301
|
Anindya R, Mari PO, Kristensen U, Kool H, Giglia-Mari G, Mullenders LH, Fousteri M, Vermeulen W, Egly JM, Svejstrup JQ. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol Cell 2010; 38:637-48. [PMID: 20541997 PMCID: PMC2885502 DOI: 10.1016/j.molcel.2010.04.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/24/2010] [Accepted: 04/16/2010] [Indexed: 12/31/2022]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) allows RNA polymerase II (RNAPII)-blocking lesions to be rapidly removed from the transcribed strand of active genes. Defective TCR in humans is associated with Cockayne syndrome (CS), typically caused by defects in either CSA or CSB. Here, we show that CSB contains a ubiquitin-binding domain (UBD). Cells expressing UBD-less CSB (CSB(del)) have phenotypes similar to those of cells lacking CSB, but these can be suppressed by appending a heterologous UBD, so ubiquitin binding is essential for CSB function. Surprisingly, CSB(del) remains capable of assembling nucleotide excision repair factors and repair synthesis proteins around damage-stalled RNAPII, but such repair complexes fail to excise the lesion. Together, our results indicate an essential role for protein ubiquitylation and CSB's UBD in triggering damage incision during TC-NER and allow us to integrate the function of CSA and CSB in a model for the process.
Collapse
Affiliation(s)
- Roy Anindya
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK
| | - Pierre-Olivier Mari
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Ulrik Kristensen
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 16367404 Illkirch Cedex, CU Strasbourg, France
| | - Hanneke Kool
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Giuseppina Giglia-Mari
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Leon H. Mullenders
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Maria Fousteri
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Wim Vermeulen
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Jean-Marc Egly
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 16367404 Illkirch Cedex, CU Strasbourg, France
| | - Jesper Q. Svejstrup
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK
| |
Collapse
|
302
|
Roy N, Stoyanova T, Dominguez-Brauer C, Park HJ, Bagchi S, Raychaudhuri P. DDB2, an essential mediator of premature senescence. Mol Cell Biol 2010; 30:2681-2692. [PMID: 20351176 PMCID: PMC2876515 DOI: 10.1128/mcb.01480-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/27/2009] [Accepted: 03/21/2010] [Indexed: 01/02/2023] Open
Abstract
Reactive oxygen species (ROS) is critical for premature senescence, a process significant in tumor suppression and cancer therapy. Here, we reveal a novel function of the nucleotide excision repair protein DDB2 in the accumulation of ROS in a manner that is essential for premature senescence. DDB2-deficient cells fail to undergo premature senescence induced by culture shock, exogenous oxidative stress, oncogenic stress, or DNA damage. These cells do not accumulate ROS following DNA damage. The lack of ROS accumulation in DDB2 deficiency results from high-level expression of the antioxidant genes in vitro and in vivo. DDB2 represses antioxidant genes by recruiting Cul4A and Suv39h and by increasing histone-H3K9 trimethylation. Moreover, expression of DDB2 also is induced by ROS. Together, our results show that, upon oxidative stress, DDB2 functions in a positive feedback loop by repressing the antioxidant genes to cause persistent accumulation of ROS and induce premature senescence.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Tanya Stoyanova
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Carmen Dominguez-Brauer
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Hyun Jung Park
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Srilata Bagchi
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| |
Collapse
|
303
|
Zhu Q, Wani AA. Histone modifications: crucial elements for damage response and chromatin restoration. J Cell Physiol 2010; 223:283-8. [PMID: 20112283 DOI: 10.1002/jcp.22060] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic genomes are packaged into chromatin from repeated nucleosome arrays in which DNA sequences wrap around histones. Chromatin organization has profound influence on DNA-templated processes such as transcription, DNA replication, and repair. Recent studies have also revealed chromatin dynamics as an active contributor to diverse DNA damage responses (DDR). Here, we review recent progress in histone modification related to DDR and post-repair chromatin restoration at the sites of DNA damage. We discuss how the timing and features of histone modifications would provide the initial as well as the final guidance for DDR, and the prospect that modifications may challenge the epigenetic stability of repaired cells and serve as damage memory in chromatin.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, Ohio 43240-1000, USA.
