301
|
Itou J, Akiyama R, Pehoski S, Yu X, Kawakami H, Kawakami Y. Regenerative responses after mild heart injuries for cardiomyocyte proliferation in zebrafish. Dev Dyn 2014; 243:1477-86. [PMID: 25074230 DOI: 10.1002/dvdy.24171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The zebrafish heart regenerates after various severe injuries. Common processes of heart regeneration are cardiomyocyte proliferation, activation of epicardial tissue, and neovascularization. In order to further characterize heart regeneration processes, we introduced milder injuries and compared responses to those induced by ventricular apex resection, a widely used injury method. We used scratching of the ventricular surface and puncturing of the ventricle with a fine tungsten needle as injury-inducing techniques. RESULTS Scratching the ventricular surface induced subtle cardiomyocyte proliferation and responses of the epicardium. Endothelial cell accumulation was limited to the surface of the heart. Ventricular puncture induced cardiomyocyte proliferation, endocardial and epicardial activation, and neo-vascularization, similar to the resection method. However, the degree of the responses was milder, correlating with milder injury. Sham operation induced epicardial aldh1a2 expression but not tbx18 and WT1. CONCLUSIONS Puncturing the ventricle induces responses equivalent to resection at milder degrees in a shorter time frame and can be used as a simple injury model. Scratching the ventricle did not induce heart regeneration and can be used for studying wound responses to epicardium.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | | | | |
Collapse
|
302
|
Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res 2014; 24:1091-107. [PMID: 25124925 DOI: 10.1038/cr.2014.108] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/06/2014] [Accepted: 06/09/2014] [Indexed: 12/28/2022] Open
Abstract
While the adult human heart has very limited regenerative potential, the adult zebrafish heart can fully regenerate after 20% ventricular resection. Although previous reports suggest that developmental signaling pathways such as FGF and PDGF are reused in adult heart regeneration, the underlying intracellular mechanisms remain largely unknown. Here we show that H2O2 acts as a novel epicardial and myocardial signal to prime the heart for regeneration in adult zebrafish. Live imaging of intact hearts revealed highly localized H2O2 (~30 μM) production in the epicardium and adjacent compact myocardium at the resection site. Decreasing H2O2 formation with the Duox inhibitors diphenyleneiodonium (DPI) or apocynin, or scavenging H2O2 by catalase overexpression markedly impaired cardiac regeneration while exogenous H2O2 rescued the inhibitory effects of DPI on cardiac regeneration, indicating that H2O2 is an essential and sufficient signal in this process. Mechanistically, elevated H2O2 destabilized the redox-sensitive phosphatase Dusp6 and hence increased the phosphorylation of Erk1/2. The Dusp6 inhibitor BCI achieved similar pro-regenerative effects while transgenic overexpression of dusp6 impaired cardiac regeneration. H2O2 plays a dual role in recruiting immune cells and promoting heart regeneration through two relatively independent pathways. We conclude that H2O2 potentially generated from Duox/Nox2 promotes heart regeneration in zebrafish by unleashing MAP kinase signaling through a derepression mechanism involving Dusp6.
Collapse
|
303
|
Kikuchi K. Advances in understanding the mechanism of zebrafish heart regeneration. Stem Cell Res 2014; 13:542-55. [PMID: 25127427 DOI: 10.1016/j.scr.2014.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 01/14/2023] Open
Abstract
The adult mammalian heart was once believed to be a post-mitotic organ without any capacity for regeneration, but recent findings have challenged this dogma. A modified view assigns the mammalian heart a measurable capacity for regeneration throughout its lifetime, with the implication that endogenous regenerative capacity can be therapeutically stimulated in the injury setting. Although extremely limited in adult mammals, the natural capacity for organ regeneration is a conserved trait in certain vertebrates. Urodele amphibians and teleosts are well-known examples of such animals that can efficiently regenerate various organs including the heart as adults. By understanding how these animals regenerate a damaged heart, one might obtain valuable insights into how regeneration can be augmented in injured human hearts. Among the regenerative vertebrate models, the teleost zebrafish, Danio rerio, is arguably the best characterized with respect to cardiac regenerative responses. Knowledge is still limited, but a decade of research in this model has led to results that may help to understand how cardiac regeneration is naturally stimulated and maintained. This review surveys recent advances in the field and discusses current understanding of the endogenous mechanisms of cardiac regeneration in zebrafish.
Collapse
Affiliation(s)
- Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
304
|
Schindler YL, Garske KM, Wang J, Firulli BA, Firulli AB, Poss KD, Yelon D. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 2014; 141:3112-22. [PMID: 25038045 DOI: 10.1242/dev.106336] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Embryonic heart formation requires the production of an appropriate number of cardiomyocytes; likewise, cardiac regeneration following injury relies upon the recovery of lost cardiomyocytes. The basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in promoting cardiomyocyte formation. It is unclear, however, whether Hand2 plays an instructive or permissive role during this process. Here, we find that overexpression of hand2 in the early zebrafish embryo is able to enhance cardiomyocyte production, resulting in an enlarged heart with a striking increase in the size of the outflow tract. Our evidence indicates that these increases are dependent on the interactions of Hand2 in multimeric complexes and are independent of direct DNA binding by Hand2. Proliferation assays reveal that hand2 can impact cardiomyocyte production by promoting division of late-differentiating cardiac progenitors within the second heart field. Additionally, our data suggest that hand2 can influence cardiomyocyte production by altering the patterning of the anterior lateral plate mesoderm, potentially favoring formation of the first heart field at the expense of hematopoietic and vascular lineages. The potency of hand2 during embryonic cardiogenesis suggested that hand2 could also impact cardiac regeneration in adult zebrafish; indeed, we find that overexpression of hand2 can augment the regenerative proliferation of cardiomyocytes in response to injury. Together, our studies demonstrate that hand2 can drive cardiomyocyte production in multiple contexts and through multiple mechanisms. These results contribute to our understanding of the potential origins of congenital heart disease and inform future strategies in regenerative medicine.
Collapse
Affiliation(s)
- Yocheved L Schindler
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Kristina M Garske
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jinhu Wang
- Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Beth A Firulli
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anthony B Firulli
- Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kenneth D Poss
- Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA Developmental Genetics Program and Department of Cell Biology, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
305
|
Porrello ER, Olson EN. A neonatal blueprint for cardiac regeneration. Stem Cell Res 2014; 13:556-70. [PMID: 25108892 DOI: 10.1016/j.scr.2014.06.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/13/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022] Open
Abstract
Adult mammals undergo minimal regeneration following cardiac injury, which severely compromises cardiac function and contributes to the ongoing burden of heart failure. In contrast, the mammalian heart retains a transient capacity for cardiac regeneration during fetal and early neonatal life. Recent studies have established the importance of several evolutionarily conserved mechanisms for heart regeneration in lower vertebrates and neonatal mammals including induction of cardiomyocyte proliferation, epicardial cell activation, angiogenesis, extracellular matrix deposition and immune cell infiltration. In this review, we provide an up-to-date account of the molecular and cellular basis for cardiac regeneration in lower vertebrates and neonatal mammals. The historical context for these recent findings and their ramifications for the future development of cardiac regenerative therapies are also discussed.
