: 28963644 PMCID: PMC5622019 DOI: 10.1186/s13568-017-0484-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 11/21/2022] Open
Abstract
Use of oleaginous microorganisms as "micro-factories" for accumulation of single cell oils for biofuel production has increased significantly to mitigate growing energy demands, resulting in efforts to upgrade industrial waste, such as second-generation lignocellulosic residues, into potential feedstocks. Dilute-acid pretreatment (DAP) is commonly used to alter the physicochemical properties of lignocellulosic materials and is typically coupled with simultaneous saccharification and fermentation (SSF) for conversion of sugars into ethanol. The resulting DAP residues are usually processed as a waste stream, e.g. burned for power, but this provides minimal value. Alternatively, these wastes can be utilized as feedstock to generate lipids, which can be converted to biofuel. DAP-SSF residues were generated from pine, poplar, and switchgrass. High performance liquid chromatography revealed less than 0.13% monomeric sugars in the dry residue. Fourier transform infrared spectroscopy was indicative of the presence of lignin and polysaccharides. Gel permeation chromatography suggested the bacterial strains preferred molecules with molecular weight ~ 400-500 g/mol. DAP-SSF residues were used as the sole carbon source for lipid production by Rhodococcus opacus DSM 1069 and PD630 in batch fermentations. Depending on the strain of Rhodococcus employed, 9-11 lipids for PD630 and DSM 1069 were observed, at a final concentration of ~ 15 mg/L fatty acid methyl esters (FAME) detected. Though the DAP-SSF substrate resulted in low FAME titers, novel analysis of solid-state fermentations was investigated, which determined that DAP-SSF residues could be a viable feedstock for lipid generation.
Collapse
Affiliation(s)
- Rosemary K. Le
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Parthapratim Das
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Kristina M. Mahan
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Seth A. Anderson
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Tyrone Wells
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Joshua S. Yuan
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843 USA
| | - Arthur J. Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
302
|
Larragoiti-Kuri J, Rivera-Toledo M, Cocho-Roldán J, Maldonado-Ruiz Esparza K, Le Borgne S, Pedraza-Segura L. Convenient Product Distribution for a Lignocellulosic Biorefinery: Optimization through Sustainable Indexes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javier Larragoiti-Kuri
- Ingeniería
y Ciencias QuímicasUniversidad Autónoma Metropolitana Cuajimalpa, 01120 México City, Mexico
| | - Martín Rivera-Toledo
- Ingeniería
y Ciencias QuímicasUniversidad Autónoma Metropolitana Cuajimalpa, 01120 México City, Mexico
| | - José Cocho-Roldán
- Ingeniería
y Ciencias QuímicasUniversidad Autónoma Metropolitana Cuajimalpa, 01120 México City, Mexico
| | | | - Sylvie Le Borgne
- Chemical
Sciences and Engineering, Universidad Iberoamericana, 01219 México
City, Mexico
| | - Lorena Pedraza-Segura
- Ingeniería
y Ciencias QuímicasUniversidad Autónoma Metropolitana Cuajimalpa, 01120 México City, Mexico
| |
Collapse
|
303
|
|
304
|
Habib MHM, Deuss PJ, Lončar N, Trajkovic M, Fraaije MW. A Biocatalytic One-Pot Approach for the Preparation of Lignin Oligomers Using an Oxidase/Peroxidase Cascade Enzyme System. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Mohamed H. M. Habib
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Microbiology and Immunology, Faculty of Pharmacy; Cairo University; Kasr El-Aini Cairo 11562 Egypt
| | - Peter J. Deuss
- Department of Chemical Engineering (ENTEG); University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Nikola Lončar
- GECCO (Groningen Enzyme and Cofactor Collection); University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
305
|
Czajka J, Wang Q, Wang Y, Tang YJ. Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms. Appl Microbiol Biotechnol 2017; 101:7427-7434. [PMID: 28884354 DOI: 10.1007/s00253-017-8489-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 11/25/2022]
Abstract
Genetically modified microbes have had much industrial success producing protein-based products (such as antibodies and enzymes). However, engineering microbial workhorses for biomanufacturing of commodity compounds remains challenging. First, microbes cannot afford burdens with both overexpression of multiple enzymes and metabolite drainage for product synthesis. Second, synthetic circuits and introduced heterologous pathways are not yet as "robust and reliable" as native pathways due to hosts' innate regulations, especially under suboptimal fermentation conditions. Third, engineered enzymes may lack channeling capabilities for cascade-like transport of metabolites to overcome diffusion barriers or to avoid intermediate toxicity in the cytoplasmic environment. Fourth, moving engineered hosts from laboratory to industry is unreliable because genetic mutations and non-genetic cell-to-cell variations impair the large-scale fermentation outcomes. Therefore, synthetic biology strains often have unsatisfactory industrial performance (titer/yield/productivity). To overcome these problems, many different species are being explored for their metabolic strengths that can be leveraged to synthesize specific compounds. Here, we provide examples of non-conventional and genetically amenable species for industrial manufacturing, including the following: Corynebacterium glutamicum for its TCA cycle-derived biosynthesis, Yarrowia lipolytica for its biosynthesis of fatty acids and carotenoids, cyanobacteria for photosynthetic production from its sugar phosphate pathways, and Rhodococcus for its ability to biotransform recalcitrant feedstock. Finally, we discuss emerging technologies (e.g., genome-to-phenome mapping, single cell methods, and knowledge engineering) that may facilitate the development of novel cell factories.