| | | |
Collapse
|
304
|
Abstract
Like most viral regulatory proteins, HIV-1 Vpr and homologous proteins from primate lentiviruses are small and multifunctional. They are associated with a plethora of effects and functions, including induction of cell cycle arrest in the G(2) phase, induction of apoptosis, transactivation, enhancement of the fidelity of reverse transcription, and nuclear import of viral DNA in macrophages and other nondividing cells. This review focuses on the cellular proteins that have been reported to interact with Vpr and their significance with respect to the known functions and effects of Vpr on cells and on viral replication.
Collapse
Affiliation(s)
- Vicente Planelles
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East #2100-Room 2520, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
305
|
Fong S, King F, Shtivelman E. CC3/TIP30 affects DNA damage repair. BMC Cell Biol 2010; 11:23. [PMID: 20374651 PMCID: PMC2867790 DOI: 10.1186/1471-2121-11-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/07/2010] [Indexed: 12/22/2022] Open
Abstract
Background The pro-apoptotic protein CC3/TIP30 has an unusual cellular function as an inhibitor of nucleocytoplasmic transport. This function is likely to be activated under conditions of stress. A number of studies support the notion that CC3 acts as a tumor and metastasis suppressor in various types of cancer. The yeast homolog of CC3 is likely to be involved in responses to DNA damage. Here we examined the potential role of CC3 in regulation of cellular responses to genotoxic stress. Results We found that forced expression of CC3 in CC3-negative cells strongly delays the repair of UV-induced DNA damage. Exogenously introduced CC3 negatively affects expression levels of DDB2/XPE and p21CIP1, and inhibits induction of c-FOS after UV exposure. In addition, exogenous CC3 prevents the nuclear accumulation of P21CIP in response to UV. These changes in the levels/localization of relevant proteins resulting from the enforced expression of CC3 are likely to contribute to the observed delay in DNA damage repair. Silencing of CC3 in CC3-positive cells has a modest delaying effect on repair of the UV induced damage, but has a much more significant negative affect on the translesion DNA synthesis after UV exposure. This could be related to the higher expression levels and increased nuclear localization of p21CIP1 in cells where expression of CC3 is silenced. Expression of CC3 also inhibits repair of oxidative DNA damage and leads to a decrease in levels of nucleoredoxin, that could contribute to the reduced viability of CC3 expressing cells after oxidative insult. Conclusions Manipulation of the cellular levels of CC3 alters expression levels and/or subcellular localization of proteins that exhibit nucleocytoplasmic shuttling. This results in altered responses to genotoxic stress and adversely affects DNA damage repair by affecting the recruitment of adequate amounts of required proteins to proper cellular compartments. Excess of cellular CC3 has a significant negative effect on DNA repair after UV and oxidant exposure, while silencing of endogenous CC3 slightly delays repair of UV-induced damage.
Collapse
Affiliation(s)
- Sylvia Fong
- BioNovo Inc, 5858 Horton Street, Emeryville 94608, CA, USA
| | | | | |
Collapse
|
306
|
DDB2 complex-mediated ubiquitylation around DNA damage is oppositely regulated by XPC and Ku and contributes to the recruitment of XPA. Mol Cell Biol 2010; 30:2708-23. [PMID: 20368362 DOI: 10.1128/mcb.01460-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UV-damaged-DNA-binding protein (UV-DDB) is a heterodimer comprised of DDB1 and DDB2 and integrated in a complex that includes a ubiquitin ligase component, cullin 4A, and Roc1. Here we show that the ubiquitin ligase activity of the DDB2 complex is required for efficient global genome nucleotide excision repair (GG-NER) in chromatin. Mutant DDB2 proteins derived from xeroderma pigmentosum group E patients are not able to mediate ubiquitylation around damaged sites in chromatin. We also found that CSN, a negative regulator of cullin-based ubiquitin ligases, dissociates from the DDB2 complex when the complex binds to damaged DNA and that XPC and Ku oppositely regulate the ubiquitin ligase activity, especially around damaged sites. Furthermore, the DDB2 complex-mediated ubiquitylation plays a role in recruiting XPA to damaged sites. These findings shed some light on the early stages of GG-NER.