Collapse
Affiliation(s)
- Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Eric N Olson
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
306
|
Abstract
Although the adult mammalian heart was once believed to be a post-mitotic organ without any capacity for regeneration, recent findings have challenged this dogma. A modified view assigns to the mammalian heart a measurable capacity for regeneration throughout life. The ultimate goals of the cardiac regeneration field have been pursued by multiple strategies, including understanding the developmental biology of cardiomyocytes and cardiac stem and progenitor cells, applying chemical genetics, and engineering biomaterials and delivery methods that facilitate cell transplantation. Successful stimulation of endogenous regenerative capacity in injured adult mammalian hearts can benefit from studies of natural cardiac regeneration.
Collapse
Affiliation(s)
- Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Beatriz G. Gálvez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
307
|
Ito K, Morioka M, Kimura S, Tasaki M, Inohaya K, Kudo A. Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev Dyn 2014; 243:1106-15. [PMID: 24947076 DOI: 10.1002/dvdy.24154] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zebrafish have the ability for heart regeneration. However, another teleost animal model, the medaka, had not yet been investigated for this capacity. RESULTS Compared with zebrafish, the medaka heart responded differently to an injury: An excessive fibrotic response occurred in the medaka heart, and existing cardiomyocytes or cardiac progenitor cells remained dormant, resulting in no numerical difference between the uncut and injured heart with respect to the number of EdU-incorporated cardiomyocytes. The results obtained from the analysis of the medaka raldh2-GFP transgenic line showed a lack of raldh2 expression in the endocardium. Regarding periostin expression, the localization of medaka periostin-b, a marker of fibrillogenesis, in the medaka heart remained at the wound site at 30 dpa; whereas zebrafish periostin-b was no longer localized at the wound but was detected in the epicardium at that time. CONCLUSIONS Compared with zebrafish heart regeneration, the medaka heart phenotypes suggest the possibility that the medaka could hardly regenerate its heart tissue or that these phenotypes for heart regeneration showed a delay.
Collapse
Affiliation(s)
- Kohei Ito
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
308
|
Zebrafish as a Model for Studying Cardiac Regeneration. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
309
|
The epicardium signals the way towards heart regeneration. Stem Cell Res 2014; 13:683-92. [PMID: 24933704 PMCID: PMC4241487 DOI: 10.1016/j.scr.2014.04.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/12/2014] [Accepted: 04/18/2014] [Indexed: 11/23/2022] Open
Abstract
From historical studies of developing chick hearts to recent advances in regenerative injury models, the epicardium has arisen as a key player in heart genesis and repair. The epicardium provides paracrine signals to nurture growth of the developing heart from mid-gestation, and epicardium-derived cells act as progenitors of numerous cardiac cell types. Interference with either process is terminal for heart development and embryogenesis. In adulthood, the dormant epicardium reinstates an embryonic gene programme in response to injury. Furthermore, injury-induced epicardial signalling is essential for heart regeneration in zebrafish. Given these critical roles in development, injury response and heart regeneration, the application of epicardial signals following adult heart injury could offer therapeutic strategies for the treatment of ischaemic heart disease and heart failure. The epicardium is a dynamic signalling centre during heart development and injury. Heart repair in lower vertebrates highlights the importance of epicardial signalling. Epicardial signals may be targeted to regenerate adult mammalian hearts.
Collapse
|
310
|
Xiong JW, Chang NN. Recent advances in heart regeneration. ACTA ACUST UNITED AC 2014; 99:160-9. [PMID: 24078494 DOI: 10.1002/bdrc.21039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 12/25/2022]
Abstract
Although cardiac stem cells (CSCs) and tissue engineering are very promising for cardiac regenerative medicine, studies with model organisms for heart regeneration will provide alternative therapeutic targets and opportunities. Here, we present a review on heart regeneration, with a particular focus on the most recent work in mouse and zebrafish. We attempt to summarize the recent progresses and bottlenecks of CSCs and tissue engineering for heart regeneration; and emphasize what we have learned from mouse and zebrafish regenerative models on discovering crucial genetic and epigenetic factors for stimulating heart regeneration; and speculate the potential application of these regenerative factors for heart failure. A brief perspective highlights several important and promising research directions in this exciting field.
Collapse
Affiliation(s)
- Jing-Wei Xiong
- are from Institute of Molecular Medicine, Peking University, Beijing, 100871, China and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | | |
Collapse
|
311
|
Abstract
The epicardium is the mesothelial outer layer of the vertebrate heart. It plays an important role during cardiac development by, among other functions, nourishing the underlying myocardium, contributing to cardiac fibroblasts and giving rise to the coronary vasculature. The epicardium also exerts key functions during injury responses in the adult and contributes to cardiac repair. In this article, we review current knowledge on the cellular and molecular mechanisms underlying epicardium formation in the zebrafish, a teleost fish, which is rapidly gaining status as an animal model in cardiovascular research, and compare it with the mechanisms described in other vertebrate models. We moreover describe the expression patterns of a subset of available zebrafish Wilms' tumor 1 transgenic reporter lines and discuss their specificity, applicability and limitations in the study of epicardium formation.
Collapse
|
312
|
Cirio MC, de Groh ED, de Caestecker MP, Davidson AJ, Hukriede NA. Kidney regeneration: common themes from the embryo to the adult. Pediatr Nephrol 2014; 29:553-64. [PMID: 24005792 PMCID: PMC3944192 DOI: 10.1007/s00467-013-2597-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be "reprogrammed" to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eric D. de Groh
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mark P. de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
313
|
|
314
|
Furtado MB, Costa MW, Pranoto EA, Salimova E, Pinto AR, Lam NT, Park A, Snider P, Chandran A, Harvey RP, Boyd R, Conway SJ, Pearson J, Kaye DM, Rosenthal NA. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ Res 2014; 114:1422-34. [PMID: 24650916 DOI: 10.1161/circresaha.114.302530] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment, but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. OBJECTIVE To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. METHODS AND RESULTS High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical mesenchymal stem cell and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. While genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, T-box 20, caused marked myocardial dysmorphology and perturbations in scar formation on myocardial infarction. CONCLUSIONS The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs, and direct contribution to cardiac development and repair provoke alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies.
Collapse
Affiliation(s)
- Milena B Furtado
- From the Australian Regenerative Medicine Institute (M.B.F., M.W.C., E.A.P., E.S., A.R.P., A.C., N.A.R.), Department of Anatomy and Developmental Biology (A.R.P., R.B.), and Monash Biomedical Imaging (J.P.), Monash University, Melbourne, Victoria, Australia; Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.T.L., D.M.K.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (P.S., S.J.C.); and Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia (R.P.H.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Abstract
OPINION STATEMENT Myocardial infarction is the most common cause of cardiac injury in humans and results in acute loss of large numbers of myocardial cells. Unfortunately, the mammalian heart is unable to replenish the cells that are lost following a myocardial infarction and an eventual progression to heart failure can often occur as a result. Regenerative medicine based approaches are actively being developed; however, a complete blueprint on how mammalian hearts can regenerate is still missing. Knowledge gained from studying animal models, such as zebrafish, newt, and neonatal mice, that can naturally regenerate their hearts after injury have provided an understanding of the molecular mechanisms involved in heart repair and regeneration. This research offers novel strategies to overcome the limited regenerative response observed in human patients.
