301
|
Paul S, Jakhar R, Bhardwaj M, Chauhan AK, Kang SC. Fumonisin B1 induces poly (ADP-ribose) (PAR) polymer-mediated cell death (parthanatos) in neuroblastoma. Food Chem Toxicol 2021; 154:112326. [PMID: 34111490 DOI: 10.1016/j.fct.2021.112326] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Fumonisin B1 (FB1) is a well-known mycotoxin produced by Fusarium spp. and has a wide range of dose-dependent toxic effects, including nephrotoxicity, hepatotoxicity, and neurotoxicity. This research illustrated that FB1 exerts its toxicity in the neuroblastoma cell line through a distinct cell-death pathway called parthanatos. FB1 can cause excessive DNA strand breaks, leading to poly (ADP-ribose) polymerase-1 (PARP-1) overactivation and cell death. In this study, we used 50 μM FB1-treated SH-SY5Y neuroblastoma cells to elucidate the signaling pathway of FB1-induced parthanatos. We observed that FB1-induced cell death is caspase-independent and accompanied by rapid activation of PARP-1, c-Jun N-terminal kinase activation, reactive oxygen species (ROS) generation, and intracellular calcium increase. FB1 treatment also increased endoplasmic reticulum stress due to the rapid increase of calcium ions and ROS levels. In addition, FB1 induced massive DNA damage and chromatin decondensation. We also observed that apoptosis-inducing factor nuclear translocation and PAR accumulation were associated with the necroptosis signal.
Collapse
Affiliation(s)
- Souren Paul
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA; Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, 38453, Republic of Korea
| | - Rekha Jakhar
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, 38453, Republic of Korea
| | - Monika Bhardwaj
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, 38453, Republic of Korea
| | - Anil Kumar Chauhan
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, 38453, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, 38453, Republic of Korea.
| |
Collapse
|
302
|
Increased Serum Concentrations of High Mobility Group Box 1 (HMGB1) Protein in Children with Autism Spectrum Disorder. CHILDREN-BASEL 2021; 8:children8060478. [PMID: 34198762 PMCID: PMC8228126 DOI: 10.3390/children8060478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
High mobility group box 1 protein (HMGB1) has been suggested to be involved in the immune dysfunction and inflammation reported in autism spectrum disorder (ASD). We aimed to assess HMGB1 serum concentrations (SCs) in high-functioning ASD children compared to typically developing (TD) controls and to explore their associations with the autism spectrum quotient (AQ), the empathy quotient (EQ), and the systemizing quotient (SQ). The study involved 42 ASD children and 38 TD children, all-male, aged between 6.1 and 13.3 years old. HMGB1 SCs were measured by enzyme-linked immunosorbent assay (ELISA). Groups were comparable regarding age, general IQ, birth weight, and maternal age at birth. ASD children showed significantly higher HMGB1 SCs compared to TD children (1.25 ± 0.84 ng/mL versus 1.13 ± 0.79 ng/mL, respectively, p = 0.039). The Spearman’s rho revealed that HMGB1 SCs were positively correlated with the AQ attention to detail subscale (rs = 0.46, p = 0.045) and with the SQ total score (rs = 0.42, p = 0.04) in the ASD group. These results show that HMGB1 serum concentrations are altered in ASD children, and suggest that inflammatory processes mediated by HMGB1 may be associated with specific cognitive features observed in ASD.
Collapse
|
303
|
Wu J, Wu Z, He A, Zhang T, Zhang P, Jin J, Li S, Li G, Li X, Liang S, Pei L, Liu R, Tian Q, He X, Lu Y, Tang Z, Li H. Genome-Wide Screen and Validation of Microglia Pro-Inflammatory Mediators in Stroke. Aging Dis 2021; 12:786-800. [PMID: 34094642 PMCID: PMC8139211 DOI: 10.14336/ad.2020.0926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Stroke activates microglia pro-inflammatory response that not only induces the early neuronal injuries but also causes the secondary brain infarction. Yet, the underlying mechanisms for how microglia become activated in stroke are still unknown. Here, using the next-generation of RNA sequencing we find a total of 778 genes increasingly expressed in brain of stroke mice. Of these, we identified Hmgb2 as a microglia pro-inflammatory mediator by promoting the transcription of Ctss. Inhibition of either Hmgb2 or Ctss blocks microglia pro-inflammatory response and protects against brain damages and improves the neurological functions of stroke mice. This study uncovers Hmgb2 and Ctss as the major microglia inflammatory response mediators in stroke and hence warrants the promising targets for stroke therapies.
Collapse
Affiliation(s)
- Jianhua Wu
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,3Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhuoze Wu
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Aodi He
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Tongmei Zhang
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zhang
- 2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,4Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Jin
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Gaigai Li
- 2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,4Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Li
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqi Liang
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- 2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,5Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- 2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,6Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- 2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,6Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximiao He
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouping Tang
- 2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.,4Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- 1Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
304
|
Xu B, Yang Q, Tang Y, Tan Z, Fu H, Peng J, Xiang X, Gan L, Deng G, Mao Q, Xu PX, Jiang Y, Ding J. SIX1/EYA1 are novel liver damage biomarkers in chronic hepatitis B and other liver diseases. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:992. [PMID: 34277792 PMCID: PMC8267256 DOI: 10.21037/atm-21-2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
Background This study aimed to investigate the clinicopathological significance of sine oculis homeobox homolog 1 (SIX1) and eyes absent 1 (EYA1) in patients with chronic hepatitis B (CHB) and other liver diseases. Methods SIX1 and EYA1 levels were detected in human serum and liver tissues by enzyme linked immunosorbent assay (ELISA) and immunofluorescent staining method, respectively. Results The serum SIX1 and EYA1 levels in 313 CHB patients were 7.24±0.11 and 25.21±0.51 ng/mL, respectively, and these values were significantly higher than those in 33 healthy controls (2.84±0.15 and 13.11±1.01 ng/mL, respectively; P<0.05). Serum SIX1 and EYA1 levels were also markedly increased in patients with numerous other liver diseases, including liver fibrosis, hepatocellular carcinoma, fatty liver disease, alcoholic liver disease, fulminant hepatic failure, autoimmune liver disease, and hepatitis C, compared to the healthy controls (P<0.05). Dynamic observation of these proteins over time in 35 selected CHB patients revealed that SIX1 and EYA1 serum levels increased over an interval. Immunofluorescent staining revealed that both SIX1 and EYA1 were only expressed in hepatic stellate cells (HSCs), and their increased expression was evident in CHB liver tissue. Conclusions SIX1 and EYA1 are novel biomarkers of liver damage in patients of CHB and other liver diseases, with potential clinical utility.
Collapse
Affiliation(s)
- Baoyan Xu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiao Yang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Yingzi Tang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhaoxia Tan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haiyan Fu
- Health Management Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Peng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaomei Xiang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linlin Gan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yi Jiang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Jianqiang Ding
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
305
|
Sun B, Ying S, Ma Q, Li H, Li J, Song J. Metformin ameliorates HMGB1-mediated oxidative stress through mTOR pathway in experimental periodontitis. Genes Dis 2021; 10:542-553. [DOI: 10.1016/j.gendis.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/08/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
|
306
|
Zhu X, Liu L, Wang Y, Cong J, Lin Z, Wang Y, Liu Q, Wang L, Yang B, Li T. lncRNA MIAT/HMGB1 Axis Is Involved in Cisplatin Resistance via Regulating IL6-Mediated Activation of the JAK2/STAT3 Pathway in Nasopharyngeal Carcinoma. Front Oncol 2021; 11:651693. [PMID: 34094941 PMCID: PMC8173225 DOI: 10.3389/fonc.2021.651693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cisplatin-based chemotherapy and radiotherapy are the main first-line treatment strategies for nasopharyngeal carcinoma (NPC) patients. Unfortunately, resistance is a major obstacle in the clinical management of NPC patients. We prove that the expression level of high-mobility group box 1 (HMGB1) is dramatically increased in resistant NPC cells than that in sensitive cells. HMGB1 induces the expression and secretion of IL6, which leads to constitutive autocrine activation of the JAK2/STAT3 pathway and eventually contributes to chemoresistance in NPC cells. Long non-coding RNAs (lncRNAs) have been identified as key regulators involved in drug resistance. In this study, using GO analysis of the biological process and differential expression analysis, we find 12 significantly altered IncRNAs in NPC cell lines, which may be involved in regulating gene expression. Furthermore, we determine that elevated lncRNA MIAT level upregulates HMGB1 expression, contributing to cisplatin resistance in NPC cells. We find that the deficiency of the lncRNA MIAT/HMGB1 axis, inhibition of JAK2/STAT3, or neutralization of IL6 by antibodies significantly re-sensitizes resistant NPC cells to cisplatin in resistant NPC cells. Moreover, we provide the in vivo evidence that the deficiency of HMGB1 reduces cisplatin-resistant tumor growth. Most importantly, we provide clinical evidence showing that the expression level of the lncRNA MIAT/HMGB1/IL6 axis is elevated in resistant NPC tumors, which is highly correlated with poor clinical outcome. Our findings identify a novel chemoresistance mechanism regulated by the lncRNA MIAT/HMGB1/IL6 axis, which indicates the possibilities for lncRNA MIAT, HMGB1, and IL6 as biomarkers for chemoresistance and targets for developing novel strategies to overcome resistance in NPC patients.
Collapse
Affiliation(s)
- Xuewei Zhu
- Department of Otolaryngology Head & Neck Surgery, China Japan Union Hospital of Jilin University, Changchun, China
| | - Li Liu
- Reproductive Medical Center, Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Dermatology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Cong
- Department of Ophthalmology, Changchun City Central Hospital, Changchun, China
| | - Zhang Lin
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yongsen Wang
- Technology Department, Harbin Boshixuan Technology Co., Ltd, Harbin, China
| | - Qi Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Leiming Wang
- Shenzhen Bay Laboratory, The Institute of Chemical Biology, Gaoke International Innovation Center, Shenzhen, China
| | - Ben Yang
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
307
|
Jung AR, Kim GE, Kim MY, Ha US, Hong SH, Lee JY, Kim SW, Park YH. HMGB1 promotes tumor progression and invasion through HMGB1/TNFR1/NF-κB axis in castration-resistant prostate cancer. Am J Cancer Res 2021; 11:2215-2227. [PMID: 34094679 PMCID: PMC8167672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer (PCa) is the most common male cancer. Most patients treated with androgen deprivation therapy progress to castration-resistant PCa. To overcome the limitations of this treatment, there is an urgent need to identify more effective treatment targets. High mobility group box 1 protein (HMGB1) is known to be associated with progression, metastasis, and poor prognosis of several solid tumors; however, its role in PCa remains unclear. Thus, we aimed to evaluate the clinical significance and biological roles and mechanism of HMGB1 in PCa. We showed that increased expression of HMGB1 correlated with increased risk of aggressive PCa, and high expression of HMGB1 was associated with poor biochemical recurrence-free survival in a Korean cohort. Additionally, the inhibition of HMGB1 expression significantly reduced cell proliferation, invasive capacity, and NF-κB signaling in vitro. Our results indicated that HMGB1 is a critical factor in the development and progression of PCa. Moreover, we found that HMGB1 directly interacts with TNFR1, and TNFR1 overexpression in HMGB1 knockdown cells reversed the effects of HMGB1 knockdown. Importantly, our results suggest that HMGB1 binding to TNFR1 promotes tumor progression by activating the NF-κB signaling pathway in PCa; therefore, the HMGB1/TNFR1/NF-κB signaling pathway could serve as a novel therapeutic target for improving PCa therapy.