Collapse
|
307
|
Epigenetic therapy: targeting histones and their modifications in human disease. Future Med Chem 2010; 2:543-8. [DOI: 10.4155/fmc.10.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
308
|
Abstract
The repair of lesions and gaps in DNA follows different pathways, each mediated by specific proteins and complexes. Post-translational modifications in many of these proteins govern their activities and interactions, ultimately determining whether a particular pathway is followed. Prominent among these modifications are the addition of phosphate or ubiquitin (and ubiquitin-like) moieties that confer new binding surfaces and conformational states on the modified proteins. The present review summarizes some of consequences of ubiquitin and ubiquitin-like modifications and interactions that regulate nucleotide excision repair, translesion synthesis, double-strand break repair and interstrand cross-link repair, with the discussion of relevant examples in each pathway.
Collapse
|
309
|
Terai K, Abbas T, Jazaeri AA, Dutta A. CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol Cell 2010; 37:143-9. [PMID: 20129063 DOI: 10.1016/j.molcel.2009.12.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/26/2009] [Accepted: 10/19/2009] [Indexed: 01/01/2023]
Abstract
Monoubiquitination of proliferating cell nuclear antigen (PCNA) is a critical posttranslational modification essential for DNA repair by translesion DNA synthesis (TLS). The Rad18 E3 ubiquitin ligase cooperates with the E2 Rad6 to monoubiquitinate PCNA in response to DNA damage. How PCNA is monoubiquitinated in unperturbed cells and whether this plays a role in the repair of DNA associated with replication is not known. We show that the CRL4(Cdt2) E3 ubiquitin ligase complex promotes PCNA monoubiqutination in proliferating cells in the absence of external DNA damage independent of Rad18. PCNA monoubiquitination via CRL4(Cdt2) is constitutively antagonized by the action of the ubiquitin-specific protease 1 (USP1). In vitro, CRL4(Cdt2) monoubiquitinates PCNA at Lys164, the same residue that is monoubiquitinated by Rad18. Significantly, CRL4(Cdt2) is required for TLS in nondamaged cells via a mechanism that is dependent on PCNA monoubiquitination. We propose that CRL4(Cdt2) regulates PCNA-dependent TLS associated with stresses accompanying DNA replication.
Collapse
Affiliation(s)
- Kenta Terai
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
310
|
Grazini U, Zanardi F, Citterio E, Casola S, Goding CR, McBlane F. The RING domain of RAG1 ubiquitylates histone H3: a novel activity in chromatin-mediated regulation of V(D)J joining. Mol Cell 2010; 37:282-93. [PMID: 20122409 DOI: 10.1016/j.molcel.2009.12.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 08/06/2009] [Accepted: 12/08/2009] [Indexed: 01/15/2023]
Abstract
The RAG1 and RAG2 proteins are the only lymphoid-specific factors required to perform the first step of V(D)J recombination, DNA cleavage. While the catalytic domain of RAG1, the core region, has been well characterized, the role of the noncore region in modulating chromosomal V(D)J recombination efficiency remains ill defined. Recent studies have highlighted the role of chromatin structure in regulation of V(D)J recombination. Here we show that RAG1 itself, through a RING domain within its N-terminal noncore region, preferentially interacts directly with and promotes monoubiquitylation of histone H3. Mutations affecting the RAG1 RING domain reduce histone H3 monoubiquitylation activity, decrease V(D)J recombination activity in vivo, reduce formation of both signal-joint and coding-joint products on episomal substrates, and decrease efficiency of V(D)J recombination at the endogenous IgH locus in lymphoid cells. The results reveal that RAG1-mediated histone monoubiquitylation activity plays a role in regulating the joining phase of chromosomal V(D)J recombination.