Collapse
|
316
|
Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci U S A 2014; 111:1403-8. [PMID: 24474765 DOI: 10.1073/pnas.1311705111] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human heart's failure to replace ischemia-damaged myocardium with regenerated muscle contributes significantly to the worldwide morbidity and mortality associated with coronary artery disease. Remarkably, certain vertebrate species, including the zebrafish, achieve complete regeneration of amputated or injured myocardium through the proliferation of spared cardiomyocytes. Nonetheless, the genetic and cellular determinants of natural cardiac regeneration remain incompletely characterized. Here, we report that cardiac regeneration in zebrafish relies on Notch signaling. Following amputation of the zebrafish ventricular apex, Notch receptor expression becomes activated specifically in the endocardium and epicardium, but not the myocardium. Using a dominant negative approach, we discovered that suppression of Notch signaling profoundly impairs cardiac regeneration and induces scar formation at the amputation site. We ruled out defects in endocardial activation, epicardial activation, and dedifferentiation of compact myocardial cells as causative for the regenerative failure. Furthermore, coronary endothelial tubes, which we lineage traced from preexisting endothelium in wild-type hearts, formed in the wound despite the myocardial regenerative failure. Quantification of myocardial proliferation in Notch-suppressed hearts revealed a significant decrease in cycling cardiomyocytes, an observation consistent with a noncell autonomous requirement for Notch signaling in cardiomyocyte proliferation. Unexpectedly, hyperactivation of Notch signaling also suppressed cardiomyocyte proliferation and heart regeneration. Taken together, our data uncover the exquisite sensitivity of regenerative cardiomyocyte proliferation to perturbations in Notch signaling.
Collapse
|
317
|
Wilkinson RN, Jopling C, van Eeden FJM. Zebrafish as a model of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:65-91. [PMID: 24751427 DOI: 10.1016/b978-0-12-386930-2.00004-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish has been rapidly adopted as a model for cardiac development and disease. The transparency of the embryo, its limited requirement for active oxygen delivery, and ease of use in genetic manipulations and chemical exposure have made it a powerful alternative to rodents. Novel technologies like TALEN/CRISPR-mediated genome engineering and advanced imaging methods will only accelerate its use. Here, we give an overview of heart development and function in the fish and highlight a number of areas where it is most actively contributing to the understanding of cardiac development and disease. We also review the current state of research on a feature that we only could wish to be conserved between fish and human; cardiac regeneration.
Collapse
Affiliation(s)
- Robert N Wilkinson
- Department of Cardiovascular Science, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Chris Jopling
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, Labex Ion Channel Science and Therapeutics, Montpellier, France; INSERM, U661, Montpellier, France; Universités de Montpellier 1&2, UMR-5203, Montpellier, France
| | - Fredericus J M van Eeden
- MRC Centre for Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
318
|
Kimura W, Sadek HA. The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors. Cardiovasc Diagn Ther 2013; 2:278-89. [PMID: 24282728 DOI: 10.3978/j.issn.2223-3652.2012.12.02] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022]
Abstract
Resident stem cells persist throughout the entire lifetime of an organism where they replenishing damaged cells. Numerous types of resident stem cells are housed in a low-oxygen tension (hypoxic) microenvironment, or niches, which seem to be critical for survival and maintenance of stem cells. Recently our group has identified the adult mammalian epicardium and subepicardium as a hypoxic niche for cardiac progenitor cells. Similar to hematopoietic stem cells (LT-HSCs), progenitor cells in the hypoxic epicardial niche utilize cytoplasmic glycolysis instead of mitochondrial oxidative phosphorylation, where hypoxia inducible factor 1α (Hif-1α) maintains them in glycolytic undifferentiated state. In this review we summarize the relationship between hypoxic signaling and stem cell function, and discuss potential roles of several cardiac stem/progenitor cells in cardiac homeostasis and regeneration.
Collapse
Affiliation(s)
- Wataru Kimura
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
319
|
Abstract
Transplantation of engineered tissue patches containing either progenitor cells or cardiomyocytes for cardiac repair is emerging as an exciting treatment option for patients with postinfarction left ventricular remodeling. The beneficial effects may evolve directly from remuscularization or indirectly through paracrine mechanisms that mobilize and activate endogenous progenitor cells to promote neovascularization and remuscularization, inhibit apoptosis, and attenuate left ventricular dilatation and disease progression. Despite encouraging results, further improvements are necessary to enhance current tissue engineering concepts and techniques and to achieve clinical impact. Herein, we review several strategies for cardiac remuscularization and paracrine support that can induce cardiac repair and attenuate left ventricular dysfunction from both within and outside the myocardium.
Collapse
Affiliation(s)
- Lei Ye
- From the University of Minnesota, Minneapolis
| | | | | | | |
Collapse
|
320
|
Poon KL, Brand T. The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Glob Cardiol Sci Pract 2013; 2013:9-28. [PMID: 24688998 PMCID: PMC3963735 DOI: 10.5339/gcsp.2013.4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/29/2013] [Indexed: 12/26/2022] Open
Affiliation(s)
- Kar Lai Poon
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Thomas Brand
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UB9 6JH, United Kingdom
| |
Collapse
|
321
|
Blum N, Begemann G. The roles of endogenous retinoid signaling in organ and appendage regeneration. Cell Mol Life Sci 2013; 70:3907-27. [PMID: 23479131 PMCID: PMC11113817 DOI: 10.1007/s00018-013-1303-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/29/2013] [Accepted: 02/14/2013] [Indexed: 12/20/2022]
Abstract
The ability to regenerate injured or lost body parts has been an age-old ambition of medical science. In contrast to humans, teleost fish and urodele amphibians can regrow almost any part of the body with seeming effortlessness. Retinoic acid is a molecule that has long been associated with these impressive regenerative capacities. The discovery 30 years ago that addition of retinoic acid to regenerating amphibian limbs causes "super-regeneration" initiated investigations into the presumptive roles of retinoic acid in regeneration of appendages and other organs. However, the evidence favoring or dismissing a role for endogenous retinoids in regeneration processes remained sparse and ambiguous. Now, the availability of genetic tools to manipulate and visualize the retinoic acid signaling pathway has opened up new routes to dissect its roles in regeneration. Here, we review the current understanding on endogenous functions of retinoic acid in regeneration and discuss key questions to be addressed in future research.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
322
|
Nachtrab G, Kikuchi K, Tornini VA, Poss KD. Transcriptional components of anteroposterior positional information during zebrafish fin regeneration. Development 2013; 140:3754-64. [PMID: 23924636 PMCID: PMC3754474 DOI: 10.1242/dev.098798] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/14/2023]
Abstract
Many fish and salamander species regenerate amputated fins or limbs, restoring the size and shape of the original appendage. Regeneration requires that spared cells retain or recall information encoding pattern, a phenomenon termed positional memory. Few factors have been implicated in positional memory during vertebrate appendage regeneration. Here, we investigated potential regulators of anteroposterior (AP) pattern during fin regeneration in adult zebrafish. Sequence-based profiling from tissues along the AP axis of uninjured pectoral fins identified many genes with region-specific expression, several of which encoded transcription factors with known AP-specific expression or function in developing embryonic pectoral appendages. Transgenic reporter strains revealed that regulatory sequences of the transcription factor gene alx4a activated expression in fibroblasts and osteoblasts within anterior fin rays, whereas hand2 regulatory sequences activated expression in these same cell types within posterior rays. Transgenic overexpression of hand2 in all pectoral fin rays did not affect formation of the proliferative regeneration blastema, yet modified the lengths and widths of regenerating bones. Hand2 influenced the character of regenerated rays in part by elevation of the vitamin D-inactivating enzyme encoded by cyp24a1, contributing to region-specific regulation of bone metabolism. Systemic administration of vitamin D during regeneration partially rescued bone defects resulting from hand2 overexpression. Thus, bone-forming cells in a regenerating appendage maintain expression throughout life of transcription factor genes that can influence AP pattern, and differ across the AP axis in their expression signatures of these and other genes. These findings have implications for mechanisms of positional memory in vertebrate tissues.