Collapse
Affiliation(s)
- Jeffrey Czajka
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Yechun Wang
- Arch Innotek, LLC, 4320 Forest Park Ave, St Louis, MO, 63108, USA.
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA.
| |
Collapse
|
306
|
Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J Biotechnol 2017; 257:211-221. [DOI: 10.1016/j.jbiotec.2016.11.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/17/2023]
|
307
|
Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds. Appl Environ Microbiol 2017; 83:AEM.01313-17. [PMID: 28733280 DOI: 10.1128/aem.01313-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022] Open
Abstract
The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. While Escherichia coli has been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineered E. coli to catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway from Pseudomonas putida KT2440. We next used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics.IMPORTANCE Lignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. Constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. We constructed and optimized one such pathway in E. coli to enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways.
Collapse
|
308
|
Tian JH, Pourcher AM, Bize A, Wazeri A, Peu P. Impact of wet aerobic pretreatments on cellulose accessibility and bacterial communities in rape straw. BIORESOURCE TECHNOLOGY 2017; 237:31-38. [PMID: 28411050 DOI: 10.1016/j.biortech.2017.03.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
A new pretreatment method of lignocellulosic biomass was explored by using a wet aerobic process with an alkaline lignin and a mineral salt solution. This treatment significantly improved structural modification of rape straw used as substrate model in this study. Change in cellulose accessibility to cellulase of rape straw rose up to six fold within the first days of this pretreatment without generated significant modification of van Soest lignocellulose fractionation. The biological pretreatment apply to rape straw induced a high microbial activity revealed by quantitative PCR and sequencing techniques, suggesting that bacteria including Xanthomonadales and Sphingobacteriales may be involved in this lignocellulosic biomass transformation. Moreover, results of this work demonstrate that the endogenous microbial community associated with rape straw plays a key role in its alteration.
Collapse
Affiliation(s)
- Jiang-Hao Tian
- IRSTEA, UR OPAALE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Bretagne Loire, France
| | - Anne-Marie Pourcher
- IRSTEA, UR OPAALE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Bretagne Loire, France
| | - Ariane Bize
- IRSTEA, Hydrosystems and Bioprocesses Research Unit, 1 rue Pierre-Gilles de Gennes, CS 10030, F-92761 Antony, France
| | - Alaa Wazeri
- Egypt-Japan University of Science and Technology (E-JUST), Environmental Engineering Department, P.O. Box 179, New Borg El-Arab City 21934, Alexandria, Egypt
| | - Pascal Peu
- IRSTEA, UR OPAALE, 17 avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Bretagne Loire, France.
| |
Collapse
|
309
|
Takeda Y, Koshiba T, Tobimatsu Y, Suzuki S, Murakami S, Yamamura M, Rahman MM, Takano T, Hattori T, Sakamoto M, Umezawa T. Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. PLANTA 2017; 246:337-349. [PMID: 28421330 DOI: 10.1007/s00425-017-2692-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Regulation of a gene encoding coniferaldehyde 5-hydroxylase leads to substantial alterations in lignin structure in rice cell walls, identifying a promising genetic engineering target for improving grass biomass utilization. The aromatic composition of lignin greatly affects utilization characteristics of lignocellulosic biomass and, therefore, has been one of the primary targets of cell wall engineering studies. Limited information is, however, available regarding lignin modifications in monocotyledonous grasses, despite the fact that grass lignocelluloses have a great potential for feedstocks of biofuel production and various biorefinery applications. Here, we report that manipulation of a gene encoding coniferaldehyde 5-hydroxylase (CAld5H, or ferulate 5-hydroxylase, F5H) leads to substantial alterations in syringyl (S)/guaiacyl (G) lignin aromatic composition in rice (Oryza sativa), a major model grass and commercially important crop. Among three CAld5H genes identified in rice, OsCAld5H1 (CYP84A5) appeared to be predominantly expressed in lignin-producing rice vegetative tissues. Down-regulation of OsCAld5H1 produced altered lignins largely enriched in G units, whereas up-regulation of OsCAld5H1 resulted in lignins enriched in S units, as revealed by a series of wet-chemical and NMR structural analyses. Our data collectively demonstrate that OsCAld5H1 expression is a major factor controlling S/G lignin composition in rice cell walls. Given that S/G lignin composition affects various biomass properties, we contemplate that manipulation of CAld5H gene expression represents a promising strategy to upgrade grass biomass for biorefinery applications.