Collapse
Affiliation(s)
- Ursula Grazini
- Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | | | | | | | | | | |
Collapse
|
311
|
Induced G1 cell-cycle arrest controls replication-dependent histone mRNA 3′ end processing through p21, NPAT and CDK9. Oncogene 2010; 29:2853-63. [DOI: 10.1038/onc.2010.42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
312
|
Liu F, Walters KJ. Multitasking with ubiquitin through multivalent interactions. Trends Biochem Sci 2010; 35:352-60. [PMID: 20181483 DOI: 10.1016/j.tibs.2010.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 01/08/2010] [Accepted: 01/14/2010] [Indexed: 01/04/2023]
Abstract
Ubiquitylation - the post-translational modification of proteins with ubiquitin - serves powerful regulatory roles in eukaryotes. It can label proteins for destruction or activate gene transcription. Despite its versatility, ubiquitin is used to signal for cellular events with exquisite specificity. To achieve both versatility and specificity, ubiquitin signaling pathways use multivalency, namely the coordinated use of multiple interaction surfaces. Multivalent interactions regulate each stage of ubiquitin signaling pathways, and appear within the ubiquitin signal, the ubiquitylated substrate, ubiquitin processing enzymes and ubiquitin recognition proteins.
Collapse
Affiliation(s)
- Fen Liu
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
313
|
Cao JN, Gollapudi S, Sharman EH, Jia Z, Gupta S. Age-related alterations of gene expression patterns in human CD8+ T cells. Aging Cell 2010; 9:19-31. [PMID: 19878143 DOI: 10.1111/j.1474-9726.2009.00534.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aging is associated with progressive T-cell deficiency and increased incidence of infections, cancer and autoimmunity. In this comprehensive study, we have compared the gene expression profiles in CD8+ T cells from aged and young healthy subjects using Affymetrix microarray Human Genome U133A-2 GeneChips. A total of 5.2% (754) of the genes analyzed had known functions and displayed statistically significant age-associated expression changes. These genes were involved in a broad array of complex biological processes, mainly in nucleic acid and protein metabolism. Functional groups, in which downregulated genes were overrepresented, were the following: RNA transcription regulation, RNA and DNA metabolism, intracellular (Golgi, endoplasmic reticulum and nuclear) transportation, signaling transduction pathways (T-cell receptor, Ras/MAPK, JNK/Stat, PI3/AKT, Wnt, TGFbeta, insulin-like growth factor and insulin), and the ubiquitin cycle. In contrast, the following functional groups contained more up-regulated genes than expected: response to oxidative stress and cytokines, apoptosis, and the MAPKK signaling cascade. These age-associated gene expression changes may be responsible for impaired DNA replication, RNA transcription, and signal transduction, possibly resulting in instability of cellular and genomic integrity, and alterations of growth, differentiation, apoptosis and anergy in human aged CD8+ T cells.