Collapse
Affiliation(s)
- Gregory Nachtrab
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kazu Kikuchi
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie A. Tornini
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
323
|
Wang J, Karra R, Dickson AL, Poss KD. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol 2013; 382:427-35. [PMID: 23988577 DOI: 10.1016/j.ydbio.2013.08.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 12/12/2022]
Abstract
Unlike adult mammals, adult zebrafish vigorously regenerate lost heart muscle in response to injury. The epicardium, a mesothelial cell layer enveloping the myocardium, is activated to proliferate after cardiac injury and can contribute vascular support cells or provide mitogens to regenerating muscle. Here, we applied proteomics to identify secreted proteins that are associated with heart regeneration. We found that Fibronectin, a main component of the extracellular matrix, is induced and deposited after cardiac damage. In situ hybridization and transgenic reporter analyses indicated that expression of two fibronectin paralogues, fn1 and fn1b, are induced by injury in epicardial cells, while the itgb3 receptor is induced in cardiomyocytes near the injury site. fn1, the more dynamic of these paralogs, is induced chamber-wide within one day of injury before localizing epicardial Fn1 synthesis to the injury site. fn1 loss-of-function mutations disrupted zebrafish heart regeneration, as did induced expression of a dominant-negative Fibronectin cassette, defects that were not attributable to direct inhibition of cardiomyocyte proliferation. These findings reveal a new role for the epicardium in establishing an extracellular environment that supports heart regeneration.
Collapse
Affiliation(s)
- Jinhu Wang
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
324
|
Hochgreb-Hägele T, Yin C, Koo DES, Bronner ME, Stainier DYR. Laminin β1a controls distinct steps during the establishment of digestive organ laterality. Development 2013; 140:2734-45. [PMID: 23757411 DOI: 10.1242/dev.097618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visceral organs, including the liver and pancreas, adopt asymmetric positions to ensure proper function. Yet the molecular and cellular mechanisms controlling organ laterality are not well understood. We identified a mutation affecting zebrafish laminin β1a (lamb1a) that disrupts left-right asymmetry of the liver and pancreas. In these mutants, the liver spans the midline and the ventral pancreatic bud remains split into bilateral structures. We show that lamb1a regulates asymmetric left-right gene expression in the lateral plate mesoderm (LPM). In particular, lamb1a functions in Kupffer's vesicle (KV), a ciliated organ analogous to the mouse node, to control the length and function of the KV cilia. Later during gut-looping stages, dynamic expression of Lamb1a is required for the bilayered organization and asymmetric migration of the LPM. Loss of Lamb1a function also results in aberrant protrusion of LPM cells into the gut. Collectively, our results provide cellular and molecular mechanisms by which extracellular matrix proteins regulate left-right organ morphogenesis.
Collapse
Affiliation(s)
- Tatiana Hochgreb-Hägele
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA.
| | | | | | | | | |
Collapse
|
325
|
Gemberling M, Bailey TJ, Hyde DR, Poss KD. The zebrafish as a model for complex tissue regeneration. Trends Genet 2013; 29:611-20. [PMID: 23927865 DOI: 10.1016/j.tig.2013.07.003] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/21/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues and, in some cases, have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs.
Collapse
Affiliation(s)
- Matthew Gemberling
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
326
|
Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proc Natl Acad Sci U S A 2013; 110:13416-21. [PMID: 23901114 DOI: 10.1073/pnas.1309810110] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Certain lower vertebrates like zebrafish activate proliferation of spared cardiomyocytes after cardiac injury to regenerate lost heart muscle. Here, we used translating ribosome affinity purification to profile translating RNAs in zebrafish cardiomyocytes during heart regeneration. We identified dynamic induction of several Jak1/Stat3 pathway members following trauma, events accompanied by cytokine production. Transgenic Stat3 inhibition in cardiomyocytes restricted injury-induced proliferation and regeneration, but did not reduce cardiogenesis during animal growth. The secreted protein Rln3a was induced in a Stat3-dependent manner by injury, and exogenous Rln3 delivery during Stat3 inhibition stimulated cardiomyocyte proliferation. Our results identify an injury-specific cardiomyocyte program essential for heart regeneration.
Collapse
|
327
|
Abstract
Zebrafish (Danio rerio) are an excellent vertebrate model for studying heart development, regeneration and cardiotoxicity. Zebrafish embryos exposed during the temporal window of epicardium development to the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exhibit severe heart malformations. TCDD exposure prevents both proepicardial organ (PE) and epicardium development. Exposure later in development, after the epicardium has formed, does not produce cardiac toxicity. It is not until the adult zebrafish heart is stimulated to regenerate does TCDD again cause detrimental effects. TCDD exposure prior to ventricular resection prevents cardiac regeneration. It is likely that TCDD-induced inhibition of epicardium development and cardiac regeneration occur via a common mechanism. Here, we describe experiments that focus on the epicardium as a target and sensor of zebrafish heart toxicity.
Collapse
Affiliation(s)
- Peter Hofsteen
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Jessica Plavicki
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Richard E. Peterson
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Warren Heideman
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
328
|
Paschaki M, Cammas L, Muta Y, Matsuoka Y, Mak SS, Rataj-Baniowska M, Fraulob V, Dollé P, Ladher RK. Retinoic acid regulates olfactory progenitor cell fate and differentiation. Neural Dev 2013; 8:13. [PMID: 23829703 PMCID: PMC3717070 DOI: 10.1186/1749-8104-8-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In order to fulfill their chemosensory function, olfactory neurons are in direct contact with the external environment and are therefore exposed to environmental aggressive factors. Olfaction is maintained through life because, unlike for other sensory neuroepithelia, olfactory neurons have a unique capacity to regenerate after trauma. The mechanisms that control the ontogenesis and regenerative ability of these neurons are not fully understood. Here, we used various experimental approaches in two model systems (chick and mouse) to assess the contribution of retinoic acid signaling in the induction of the olfactory epithelium, the generation and maintenance of progenitor populations, and the ontogenesis and differentiation of olfactory neurons. RESULTS We show that retinoic acid signaling, although dispensable for initial induction of the olfactory placode, plays a key role in neurogenesis within this neuroepithelium. Retinoic acid depletion in the olfactory epithelium, both in chick and mouse models, results in a failure of progenitor cell maintenance and, consequently, differentiation of olfactory neurons is not sustained. Using an explant system, we further show that renewal of olfactory neurons is hindered if the olfactory epithelium is unable to synthesize retinoic acid. CONCLUSIONS Our data show that retinoic acid is not a simple placodal inductive signal, but rather controls olfactory neuronal production by regulating the fate of olfactory progenitor cells. Retinaldehyde dehydrogenase 3 (RALDH3) is the key enzyme required to generate retinoic acid within the olfactory epithelium.