Collapse
Affiliation(s)
- Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Taichi Koshiba
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- EARTHNOTE Co. Ltd., Nago, Okinawa, 905-1152, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shinya Murakami
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Md Mahabubur Rahman
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toshiyuki Takano
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takefumi Hattori
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan.
- Research Unit for Global Sustainability Studies, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
310
|
Zamarro MT, Barragán MJL, Carmona M, García JL, Díaz E. Engineering a bzd cassette for the anaerobic bioconversion of aromatic compounds. Microb Biotechnol 2017; 10:1418-1425. [PMID: 28736925 PMCID: PMC5658619 DOI: 10.1111/1751-7915.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 01/26/2023] Open
Abstract
Microorganisms able to degrade aromatic contaminants constitute potential valuable biocatalysts to deal with a significant reusable carbon fraction suitable for eco‐efficient valorization processes. Metabolic engineering of anaerobic pathways for degradation and recycling of aromatic compounds is an almost unexplored field. In this work, we present the construction of a functional bzd cassette encoding the benzoyl‐CoA central pathway for the anaerobic degradation of benzoate. The bzd cassette has been used to expand the ability of some denitrifying bacteria to use benzoate as sole carbon source under anaerobic conditions, and it paves the way for future pathway engineering of efficient anaerobic biodegraders of aromatic compounds whose degradation generates benzoyl‐CoA as central intermediate. Moreover, a recombinant Azoarcus sp. CIB strain harbouring the bzd cassette was shown to behave as a valuable biocatalyst for anaerobic toluene valorization towards the synthesis of poly‐3‐hydroxybutyrate (PHB), a biodegradable and biocompatible polyester of increasing biotechnological interest as a sustainable alternative to classical oil‐derived polymers.
Collapse
Affiliation(s)
- María Teresa Zamarro
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - María J L Barragán
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Manuel Carmona
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - José Luis García
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Eduardo Díaz
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
311
|
Hong CY, Ryu SH, Jeong H, Lee SS, Kim M, Choi IG. Phanerochaete chrysosporium Multienzyme Catabolic System for in Vivo Modification of Synthetic Lignin to Succinic Acid. ACS Chem Biol 2017; 12:1749-1759. [PMID: 28463479 DOI: 10.1021/acschembio.7b00046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole cells of the basidiomycete fungus Phanerochaete chrysosporium (ATCC 20696) were applied to induce the biomodification of lignin in an in vivo system. Our results indicated that P. chrysosporium has a catabolic system that induces characteristic biomodifications of synthetic lignin through a series of redox reactions, leading not only to the degradation of lignin but also to its polymerization. The reducing agents ascorbic acid and α-tocopherol were used to stabilize the free radicals generated from the ligninolytic process. The application of P. chrysosporium in combination with reducing agents produced aromatic compounds and succinic acid as well as degraded lignin polymers. P. chrysosporium selectively catalyzed the conversion of lignin to succinic acid, which has an economic value. A transcriptomic analysis of P. chrysosporium suggested that the bond cleavage of synthetic lignin was caused by numerous enzymes, including extracellular enzymes such as lignin peroxidase and manganese peroxidase, and that the aromatic compounds released were metabolized in both the short-cut and classical tricarboxylic acid cycles of P. chrysosporium. In conclusion, P. chrysosporium is suitable as a biocatalyst for lignin degradation to produce a value-added product.