Collapse
Affiliation(s)
- Jia-Ning Cao
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Medical Sciences I, C-240 Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
314
|
HIV-1 Vpr induces the K48-linked polyubiquitination and proteasomal degradation of target cellular proteins to activate ATR and promote G2 arrest. J Virol 2010; 84:3320-30. [PMID: 20089662 DOI: 10.1128/jvi.02590-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 viral protein R (Vpr) induces cell cycle arrest at the G(2)/M phase by a mechanism involving the activation of the DNA damage sensor ATR. We and others recently showed that Vpr performs this function by subverting the activity of the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. Vpr could thus act as a connector between the E3 ligase and an unknown cellular factor whose ubiquitination would induce G(2) arrest. While attractive, this model is based solely on the indirect observation that some mutants of Vpr retain their interaction with the E3 ligase but fail to induce G(2) arrest. Using a tandem affinity purification approach, we observed that Vpr interacts with ubiquitinated cellular proteins and that this association requires the recruitment of an active E3 ligase given that the depletion of VPRBP by RNA interference or the overexpression of a dominant negative mutant of CUL4A decreased this association. Importantly, G(2)-arrest-defective mutants of Vpr in the C-terminal putative substrate-interacting domain displayed a decreased association with ubiquitinated proteins. We also found that the inhibition of proteasomal activity increased this association and that the ubiquitin chains were at least in part constituted of classical K48 linkages. Interestingly, the inhibition of K48 polyubiquitination specifically impaired the Vpr-induced phosphorylation of H2AX, an early target of ATR, but did not affect UV-induced H2AX phosphorylation. Overall, our results provide direct evidence that the association of Vpr with the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase induces the K48-linked polyubiquitination of as-yet-unknown cellular proteins, resulting in their proteasomal degradation and ultimately leading to the activation of ATR and G(2) arrest.
Collapse
|
315
|
Bagchi S, Raychaudhuri P. Damaged-DNA Binding Protein-2 Drives Apoptosis Following DNA Damage. Cell Div 2010; 5:3. [PMID: 20205757 PMCID: PMC2822757 DOI: 10.1186/1747-1028-5-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/19/2010] [Indexed: 02/06/2023] Open
Abstract
Apoptosis induced by DNA damage is an important mechanism of tumor suppression and it is significant also in cancer chemotherapy. Mammalian cells activate the pathways of p53 to induce apoptosis of cells harboring irreparable DNA damages. While p53 induces expression of various pro-apoptotic genes and directly participates in the disruption of mitochondrial membrane polarization, it also increases expression of the cell cycle inhibitor p21 that is a dominant inhibitor of caspase-activation and apoptosis. Here we discuss how Damaged-DNA Binding Protein-2 (DDB2) subdues the level of p21 in cells harboring irreparable DNA damage to support activation of the caspases. We speculate a model in which DDB2 detects and couples the presence of un-repaired DNA damages to the proteolysis of p21, leading to the induction of apoptosis.
Collapse
Affiliation(s)
- Srilata Bagchi
- Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave, Chicago, IL-60612, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL-60607, USA
| |
Collapse
|
316
|
Rechkunova NI, Lavrik OI. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair. Subcell Biochem 2010; 50:251-277. [PMID: 20012586 DOI: 10.1007/978-90-481-3471-7_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells that counteract the formation of genetic damage. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the contest of a large excess of intact DNA. This review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. Understanding of mechanism of this step of NER may give a key contribution to study of similar processes of DNA damage recognition (base excision repair, mismatch repair) and regulation of assembly of various DNA repair machines. The major models of primary damage recognition and pre-incision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in the light of the available data. The possible contribution of affinity labeling technique in study of this process is discussed.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | | |
Collapse
|
317
|
Stoyanova T, Roy N, Kopanja D, Raychaudhuri P, Bagchi S. DDB2 (damaged-DNA binding protein 2) in nucleotide excision repair and DNA damage response. Cell Cycle 2009; 8:4067-4071. [PMID: 19923893 PMCID: PMC3107032 DOI: 10.4161/cc.8.24.10109] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DDB2 was identified as a protein involved in the Nucleotide Excision Repair (NER), a major DNA repair mechanism that repairs UV damage to prevent accumulation of mutations and tumorigenesis. However, recent studies indicated additional functions of DDB2 in the DNA damage response pathway. Herein, we discuss the proposed mechanisms by which DDB2 activates NER and programmed cell death upon DNA damage through its E3 ligase activity.