Collapse
Affiliation(s)
- Marie Paschaki
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Abstract
Epicardial derivatives, including vascular smooth muscle cells and cardiac fibroblasts, are crucial for proper development of the coronary vasculature and cardiac fibrous matrix, both of which support myocardial integrity and function in the normal heart. Epicardial formation, epithelial-to-mesenchymal transition (EMT), and epicardium-derived cell (EPDC) differentiation are precisely regulated by complex interactions among signaling molecules and transcription factors. Here we review the roles of critical transcription factors that are required for specific aspects of epicardial development, EMT, and EPDC lineage specification in development and disease. Epicardial cells and subepicardial EPDCs express transcription factors including Wt1, Tcf21, Tbx18, and Nfatc1. As EPDCs invade the myocardium, epicardial progenitor transcription factors such as Wt1 are downregulated. EPDC differentiation into SMC and fibroblast lineages is precisely regulated by a complex network of transcription factors, including Tcf21 and Tbx18. These and other transcription factors also regulate epicardial EMT, EPDC invasion, and lineage maturation. In addition, there is increasing evidence that epicardial transcription factors are reactivated with adult cardiac ischemic injury. Determining the function of reactivated epicardial cells in myocardial infarction and fibrosis may improve our understanding of the pathogenesis of heart disease.
Collapse
|
330
|
Abstract
The proepicardium is a transient extracardiac embryonic tissue that gives rise to the epicardium and a number of coronary vascular cell lineages. This important extracardiac tissue develops through multiple steps of inductive events, from specification of multiple cell lineages to morphogenesis. This article will review our current understanding of inductive events involved in patterning of the proepicardium precursor field, specification of cell types within the proepicardium, and their extension and attachment to the heart.
Collapse
Affiliation(s)
- Lisandro Maya-Ramos
- University of California San Francisco, Cardiovascular Research Institute. San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
331
|
Gupta V, Gemberling M, Karra R, Rosenfeld GE, Evans T, Poss KD. An injury-responsive gata4 program shapes the zebrafish cardiac ventricle. Curr Biol 2013; 23:1221-7. [PMID: 23791730 DOI: 10.1016/j.cub.2013.05.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/02/2013] [Accepted: 05/14/2013] [Indexed: 01/14/2023]
Abstract
A common principle of tissue regeneration is the reactivation of previously employed developmental programs. During zebrafish heart regeneration, cardiomyocytes in the cortical layer of the ventricle induce the transcription factor gene gata4 and proliferate to restore lost muscle. A dynamic cellular mechanism initially creates this cortical muscle in juvenile zebrafish, where a small number of internal cardiomyocytes breach the ventricular wall and expand upon its surface. Here, we find that emergent juvenile cortical cardiomyocytes induce expression of gata4 in a manner similar to during regeneration. Clonal analysis indicates that these cardiomyocytes make biased contributions to build the ventricular wall, whereas gata4(+) cardiomyocytes have little or no proliferation hierarchy during regeneration. Experimental microinjuries or conditions of rapid organismal growth stimulate production of ectopic gata4(+) cortical muscle, implicating biomechanical stress in morphogenesis of this tissue and revealing clonal plasticity. Induced transgenic inhibition defined an essential role for Gata4 activity in morphogenesis of the cortical layer and the preservation of normal cardiac function in growing juveniles, and again in adults during heart regeneration. Our experiments uncover an injury-responsive program that prevents heart failure in juveniles by fortifying the ventricular wall, one that is reiterated in adults to promote regeneration after cardiac damage.
Collapse
Affiliation(s)
- Vikas Gupta
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
332
|
In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 2013; 498:497-501. [PMID: 23783515 PMCID: PMC4090927 DOI: 10.1038/nature12322] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 05/23/2013] [Indexed: 12/20/2022]
Abstract
Despite current treatment regimens, heart failure remains the leading cause of morbidity and mortality in the developed world due to the limited capacity of adult mammalian ventricular cardiomyocytes to divide and replace ventricular myocardium lost from ischemia-induced infarct1,2. As a result, there is great interest to identify potential cellular sources and strategies to generate new ventricular myocardium3. Past studies have shown that lower vertebrate and early postnatal mammalian ventricular cardiomyocytes can proliferate to help regenerate injured ventricles4–6; however, recent studies have suggested that additional endogenous cellular sources may contribute to this overall ventricular regeneration3. Here, we have developed in the zebrafish a combination of fluorescent reporter transgenes, genetic fate-mapping strategies, and a ventricle-specific genetic ablation system to discover that differentiated atrial cardiomyocytes can transdifferentiate into ventricular cardiomyocytes to contribute to zebrafish cardiac ventricular regeneration. Using in vivo time-lapse and confocal imaging, we monitored the dynamic cellular events during atrial-to-ventricular cardiomyocyte transdifferentiation to define intermediate cardiac reprogramming stages. Importantly, we observed that Notch signaling becomes activated in the atrial endocardium following ventricular ablation, and discovered that inhibiting Notch signaling blocked the atrial-to-ventricular transdifferentiation and cardiac regeneration. Overall, these studies not only provide evidence for the plasticity of cardiac lineages during myocardial injury, but more importantly reveal an abundant new potential cardiac resident cellular source for cardiac ventricular regeneration.
Collapse
|
333
|
Tao G, Miller LJ, Lincoln J. Snai1 is important for avian epicardial cell transformation and motility. Dev Dyn 2013; 242:699-708. [PMID: 23553854 DOI: 10.1002/dvdy.23967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Formation of the epicardium requires several cellular processes including migration, transformation, invasion, and differentiation in order to give rise to fibroblast, smooth muscle, coronary endothelial and myocyte cell lineages within the developing myocardium. Snai1 is a zinc finger transcription factor that plays an important role in regulating cell survival and fate during embryonic development and under pathological conditions. However, its role in avian epicardial development has not been examined. RESULTS Here we show that Snai1 is highly expressed in epicardial cells from as early as the proepicardial cell stage and its expression is maintained as proepicardial cells migrate and spread over the surface of the myocardium and undergo epicardial-to-mesenchymal transformation in the generation of epicardial-derived cells. Using multiple in vitro assays, we show that Snai1 overexpression in chick explants enhances proepicardial cell migration at Hamburger Hamilton Stage (HH St.) 16, and epicardial-to-mesenchymal transformation, cell migration, and invasion at HH St. 24. Further, we demonstrate that Snai1-mediated cell migration requires matrix metalloproteinase activity, and MMP15 is sufficient for this process. CONCLUSIONS Together our data provide new insights into the multiple roles that Snai1 has in regulating avian epicardial development.
Collapse
Affiliation(s)
- Ge Tao
- Molecular Cell and Developmental Biology Graduate Program, Leonard M. Miller School of Medicine, Miami, Florida, USA
| | | | | |
Collapse
|
334
|
Abstract
This protocol describes how to isolate primary cardiomyocytes from adult zebrafish hearts and culture them for up to 4 weeks, thereby using them as an alternative to in vivo experiments. After collagenase digestion of the ventricle, cells are exposed to increasing calcium concentrations in order to obtain high-purity cardiomyocytes. The whole isolation process can be accomplished in 4-5 h. The culture conditions we established allow the cells to preserve their mature sarcomeric integrity and contractile properties. Furthermore, adult zebrafish cardiomyocytes in culture, similarly to zebrafish in vivo heart regeneration, undergo partial dedifferentiation and, in contrast to their mammalian counterparts, are able to proliferate. Our protocol enables the study of structural and functional properties in close-to-native cardiomyocytes and allows the application of in vitro techniques and assays that are not feasible to perform in living animals.