Collapse
Affiliation(s)
- Chang-Young Hong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sun-Hwa Ryu
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Hanseob Jeong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sung-Suk Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Myungkil Kim
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - In-Gyu Choi
- Department
of Forest Sciences, Seoul National University, Seoul, Republic of Korea
- Research
Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes
of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
312
|
Gong G, Kim S, Lee SM, Woo HM, Park TH, Um Y. Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes. J Biotechnol 2017; 254:59-62. [DOI: 10.1016/j.jbiotec.2017.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/26/2022]
|
313
|
Martani F, Beltrametti F, Porro D, Branduardi P, Lotti M. The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi. FEMS Microbiol Lett 2017; 364:3888816. [DOI: 10.1093/femsle/fnx134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/23/2017] [Indexed: 01/04/2023] Open
|
314
|
Valette N, Perrot T, Sormani R, Gelhaye E, Morel-Rouhier M. Antifungal activities of wood extractives. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
315
|
Johnson CW, Abraham PE, Linger JG, Khanna P, Hettich RL, Beckham GT. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metab Eng Commun 2017; 5:19-25. [PMID: 29188181 PMCID: PMC5699531 DOI: 10.1016/j.meteno.2017.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/28/2017] [Accepted: 05/30/2017] [Indexed: 01/02/2023] Open
Abstract
Carbon catabolite repression refers to the preference of microbes to metabolize certain growth substrates over others in response to a variety of regulatory mechanisms. Such preferences are important for the fitness of organisms in their natural environments, but may hinder their performance as domesticated microbial cell factories. In a Pseudomonas putida KT2440 strain engineered to convert lignin-derived aromatic monomers such as p-coumarate and ferulate to muconate, a precursor to bio-based nylon and other chemicals, metabolic intermediates including 4-hydroxybenzoate and vanillate accumulate and subsequently reduce productivity. We hypothesized that these metabolic bottlenecks may be, at least in part, the effect of carbon catabolite repression caused by glucose or acetate, more preferred substrates that must be provided to the strain for supplementary energy and cell growth. Using mass spectrometry-based proteomics, we have identified the 4-hydroxybenzoate hydroxylase, PobA, and the vanillate demethylase, VanAB, as targets of the Catabolite Repression Control (Crc) protein, a global regulator of carbon catabolite repression. By deleting the gene encoding Crc from this strain, the accumulation of 4-hydroxybenzoate and vanillate are reduced and, as a result, muconate production is enhanced. In cultures grown on glucose, the yield of muconate produced from p-coumarate after 36 h was increased nearly 70% with deletion of the gene encoding Crc (94.6 ± 0.6% vs. 56.0 ± 3.0% (mol/mol)) while the yield from ferulate after 72 h was more than doubled (28.3 ± 3.3% vs. 12.0 ± 2.3% (mol/mol)). The effect of eliminating Crc was similar in cultures grown on acetate, with the yield from p-coumarate just slightly higher in the Crc deletion strain after 24 h (47.7 ± 0.6% vs. 40.7 ± 3.6% (mol/mol)) and the yield from ferulate increased more than 60% after 72 h (16.9 ± 1.4% vs. 10.3 ± 0.1% (mol/mol)). These results are an example of the benefit that reducing carbon catabolite repression can have on conversion of complex feedstocks by microbial cell factories, a concept we posit could be broadly considered as a strategy in metabolic engineering for conversion of renewable feedstocks to value-added chemicals. Crc is a global regulator of carbon catabolite repression in pseudomonads. The gene encoding Crc was deleted from muconate a producing P. putida strain. Based on our proteomics data, expression of PobA and VanAB are regulated by Crc. Deleting Crc improved conversion to muconate in the presence of glucose or acetate. This may be a useful strategy toward developing pseudomonad cell factories.
Collapse
Affiliation(s)
- Christopher W Johnson
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Jeffrey G Linger
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Payal Khanna
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| |
Collapse
|
316
|
Influences of Media Compositions on Characteristics of Isolated Bacteria Exhibiting Lignocellulolytic Activities from Various Environmental Sites. Appl Biochem Biotechnol 2017; 183:931-942. [PMID: 28405916 DOI: 10.1007/s12010-017-2474-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/05/2017] [Indexed: 02/08/2023]
Abstract
Efficient isolation of lignocellulolytic bacteria is essential for the utilization of lignocellulosic biomass. In this study, bacteria with cellulolytic, xylanolytic, and lignolytic activities were isolated from environmental sites such as mountain, wetland, and mudflat using isolation media containing the combination of lignocellulose components (cellulose, xylan, and lignin). Eighty-nine isolates from the isolation media were characterized by analyzing taxonomic ranks and cellulolytic, xylanolytic, and lignolytic activities. Most of the cellulolytic bacteria showed multienzymatic activities including xylanolytic activity. The isolation media without lignin were efficient in isolating bacteria exhibiting multienzymatic activities even including lignolytic activity, whereas a lignin-containing medium was effective to isolate bacteria exhibiting lignolytic activity only. Multienzymatic activities were mainly observed in Bacillus and Streptomyces, while Burkholderia was the most abundant genus with lignolytic activity only. This study provides insight into isolation medium for efficient isolation of lignocellulose-degrading microorganisms.
Collapse
|
317
|
Miyauchi S, Navarro D, Grisel S, Chevret D, Berrin JG, Rosso MN. The integrative omics of white-rot fungus Pycnoporus coccineus reveals co-regulated CAZymes for orchestrated lignocellulose breakdown. PLoS One 2017; 12:e0175528. [PMID: 28394946 PMCID: PMC5386290 DOI: 10.1371/journal.pone.0175528] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 01/22/2023] Open
Abstract
Innovative green technologies are of importance for converting plant wastes into renewable sources for materials, chemicals and energy. However, recycling agricultural and forestry wastes is a challenge. A solution may be found in the forest. Saprotrophic white-rot fungi are able to convert dead plants into consumable carbon sources. Specialized fungal enzymes can be utilized for breaking down hard plant biopolymers. Thus, understanding the enzymatic machineries of such fungi gives us hints for the efficient decomposition of plant materials. Using the saprotrophic white-rot fungus Pycnoporus coccineus as a fungal model, we examined the dynamics of transcriptomic and secretomic responses to different types of lignocellulosic substrates at two time points. Our integrative omics pipeline (SHIN+GO) enabled us to compress layers of biological information into simple heatmaps, allowing for visual inspection of the data. We identified co-regulated genes with corresponding co-secreted enzymes, and the biological roles were extrapolated with the enriched Carbohydrate-Active Enzyme (CAZymes) and functional annotations. We observed the fungal early responses for the degradation of lignocellulosic substrates including; 1) simultaneous expression of CAZy genes and secretion of the enzymes acting on diverse glycosidic bonds in cellulose, hemicelluloses and their side chains or lignin (i.e. hydrolases, esterases and oxido-reductases); 2) the key role of lytic polysaccharide monooxygenases (LPMO); 3) the early transcriptional regulation of lignin active peroxidases; 4) the induction of detoxification processes dealing with biomass-derived compounds; and 5) the frequent attachments of the carbohydrate binding module 1 (CBM1) to enzymes from the lignocellulose-responsive genes. Our omics combining methods and related biological findings may contribute to the knowledge of fungal systems biology and facilitate the optimization of fungal enzyme cocktails for various industrial applications.