Collapse
Affiliation(s)
- Tanya Stoyanova
- Department of Biochemistry and Molecular Genetics (M/C 669); Cancer Center, University of Illinois at Chicago, Chicago, IL USA
| | - Nilotpal Roy
- Department of Biochemistry and Molecular Genetics (M/C 669); Cancer Center, University of Illinois at Chicago, Chicago, IL USA
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics (M/C 669); Cancer Center, University of Illinois at Chicago, Chicago, IL USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669); Cancer Center, University of Illinois at Chicago, Chicago, IL USA
| | - Srilata Bagchi
- Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry; Cancer Center, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
318
|
Li T, Robert EI, van Breugel PC, Strubin M, Zheng N. A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat Struct Mol Biol 2009; 17:105-11. [PMID: 19966799 DOI: 10.1038/nsmb.1719] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 10/13/2009] [Indexed: 12/23/2022]
Abstract
The cullin 4-DNA-damage-binding protein 1 (CUL4-DDB1) ubiquitin ligase machinery regulates diverse cellular functions and can be subverted by pathogenic viruses. Here we report the crystal structure of DDB1 in complex with a central fragment of hepatitis B virus X protein (HBx), whose DDB1-binding activity is important for viral infection. The structure reveals that HBx binds DDB1 through an alpha-helical motif, which is also found in the unrelated paramyxovirus SV5-V protein despite their sequence divergence. Our structure-based functional analysis suggests that, like SV5-V, HBx captures DDB1 to redirect the ubiquitin ligase activity of the CUL4-DDB1 E3 ligase. We also identify the alpha-helical motif shared by these viral proteins in the cellular substrate-recruiting subunits of the E3 complex, the DDB1-CUL4-associated factors (DCAFs) that are functionally mimicked by the viral hijackers. Together, our studies reveal a common yet promiscuous structural element that is important for the assembly of cellular and virally hijacked CUL4-DDB1 E3 complexes.
Collapse
Affiliation(s)
- Ti Li
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
319
|
Zhao Y, Shen Y, Yang S, Wang J, Hu Q, Wang Y, He Q. Ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation in Neurospora crassa. J Biol Chem 2009; 285:4355-65. [PMID: 19948733 DOI: 10.1074/jbc.m109.034710] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA methylation and H3K9 trimethylation are involved in gene silencing and heterochromatin assembly in mammals and fungi. In the filamentous fungus Neurospora crassa, it has been demonstrated that H3K9 trimethylation catalyzed by histone methyltransferase DIM-5 is essential for DNA methylation. Trimethylated H3K9 is recognized by HP1, which then recruits the DNA methyltransferase DIM-2 to methylate the DNA. Here, we show that in Neurospora, ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation. These proteins regulate DNA methylation through their effects on the trimethylation of histone H3K9. In addition, we showed that the E3 ligase activity of the Cul4-based ubiquitin ligase is required for its function in histone H3K9 trimethylation in Neurospora. Furthermore, we demonstrated that Cul4 and DDB1 are associated with the histone methyltransferase DIM-5 protein in vivo. Together, these results suggest a mechanism for DNA methylation control that may be applicable in other eukaryotic organisms.
Collapse
Affiliation(s)
- Yuanbiao Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
320
|
Marteijn JA, Bekker-Jensen S, Mailand N, Lans H, Schwertman P, Gourdin AM, Dantuma NP, Lukas J, Vermeulen W. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. ACTA ACUST UNITED AC 2009; 186:835-47. [PMID: 19797077 PMCID: PMC2753161 DOI: 10.1083/jcb.200902150] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The epigenetic mark indicative of DNA UV damage or double-strand breaks is achieved via a common pathway regardless of the cause of damage. Chromatin modifications are an important component of the of DNA damage response (DDR) network that safeguard genomic integrity. Recently, we demonstrated nucleotide excision repair (NER)–dependent histone H2A ubiquitination at sites of ultraviolet (UV)-induced DNA damage. In this study, we show a sustained H2A ubiquitination at damaged DNA, which requires dynamic ubiquitination by Ubc13 and RNF8. Depletion of these enzymes causes UV hypersensitivity without affecting NER, which is indicative of a function for Ubc13 and RNF8 in the downstream UV–DDR. RNF8 is targeted to damaged DNA through an interaction with the double-strand break (DSB)–DDR scaffold protein MDC1, establishing a novel function for MDC1. RNF8 is recruited to sites of UV damage in a cell cycle–independent fashion that requires NER-generated, single-stranded repair intermediates and ataxia telangiectasia–mutated and Rad3-related protein. Our results reveal a conserved pathway of DNA damage–induced H2A ubiquitination for both DSBs and UV lesions, including the recruitment of 53BP1 and Brca1. Although both lesions are processed by independent repair pathways and trigger signaling responses by distinct kinases, they eventually generate the same epigenetic mark, possibly functioning in DNA damage signal amplification.