Collapse
|
335
|
Choi WY, Gemberling M, Wang J, Holdway JE, Shen MC, Karlstrom RO, Poss KD. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 2013; 140:660-6. [PMID: 23293297 DOI: 10.1242/dev.088526] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adult mammalian cardiomyocytes have little capacity to proliferate in response to injury, a deficiency that underlies the poor regenerative ability of human hearts after myocardial infarction. By contrast, zebrafish regenerate heart muscle after trauma by inducing proliferation of spared cardiomyocytes, providing a model for identifying manipulations that block or enhance these events. Although direct genetic or chemical screens of heart regeneration in adult zebrafish present several challenges, zebrafish embryos are ideal for high-throughput screening. Here, to visualize cardiomyocyte proliferation events in live zebrafish embryos, we generated transgenic zebrafish lines that employ fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. We then performed a chemical screen and identified several small molecules that increase or reduce cardiomyocyte proliferation during heart development. These compounds act via Hedgehog, Insulin-like growth factor or Transforming growth factor β signaling pathways. Direct examination of heart regeneration after mechanical or genetic ablation injuries indicated that these pathways are activated in regenerating cardiomyocytes and that they can be pharmacologically manipulated to inhibit or enhance cardiomyocyte proliferation during adult heart regeneration. Our findings describe a new screening system that identifies molecules and pathways with the potential to modify heart regeneration.
Collapse
Affiliation(s)
- Wen-Yee Choi
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
336
|
Abstract
The heart holds the monumental yet monotonous task of maintaining circulation. Although cardiac function is critical to other organs and to life itself, mammals are not equipped with significant natural capacity to replace heart muscle that has been lost by injury. This deficiency plays a role in leaving millions worldwide vulnerable to heart failure each year. By contrast, certain other vertebrate species such as zebrafish are strikingly good at heart regeneration. A cellular and molecular understanding of endogenous regenerative mechanisms and advances in methodology to transplant cells together project a future in which cardiac muscle regeneration can be therapeutically stimulated in injured human hearts. This review focuses on what has been discovered recently about cardiac regenerative capacity and how natural mechanisms of heart regeneration in model systems are stimulated and maintained.
Collapse
Affiliation(s)
- Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.
| | | |
Collapse
|
337
|
Degenhardt K, Singh MK, Epstein JA. New approaches under development: cardiovascular embryology applied to heart disease. J Clin Invest 2013; 123:71-4. [PMID: 23281412 DOI: 10.1172/jci62884] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite many innovative advances in cardiology over the past 50 years, heart disease remains a major killer. The steady progress that continues to be made in diagnostics and therapeutics is offset by the cardiovascular consequences of the growing epidemics of obesity and diabetes. Truly innovative approaches on the horizon have been greatly influenced by new insights in cardiovascular development. In particular, research in stem cell biology, the cardiomyocyte lineage, and the interactions of the myocardium and epicardium have opened the door to new approaches for healing the injured heart.
Collapse
Affiliation(s)
- Karl Degenhardt
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
338
|
Lam NT, Currie PD, Lieschke GJ, Rosenthal NA, Kaye DM. Nerve growth factor stimulates cardiac regeneration via cardiomyocyte proliferation in experimental heart failure. PLoS One 2012; 7:e53210. [PMID: 23300892 PMCID: PMC3534029 DOI: 10.1371/journal.pone.0053210] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022] Open
Abstract
Although the adult heart likely retains some regenerative capacity, heart failure (HF) typically remains a progressive disorder. We hypothesise that alterations in the local environment contribute to the failure of regeneration in HF. Previously we showed that nerve growth factor (NGF) is deficient in the failing heart and here we hypothesise that diminished NGF limits the cardiac regenerative response in HF. The capacity of NGF to augment cardiac regeneration was tested in a zebrafish model of HF. Cardiac injury with a HF phenotype was induced in zebrafish larvae at 72 hours post fertilization (hpf) by exposure to aristolochic acid (AA, 2.5 µM, 72–75 hpf). By 168 hpf, AA induced HF and death in 37.5% and 20.8% of larvae respectively (p<0.001). NGF mRNA expression was reduced by 42% (p<0.05). The addition of NGF (50 ng/ml) after exposure to AA reduced the incidence of HF by 50% (p<0.01) and death by 65% (p<0.01). Mechanistically, AA mediated HF was characterised by reduced cardiomyocyte proliferation as reflected by a 6.4 fold decrease in BrdU+ cardiomyocytes (p<0.01) together with features of apoptosis and loss of cardiomyocytes. Following AA exposure, NGF increased the abundance of BrdU+ cardiomyocytes in the heart by 4.8 fold (p<0.05), and this was accompanied by a concomitant significant increase in cardiomyocyte numbers. The proliferative effect of NGF on cardiomyocytes was not associated with an anti-apoptotic effect. Taken together the study suggests that NGF stimulates a regenerative response in the failing zebrafish heart, mediated by stimulation of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Nicholas T. Lam
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Medicine, Alfred Hospital, Monash University, Melbourne, Australia
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Australia
| | - Peter D. Currie
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Australia
| | - Nadia A. Rosenthal
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Australia
| | - David M. Kaye
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Medicine, Alfred Hospital, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
339
|
Huang GN, Thatcher JE, McAnally J, Kong Y, Qi X, Tan W, DiMaio JM, Amatruda JF, Gerard RD, Hill JA, Bassel-Duby R, Olson EN. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 2012; 338:1599-603. [PMID: 23160954 PMCID: PMC3613149 DOI: 10.1126/science.1229765] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The epicardium encapsulates the heart and functions as a source of multipotent progenitor cells and paracrine factors essential for cardiac development and repair. Injury of the adult heart results in reactivation of a developmental gene program in the epicardium, but the transcriptional basis of epicardial gene expression has not been delineated. We established a mouse embryonic heart organ culture and gene expression system that facilitated the identification of epicardial enhancers activated during heart development and injury. Epicardial activation of these enhancers depends on a combinatorial transcriptional code centered on CCAAT/enhancer binding protein (C/EBP) transcription factors. Disruption of C/EBP signaling in the adult epicardium reduced injury-induced neutrophil infiltration and improved cardiac function. These findings reveal a transcriptional basis for epicardial activation and heart injury, providing a platform for enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Guo N. Huang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey E. Thatcher
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yongli Kong
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoxia Qi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Tan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - J. Michael DiMaio
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James F. Amatruda
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert D. Gerard
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph A. Hill
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
340
|
Hofsteen P, Mehta V, Kim MS, Peterson RE, Heideman W. TCDD inhibits heart regeneration in adult zebrafish. Toxicol Sci 2012. [PMID: 23204111 DOI: 10.1093/toxsci/kfs329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Normal adult zebrafish can completely regenerate lost myocardium following partial amputation of the ventricle apex. We report that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) significantly impairs this regeneration. Adult male zebrafish were injected with vehicle (control) or TCDD (70ng/g, ip) 1 day prior to partial amputation of the ventricle apex. Gross observation and histological analysis of the amputated heart at 21 days postamputation revealed that TCDD-exposed fish had not progressed beyond the initial clot formation stage, whereas the vehicle control fish showed substantial recovery and almost complete resolution of the formed clot. In contrast, hearts that were not surgically wounded showed no signs of TCDD toxicity. Striking features in the TCDD-exposed hearts were the absence of the normal sheath of new tissue enveloping the wound and the absence of intense cell proliferation at the site of the wound. In addition, the patterns of collagen deposition at the wound site were different between the TCDD and vehicle groups. Because the receptor for TCDD is the aryl hydrocarbon receptor ligand-activated transcriptional regulator, we examined the effects of TCDD exposure on gene expression in the ventricle using DNA microarrays. Samples were collected just prior to amputation and at 6h and 7 days postamputation. TCDD-pretreated hearts had dysregulated expression of genes involved in heart function, tissue regeneration, cell growth, and extracellular matrix. Because embryonic, but not adult, hearts are major targets for TCDD-induced cardiotoxicity, we speculate that the need for embryonic-like cells in regeneration is connected with the effects of TCDD in inhibiting the response to wounding.