Collapse
Affiliation(s)
- Shingo Miyauchi
- Aix-Marseille Université, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - David Navarro
- Aix-Marseille Université, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Sacha Grisel
- Aix-Marseille Université, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Didier Chevret
- PAPPSO, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Guy Berrin
- Aix-Marseille Université, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Marie-Noelle Rosso
- Aix-Marseille Université, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
- * E-mail:
| |
Collapse
|
318
|
Opris C, Cojocaru B, Gheorghe N, Tudorache M, Coman SM, Parvulescu VI, Duraki B, Krumeich F, van Bokhoven JA. Lignin Fragmentation onto Multifunctional Fe3O4@Nb2O5@Co@Re Catalysts: The Role of the Composition and Deposition Route of Rhenium. ACS Catal 2017. [DOI: 10.1021/acscatal.6b02915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cristina Opris
- University of Bucharest, Department of Organic
Chemistry, Biochemistry and Catalysis, B-dul Regina Elisabeta 4-12, 030016 Bucharest, Romania
| | - Bogdan Cojocaru
- University of Bucharest, Department of Organic
Chemistry, Biochemistry and Catalysis, B-dul Regina Elisabeta 4-12, 030016 Bucharest, Romania
| | - Nicoleta Gheorghe
- National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele-Ilfov, Romania
| | - Madalina Tudorache
- University of Bucharest, Department of Organic
Chemistry, Biochemistry and Catalysis, B-dul Regina Elisabeta 4-12, 030016 Bucharest, Romania
| | - Simona M. Coman
- University of Bucharest, Department of Organic
Chemistry, Biochemistry and Catalysis, B-dul Regina Elisabeta 4-12, 030016 Bucharest, Romania
| | - Vasile I. Parvulescu
- University of Bucharest, Department of Organic
Chemistry, Biochemistry and Catalysis, B-dul Regina Elisabeta 4-12, 030016 Bucharest, Romania
| | - Bahir Duraki
- ETH Zurich, Wolfgang Pauli
Strasse, 8093 Zürich, Switzerland
| | - Frank Krumeich
- ETH Zurich, Wolfgang Pauli
Strasse, 8093 Zürich, Switzerland
| | - Jeroen A. van Bokhoven
- ETH Zurich, Wolfgang Pauli
Strasse, 8093 Zürich, Switzerland
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
319
|
Ravi K, García-Hidalgo J, Gorwa-Grauslund MF, Lidén G. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biotechnol 2017; 101:5059-5070. [PMID: 28299400 PMCID: PMC5486835 DOI: 10.1007/s00253-017-8211-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/26/2017] [Indexed: 11/29/2022]
Abstract
Starting from mature vegetable compost, four bacterial strains were selected using a lignin-rich medium. 16S ribosomal RNA identification of the isolates showed high score similarity with Pseudomonas spp. for three out of four isolates. Further characterization of growth on mixtures of six selected lignin model compounds (vanillin, vanillate, 4-hydroxybenzoate, p-coumarate, benzoate, and ferulate) was carried out with three of the Pseudomonas isolates and in addition with the strain Pseudomonas putida KT2440 from a culture collection. The specific growth rates on benzoate, p-coumarate, and 4-hydroxybenzoate were considerably higher (0.26–0.27 h−1) than those on ferulate and vanillate (0.21 and 0.22 h−1), as were the uptake rates. There was no direct growth of P. putida KT2440 on vanillin, but instead, vanillin was rapidly converted into vanillate at a rate of 4.87 mmol (gCDW h)−1 after which the accumulated vanillate was taken up. The growth curve reflected a diauxic growth when mixtures of the model compounds were used as carbon source. Vanillin, 4-hydroxybenzoate, and benzoate were preferentially consumed first, whereas ferulate was always the last substrate to be taken in. These results contribute to a better understanding of the aromatic metabolism of P. putida in terms of growth and uptake rates, which will be helpful for the utilization of these bacteria as cell factories for upgrading lignin-derived mixtures of aromatic molecules.