Collapse
Affiliation(s)
- Jurgen A Marteijn
- Department of Genetics, Center for Biomedical Genetics, Erasmus Medical Center, 3015 GE Rotterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Wang Z, Cui B, Gorovsky MA. Histone H2B ubiquitylation is not required for histone H3 methylation at lysine 4 in tetrahymena. J Biol Chem 2009; 284:34870-9. [PMID: 19822522 DOI: 10.1074/jbc.m109.046250] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ubiquitylation of histone H2B and/or a component of the system that ubiquitylates H2B is required for methylation of histone H3 at lysine 4 (H3K4) in yeasts and probably in humans. In this study, the single ubiquitylation site was mapped to conserved lysine 115 of the C-terminal region of histone H2B in the single-cell model organism Tetrahymena thermophila. In strains lacking H2B ubiquitylation, H3K4 methylation was not detectably affected. As in other organisms, the E2 ubiquitin-conjugating enzyme Ubc2 and the E3 ubiquitin ligase Bre1 were required for H2B ubiquitylation. However, neither enzyme was required for H3K4 methylation. These studies argue that, in T. thermophila, the histone ubiquitylation mechanism is not required for H3K4 methylation, demonstrating that different organisms can speak different languages in the "cross-talk" among post-translational modifications on different histones.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | | | |
Collapse
|
322
|
CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 2009; 34:562-70. [PMID: 19818632 DOI: 10.1016/j.tibs.2009.07.002] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/01/2009] [Accepted: 07/10/2009] [Indexed: 02/07/2023]
Abstract
The evolutionarily conserved cullin family proteins can assemble as many as 400 distinct E3 ubiquitin ligase complexes that regulate diverse cellular pathways. CUL4, one of three founding cullins conserved from yeast to humans, uses a large beta-propeller protein, DDB1, as a linker to interact with a subset of WD40 proteins that serve as substrate receptors, forming as many as 90 E3 complexes in mammals. Many CRL4 complexes are involved in chromatin regulation and are frequently hijacked by different viruses.
Collapse
|
323
|
Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS One 2009; 4:e7050. [PMID: 19759913 PMCID: PMC2739719 DOI: 10.1371/journal.pone.0007050] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 08/10/2009] [Indexed: 01/06/2023] Open
Abstract
Nuclear lamin filaments and associated proteins form a nucleoskeletal (“lamina”) network required for transcription, replication, chromatin organization and epigenetic regulation in metazoans. Lamina defects cause human disease (“laminopathies”) and are linked to aging. Barrier-to-autointegration factor (BAF) is a mobile and essential component of the nuclear lamina that binds directly to histones, lamins and LEM-domain proteins, including the inner nuclear membrane protein emerin, and has roles in chromatin structure, mitosis and gene regulation. To understand BAF's mechanisms of action, BAF associated proteins were affinity-purified from HeLa cell nuclear lysates using BAF-conjugated beads, and identified by tandem mass spectrometry or independently identified and quantified using the iTRAQ method. We recovered A- and B-type lamins and core histones, all known to bind BAF directly, plus four human transcription factors (Requiem, NonO, p15, LEDGF), disease-linked proteins (e.g., Huntingtin, Treacle) and several proteins and enzymes that regulate chromatin. Association with endogenous BAF was independently validated by co-immunoprecipitation from HeLa cells for seven candidates including Requiem, poly(ADP-ribose) polymerase 1 (PARP1), retinoblastoma binding protein 4 (RBBP4), damage-specific DNA binding protein 1 (DDB1) and DDB2. Interestingly, endogenous BAF and emerin each associated with DDB2 and CUL4A in a UV- and time-dependent manner, suggesting BAF and emerin have dynamic roles in genome integrity and might help couple DNA damage responses to the nuclear lamina network. We conclude this proteome is a rich source of candidate partners for BAF and potentially also A- and B-type lamins, which may reveal how chromatin regulation and genome integrity are linked to nuclear structure.