Collapse
Affiliation(s)
- Ae Ryang Jung
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| | - Ga Eun Kim
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| | - Mee Young Kim
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| | - U-Syn Ha
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| | - Sung-Hoo Hong
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| | - Sae Woong Kim
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| | - Yong Hyun Park
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| |
Collapse
|
308
|
Elevated expression of HMGB1 is prognostic of poor survival in patients with relapsed/refractory T/NK-CL. Ann Hematol 2021; 100:2293-2302. [PMID: 33991204 DOI: 10.1007/s00277-021-04473-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
Despite the clinical value of HMGB1 in non-Hodgkin lymphoma (NHL), the impact of HMGB1 protein expression on survival of patients with mature T-cell and NK-cell lymphoma (T/NK-CL) is unknown. Here, we evaluated correlations of HMGB1 expression in tumor tissues with pathophysiological characteristics of disease and determined the prognostic value of HMGB1 expression in relapsed/refractory T/NK-CL. HMGB1 expression was detected by immunohistochemistry (IHC) in 66 cases of relapsed/refractory T/NK-CL, and specimens were classified as high or low HMGB1 expression. Univariate and multivariate Cox regression analyses identified prognostic factors associated with progression-free survival (PFS) and overall survival (OS). High HMGB1 expression was significantly correlated with increased Ki67 levels and progressive lymphoma subtypes. Univariate Cox regression analysis showed that high HMGB1 expression was associated with unfavorable PFS (P = 0.006) and poorer OS (P < 0.001). Prognostic factors identified by univariate analysis were prognostic index for peripheral T-cell lymphoma non-specified (PIT) score ≥ 2, bone marrow involvement, Ki67 ≥ 70%, and high HMGB1 expression. Multivariate Cox regression analysis revealed that high HMGB1 expression was an independent prognostic factor for poorer PFS [hazard ratio (HR) 3.593; 95% confidence interval (CI) 1.171-11.027; P = 0.025] and OS [HR 7.663; 95% CI 2.367-24.803; P = 0.001]. A proposal prognostic model combining HMGB1 and Ki67 expression showed improved prognostic capacity and may help guide treatment planning. High HMGB1 expression may be a promising prognostic predictor and a potential therapeutic target for relapsed/refractory T/NK-CL. Furthermore, to apply HMGB1 as one of the best bio-maker, an external independent control cohort is needed.
Collapse
|
309
|
Palmblad K, Schierbeck H, Sundberg E, Horne AC, Erlandsson Harris H, Henter JI, Andersson U. Therapeutic administration of etoposide coincides with reduced systemic HMGB1 levels in macrophage activation syndrome. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2021; 27:48. [PMID: 33975537 PMCID: PMC8111379 DOI: 10.1186/s10020-021-00308-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Macrophage activation syndrome (MAS) is a potentially fatal complication of systemic inflammation. HMGB1 is a nuclear protein released extracellularly during proinflammatory lytic cell death or secreted by activated macrophages, NK cells, and additional cell types during infection or sterile injury. Extracellular HMGB1 orchestrates central events in inflammation as a prototype alarmin. TLR4 and the receptor for advanced glycation end products operate as key HMGB1 receptors to mediate inflammation. METHODS Standard ELISA and cytometric bead array-based methods were used to examine the kinetic pattern for systemic release of HMGB1, ferritin, IL-18, IFN-γ, and MCP-1 before and during treatment of four children with critical MAS. Three of the patients with severe underlying systemic rheumatic diseases were treated with biologics including tocilizumab or anakinra when MAS developed. All patients required intensive care therapy due to life-threatening illness. Add-on etoposide therapy was administered due to insufficient clinical response with standard treatment. Etoposide promotes apoptotic rather than proinflammatory lytic cell death, conceivably ameliorating subsequent systemic inflammation. RESULTS This therapeutic intervention brought disease control coinciding with a decline of the increased systemic HMGB1, IFN-γ, IL-18, and ferritin levels whereas MCP-1 levels evolved independently. CONCLUSION Systemic HMGB1 levels in MAS have not been reported before. Our results suggest that the molecule is not merely a biomarker of inflammation, but most likely also contributes to the pathogenesis of MAS. These observations encourage further studies of HMGB1 antagonists. They also advocate therapeutic etoposide administration in severe MAS and provide a possible biological explanation for its mode of action.
Collapse
Affiliation(s)
- Karin Palmblad
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Hanna Schierbeck
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Erik Sundberg
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Anna-Carin Horne
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Helena Erlandsson Harris
- Rheumatology Unit, Department of Medicine, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women׳s and Children׳s Health, Karolinska Institute, 17177, Stockholm, Sweden.,Theme of Children, Karolinska University Hospital, 17176, Solna, Stockholm, Sweden
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
310
|
Ren S, Pan L, Yang L, Niu Z, Wang L, Feng H, Yuan M. miR-29a-3p transferred by mesenchymal stem cells-derived extracellular vesicles protects against myocardial injury after severe acute pancreatitis. Life Sci 2021; 272:119189. [PMID: 33571516 DOI: 10.1016/j.lfs.2021.119189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 02/05/2023]
Abstract
AIMS Acute pancreatitis (AP) is an inflammatory disease of the pancreas that may affect local tissues or remote organ systems, while severe acute pancreatitis (SAP) is a life-threatening disorder associated with multiple organ failure. In this investigation, we set about to determine whether microRNA-29a-3p (miR-29a-3p) carried by mesenchymal stem cell (MSCs)-derived extracellular vesicles (EVs) affects the myocardial injury during SAP. MAIN METHODS EVs were isolated from MSCs of rat bone marrow by differential centrifugation. An SAP rat model was developed and treated with MSCs-EVs and/or alteration of miR-29a-3p and HMGB1 expression, followed by assessment of the rats' cardiac function and inflammation. Next, cardiomyocytes H9C2 were co-cultured with MSC-EVs and internalization of EVs was evaluated, followed by evaluation of whether EVs could transmit miR-29a-3p cargos into H9C2 cells and affect their biological functions. KEY FINDINGS EVs derived from MSCs were observed to protect against SAP-induced myocardial injury. In SAP-induced rats, miR-29a-3p was under-expressed in myocardial tissues. In addition, we also confirmed that miR-29a-3p could be transferred into the H9C2 cardiomyocytes by MSC-derived EVs, which downregulated the expression of inflammatory markers and improve cardiac function to attenuate myocardial injury. Furthermore, miR-29a-3p inhibited the expression of HMGB1 to downregulate TLR4 expression and further inactivate the Akt signaling pathway. SIGNIFICANCE These findings support the cardioprotective action of miR-29a-3p transmitted by MSCs-derived EVs in SAP-induced myocardial injury via downregulation of the HMGB1/TLR4/Akt axis, highlighting a promising target for the EV-based therapy for SAP.
Collapse
Affiliation(s)
- Song Ren
- Department of Geriatric Digestive Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| | - Linqing Yang
- Department of Nursing, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Zequn Niu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Liming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Miao Yuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| |
Collapse
|
311
|
Gauthier AG, Lin M, Wu J, Kennedy TP, Daley LA, Ashby CR, Mantell LL. From nicotine to the cholinergic anti-inflammatory reflex - Can nicotine alleviate the dysregulated inflammation in COVID-19? J Immunotoxicol 2021; 18:23-29. [PMID: 33860730 DOI: 10.1080/1547691x.2021.1875085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The coronavirus SARS-CoV-2 of 2019 (COVID-19) causes a pandemic that has been diagnosed in more than 70 million people worldwide. Mild-to-moderate COVID-19 symptoms include coughing, fever, myalgia, shortness of breath, and acute inflammatory lung injury (ALI). In contrast, acute respiratory distress syndrome (ARDS) and respiratory failure occur in patients diagnosed with severe COVID-19. ARDS is mediated, at least in part, by a dysregulated inflammatory response due to excessive levels of circulating cytokines, a condition known as the "cytokine-storm syndrome." Currently, there are FDA-approved therapies that attenuate the dysregulated inflammation that occurs in COVID-19 patients, such as dexamethasone or other corticosteroids and IL-6 inhibitors, including sarilumab, tocilizumab, and siltuximab. However, the efficacy of these treatments have been shown to be inconsistent. Compounds that activate the vagus nerve-mediated cholinergic anti-inflammatory reflex, such as the α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuate ARDS/inflammatory lung injury by decreasing the extracellular levels of high mobility group box-1 (HMGB1) in the airways and the circulation. It is possible that HMGB1 may be an important mediator of the "cytokine-storm syndrome." Notably, high plasma levels of HMGB1 have been reported in patients diagnosed with severe COVID-19, and there is a significant negative correlation between HMGB1 plasma levels and clinical outcomes. Nicotine can activate the cholinergic anti-inflammatory reflex, which attenuates the up-regulation and the excessive release of pro-inflammatory cytokines/chemokines. Therefore, we hypothesize that low molecular weight compounds that activate the cholinergic anti-inflammatory reflex, such as nicotine or GTS-21, may represent a potential therapeutic approach to attenuate the dysregulated inflammatory responses in patients with severe COVID-19.
Collapse
Affiliation(s)
- Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | | | - Lee-Anne Daley
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA.,The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| |
Collapse
|
312
|
The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells 2021; 10:cells10051044. [PMID: 33925132 PMCID: PMC8145631 DOI: 10.3390/cells10051044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
High mobility group box-1 protein (HMGB1), a member of the high mobility group protein superfamily, is an abundant and ubiquitously expressed nuclear protein. Intracellular HMGB1 is released by immune and necrotic cells and secreted HMGB1 activates a range of immune cells, contributing to the excessive release of inflammatory cytokines and promoting processes such as cell migration and adhesion. Moreover, HMGB1 is a typical damage-associated molecular pattern molecule that participates in various inflammatory and immune responses. In these ways, it plays a critical role in the pathophysiology of inflammatory diseases. Herein, we review the effects of HMGB1 on various immune cell types and describe the molecular mechanisms by which it contributes to the development of inflammatory disorders. Finally, we address the therapeutic potential of targeting HMGB1.