Collapse
|
341
|
Regeneration and reprogramming. Curr Opin Genet Dev 2012; 22:485-93. [PMID: 23084810 DOI: 10.1016/j.gde.2012.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/24/2012] [Accepted: 09/17/2012] [Indexed: 01/14/2023]
Abstract
Recent reprogramming studies indicate that mammalian, somatic cells have the potential to achieve pluripotent states and undergo cell type switching. Such cellular traits are observed under natural conditions in animals that regenerate complex organs. A number of invertebrates display the amazing trait of whole body regeneration. Underlying this trait is the maintenance of pluripotent cells in somatic tissue, and molecular studies indicate the use of common players associated with pluripotency and germ cell properties between these invertebrates and mammalian pluripotent cells. In regenerative vertebrates, heart regeneration, lens regeneration, and retinal regeneration provide good examples of dedifferentiation and transdifferentiation. The molecular factors associated with these phenomena are discussed.
Collapse
|
342
|
Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson A, Lund TC, Kawakami Y. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 2012; 139:4133-42. [PMID: 23034636 DOI: 10.1242/dev.079756] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult zebrafish possess a significant ability to regenerate injured heart tissue through proliferation of pre-existing cardiomyocytes, which contrasts with the inability of mammals to do so after the immediate postnatal period. Zebrafish therefore provide a model system in which to study how an injured heart can be repaired. However, it remains unknown what important processes cardiomyocytes are involved in other than partial de-differentiation and proliferation. Here we show that migration of cardiomyocytes to the injury site is essential for heart regeneration. Ventricular amputation induced expression of cxcl12a and cxcr4b, genes encoding a chemokine ligand and its receptor. We found that cxcl12a was expressed in the epicardial tissue and that Cxcr4 was expressed in cardiomyocytes. We show that pharmacological blocking of Cxcr4 function as well as genetic loss of cxcr4b function causes failure to regenerate the heart after ventricular resection. Cardiomyocyte proliferation was not affected but a large portion of proliferating cardiomyocytes remained localized outside the injury site. A photoconvertible fluorescent reporter-based cardiomyocyte-tracing assay demonstrates that cardiomyocytes migrated into the injury site in control hearts but that migration was inhibited in the Cxcr4-blocked hearts. By contrast, the epicardial cells and vascular endothelial cells were not affected by blocking Cxcr4 function. Our data show that the migration of cardiomyocytes into the injury site is regulated independently of proliferation, and that coordination of both processes is necessary for heart regeneration.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
343
|
Asli NS, Harvey RP. Epithelial to mesenchymal transition as a portal to stem cell characters embedded in gene networks. Bioessays 2012; 35:191-200. [DOI: 10.1002/bies.201200089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
344
|
Xu L, Feng Z, Sinha D, Ducos B, Ebenstein Y, Tadmor AD, Gauron C, Le Saux T, Lin S, Weiss S, Vriz S, Jullien L, Bensimon D. Spatiotemporal manipulation of retinoic acid activity in zebrafish hindbrain development via photo-isomerization. Development 2012; 139:3355-62. [DOI: 10.1242/dev.077776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
All-trans retinoic acid (RA) is a key player in many developmental pathways. Most methods used to study its effects in development involve continuous all-trans RA activation by incubation in a solution of all-trans RA or by implanting all-trans RA-soaked beads at desired locations in the embryo. Here we show that the UV-driven photo-isomerization of 13-cis RA to the trans-isomer (and vice versa) can be used to non-invasively and quantitatively control the concentration of all-trans RA in a developing embryo in time and space. This facilitates the global or local perturbation of developmental pathways with a pulse of all-trans RA of known concentration or its inactivation by UV illumination. In zebrafish embryos in which endogenous synthesis of all-trans RA is impaired, incubation for as little as 5 minutes in 1 nM all-trans RA (a pulse) or 5 nM 13-cis RA followed by 1-minute UV illumination is sufficient to rescue the development of the hindbrain if performed no later than bud stage. However, if subsequent to this all-trans RA pulse the embryo is illuminated (no later than bud stage) for 1 minute with UV light (to isomerize, i.e. deactivate, all-trans RA), the rescue of hindbrain development is impaired. This suggests that all-trans RA is sequestered in embryos that have been transiently exposed to it. Using 13-cis RA isomerization with UV light, we further show that local illumination at bud stage of the head region (but not the tail) is sufficient to rescue hindbrain formation in embryos whose all-trans RA synthetic pathway has been impaired.