Collapse
Affiliation(s)
- Krithika Ravi
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Javier García-Hidalgo
- Department of Chemistry, Applied Microbiology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| | - Marie F Gorwa-Grauslund
- Department of Chemistry, Applied Microbiology, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
320
|
A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde. Sci Rep 2017; 7:44422. [PMID: 28294121 PMCID: PMC5353671 DOI: 10.1038/srep44422] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 01/18/2023] Open
Abstract
Vanillin and syringaldehyde obtained from lignin are essential intermediates for the production of basic chemicals using microbial cell factories. However, in contrast to vanillin, the microbial conversion of syringaldehyde is poorly understood. Here, we identified an aromatic aldehyde dehydrogenase (ALDH) gene responsible for syringaldehyde catabolism from 20 putative ALDH genes of Sphingobium sp. strain SYK-6. All these genes were expressed in Escherichia coli, and nine gene products, including previously characterized BzaA, BzaB, and vanillin dehydrogenase (LigV), exhibited oxidation activities for syringaldehyde to produce syringate. Among these genes, SLG_28320 (desV) and ligV were most highly and constitutively transcribed in the SYK-6 cells. Disruption of desV in SYK-6 resulted in a significant reduction in growth on syringaldehyde and in syringaldehyde oxidation activity. Furthermore, a desV ligV double mutant almost completely lost its ability to grow on syringaldehyde. Purified DesV showed similar kcat/Km values for syringaldehyde (2100 s−1·mM−1) and vanillin (1700 s−1·mM−1), whereas LigV substantially preferred vanillin (8800 s−1·mM−1) over syringaldehyde (1.4 s−1·mM−1). These results clearly demonstrate that desV plays a major role in syringaldehyde catabolism. Phylogenetic analyses showed that DesV-like ALDHs formed a distinct phylogenetic cluster separated from the vanillin dehydrogenase cluster.
Collapse
|
321
|
Harrington LB, Jha RK, Kern TL, Schmidt EN, Canales GM, Finney KB, Koppisch AT, Strauss CEM, Fox DT. Rapid Thermostabilization of Bacillus thuringiensis Serovar Konkukian 97-27 Dehydroshikimate Dehydratase through a Structure-Based Enzyme Design and Whole Cell Activity Assay. ACS Synth Biol 2017; 6:120-129. [PMID: 27548779 DOI: 10.1021/acssynbio.6b00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermostabilization of an enzyme with complete retention of catalytic efficiency was demonstrated on recombinant 3-dehydroshikimate dehydratase (DHSase or wtAsbF) from Bacillus thuringiensis serovar konkukian 97-27 (hereafter, B. thuringiensis 97-27). The wtAsbF is relatively unstable at 37 °C, in vitro (t1/237 = 15 min), in the absence of divalent metal. We adopted a structure-based design to identify stabilizing mutations and created a combinatorial library based upon predicted mutations at specific locations on the enzyme surface. A diversified asbF library (∼2000 variants) was expressed in E. coli harboring a green fluorescent protein (GFP) reporter system linked to the product of wtAsbF activity (3,4-dihydroxybenzoate, DHB). Mutations detrimental to DHSase function were rapidly eliminated using a high throughput fluorescence activated cell sorting (FACS) approach. After a single sorting round and heat screen at 50 °C, a triple AsbF mutant (Mut1), T61N, H135Y, and H257P, was isolated and characterized. The half-life of Mut1 at 37 °C was >10-fold higher than the wtAsbF (t1/237 = 169 min). Further, the second-order rate constants for both wtAsbF and Mut1 were approximately equal (9.9 × 105 M-1 s-1, 7.8 × 105 M-1 s-1, respectively), thus demonstrating protein thermostability did not come at the expense of enzyme thermophilicity. In addition, in vivo overexpression of Mut1 in E. coli resulted in a ∼60-fold increase in functional enzyme when compared to the wild-type enzyme under the identical expression conditions. Finally, overexpression of the thermostable AsbF resulted in an approximate 80-120% increase in DHB accumulation in the media relative to the wild-type enzyme.
Collapse
Affiliation(s)
- Lucas B. Harrington
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Ramesh K. Jha
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Theresa L. Kern
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Emily N. Schmidt
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - Gustavo M. Canales
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Kellan B. Finney
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Andrew T. Koppisch
- Department
of Chemistry, Northern Arizona University, P.O. Box 5698, Flagstaff, Arizona 86001, United States
| | - Charlie E. M. Strauss
- Bioscience
Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87545, United States
| | - David T. Fox
- Chemistry
Division, Los Alamos National Laboratory, P.O. Box 1663, MS E554, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
322
|
Le RK, Wells Jr. T, Das P, Meng X, Stoklosa RJ, Bhalla A, Hodge DB, Yuan JS, Ragauskas AJ. Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci. RSC Adv 2017. [DOI: 10.1039/c6ra28033a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bioconversion of second-generation cellulosic ethanol waste streams into biodiesel via oleaginous bacteria, Rhodococcus, is a novel optimization strategy for biorefineries with substantial potential for rapid development.