Collapse
|
313
|
Tang D, Wang H, Billiar TR, Kroemer G, Kang R. Emerging mechanisms of immunocoagulation in sepsis and septic shock. Trends Immunol 2021; 42:508-522. [PMID: 33906793 DOI: 10.1016/j.it.2021.04.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
Sepsis and septic shock driven by microbial infections are still among the most challenging health problems, causing 11 million deaths worldwide every year. How does the host's response to pathogen infections effectively restore homeostasis instead of precipitating pathogenic and potentially fatal feedforward reactions? Recently, there have been significant new advances in our understanding of the interface between mammalian immunity and coagulation ('immunocoagulation') and its impact on sepsis. In particular, the release and activation of F3 (the main initiator of coagulation) from and on myeloid or epithelial cells is facilitated by activating inflammasomes and consequent gasdermin D (GSDMD)-mediated pyroptosis, coupled to signaling via high mobility group box 1 (HMGB1), stimulator of interferon response CGAMP interactor 1 (STING1), or sequestosome 1 (SQSTM1). Pharmacological modulation of the immunocoagulation pathways emerge as novel and potential therapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; 94800 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP; 75015 Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
314
|
High-mobility group box 1 serves as an inflammation driver of cardiovascular disease. Biomed Pharmacother 2021; 139:111555. [PMID: 33865014 DOI: 10.1016/j.biopha.2021.111555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/15/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is the most deadly disease, which can cause sudden death, in which inflammation is a key factor in its occurrence and development. High-mobility group box 1 (HMGB1) is a novel nuclear DNA-binding protein that activates innate immunity to induce inflammation in CVD. HMGB1 exists in the cytoplasm and nucleus of different cell types, including those in the heart. By binding to its receptors, HMGB1 triggers a variety of signaling cascades, leading to inflammation and CVD. To help develop HMGB1-targeted therapies, here we discuss HMGB1 and its biological functions, receptors, signaling pathways, and pathophysiology related to inflammation and CVD, including cardiac remodeling, cardiac hypertrophy, myocardial infarction, heart failure, pulmonary hypertension, atherosclerosis, and cardiomyopathy.
Collapse
|
315
|
Frisardi V, Matrone C, Street ME. Metabolic Syndrome and Autophagy: Focus on HMGB1 Protein. Front Cell Dev Biol 2021; 9:654913. [PMID: 33912566 PMCID: PMC8072385 DOI: 10.3389/fcell.2021.654913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MetS) affects the population worldwide and results from several factors such as genetic background, environment and lifestyle. In recent years, an interplay among autophagy, metabolism, and metabolic disorders has become apparent. Defects in the autophagy machinery are associated with the dysfunction of many tissues/organs regulating metabolism. Metabolic hormones and nutrients regulate, in turn, the autophagy mechanism. Autophagy is a housekeeping stress-induced degradation process that ensures cellular homeostasis. High mobility group box 1 (HMGB1) is a highly conserved nuclear protein with a nuclear and extracellular role that functions as an extracellular signaling molecule under specific conditions. Several studies have shown that HMGB1 is a critical regulator of autophagy. This mini-review focuses on the involvement of HMGB1 protein in the interplay between autophagy and MetS, emphasizing its potential role as a promising biomarker candidate for the early stage of MetS or disease's therapeutic target.
Collapse
Affiliation(s)
- Vincenza Frisardi
- Clinical and Nutritional Laboratory, Department of Geriatric and NeuroRehabilitation, Arcispedale Santa Maria Nuova (AUSL-IRCCS), Reggio Emilia, Italy
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Elisabeth Street
- Division of Paediatric Endocrinology and Diabetology, Paediatrics, Department of Mother and Child, Arcispedale Santa Maria Nuova (AUSL-IRCCS), Reggio Emilia, Italy
| |
Collapse
|
316
|
Inhibition of the Receptor for Advanced Glycation End Products Enhances the Cytotoxic Effect of Gemcitabine in Murine Pancreatic Tumors. Biomolecules 2021; 11:biom11040526. [PMID: 33915939 PMCID: PMC8067004 DOI: 10.3390/biom11040526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a very difficult cancer to treat. Recent in vitro and in vivo studies suggest that the activation of the receptor for advanced glycation end products (RAGE) by its ligands stimulates pancreatic cancer cell proliferation and tumor growth. Additional studies show that, in the RAGE ligand, the high mobility group box 1 (HMGB1) protein plays an important role in chemoresistance against the cytotoxic agent gemcitabine by promoting cell survival through increased autophagy. We hypothesized that blocking the RAGE/HMGB1 interaction would enhance the cytotoxic effect of gemcitabine by reducing cell survival and autophagy. Using a preclinical mouse model of PDAC and a monoclonal antibody (IgG 2A11) as a RAGE inhibitor, we demonstrate that RAGE inhibition concurrent with gemcitabine treatment enhanced the cytotoxic effect of gemcitabine. The combination of IgG 2A11 and gemcitabine resulted in decreased autophagy compared to treatment with gemcitabine combined with control antibodies. Notably, we also observed that RAGE inhibition protected against excessive weight loss during treatment with gemcitabine. Our data suggest that the combination of gemcitabine with a RAGE inhibitor could be a promising therapeutic approach for the treatment of pancreatic cancer and needs to be further investigated.
Collapse
|
317
|
Chen X, Yu C, Kang R, Kroemer G, Tang D. Cellular degradation systems in ferroptosis. Cell Death Differ 2021; 28:1135-1148. [PMID: 33462411 PMCID: PMC8027807 DOI: 10.1038/s41418-020-00728-1] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
In eukaryotic cells, macromolecular homeostasis requires selective degradation of damaged units by the ubiquitin-proteasome system (UPS) and autophagy. Thus, dysfunctional degradation systems contribute to multiple pathological processes. Ferroptosis is a type of iron-dependent oxidative cell death driven by lipid peroxidation. Various antioxidant systems, especially the system xc--glutathione-GPX4 axis, play a significant role in preventing lipid peroxidation-mediated ferroptosis. The endosomal sorting complex required for transport-III (ESCRT-III)-dependent membrane fission machinery counteracts ferroptosis by repairing membrane damage. Moreover, cellular degradation systems play a dual role in regulating the ferroptotic response, depending on the cargo they degrade. The key ferroptosis repressors, such as SLC7A11 and GPX4, are degraded by the UPS. In contrast, the overactivation of selective autophagy, including ferritinophagy, lipophagy, clockophagy and chaperone-mediated autophagy, promotes ferroptotic death by degrading ferritin, lipid droplets, circadian proteins, and GPX4, respectively. Autophagy modulators (e.g., BECN1, STING1/TMEM173, CTSB, HMGB1, PEBP1, MTOR, AMPK, and DUSP1) also determine the ferroptotic response in a context-dependent manner. In this review, we provide an updated overview of the signals and mechanisms of the degradation system regulating ferroptosis, opening new horizons for disease treatment strategies.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 511436, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
318
|
Abstract
Epithelia are structurally integral elements in the fabric of oral mucosa with significant functional roles. Similarly, the gingival epithelium performs uniquely critical tasks in responding to a variety of external stimuli and dangers through the regulation of specific built-in molecular mechanisms in a context-dependent fashion at cellular levels. Gingival epithelial cells form an anatomic architecture that confers defense, robustness, and adaptation toward external aggressions, most critically to colonizing microorganisms, among other functions. Accordingly, recent studies unraveled previously uncharacterized response mechanisms in gingival epithelial cells that are constructed to rapidly exert biocidal effects against invader pathobiotic bacteria, such as Porphyromonas gingivalis, through small danger molecule signaling. The host-adapted bacteria, however, have developed adroit strategies to 1) exploit the epithelia as privileged growth niches and 2) chronically target cellular bactericidal and homeostatic metabolic pathways for successful bacterial persistence. As the overgrowth of colonizing microorganisms in the gingival mucosa can shift from homeostasis to dysbiosis or a diseased state, it is crucial to understand how the innate modulatory molecules are intricately involved in antibacterial pathways and how they shape susceptibility versus resistance in the epithelium toward pathogens. Thus, in this review, we highlight recent discoveries in gingival epithelial cell research in the context of bacterial colonizers. The current knowledge outlined here demonstrates the ability of epithelial cells to possess highly organized defense machineries, which can jointly regulate host-derived danger molecule signaling and integrate specific global responses against opportunistic bacteria to combat microbial incursion and maintain host homeostatic balance. These novel examples collectively suggest that the oral epithelia are equipped with a dynamically robust and interconnected defense system encompassing sensors and various effector molecules that arrange and achieve a fine-tuned and advanced response to diverse bacteria.
Collapse
Affiliation(s)
- J.S. Lee
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ö. Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
319
|
Wang H, Cheng Y, Mao C, Liu S, Xiao D, Huang J, Tao Y. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther 2021; 29:2185-2208. [PMID: 33794363 DOI: 10.1016/j.ymthe.2021.03.022] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Ferroptosis is an iron- and lipid reactive oxygen species (ROS)-dependent form of programmed cell death that is distinct from other forms of regulatory cell death at the morphological, biological, and genetic levels. Emerging evidence suggests critical roles for ferroptosis in cell metabolism, the redox status, and various diseases, such as cancers, nervous system diseases, and ischemia-reperfusion injury, with ferroptosis-related proteins. Ferroptosis is inhibited in diverse cancer types and functions as a dynamic tumor suppressor in cancer development, indicating that the regulation of ferroptosis can be utilized as an interventional target for tumor treatment. Small molecules and nanomaterials that reprogram cancer cells to undergo ferroptosis are considered effective drugs for cancer therapy. Here, we systematically summarize the molecular basis of ferroptosis, the suppressive effect of ferroptosis on tumors, the effect of ferroptosis on cellular metabolism and the tumor microenvironment (TME), and ferroptosis-inducing agents for tumor therapeutics. An understanding of the latest progress in ferroptosis could provide references for proposing new potential targets for the treatment of cancers.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
320
|
Diabetes, inflammation, and the adiponectin paradox: Therapeutic targets in SARS-CoV-2. Drug Discov Today 2021; 26:2036-2044. [PMID: 33775925 PMCID: PMC7997138 DOI: 10.1016/j.drudis.2021.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Aging and pre-existing conditions in older patients increase severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) severity and its complications, although the causes remain unclear. Apart from acute pulmonary syndrome, Coronavirus 2019 (COVID-19) can increasingly induce chronic conditions. Importantly, SARS-CoV-2 triggers de novo type 2 diabetes mellitus (T2DM) linked to age-associated cardiovascular disease (CVD), cancers, and neurodegeneration. Mechanistically, SARS-CoV-2 induces inflammation, possibly through damage-associated molecular pattern (DAMP) signaling and ‘cytokine storm,’ causing insulin resistance and the adiponectin (APN) paradox, a phenomenon linking metabolic dysfunction to chronic disease. Accordingly, preventing the APN paradox by suppressing APN-related inflammatory signaling might prove beneficial. A better understanding could uncover novel therapies for SARS-CoV-2 and its chronic disorders.
Collapse
|
321
|
Xu X, Lin D, Tu S, Gao S, Shao A, Sheng J. Is Ferroptosis a Future Direction in Exploring Cryptococcal Meningitis? Front Immunol 2021; 12:598601. [PMID: 33815361 PMCID: PMC8017140 DOI: 10.3389/fimmu.2021.598601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
Cryptococcal meningitis (CM) is the leading cause of mortality among patients infected with human immunodeficiency virus (HIV). Although treatment strategies for CM are continually being developed, the mortality rate is still high. Therefore, we need to explore more therapeutic strategies that are aimed at hindering its pathogenic mechanism. In the field of CM, several studies have observed rapid iron accumulation and lipid peroxidation within the brain, all of which are hallmarks of ferroptosis, which is a type of programmed cell death that is characterized by iron dependence and lipid peroxidation. In recent years, many studies have confirmed the involvement of ferroptosis in many diseases, including infectious diseases such as Mycobacterium tuberculosis infection and coronavirus disease-2019 (COVID-19). Furthermore, ferroptosis is considered as immunogenic and pro-inflammatory as the ferroptotic cells release damage-associated molecular pattern molecules (DAMPs) and alarmin, both of which regulate immunity and pro-inflammatory activity. Hence, we hypothesize that there might be a relationship between this unique cell death modality and CM. Herein, we review the evidence of ferroptosis in CM and consider the hypothesis that ferroptotic cell death may be involved in the cell death of CM.