Collapse
Affiliation(s)
- Lijun Xu
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Paris 06, Université Paris Diderot, CNRS UMR8550, 24 rue Lhomond, 75005 Paris, France
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), 46 rue d’Ulm, 75005 Paris, France
- Ecole Normale Supérieure, Department of Chemistry, UMR CNRS-ENS-UPMC 8640, 24 rue Lhomond, 75005 Paris, France
| | - Zhiping Feng
- Department of Molecular, Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Deepak Sinha
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Paris 06, Université Paris Diderot, CNRS UMR8550, 24 rue Lhomond, 75005 Paris, France
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), 46 rue d’Ulm, 75005 Paris, France
| | - Bertrand Ducos
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Paris 06, Université Paris Diderot, CNRS UMR8550, 24 rue Lhomond, 75005 Paris, France
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), 46 rue d’Ulm, 75005 Paris, France
| | - Yuval Ebenstein
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arbel D. Tadmor
- TRON–Translational Oncology, University Medical Center Mainz, Mainz, Germany
| | - Carole Gauron
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, UMR 7241, INSERM, U1050, France
| | - Thomas Le Saux
- Ecole Normale Supérieure, Department of Chemistry, UMR CNRS-ENS-UPMC 8640, 24 rue Lhomond, 75005 Paris, France
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sophie Vriz
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, UMR 7241, INSERM, U1050, France
- Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France
| | - Ludovic Jullien
- Ecole Normale Supérieure, Department of Chemistry, UMR CNRS-ENS-UPMC 8640, 24 rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Paris 06, Université Paris Diderot, CNRS UMR8550, 24 rue Lhomond, 75005 Paris, France
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), 46 rue d’Ulm, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
345
|
Looso M, Michel CS, Konzer A, Bruckskotten M, Borchardt T, Krüger M, Braun T. Spiked-in Pulsed in Vivo Labeling Identifies a New Member of the CCN Family in Regenerating Newt Hearts. J Proteome Res 2012; 11:4693-704. [DOI: 10.1021/pr300521p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mario Looso
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Christian S. Michel
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Anne Konzer
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Marc Bruckskotten
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Thilo Borchardt
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Marcus Krüger
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad
Nauheim, Germany
| |
Collapse
|
346
|
von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 2012; 110:1628-45. [PMID: 22679138 DOI: 10.1161/circresaha.111.259960] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epithelial to mesenchymal transition (EMT) converts epithelial cells to mobile and developmentally plastic mesenchymal cells. All cells in the heart arise from one or more EMTs. Endocardial and epicardial EMTs produce most of the noncardiomyocyte lineages of the mature heart. Endocardial EMT generates valve progenitor cells and is necessary for formation of the cardiac valves and for complete cardiac septation. Epicardial EMT is required for myocardial growth and coronary vessel formation, and it generates cardiac fibroblasts, vascular smooth muscle cells, a subset of coronary endothelial cells, and possibly a subset of cardiomyocytes. Emerging studies suggest that these developmental mechanisms are redeployed in adult heart valve disease, in cardiac fibrosis, and in myocardial responses to ischemic injury. Redirection and amplification of disease-related EMTs offer potential new therapeutic strategies and approaches for treatment of heart disease. Here, we review the role and molecular regulation of endocardial and epicardial EMT in fetal heart development, and we summarize key literature implicating reactivation of endocardial and epicardial EMT in adult heart disease.
Collapse
Affiliation(s)
- Alexander von Gise
- Department of Cardiology, Children's Hospital Boston, 300 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
347
|
Zhen YS, Wu Q, Xiao CL, Chang NN, Wang X, Lei L, Zhu X, Xiong JW. Overlapping cardiac programs in heart development and regeneration. J Genet Genomics 2012; 39:443-9. [PMID: 23021544 DOI: 10.1016/j.jgg.2012.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/02/2012] [Accepted: 07/07/2012] [Indexed: 02/03/2023]
Abstract
Gaining cellular and molecular insights into heart development and regeneration will likely provide new therapeutic targets and opportunities for cardiac regenerative medicine, one of the most urgent clinical needs for heart failure. Here we present a review on zebrafish heart development and regeneration, with a particular focus on early cardiac progenitor development and their contribution to building embryonic heart, as well as cellular and molecular programs in adult zebrafish heart regeneration. We attempt to emphasize that the signaling pathways shaping cardiac progenitors in heart development may also be redeployed during the progress of adult heart regeneration. A brief perspective highlights several important and promising research areas in this exciting field.
Collapse
Affiliation(s)
- Yi-Song Zhen
- Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
348
|
González-Rosa JM, Peralta M, Mercader N. Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev Biol 2012; 370:173-86. [PMID: 22877945 DOI: 10.1016/j.ydbio.2012.07.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 06/27/2012] [Accepted: 07/10/2012] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) leads to a severe loss of cardiomyocytes, which in mammals are replaced by scar tissue. Epicardial derived cells (EPDCs) have been reported to differentiate into cardiomyocytes during development, and proposed to have cardiomyogenic potential in the adult heart. However, mouse MI models reveal little if any contribution of EPDCs to myocardium. In contrast to adult mammals, teleosts possess a high myocardial regenerative capacity. To test if this advantage relates to the properties of their epicardium, we studied the fate of EPDCs in cryoinjured zebrafish hearts. To avoid the limitations of genetic labelling, which might trace only a subpopulation of EPDCs, we used cell transplantation to track all EPDCs during regeneration. EPDCs migrated to the injured myocardium, where they differentiated into myofibroblasts and perivascular fibroblasts. However, we did not detect any differentiation of EPDCs nor any other non-cardiomyocyte population into cardiomyocytes, even in a context of impaired cardiomyocyte proliferation. Our results support a model in which the epicardium promotes myocardial regeneration by forming a cellular scaffold, and suggests that it might induce cardiomyocyte proliferation and contribute to neoangiogenesis in a paracrine manner.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | | | | |
Collapse
|
349
|
Monaghan JR, Athippozhy A, Seifert AW, Putta S, Stromberg AJ, Maden M, Gardiner DM, Voss SR. Gene expression patterns specific to the regenerating limb of the Mexican axolotl. Biol Open 2012; 1:937-48. [PMID: 23213371 PMCID: PMC3507169 DOI: 10.1242/bio.20121594] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/14/2012] [Indexed: 01/05/2023] Open
Abstract
Salamander limb regeneration is dependent upon tissue interactions that are local to the amputation site. Communication among limb epidermis, peripheral nerves, and mesenchyme coordinate cell migration, cell proliferation, and tissue patterning to generate a blastema, which will form missing limb structures. An outstanding question is how cross-talk between these tissues gives rise to the regeneration blastema. To identify genes associated with epidermis-nerve-mesenchymal interactions during limb regeneration, we examined histological and transcriptional changes during the first week following injury in the wound epidermis and subjacent cells between three injury types; 1) a flank wound on the side of the animal that will not regenerate a limb, 2) a denervated limb that will not regenerate a limb, and 3) an innervated limb that will regenerate a limb. Early, histological and transcriptional changes were similar between the injury types, presumably because a common wound-healing program is employed across anatomical locations. However, some transcripts were enriched in limbs compared to the flank and are associated with vertebrate limb development. Many of these genes were activated before blastema outgrowth and expressed in specific tissue types including the epidermis, peripheral nerve, and mesenchyme. We also identified a relatively small group of transcripts that were more highly expressed in innervated limbs versus denervated limbs. These transcripts encode for proteins involved in myelination of peripheral nerves, epidermal cell function, and proliferation of mesenchymal cells. Overall, our study identifies limb-specific and nerve-dependent genes that are upstream of regenerative growth, and thus promising candidates for the regulation of blastema formation.
Collapse
Affiliation(s)
- James R Monaghan
- Department of Biology, University of Florida , Gainesville, FL 32611 , USA
| | | | | | | | | | | | | | | |
Collapse
|
350
|
Lien CL, Harrison MR, Tuan TL, Starnes VA. Heart repair and regeneration: recent insights from zebrafish studies. Wound Repair Regen 2012; 20:638-46. [PMID: 22818295 DOI: 10.1111/j.1524-475x.2012.00814.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 03/31/2012] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease is the leading cause of death in the U.S. and worldwide. Failure to properly repair or regenerate damaged cardiac tissues after myocardial infarction is a major cause of heart failure. In contrast to humans and other mammals, zebrafish hearts regenerate after substantial injury or tissue damage. Here, we review recent progress in studying zebrafish heart regeneration, addressing the molecular and cellular responses in the three tissue layers of the heart: myocardium, epicardium, and endocardium. We also compare different injury models utilized to study zebrafish heart regeneration and discuss the differences in responses to injury between mammalian and zebrafish hearts. By learning how zebrafish hearts regenerate naturally, we can better design therapeutic strategies for repairing human hearts after myocardial infarction.
Collapse
Affiliation(s)
- Ching-Ling Lien
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | | | | | | |
Collapse
|