Collapse
Affiliation(s)
- Rosemary K. Le
- Department of Chemical & Biomolecular Engineering
- University of Tennessee Knoxville
- Knoxville
- USA
- Bioscience Division
| | - Tyrone Wells Jr.
- Department of Chemical & Biomolecular Engineering
- University of Tennessee Knoxville
- Knoxville
- USA
- Bioscience Division
| | - Parthapratim Das
- Department of Chemical & Biomolecular Engineering
- University of Tennessee Knoxville
- Knoxville
- USA
- Bioscience Division
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering
- University of Tennessee Knoxville
- Knoxville
- USA
- Bioscience Division
| | - Ryan J. Stoklosa
- Department of Chemical Engineering & Materials Science
- Michigan State University
- East Lansing
- USA
- Great Lakes Bioenergy Research Center
| | - Aditya Bhalla
- Great Lakes Bioenergy Research Center
- Michigan State University
- East Lansing
- USA
- Department of Biochemistry
| | - David B. Hodge
- Department of Chemical Engineering & Materials Science
- Michigan State University
- East Lansing
- USA
- Great Lakes Bioenergy Research Center
| | - Joshua S. Yuan
- Synthetic and Systems Biology Innovation Hub
- Department of Plant Pathology and Microbiology
- Texas A&M University
- College Station
- USA
| | - Arthur J. Ragauskas
- Department of Chemical & Biomolecular Engineering
- University of Tennessee Knoxville
- Knoxville
- USA
- Bioscience Division
| |
Collapse
|
323
|
Lee J, Tsang YF, Kim S, Ok YS, Kwon EE. Energy density enhancement via pyrolysis of paper mill sludge using CO 2. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
324
|
Tonin F, Vignali E, Pollegioni L, D’Arrigo P, Rosini E. A novel, simple screening method for investigating the properties of lignin oxidative activity. Enzyme Microb Technol 2017; 96:143-150. [DOI: 10.1016/j.enzmictec.2016.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 11/16/2022]
|
325
|
Thotsaporn K, Tinikul R, Maenpuen S, Phonbuppha J, Watthaisong P, Chenprakhon P, Chaiyen P. Enzymes in the p-hydroxyphenylacetate degradation pathway of Acinetobacter baumannii. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
326
|
Genome Sequence of Pandoraea sp. ISTKB, a Lignin-Degrading Betaproteobacterium, Isolated from Rhizospheric Soil. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01240-16. [PMID: 27811115 PMCID: PMC5095485 DOI: 10.1128/genomea.01240-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report here the genome sequence of Pandoraea sp. ISTKB, a betaproteobacterium isolated from rhizospheric soil in the backwaters of Alappuzha, Kerala, India. The strain is alkalotolerant and grows on medium containing lignin as a sole carbon source. Genes and pathways related to lignin degradation were complemented by genomic analysis.
Collapse
|
327
|
Machado LFM, Dixon N. Development and substrate specificity screening of an in vivo biosensor for the detection of biomass derived aromatic chemical building blocks. Chem Commun (Camb) 2016; 52:11402-11405. [PMID: 27722239 PMCID: PMC5048394 DOI: 10.1039/c6cc04559f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/24/2016] [Indexed: 12/01/2022]
Abstract
Measuring substrate and/or product concentration can create a major bottleneck for synthetic and biosynthetic processes. Here we report the development and substrate screening of a whole cell biosensor to detect biomass-derived aromatic chemical building blocks, supporting the use of sustainable feedstocks in the bulk and fine chemical industries.
Collapse
Affiliation(s)
- Leopoldo F M Machado
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Neil Dixon
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
328
|
Palazzolo MA, Kurina-Sanz M. Microbial utilization of lignin: available biotechnologies for its degradation and valorization. World J Microbiol Biotechnol 2016; 32:173. [PMID: 27565783 DOI: 10.1007/s11274-016-2128-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given.