Collapse
Affiliation(s)
- Xianbin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
322
|
Wang N, Wu R, Comish PB, Kang R, Tang D. Pharmacological Modulation of BET Family in Sepsis. Front Pharmacol 2021; 12:642294. [PMID: 33776776 PMCID: PMC7990776 DOI: 10.3389/fphar.2021.642294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis 3.0) recommended defining sepsis as a life-threatening organ dysfunction caused by the host's uncontrolled response to infection. The bromodomain and extra-terminal (BET) protein family (such as BRD2, BRD3, and BRD4), an epigenetic regulator of gene transcription, has recently been recognized as a significant septic regulator of inflammation and immune response, including cytokine and chemokine production. Mechanistically, the two N-terminal conserved tandem bromodomains (namely the first bromodomain [BD1] and the second bromodomain [BD2]) favor the binding of BETs to acetylated histones or transcription factors, thereby initiating gene transcription machinery after CycT1 and CDK9 (also known as P-TEFb) are recruited to gene promoters to phosphorylate RNA pol II. Notably, BD1 and BD2 are not functionally redundant because they have different target genes in innate immune cells. Small-molecule BET inhibitors (BETis) for different BDs, such as I-BET, JQ1, I-BET151, apabetalone, RVX-297, and dBET1 have shown promising therapeutic effects in experimental sepsis models. This mini-review summarizes the emerging roles of BETs and the applications of BETis in sepsis, discusses the existing shortcomings of BETis, and introduces possible future research directions in this area.
Collapse
Affiliation(s)
- Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Paul B Comish
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
323
|
Siddiqui SS, Dhar C, Sundaramurthy V, Sasmal A, Yu H, Bandala-Sanchez E, Li M, Zhang X, Chen X, Harrison LC, Xu D, Varki A. Sialoglycan recognition is a common connection linking acidosis, zinc, and HMGB1 in sepsis. Proc Natl Acad Sci U S A 2021; 118:e2018090118. [PMID: 33658363 PMCID: PMC7958265 DOI: 10.1073/pnas.2018090118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Blood pH is tightly maintained between 7.35 and 7.45, and acidosis (pH <7.3) indicates poor prognosis in sepsis, wherein lactic acid from anoxic tissues overwhelms the buffering capacity of blood. Poor sepsis prognosis is also associated with low zinc levels and the release of High mobility group box 1 (HMGB1) from activated and/or necrotic cells. HMGB1 added to whole blood at physiological pH did not bind leukocyte receptors, but lowering pH with lactic acid to mimic sepsis conditions allowed binding, implying the presence of natural inhibitor(s) preventing binding at normal pH. Testing micromolar concentrations of divalent cations showed that zinc supported the robust binding of sialylated glycoproteins with HMGB1. Further characterizing HMGB1 as a sialic acid-binding lectin, we found that optimal binding takes place at normal blood pH and is markedly reduced when pH is adjusted with lactic acid to levels found in sepsis. Glycan array studies confirmed the binding of HMGB1 to sialylated glycan sequences typically found on plasma glycoproteins, with binding again being dependent on zinc and normal blood pH. Thus, HMGB1-mediated hyperactivation of innate immunity in sepsis requires acidosis, and micromolar zinc concentrations are protective. We suggest that the potent inflammatory effects of HMGB1 are kept in check via sequestration by plasma sialoglycoproteins at physiological pH and triggered when pH and zinc levels fall in late stages of sepsis. Current clinical trials independently studying zinc supplementation, HMGB1 inhibition, or pH normalization may be more successful if these approaches are combined and perhaps supplemented by infusions of heavily sialylated molecules.
Collapse
Affiliation(s)
- Shoib S Siddiqui
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093
| | - Chirag Dhar
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093
| | - Venkatasubramaniam Sundaramurthy
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093
| | - Aniruddha Sasmal
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616
| | - Esther Bandala-Sanchez
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Miaomiao Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Xiaoxiao Zhang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616
| | - Leonard C Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214
| | - Ajit Varki
- Department of Medicine, University of California San Diego, La Jolla, CA 92093;
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
324
|
Yangi R, Huang H, Zhou Q. Long noncoding RNA MALAT1 sponges miR-129-5p to regulate the development of bronchopulmonary dysplasia by increasing the expression of HMGB1. J Int Med Res 2021; 48:300060520918476. [PMID: 32397779 PMCID: PMC7223211 DOI: 10.1177/0300060520918476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To explore the function and mechanism of long noncoding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in bronchopulmonary dysplasia. METHODS Alveolar epithelial cell line BEAS-2B was used as the cell model. The role of MALAT1 and microRNA miR-129-5p in regulating cellular viability and migration were examined by using the CCK-8 and Transwell assays, respectively, in vitro. The luciferase reporter assay and real-time (RT)-PCR were performed to confirm that miR-129-5p was a target of MALAT1. ELISA was conducted to validate MALAT1 and show that miR-129-5p regulated the gene encoding high-mobility group protein 1 (HMGB1). RESULTS Overexpression of MALAT1 significantly promoted cellular viability, whereas miR-129-5p had the opposite effect. miR-129-5p was shown to be a target of MALAT1, and HMGB1 could be upregulated by MALAT1 overexpression or miR-129-5p inhibition. CONCLUSION MALAT1 reduced the expression of miR-129-5p, promoting the viability of cells and blocking the development of bronchopulmonary dysplasia. In addition, MALAT1 increased the expression of HMGB1, which contributed to inflammation as the disease progressed.
Collapse
Affiliation(s)
- Rongwe Yangi
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China
| | - Huafei Huang
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China
| | - Qingnv Zhou
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China
| |
Collapse
|
325
|
Li B, Peng X, Li H, Chen F, Chen Y, Zhang Y, Le K. The performance of the alarmin HMGB1 in pediatric diseases: From lab to clinic. Immun Inflamm Dis 2021; 9:8-30. [PMID: 33140586 PMCID: PMC7860603 DOI: 10.1002/iid3.370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The ubiquitously expressed nonhistone nuclear protein high-mobility group box protein 1 (HMGB1) has different functions related to posttranslational modifications and cellular localization. In the nucleus, HMGB1 modulates gene transcription, replication and DNA repair as well as determines chromosomal architecture. When the post-transcriptional modified HMGB1 is released into the extracellular space, it triggers several physiological and pathological responses and initiates innate immunity through interacting with its reciprocal receptors (i.e., TLR4/2 and RAGE). The effect of HMGB1-mediated inflammatory activation on different systems has received increasing attention. HMGB1 is now considered to be an alarmin and participates in multiple inflammation-related diseases. In addition, HMGB1 also affects the occurrence and progression of tumors. However, most studies involving HMGB1 have been focused on adults or mature animals. Due to differences in disease characteristics between children and adults, it is necessary to clarify the role of HMGB1 in pediatric diseases. METHODS AND RESULTS Through systematic database retrieval, this review aimed to first elaborate the characteristics of HMGB1 under physiological and pathological conditions and then discuss the clinical significance of HMGB1 in the pediatric diseases according to different systems. CONCLUSIONS HMGB1 plays an important role in a variety of pediatric diseases and may be used as a diagnostic biomarker and therapeutic target for new strategies for the prevention and treatment of pediatric diseases.
Collapse
Affiliation(s)
- Bo Li
- Department of CardiologyChildren's Hospital of Hebei Province Affiliated to Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xin Peng
- Department of OtolaryngologyThe Affiliated Children's Hospital of Nanchang UniversityNanchangJiangxiChina
| | - He Li
- Department of Urology SurgeryQilu Children's Hospital of Shandong UniversityJinanShandongChina
| | - Fei Chen
- Department of Child Health CareQilu Children's Hospital of Shandong UniversityJinanShandongChina
| | - Yuxia Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Rehabilitation Centre, Children's HospitalChongqing Medical UniversityChongqingYuzhongChina
| | - Yingqian Zhang
- Department of CardiologyChildren's Hospital of Hebei Province Affiliated to Hebei Medical UniversityShijiazhuangHebeiChina
| | - Kai Le
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
326
|
Liu B, Gan X, Zhao Y, Gao J, Yu H. Inhibition of HMGB1 reduced high glucose-induced BMSCs apoptosis via activation of AMPK and regulation of mitochondrial functions. J Physiol Biochem 2021; 77:227-235. [PMID: 33635525 DOI: 10.1007/s13105-021-00784-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
High mobility group box-1 (HMGB1) participates actively in oxidative stress damage, and the latter relates closely to diabetes and diabetic complications including osteoporosis, though the underlying mechanisms are elusive. This study aimed to investigate the effect of high glucose on bone marrow stromal cells (BMSCs) apoptosis and the role of HMGB1 in this process. BMSCs were isolated from 2-week-old Sprague-Dawley rats and cultured in medium containing normal glucose (NG), high glucose (HG), high glucose + glycyrrhizin (HMGB1 inhibitor, HG+GL), and high glucose + glycyrrhizin + dorsomorphin (AMPK inhibitor, HG+GL+Dm), respectively. Cell apoptosis, expression of HMGB1, AMPK, apoptotic markers, and mitochondrial functions were detected. By these approaches, we demonstrated that HG treatment significantly upregulated the expression of HMGB1 in BMSCs, which could be attenuated by GL treatment. Inhibiting HMGB1 by GL improved AMPK activation, decreased mitochondrial ROS levels, increased mitochondrial membrane potential, normalized mitochondrial fission/fusion balance, and consequently reduced apoptosis of BMSCs under HG condition. The addition of AMPK inhibitor dorsomorphin hampered this protective effect. Taken together, our data show that inhibition of HMGB1 can be an effective approach to alleviate HG-induced BMSCs apoptosis by activation of AMPK pathway and relieving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Beilei Liu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 S Renmin Rd. 3rd Sec, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xueqi Gan
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 S Renmin Rd. 3rd Sec, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuwei Zhao
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 S Renmin Rd. 3rd Sec, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jing Gao
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 S Renmin Rd. 3rd Sec, Chengdu, Sichuan, 610041, People's Republic of China
| | - Haiyang Yu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 S Renmin Rd. 3rd Sec, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
327
|
Panax ginseng-Derived Extracellular Vesicles Facilitate Anti-Senescence Effects in Human Skin Cells: An Eco-Friendly and Sustainable Way to Use Ginseng Substances. Cells 2021; 10:cells10030486. [PMID: 33668388 PMCID: PMC7996359 DOI: 10.3390/cells10030486] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Ginseng is a traditional herbal medicine in eastern Asian countries. Most active constituents in ginseng are prepared via fermentation or organic acid pretreatment. Extracellular vesicles (EVs) are released by most organisms from prokaryotes to eukaryotes and play central roles in intra- and inter-species communications. Plants produce EVs upon exposure to microbes; however, their direct functions and utility for human health are barely known, except for being proposed as delivery vehicles. In this study, we isolated EVs from ginseng roots (GrEVs) or the culture supernatants of ginseng cells (GcEVs) derived from Panax ginseng C.A. Meyer and investigated their biological effects on human skin cells. GrEV or GcEV treatments improved the replicative senescent or senescence-associated pigmented phenotypes of human dermal fibroblasts or ultraviolet B radiation-treated human melanocytes, respectively, by downregulating senescence-associated molecules and/or melanogenesis-related proteins. Based on comprehensive lipidomic analysis using liquid chromatography mass spectrometry, the lipidomic profile of GrEVs differed from that of the parental root extracts, showing significant increases in 70 of 188 identified lipid species and prominent increases in diacylglycerols, some phospholipids (phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine), and sphingomyelin, revealing their unique vesicular properties. Therefore, our results imply that GEVs represent a novel type of bioactive and sustainable nanomaterials that can be applied to human tissues for improving tissue conditions and targeted delivery of active constituents.
Collapse
|
328
|
Ikeda M, Negishi Y, Akira S, Morita R, Takeshita T. Inflammation related to high-mobility group box-1 in endometrial ovarian cyst. J Reprod Immunol 2021; 145:103292. [PMID: 33647575 DOI: 10.1016/j.jri.2021.103292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Endometriosis is a chronic inflammatory disease often associated with dysmenorrhea, infertility, adenomyosis, and endometrial ovarian cyst (EOC). In particular, EOC can sometimes become malignant in a longitudinal follow-up. This study aimed to investigate the involvement of high-mobility group box-1 (HMGB1) in an inflammatory milieu and the characteristics of immune cells in EOC. The samples were obtained from patients who underwent ovarian cystectomy for benign ovarian cyst. The participants were divided into two groups: patients with EOC (EOC group) and those without EOC (nEOC group). We divided a part of the removed ovary into small sections and isolated the tissue cells. Thereafter, the cytoplasmic HMGB1 levels in DCs, macrophages, and non-immune cells were analyzed by flow cytometry. We also evaluated the proportions of immune, T, NK, iNKT, NK, and regulatory T (Treg) cells. Results showed that the DCs, macrophages, and non-immune cells of EOC had significantly higher cytoplasmic HMGB1 levels than those of nEOC. The expression of CD69 and CD107a on CD8+ T and CD4+ T cells of EOC was also more enhanced than that of nEOC. Furthermore, the M2 macrophages and Tregs highly accumulated in EOC. These results indicate that HMGB1 may aggravate chronic inflammation related to T-cell activation and simultaneously facilitate development of the immunosuppressive milieu in EOCs.
Collapse
Affiliation(s)
- Mariko Ikeda
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Yasuyuki Negishi
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan; Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.
| | - Shigeo Akira
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
329
|
Zheng X, Zhao Y, Jia Y, Shao D, Zhang F, Sun M, Dawulieti J, Hu H, Cui L, Pan Y, Yang C, Sun W, Zhang S, He K, Li J, Du J, Zhang M, Chen L. Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials 2021; 271:120716. [PMID: 33621894 DOI: 10.1016/j.biomaterials.2021.120716] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Chemotherapy is a major approach for treating breast cancer patients. Paradoxically, it can also induce cancer progression. Understanding post-chemotherapy metastasis mechanism will help the development of new therapeutic strategies to ameliorate chemotherapy-induced cancer progression. In this study, we deciphered the role of HMGB1 in the regulation of TLR4-mediated epithelial to mesenchymal transitions (EMT) process on doxorubicin (Dox)-treated 4T1 breast cancer cells. Berberine (Ber), a clinically approved alkaloid has been demonstrated as an HMGB1-TLR4 axis regulator to Dox-exacerbated breast cancer metastasis in vitro and in vivo. Hypothesizing that combination of Dox and Ber would be beneficial for breast cancer chemotherapy, we engineered self-assembled nanodrug (DBNP) consisting of Dox and Ber without the aid of additional carriers. After cloaking with 4T1 cell membranes, DBNP@CM exhibited higher accumulation at tumor sites and prolonged blood circulation time in 4T1 orthotopic tumor-bearing mice than DBNP. Importantly, DBNP@CM not only effectively inhibited tumor growth with fewer side effects, but also remarkably suppressed pulmonary metastasis via blocking HMGB1-TLR4 axis. Together, our results have provided a promising combination strategy to dampen chemotherapy-exacerbated breast cancer metastasis and shed light on the development of biomimetic nanodrug for efficient and safe breast cancer chemotherapy.
Collapse
Affiliation(s)
- Xiao Zheng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China; Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China
| | - Yawei Zhao
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China
| | - Yong Jia
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China
| | - Dan Shao
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Fan Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China; Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China
| | - Madi Sun
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China; Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China
| | - Jianati Dawulieti
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China; Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lianzhi Cui
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China; Clinical Laboratory, Jilin Cancer Hospital, Changchun, 130012, China
| | - Yue Pan
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chao Yang
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Wen Sun
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shuang Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China
| | - Kan He
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China
| | - Jing Li
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China
| | - Jinzhi Du
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, Guangzhou International Campus, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510630, China
| | - Ming Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China.
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun, 130021, China.
| |
Collapse
|
330
|
Wang Y, Chen S, Yang PL, Chen JJ, Kong WJ, Wang YJ. AIM2 inflammasome activation may mediate high mobility group box 1 release in murine allergic rhinitis. Braz J Otorhinolaryngol 2021; 88:925-931. [PMID: 33707120 PMCID: PMC9615526 DOI: 10.1016/j.bjorl.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction High mobility group box 1 protein participates in the pathogenesis of allergic rhinitis. Activation of the inflammasome can mediate the release of high mobility group box 1. The role of the absent in melanoma 2 inflammasome in allergic rhinitis remains unclear. Objective This study aimed to investigate the function of absent in melanoma 2 inflammasome in murine allergic rhinitis and the interaction between high mobility group box 1 and the absent in melanoma 2 inflammasome. Methods A murine allergic rhinitis model was established using twenty Balb/c mice. Expression of the components of the absent in melanoma 2 inflammasome: absent in melanoma 2, apoptosis-associated speck-like protein containing a CARD (Asc), caspase-1 p20, and additional nod-like receptor family pyrin domain containing 3 (Nlrp3) were detected by western blotting during allergic rhinitis. Alterations of absent in melanoma 2, caspase-1, and high mobility group box 1 after ovalbumin challenge were demonstrated by immunohistochemistry. TdT-mediated dUTP Nick end labeling, TUNEL assay, and cleavage of caspase-3 and PARP-1 were used for the observation of pyroptosis. Results Eosinophilia and goblet cell infiltration were observed in the nasal mucosa of mice in the allergic rhinitis group. Absent in melanoma 2, Asc, and caspase-1 p20 increased after ovalbumin exposure while Nlrp3 did not. High mobility group box 1 was released in the nasal mucosa of allergic rhinitis mice. TUNEL-positive cells increased in the epithelium and laminae propria, whereas cleavage of caspase-3 and PARP-1 was not observed. Conclusions The absent in melanoma 2 inflammasome was activated and pyroptosis may occur in the nasal mucosa after ovalbumin treatment. These may contribute to the translocation of high mobility group box 1 and the development of allergic rhinitis.
Collapse
Affiliation(s)
- Yan Wang
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Shan Chen
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Ping-Li Yang
- Shihezi University School of Medicine, The First Affiliated Hospital, Department of Otorhinolaryngology, Shihezi, China
| | - Jian-Jun Chen
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China
| | - Wei-Jia Kong
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China; Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Institute of Otorhinolaryngology, Wuhan, China.
| | - Yan-Jun Wang
- Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Department of Otorhinolaryngology, Wuhan, China; Huazhong University of Science and Technology, Tongji Medical College, Union Hospital, Institute of Otorhinolaryngology, Wuhan, China.
| |
Collapse
|
331
|
Min HJ, Park JS, Kim KS, Park SY, Choi H, Seo JH, Kang M, Yoon JH, Kim CH, Kim S, Cho HJ. Th2 cytokines-DUOX2-ROS-HMGB1 translocation axis is important in the pathogenesis of allergic rhinitis. Clin Sci (Lond) 2021; 135:483-494. [PMID: 33458745 DOI: 10.1042/cs20201212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
The function of high-mobility group box 1 (HMGB1) varies according to its location. However, the translocation mechanism behind HMGB1 remains unclear. We hypothesize that type 2 helper T cell (Th2) cytokines are involved in the translocation of HMGB1 in the upper airway epithelium. We investigated the mechanism behind HMGB1 translocation using Th2 cytokine stimulation and examined the clinical significance of HMGB1 translocation in allergic rhinitis (AR). Cytoplasmic and extracellular HMGB1 were increased in AR. Inhibiting HMGB1 translocation with glycyrrhizic acid (GA) decreased the level of antigen-specific immunoglobulin E (IgE), the degree of Periodic Acid-Schiff (PAS), and Sirius Red staining in the murine model. The in vivo reactive oxygen species (ROS) level in the nasal mucosa was higher in the mice with AR than in the controls. Th2 cytokine-induced up-regulation of the ROS and translocation of HMGB1 by Th2 cytokines was dependent on the generated ROS. The ROS level also increased in the murine model. We suggest that the Th2 cytokine-dual oxidase (DUOX)2-ROS-HMGB1 translocation axis is important in AR pathogenesis.
Collapse
Affiliation(s)
- Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Joon Soon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seung Yong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Honghwan Choi
- Division of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ju Hee Seo
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Miran Kang
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo-Heon Yoon
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Hoon Kim
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Hyung-Ju Cho
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
332
|
Gran ER, Bertorelle F, Fakhouri H, Antoine R, Perić Bakulić M, Sanader Maršić Ž, Bonačić-Koutecký V, Blain M, Antel J, Maysinger D. Size and ligand effects of gold nanoclusters in alteration of organellar state and translocation of transcription factors in human primary astrocytes. NANOSCALE 2021; 13:3173-3183. [PMID: 33527928 DOI: 10.1039/d0nr06401g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultra-small gold nanoclusters (AuNCs) with designed sizes and ligands are gaining popularity for biomedical purposes and ultimately for human imaging and therapeutic applications. Human non-tumor brain cells, astrocytes, are of particular interest because they are abundant and play a role in functional regulation of neurons under physiological and pathological conditions. Human primary astrocytes were treated with AuNCs of varying sizes (Au10, Au15, Au18, Au25) and ligand composition (glutathione, polyethylene glycol, N-acetyl cysteine). Concentration and time-dependent studies showed no significant cell loss with AuNC concentrations <10 μM. AuNC treatment caused marked differential astrocytic responses at the organellar and transcription factor level. The effects were exacerbated under severe oxidative stress induced by menadione. Size-dependent effects were most remarkable with the smallest and largest AuNCs (10, 15 Au atoms versus 25 Au atoms) and might be related to the accessibility of biological targets toward the AuNC core, as demonstrated by QM/MM simulations. In summary, these findings suggest that AuNCs are not inert in primary human astrocytes, and that their sizes play a critical role in modulation of organellar and redox-responsive transcription factor homeostasis.
Collapse
Affiliation(s)
- Evan Rizzel Gran
- Department of Pharmacology & Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Franck Bertorelle
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F-69100 Villeurbanne, France.
| | - Hussein Fakhouri
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F-69100 Villeurbanne, France.
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F-69100 Villeurbanne, France.