Collapse
Affiliation(s)
- Martín A Palazzolo
- Instituto de Investigaciones en Tecnología Química, Universidad Nacional de San Luis, CONICET, Area de Química Orgánica, FQByF, 5700, San Luis, Argentina.
| | - Marcela Kurina-Sanz
- Instituto de Investigaciones en Tecnología Química, Universidad Nacional de San Luis, CONICET, Area de Química Orgánica, FQByF, 5700, San Luis, Argentina
| |
Collapse
|
329
|
Doud DFR, Angenent LT. Single-Genotype Syntrophy by Rhodopseudomonas palustris Is Not a Strategy to Aid Redox Balance during Anaerobic Degradation of Lignin Monomers. Front Microbiol 2016; 7:1082. [PMID: 27471497 PMCID: PMC4943940 DOI: 10.3389/fmicb.2016.01082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/28/2016] [Indexed: 11/13/2022] Open
Abstract
Rhodopseudomonas palustris has emerged as a model microbe for the anaerobic metabolism of p-coumarate, which is an aromatic compound and a primary component of lignin. However, under anaerobic conditions, R. palustris must actively eliminate excess reducing equivalents through a number of known strategies (e.g., CO2 fixation, H2 evolution) to avoid lethal redox imbalance. Others had hypothesized that to ease the burden of this redox imbalance, a clonal population of R. palustris could functionally differentiate into a pseudo-consortium. Within this pseudo-consortium, one sub-population would perform the aromatic moiety degradation into acetate, while the other sub-population would oxidize acetate, resulting in a single-genotype syntrophy through acetate sharing. Here, the objective was to test this hypothesis by utilizing microbial electrochemistry as a research tool with the extracellular-electron-transferring bacterium Geobacter sulfurreducens as a reporter strain replacing the hypothesized acetate-oxidizing sub-population. We used a 2 × 4 experimental design with pure cultures of R. palustris in serum bottles and co-cultures of R. palustris and G. sulfurreducens in bioelectrochemical systems. This experimental design included growth medium with and without bicarbonate to induce non-lethal and lethal redox imbalance conditions, respectively, in R. palustris. Finally, the design also included a mutant strain (NifA*) of R. palustris, which constitutively produces H2, to serve both as a positive control for metabolite secretion (H2) to G. sulfurreducens, and as a non-lethal redox control for without bicarbonate conditions. Our results demonstrate that acetate sharing between different sub-populations of R. palustris does not occur while degrading p-coumarate under either non-lethal or lethal redox imbalance conditions. This work highlights the strength of microbial electrochemistry as a tool for studying microbial syntrophy.
Collapse
Affiliation(s)
- Devin F R Doud
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Largus T Angenent
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| |
Collapse
|
330
|
Nikel PI, Chavarría M, Danchin A, de Lorenzo V. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 2016; 34:20-29. [PMID: 27239751 DOI: 10.1016/j.cbpa.2016.05.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/14/2023]
Abstract
The soil bacterium Pseudomonas putida is endowed with a central carbon metabolic network capable of fulfilling high demands of reducing power. This situation arises from a unique metabolic architecture that encompasses the partial recycling of triose phosphates to hexose phosphates-the so-called EDEMP cycle. In this article, the value of P. putida as a bacterial chassis of choice for contemporary, industrially-oriented metabolic engineering is addressed. The biochemical properties that make this bacterium adequate for hosting biotransformations involving redox reactions as well as toxic compounds and intermediates are discussed. Finally, novel developments and open questions in the continuous quest for an optimal microbial cell factory are presented at the light of current and future needs in the area of biocatalysis.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| | - Max Chavarría
- Escuela de Química & CIPRONA, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Antoine Danchin
- AMAbiotics SAS, Institut of Cardiometabolism and Nutrition (ICAN), Hôpital Universitaire de la Pitié-Salpêtrière, 75013 Paris, France
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
331
|
Johnson CW, Salvachúa D, Khanna P, Smith H, Peterson DJ, Beckham GT. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab Eng Commun 2016; 3:111-119. [PMID: 29468118 PMCID: PMC5779730 DOI: 10.1016/j.meteno.2016.04.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/01/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022] Open
Abstract
The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCA decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92±0.48 g/L muconate. This study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions. We engineered Pseudomonas putida to produce muconate from p-coumarate and glucose. A protocatechuate decarboxylase was expressed with two associated proteins. Co-expression of these proteins reduced protocatechuate accumulation. Co-expression of these proteins reduced enhanced muconate production up to 3X. 15.6 g/L muconate was produced from p-coumarate and 4.92 g/L from glucose
Collapse
Affiliation(s)
- Christopher W Johnson
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Davinia Salvachúa
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Payal Khanna
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Holly Smith
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Darren J Peterson
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
| |
Collapse
|
332
|
Properties, Chemical Characteristics and Application of Lignin and Its Derivatives. PRODUCTION OF BIOFUELS AND CHEMICALS FROM LIGNIN 2016. [DOI: 10.1007/978-981-10-1965-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
333
|
Rosini E, D'Arrigo P, Pollegioni L. Demethylation of vanillic acid by recombinant LigM in a one-pot cofactor regeneration system. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01402j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recombinant LigM from Sphingobium SYK-6 and plant methionine synthase MetE enzyme efficiently convert vanillic acid into PCA with cofactor recycling.
Collapse
Affiliation(s)
- Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
- The Protein Factory
| | - Paola D'Arrigo
- The Protein Factory
- Politecnico di Milano and Università degli Studi dell'Insubria
- 20131 Milano
- Italy
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
- The Protein Factory
| |
Collapse
|