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Željka Sanader Maršić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia and Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Republic of Croatia
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia and Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia and Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
333
|
Guo Q, Zhao Y, Li J, Liu J, Yang X, Guo X, Kuang M, Xia H, Zhang Z, Cao L, Luo Y, Bao L, Wang X, Wei X, Deng W, Wang N, Chen L, Chen J, Zhu H, Gao R, Qin C, Wang X, You F. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19. Cell Host Microbe 2021; 29:222-235.e4. [PMID: 33388094 PMCID: PMC7762710 DOI: 10.1016/j.chom.2020.12.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses an unprecedented public health crisis. Evidence suggests that SARS-CoV-2 infection causes dysregulation of the immune system. However, the unique signature of early immune responses remains elusive. We characterized the transcriptome of rhesus macaques and mice infected with SARS-CoV-2. Alarmin S100A8 was robustly induced in SARS-CoV-2-infected animal models as well as in COVID-19 patients. Paquinimod, a specific inhibitor of S100A8/A9, could rescue the pneumonia with substantial reduction of viral loads in SARS-CoV-2-infected mice. Remarkably, Paquinimod treatment resulted in almost 100% survival in a lethal model of mouse coronavirus infection using the mouse hepatitis virus (MHV). A group of neutrophils that contributes to the uncontrolled pathological damage and onset of COVID-19 was dramatically induced by coronavirus infection. Paquinimod treatment could reduce these neutrophils and regain anti-viral responses, unveiling key roles of S100A8/A9 and aberrant neutrophils in the pathogenesis of COVID-19, highlighting new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Qirui Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yingchi Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Junhong Li
- University of Chinese Academy of Sciences, CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiangning Liu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xiuhong Yang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xuefei Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Ming Kuang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Huawei Xia
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Linlin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xiao Wang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Xuemei Wei
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Wei Deng
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Nan Wang
- University of Chinese Academy of Sciences, CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Luoying Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Jingxuan Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Hua Zhu
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ran Gao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Xiangxi Wang
- University of Chinese Academy of Sciences, CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
334
|
Testa C, DI Lorenzo A, Parlato A, D'Ambrosio G, Merolla A, Pacileo M, Iannuzzo G, Gentile M, Nugara C, Sarullo FM, DE Gregorio C, D'Andrea A, Vigorito C, Venturini E, Giallauria F. Exercise for slowing the progression of atherosclerotic process: effects on inflammatory markers. Panminerva Med 2021; 63:122-132. [PMID: 33565757 DOI: 10.23736/s0031-0808.21.04266-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atherosclerosis is a dynamic process driven by all cardiovascular risk factors that can be briefly divided into an early and a late phase. Inflammation is one of the fundamental substrates that initiates the atherosclerotic process in the early stages and promotes and maintains it in the final stages. In the last decades, clinical and experimental data have shown that inflammation is supported by mediators that respond to physical activity. The present review aimed at investigating the effect of physical exercise on inflammatory mediators, both the positive ones that have a proinflammatory effect (interleukin 6, c-reactive protein and tumor necrosis factor α, interferon γ, high-mobility group box-1), and the negative ones which have an anti-inflammatory effect (interleukin 10). Pooled data support the evidence that physical exercise can directly modulate the activity of inflammatory cytokines slowing down or preventing the formation of the atherosclerotic stage.
Collapse
Affiliation(s)
- Crescenzo Testa
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Anna DI Lorenzo
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Alessandro Parlato
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Giuseppe D'Ambrosio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Aurora Merolla
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Mario Pacileo
- Unit of Cardiology and Intensive Care, "Umberto I" Hospital, Nocera Inferiore, Salerno, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marco Gentile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Cinzia Nugara
- Unit of Cardiovascular Rehabilitation, Buccheri La Ferla Fatebenefratelli Hospital, Palermo, Italy
| | - Filippo M Sarullo
- Unit of Cardiovascular Rehabilitation, Buccheri La Ferla Fatebenefratelli Hospital, Palermo, Italy
| | - Cesare DE Gregorio
- Unit of Cardiology, Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy.,Post-graduate Residency School in Cardiovascular Diseases, Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Antonello D'Andrea
- Unit of Cardiology and Intensive Care, "Umberto I" Hospital, Nocera Inferiore, Salerno, Italy
| | - Carlo Vigorito
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Elio Venturini
- Cardiac Rehabilitation Unit, AUSL Toscana Nord-Ovest, Cecina Civil Hospital, Cecina, Livorno, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy - .,Faculty of Sciences and Technology, University of New England, Armidale, Australia
| |
Collapse
|
335
|
Liu M, Lu J, Zhang Q, Zhang Y, Guo Z. Clara cell 16 KDa protein mitigates house dust mite-induced airway inflammation and damage via regulating airway epithelial cell apoptosis in a manner dependent on HMGB1-mediated signaling inhibition. Mol Med 2021; 27:11. [PMID: 33541260 PMCID: PMC7863538 DOI: 10.1186/s10020-021-00277-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background House dust mite (HDM) inhalation can cause airway epithelial damage which is implicated in the process of airway inflammation in asthma. High mobility group box 1 (HMGB1) is critically required for cellular damage and apoptosis as an important endogenous danger signal. Recently, Clara cell 16KDa protein (CC16) has been identified to exert anti-inflammatory and immunomodulatory influence in various injury-related diseases model. However, little is known about its ability to protect against airway epithelial injury in allergic asthma. This study was aimed to clarify the protective roles of CC16 on airway epithelia in HDM-induced asthma and the regulation of HMGB1 by CC16. Methods Mice were sensitized and challenged by HDM extract and administrated intranasally with CC16 (5 μg/g or 10 μg/g) or saline in the challenged period. The BEAS-2B human airway epithelial cell line were cultured with CC16 or the control vehicle and then exposed to HDM. Knockdown or overexpression of HMGB1 was induced by cell transfection or intratracheal injection of recombinant adenovirus. Results CC16 treatment decreased airway inflammation and histological damage of airway epithelium dose-dependently in HDM-induced asthma model. Airway epithelia apoptosis upon HDM stimulation was noticeably abrogated by CC16 in vivo and in vitro. In addition, upregulation of HMGB1 expression and its related signaling were also detected under HDM conditions, while silencing HMGB1 significantly inhibited the apoptosis of BEAS-2B cells. Furthermore, the activity of HMGB1-mediated signaling was restrained after CC16 treatment whereas HMGB1 overexpression abolished the protective effect of CC16 on HDM-induced airway epithelia apoptosis. Conclusions Our data confirm that CC16 attenuates HDM-mediated airway inflammation and damage via suppressing airway epithelial cell apoptosis in a HMGB1-dependent manner, suggesting the role of CC16 as a potential protective option for HDM-induced asthma.
Collapse
Affiliation(s)
- Meixuan Liu
- Shanghai East Clinical Medical College, Nanjing Medical University, Shanghai, 200123, China.,Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Jingjing Lu
- Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Qian Zhang
- Shanghai East Clinical Medical College, Nanjing Medical University, Shanghai, 200123, China.,Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Yunxuan Zhang
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Zhongliang Guo
- Shanghai East Clinical Medical College, Nanjing Medical University, Shanghai, 200123, China. .,Department of Respiratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China.
| |
Collapse
|
336
|
Miao J, Zhong J, Lan J, Ye S, Ye P, Li S, You A, Chen X, Liu X, Li H. Paeonol attenuates inflammation by confining HMGB1 to the nucleus. J Cell Mol Med 2021; 25:2885-2899. [PMID: 33534963 PMCID: PMC7957162 DOI: 10.1111/jcmm.16319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a biological process that exists in a large number of diseases. If the magnitude or duration of inflammation becomes uncontrolled, inflammation may cause pathological damage to the host. HMGB1 and NF-κB have been shown to play pivotal roles in inflammation-related diseases. New drugs aimed at inhibiting HMGB1 expression have become a key research focus. In the present study, we showed that paeonol (Pae), the main active component of Paeonia suffruticosa, decreases the expression of inflammatory cytokines and inhibits the translocation of HMGB1 induced by lipopolysaccharide (LPS). By constructing HMGB1-overexpressing (HMGB1+ ) and HMGB1-mutant (HMGB1m ) RAW264.7 cells, we found that the nuclear HMGB1 could induce an LPS-tolerant state in RAW264.7 cells and that paeonol had no influence on the expression of inflammatory cytokines in HMGB1m RAW264.7 cells. In addition, the anti-inflammatory property of paeonol was lost in HMGB1 conditional knockout mice, indicating that HMGB1 is a target of paeonol and a mediator through which paeonol exerts its anti-inflammatory function. Additionally, we also found that HMGB1 and P50 competitively bound with P65, thus inactivating the NF-κB pathway. Our research confirmed the anti-inflammation property of paeonol and suggests that inhibiting the translocation of HMGB1 could be a new strategy for treating inflammation.
Collapse
Affiliation(s)
- Jifei Miao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Research Center of Integrative Medicine, School Basic Medical Sciences, University of Chinese Medicine, Guangzhou, China
| | - Jun Zhong
- Research Center of Integrative Medicine, School Basic Medical Sciences, University of Chinese Medicine, Guangzhou, China
| | - Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Sen Ye
- Research Center of Integrative Medicine, School Basic Medical Sciences, University of Chinese Medicine, Guangzhou, China
| | - Peng Ye
- Research Center of Integrative Medicine, School Basic Medical Sciences, University of Chinese Medicine, Guangzhou, China
| | - Siyan Li
- Research Center of Integrative Medicine, School Basic Medical Sciences, University of Chinese Medicine, Guangzhou, China
| | - Aijia You
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianjie Chen
- Research Center of Integrative Medicine, School Basic Medical Sciences, University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Liu
- Research Center of Integrative Medicine, School Basic Medical Sciences, University of Chinese Medicine, Guangzhou, China
| | - Hui Li
- Research Center of Integrative Medicine, School Basic Medical Sciences, University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
337
|
Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res 2021; 31:107-125. [PMID: 33268902 PMCID: PMC8026611 DOI: 10.1038/s41422-020-00441-1] [Citation(s) in RCA: 2201] [Impact Index Per Article: 550.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Cell death can be executed through different subroutines. Since the description of ferroptosis as an iron-dependent form of non-apoptotic cell death in 2012, there has been mounting interest in the process and function of ferroptosis. Ferroptosis can occur through two major pathways, the extrinsic or transporter-dependent pathway and the intrinsic or enzyme-regulated pathway. Ferroptosis is caused by a redox imbalance between the production of oxidants and antioxidants, which is driven by the abnormal expression and activity of multiple redox-active enzymes that produce or detoxify free radicals and lipid oxidation products. Accordingly, ferroptosis is precisely regulated at multiple levels, including epigenetic, transcriptional, posttranscriptional and posttranslational layers. The transcription factor NFE2L2 plays a central role in upregulating anti-ferroptotic defense, whereas selective autophagy may promote ferroptotic death. Here, we review current knowledge on the integrated molecular machinery of ferroptosis and describe how dysregulated ferroptosis is involved in cancer, neurodegeneration, tissue injury, inflammation, and infection.
Collapse
Affiliation(s)
- Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, 94800, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, 75015, France.
- Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, 17176, Sweden.
| |
Collapse
|
338
|
Kamiya N, Kim HKW. Elevation of Proinflammatory Cytokine HMGB1 in the Synovial Fluid of Patients With Legg-Calvé-Perthes Disease and Correlation With IL-6. JBMR Plus 2021; 5:e10429. [PMID: 33615102 PMCID: PMC7872337 DOI: 10.1002/jbm4.10429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/16/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022] Open
Abstract
Legg-Calvé-Perthes disease (LCPD) is a childhood ischemic osteonecrosis (ON) of the femoral head associated with the elevation of proinflammatory cytokine interleukin-6 (IL-6) in the synovial fluid. Currently, there is no effective medical therapy for patients with LCPD. In animal models of ischemic ON, articular chondrocytes produce IL-6 in response to ischemic ON induction and IL-6 receptor blockade improves bone healing. High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released from dying cells. In addition, extracellular HMGB1 protein is a well-known proinflammatory cytokine elevated in the synovial fluid of patients with rheumatoid arthritis and osteoarthritis. The purpose of this study was to investigate IL-6-related proinflammatory cytokines, including HMGB1, in the synovial fluid of patients with LCPD. Our working hypothesis was that HMGB1, produced by articular chondrocytes following ischemic ON, plays an important role in IL-6 upregulation. Here, HMGB1 protein levels were significantly higher in the synovial fluid of patients with LCPD by threefold compared with controls (p < 0.05), and were highly correlated with IL-6 levels (Pearson correlation coefficient 0.94, p < 0.001, R 2 = 0.87). In the mouse model of ischemic ON, both HMGB1 gene expression and protein levels were elevated in the articular cartilage. In vitro studies revealed a significant elevation of HMGB1 and IL-6 proteins in the supernatants of human chondrocytes exposed to hypoxic and oxidative stresses. Overexpressed HMGB1 protein in the supernatants of chondrocytes synergistically increased IL-6 protein. Silencing HMGB1 RNA in human chondrocytes significantly repressed inteleukin-1β (IL-1β) gene expression, but not IL-6. Further, both IL-1β and tumor necrosis factor-α (TNF-α) protein levels in the synovial fluid of patients with LCPD were significantly correlated with IL-6 protein levels. Taken together, these results suggest that proinflammatory cytokines, HMGB1, tumor necrosis factor-α (TNF-α), and IL-1β, are significantly involved with IL-6 in the pathogenesis of LCPD. This study is clinically relevant because the availability of multiple therapeutic targets may improve the development of therapeutic strategy for LCPD. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nobuhiro Kamiya
- Center for Excellence in HipScottish Rite for ChildrenDallasTXUSA
- Department of Orthopedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Faculty of Budo and Sport StudiesTenri UniversityNaraJapan
| | - Harry KW Kim
- Center for Excellence in HipScottish Rite for ChildrenDallasTXUSA
- Department of Orthopedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
339
|
Gorgulho CM, Krishnamurthy A, Lanzi A, Galon J, Housseau F, Kaneno R, Lotze MT. Gutting it Out: Developing Effective Immunotherapies for Patients With Colorectal Cancer. J Immunother 2021; 44:49-62. [PMID: 33416261 PMCID: PMC8092416 DOI: 10.1097/cji.0000000000000357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022]
Abstract
Risk factors for colorectal cancer (CRC) include proinflammatory diets, sedentary habits, and obesity, in addition to genetic syndromes that predispose individuals to this disease. Current treatment relies on surgical excision and cytotoxic chemotherapies. There has been a renewed interest in immunotherapy as a treatment option for CRC given the success in melanoma and microsatellite instable (MSI) CRC. Immunotherapy with checkpoint inhibitors only plays a role in the 4%-6% of patients with MSIhigh tumors and even within this subpopulation, response rates can vary from 30% to 50%. Most patients with CRC do not respond to this modality of treatment, even though colorectal tumors are frequently infiltrated with T cells. Tumor cells limit apoptosis and survive following intensive chemotherapy leading to drug resistance and induction of autophagy. Pharmacological or molecular inhibition of autophagy improves the efficacy of cytotoxic chemotherapy in murine models. The microbiome clearly plays an etiologic role, in some or most colon tumors, realized by elegant findings in murine models and now investigated in human clinical trials. Recent results have suggested that cancer vaccines may be beneficial, perhaps best as preventive strategies. The search for therapies that can be combined with current approaches to increase their efficacy, and new knowledge of the biology of CRC are pivotal to improve the care of patients suffering from this disease. Here, we review the basic immunobiology of CRC, current "state-of-the-art" immunotherapies and define those areas with greatest therapeutic promise for the future.
Collapse
Affiliation(s)
- Carolina Mendonça Gorgulho
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Department of Pathology, School of Medicine of Botucatu, São Paulo State University, UNESP, Botucatu, SP, Brazil
- DAMP Laboratory, Department of Surgery, University of Pittsburgh, Pittsburgh - PA, USA
| | | | - Anastasia Lanzi
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Sorbonne Université, Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Franck Housseau
- Sidney Kimmel Comprehensive Cancer Centre, Johns Hopkins School of Medicine, CRB-I Room 4M59, 1650 Orleans Street, Baltimore, MD, USA
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Department of Pathology, School of Medicine of Botucatu, São Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Michael T. Lotze
- DAMP Laboratory, Department of Surgery, University of Pittsburgh, Pittsburgh - PA, USA
| |
Collapse
|
340
|
Chen X, Comish PB, Tang D, Kang R. Characteristics and Biomarkers of Ferroptosis. Front Cell Dev Biol 2021; 9:637162. [PMID: 33553189 PMCID: PMC7859349 DOI: 10.3389/fcell.2021.637162] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
The induction and consequences of regulated cell death (RCD) are accompanied by changes in gene and protein expression, biochemical pathways, as well as cell morphology and size. Such RCDs have a significant impact on development, tissue homeostasis, and the occurrence and progression of disease. Among different forms of RCD, ferroptosis appears to be the main cause of tissue damage driven by iron overload and lipid peroxidation. In fact, the dysfunctional ferroptotic response is implicated in a variety of pathological conditions and diseases, such as neurodegenerative diseases, tissue ischemia-reperfusion injury, tumorigenesis, infections, and immune diseases. Ferroptotic response can be fine-tuned through various oxidative stress and antioxidant defense pathways, coupling with metabolism, gene transcription, and protein degradation machinery. Accordingly, a series of ferroptosis inducers or inhibitors targeting redox- or iron metabolism-related proteins or signal transduction have been developed. Although this kind of RCD has recently attracted great interest in basic and clinical research, detecting and monitoring a ferroptotic response still faces challenges. In this mini-review, we not only summarize the latest knowledge about the characteristics of ferroptosis in vitro and in vivo, but also discuss the specificity and limitations of current biomarkers of ferroptosis.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Paul B Comish
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
341
|
Modulation of the HMGB1/TLR4/NF-κB signaling pathway in the CNS by matrine in experimental autoimmune encephalomyelitis. J Neuroimmunol 2021; 352:577480. [PMID: 33493985 DOI: 10.1016/j.jneuroim.2021.577480] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022]
Abstract
The inflammatory mediator high-mobility group box 1 (HMGB1)-induced signaling pathway has been shown to play an important role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Matrine (MAT), a quinolizidine alkaloid component derived from the root of Sophorae flavescens, has the capacity to effectively suppress EAE. However, the impact of MAT treatment on HMGB1-induced signaling is not known. In the present study, we show that MAT treatment alleviated disease severity of ongoing EAE, reduced inflammatory infiltration and demyelination, and reduced the production of inflammatory factors including TNF-α, IL-6, and IL-1β in the CNS. Moreover, MAT administration significantly reduced the protein and RNA expression of HMGB1 and TLR4 in the spinal cord, particularly in astrocytes and microglia/infiltrating macrophages. The expression of MyD88 and TRAF6, and the phosphorylation of NF-κB p65, was also down-regulated after MAT treatment. In contrast, the level of IκB-α, an inhibitory molecule for NF-κB activation, was significantly increased. Furthermore, the direct inhibitory effect of MAT on HMGB1/TLR4/NF-κB signaling in macrophages was further confirmed in vitro. Taken together, these findings demonstrate that MAT treatment alleviated CNS inflammatory demyelination and activation of astrocytes and microglia/macrophages in EAE rats, and that the mechanism underlying these effects may be closely related to modulation of HMGB1/TLR4/NF-κB signaling pathway.
Collapse
|
342
|
Hu N, Bai L, Dai E, Han L, Kang R, Li H, Tang D. Pirin is a nuclear redox-sensitive modulator of autophagy-dependent ferroptosis. Biochem Biophys Res Commun 2021; 536:100-106. [PMID: 33373853 DOI: 10.1016/j.bbrc.2020.12.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023]
Abstract
In regulated cell death, genetically encoded molecular machinery destroys cells. This process is not only essential for organ development and homeostasis, but also leads to pathological diseases. One form of regulated cell death is ferroptosis, which is an iron-dependent oxidative cell death caused by lipid peroxidation. Although inducing ferroptosis is an emerging anticancer strategy, the molecular mechanism underlying tumor resistance to ferroptotic cell death is still unclear. Here, we show that pirin (PIR), an iron-binding nuclear protein, plays a previously unrecognized role in mediating ferroptosis resistance in human pancreatic cancer cells. The transcription factor NFE2L2 mediates the upregulation of PIR during ferroptosis caused by small-molecule compounds (e.g., erastin or RSL3). PIR is a nuclear redox sensor and regulator, and increasing it limits the oxidative damage of DNA and the subsequent cytoplasmic transport and extracellular release of HMGB1. In contrast, the depletion of PIR initiates HMGB1-dependent autophagy by binding to BECN1, and subsequently promotes ferroptosis by activating ACSL4. Consequently, in cell cultures and xenograft mouse models, blocking PIR signaling enhances ferroptosis-mediated tumor growth suppression. Together, these findings provide new insights into the molecular mechanisms of autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Nanjun Hu
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Lulu Bai
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Leng Han
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hongjun Li
- Physical Examination Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
343
|
Immune determinants of COVID-19 disease presentation and severity. Nat Med 2021; 27:28-33. [PMID: 33442016 DOI: 10.1038/s41591-020-01202-8] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
COVID-19, caused by SARS-CoV-2 infection, is mild to moderate in the majority of previously healthy individuals, but can cause life-threatening disease or persistent debilitating symptoms in some cases. The most important determinant of disease severity is age, with individuals over 65 years having the greatest risk of requiring intensive care, and men are more susceptible than women. In contrast to other respiratory viral infections, young children seem to be less severely affected. It is now clear that mild to severe acute infection is not the only outcome of COVID-19, and long-lasting symptoms are also possible. In contrast to severe acute COVID-19, such 'long COVID' is seemingly more likely in women than in men. Also, postinfectious hyperinflammatory disease has been described as an additional outcome after SARS-CoV-2 infection. Here I discuss our current understanding of the immunological determinants of COVID-19 disease presentation and severity and relate this to known immune-system differences between young and old people and between men and women, and other factors associated with different disease presentations and severity.
Collapse
|
344
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
345
|
Xia Q, Tao P, Xu J. Association of Polymorphism rs1045411 in the HMGB1 Gene with Cancer Risk: Evidence from a Meta-analysis. Int J Med Sci 2021; 18:1348-1355. [PMID: 33628090 PMCID: PMC7893572 DOI: 10.7150/ijms.52181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
The high-mobility group box protein 1 (HMGB1) rs1045411 polymorphism has been demonstrated to be associated with cancer risk in some studies. However, the results regarding this topic are inconsistent. A meta-analysis was applied to elucidate the association between the HMGB1 rs1045411 polymorphism and cancer risk. Ten relevant studies were subjected to our analysis, and pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. In total, of 3,918 cases and 5,296 controls were included in this study. The pooled ORs were calculated using a random-effects or fixed-effects model according to the heterogeneity. The pooled results revealed that TT genotype was significantly related to increased cancer risk in the comparisons of TT vs. CC+TC (OR=1.35; 95% CI: 1.09-1.67; p=0.005). Though no statistical significance was achieved between HMGB1 rs1045411 polymorphism and cancer risk in other four genetic models (T vs. C: OR=1.08, 95% CI 0.90-1.30; TC vs. CC: OR=1.01, 95% CI 0.82-1.24; CC vs. TC+TT: OR=0.95, 95% CI 0.77-1.18; TT vs. CC: OR=1.42; 95% CI 0.98-2.05), a trend of increased risk could be drawn. In the subgroup analysis by type of malignancy and ethnicity, no obvious difference was found in the tumour risk regarding the HMGB1 rs1045411 polymorphism amongst the cancer types except for breast cancer (OR=1.94; 95% CI: 1.05-3.59; p=0.03) and hepatocellular carcinoma (OR=1.82; 95% CI: 1.15-2.88; p=0.01), while rs1045411 polymorphism was positively associated with risks of cancer amongst Hans (OR=1.37; 95% CI: 1.11-1.69; p=0.004) rather than Caucasians (OR=0.89; 95% CI: 0.26-3.02; p=0.01). These results suggest that the HMGB1 rs1045411 polymorphism might be associated with increased cancer risk.
Collapse
Affiliation(s)
- Quansong Xia
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Pengzuo Tao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Juan Xu
- Department of Internal Medicine, The People's Hospital of Guandu District, Kunming 650200, China
| |
Collapse
|
346
|
Infante M, Ricordi C, Alejandro R, Caprio M, Fabbri A. Hydroxychloroquine in the COVID-19 pandemic era: in pursuit of a rational use for prophylaxis of SARS-CoV-2 infection. Expert Rev Anti Infect Ther 2021; 19:5-16. [PMID: 32693652 PMCID: PMC7441799 DOI: 10.1080/14787210.2020.1799785] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Over the last few months, coronavirus disease 2019 (COVID-19) pandemic caused by the novel coronavirus SARS-CoV-2 has posed a serious threat to public health on a global scale. Given the current lack of an effective vaccine, several drugs have been repurposed for treatment and prophylaxis of COVID-19 in an attempt to find an effective cure. AREAS COVERED The antimalarial drug hydroxychloroquine (HCQ) initially garnered widespread attention following the publication of preliminary results showing that this drug exerts an anti-SARS-CoV-2 activity in vitro. EXPERT OPINION To date, clinical evidence suggests lack of benefit from HCQ use for the treatment of hospitalized patients with COVID-19. In such patients, HCQ also appears to be associated with an increased risk of QT interval prolongation and potentially lethal ventricular arrhythmias. Therefore, FDA has recently revoked the Emergency Use Authorization (EUA) for emergency use of HCQ and chloroquine to treat COVID-19. Conversely, whether HCQ use may represent an effective prophylactic strategy against COVID-19 is a separate question that still remains to be answered. In addition, relevant aspects regarding the potential risks and benefits of HCQ need to be clarified, in pursuit of a rational use of this drug in the COVID-19 pandemic era.
Collapse
Affiliation(s)
- Marco Infante
- Division of Endocrinology, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
- Diabetes Research Institute Federation (DRIF), Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Rome, Italy
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Andrea Fabbri
- Division of Endocrinology, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Diabetes Research Institute Federation (DRIF), Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
347
|
Vitali R, Terrin G, Palone F, Laudadio I, Cucchiara S, Boscarino G, Di Chiara M, Stronati L. Fecal High-Mobility Group Box 1 as a Marker of Early Stage of Necrotizing Enterocolitis in Preterm Neonates. Front Pediatr 2021; 9:672131. [PMID: 34178888 PMCID: PMC8222523 DOI: 10.3389/fped.2021.672131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction: An early diagnosis of necrotizing enterocolitis (NEC), a major gastrointestinal emergency in preterm newborns, is crucial to improve diagnostic approach and prognosis. We evaluated whether fecal high-mobility group box protein 1 (HMGB1) may early identify preterms at risk of developing NEC. Materials and Methods: A case-control study including neonates admitted at the Neonatal Intensive Care Unit (NICU) of the Sapienza University Hospital "Umberto I" in Rome, from July 2015 to December 2016. Stool samples obtained from cases (preterm newborns with NEC) and controls (newborns without NEC) were collected at the enrolment (T0) and within 7-14 days after the first sample collection (T1). HMGB1, extracted and measured with western blot, was reported as densitometry units (DUS). Results: HMGB1 levels in 30 cases (n = 28-Bell stage 1, n = 2 Bell stage 2) were higher [T0: 21,462 DUS (95% CI, 16,370-26,553 DUS)-T1: 17,533 DUS (95% CI, 13,052-22,014 DUS)] than in 30 preterm controls [T0: 9,446 DUS (95% CI, 6,147-12,746 DUS)-T1: 9,261 DUS (95% CI, 5,126-13,396 DUS), p < 0.001). Preterm newborns showed significant higher levels of HMGB1 (15,690 DUS (95% CI, 11,929-19,451 DUS)] in comparison with 30 full-term neonates with birth weight >2,500 g [6,599 DUS (95% CI, 3,141-10,058 DUS), p = 0.003]. Multivariate analysis showed that the risk of NEC was significantly (p = 0.012) related to the HMGB1 fecal levels at T0. Conclusions: We suggest fecal HMGB1 as a reliable marker of early NEC in preterm neonates. This study supports further investigation on the role of fecal HMGB1 assessment in managing preterm newborns at risk of NEC. Further studies are advocated to evaluate diagnostic accuracy of this marker in more severe forms of the disease.
Collapse
Affiliation(s)
- Roberta Vitali
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), Rome, Italy
| | - Gianluca Terrin
- Department of Maternal and Child Health, University of Roma La Sapienza, Rome, Italy
| | - Francesca Palone
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), Rome, Italy
| | - Ilaria Laudadio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Salvatore Cucchiara
- Department of Maternal and Child Health, University of Roma La Sapienza, Rome, Italy
| | - Giovanni Boscarino
- Department of Maternal and Child Health, University of Roma La Sapienza, Rome, Italy
| | - Maria Di Chiara
- Department of Maternal and Child Health, University of Roma La Sapienza, Rome, Italy
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
348
|
Wang S, Guan Y, Li T. The Potential Therapeutic Role of the HMGB1-TLR Pathway in Epilepsy. Curr Drug Targets 2021; 22:171-182. [PMID: 32729417 DOI: 10.2174/1389450121999200729150443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Epilepsy is one of the most common serious neurological disorders, affecting over 70 million people worldwide. For the treatment of epilepsy, antiepileptic drugs (AEDs) and surgeries are widely used. However, drug resistance and adverse effects indicate the need to develop targeted AEDs based on further exploration of the epileptogenic mechanism. Currently, many efforts have been made to elucidate the neuroinflammation theory in epileptogenesis, which may show potential in the treatment of epilepsy. In this respect, an important target protein, high mobility group box 1 (HMGB1), has received increased attention and has been developed rapidly. HMGB1 is expressed in various eukaryotic cells and localized in the cell nucleus. When HMGB1 is released by injuries or diseases, it participates in inflammation. Recent studies suggest that HMGB1 via Toll-like receptor (TLR) pathways can trigger inflammatory responses and play an important role in epilepsy. In addition, studies of HMGB1 have shown its potential in the treatment of epilepsy. Herein, the authors analyzed the experimental and clinical evidence of the HMGB1-TLR pathway in epilepsy to summarize the theory of epileptogenesis and provide insights into antiepileptic therapy in this novel field.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| |
Collapse
|
349
|
Sekiguchi F, Kawabata A. Role of HMGB1 in Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2020; 22:ijms22010367. [PMID: 33396481 PMCID: PMC7796379 DOI: 10.3390/ijms22010367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), one of major dose-limiting side effects of first-line chemotherapeutic agents such as paclitaxel, oxaliplatin, vincristine, and bortezomib is resistant to most of existing medicines. The molecular mechanisms of CIPN have not been fully understood. High mobility group box 1 (HMGB1), a nuclear protein, is a damage-associated molecular pattern protein now considered to function as a pro-nociceptive mediator once released to the extracellular space. Most interestingly, HMGB1 plays a key role in the development of CIPN. Soluble thrombomodulin (TMα), known to degrade HMGB1 in a thrombin-dependent manner, prevents CIPN in rodents treated with paclitaxel, oxaliplatin, or vincristine and in patients with colorectal cancer undergoing oxaliplatin-based chemotherapy. In this review, we describe the role of HMGB1 and its upstream/downstream mechanisms in the development of CIPN and show drug candidates that inhibit the HMGB1 pathway, possibly useful for prevention of CIPN.
Collapse
|
350
|
Troisi M, Klein M, Smith AC, Moorhead G, Kebede Y, Huang R, Parker E, Herrada H, Wade E, Smith S, Broome P, Halsell J, Estevez L, Bell AJ. Conformation and protein interactions of intramolecular DNA and phosphorothioate four-way junctions. Exp Biol Med (Maywood) 2020; 246:707-717. [PMID: 33342281 DOI: 10.1177/1535370220973970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The objectives of this study are to evaluate the structure and protein recognition features of branched DNA four-way junctions in an effort to explore the therapeutic potential of these molecules. The classic immobile DNA 4WJ, J1, is used as a matrix to design novel intramolecular junctions including natural and phosphorothioate bonds. Here we have inserted H2-type mini-hairpins into the helical termini of the arms of J1 to generate four novel intramolecular four-way junctions. Hairpins are inserted to reduce end fraying and effectively eliminate potential nuclease binding sites. We compare the structure and protein recognition features of J1 with four intramolecular four-way junctions: i-J1, i-J1(PS1), i-J1(PS2) and i-J1(PS3). Circular dichroism studies suggest that the secondary structure of each intramolecular 4WJ is composed predominantly of B-form helices. Thermal unfolding studies indicate that intramolecular four-way junctions are significantly more stable than J1. The Tm values of the hairpin four-way junctions are 25.2° to 32.2°C higher than the control, J1. With respect to protein recognition, gel shift assays reveal that the DNA-binding proteins HMGBb1 and HMGB1 bind the hairpin four-way junctions with affinity levels similar to control, J1. To evaluate nuclease resistance, four-way junctions are incubated with DNase I, exonuclease III (Exo III) and T5 exonuclease (T5 Exo). The enzymes probe nucleic acid cleavage that occurs non-specifically (DNase I) and in a 5'→3' (T5 Exo) and 3'→5' direction (Exo III). The nuclease digestion assays clearly show that the intramolecular four-way junctions possess significantly higher nuclease resistance than the control, J1.
Collapse
Affiliation(s)
- Maria Troisi
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Mitchell Klein
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Andrew C Smith
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Gaston Moorhead
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Yonatan Kebede
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Raymond Huang
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Elliott Parker
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Hector Herrada
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Elizabeth Wade
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Samara Smith
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Payson Broome
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Jonah Halsell
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Louis Estevez
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| | - Anthony J Bell
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, USA
| |
Collapse
|