Collapse
|
324
|
Mullenders J, von der Saal W, van Dongen MM, Reiff U, van Willigen R, Beijersbergen RL, Tiefenthaler G, Klein C, Bernards R. Candidate Biomarkers of Response to an Experimental Cancer Drug Identified through a Large-scale RNA Interference Genetic Screen. Clin Cancer Res 2009; 15:5811-9. [DOI: 10.1158/1078-0432.ccr-09-0261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
325
|
Kitagawa K, Kotake Y, Kitagawa M. Ubiquitin-mediated control of oncogene and tumor suppressor gene products. Cancer Sci 2009; 100:1374-81. [PMID: 19459846 PMCID: PMC11159930 DOI: 10.1111/j.1349-7006.2009.01196.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cellular levels of products from both oncogenes and tumor suppressor genes in normal cells need to be critically regulated to avoid malignant transformation. These products are often controlled by the ubiquitin proteasome pathway, the specific degradation mechanism in the cell. E3 ubiquitin ligases polyubiquitylate their specific substrates by collaborating with E1 and E2, and then the modified substrates are degraded in the proteasome. Mdm2 targets p53 and retinoblastoma protein, two major tumor suppressor gene products, for ubiquitin-dependent degradation. SCF(Skp2) targets other tumor suppressor gene products and CDK inhibitors such as p130, Tob1, p27(Kip1), p57(Kip2), and p21(Cip1). Therefore, both E3 ligases act like oncogene products. In contrast, degradation of several oncogene products, such as Cyclin E, Notch, c-Myc, c-Jun, and c-Myb, are mediated by SCF(Fbw7). Fbw7 is often deleted or mutated in human cancers and acts like a tumor suppressor. As well as growth factor receptors and signal transduction regulators, DNA repair-related proteins are also regulated via the ubiquitin-proteasome pathway mediated by their specific E3 ligases. The stabilization of oncogene products and enhanced degradation of tumor suppressor gene products or DNA repair proteins might be associated with carcinogenesis and malignant progression, due to defects or the abnormal expression of their E3 ligases.
Collapse
Affiliation(s)
- Kyoko Kitagawa
- Department of Biochemistry 1, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | | |
Collapse
|
326
|
Tjeertes JV, Miller KM, Jackson SP. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 2009; 28:1878-89. [PMID: 19407812 PMCID: PMC2684025 DOI: 10.1038/emboj.2009.119] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/26/2009] [Indexed: 01/05/2023] Open
Abstract
Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells.
Collapse
Affiliation(s)
- Jorrit V Tjeertes
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- These authors contributed equally to this work
| | - Kyle M Miller
- The Gurdon Institute, University of Cambridge, Cambridge, UK
- These authors contributed equally to this work
| | | |
Collapse
|
327
|
Abstract
The high mobility group protein B1 (HMGB1) is a highly abundant protein with roles in several cellular processes, including chromatin structure and transcriptional regulation, as well as an extracellular role in inflammation. HMGB1's most thoroughly defined function is as a protein capable of binding specifically to distorted and damaged DNA, and its ability to induce further bending in the DNA once it is bound. This characteristic in part mediates its function in chromatin structure (binding to the linker region of nucleosomal DNA and increasing the instability of the nucleosome structure) as well as transcription (bending promoter DNA to enhance the interaction of transcription factors), but the functional consequences of HMGB1's binding to damaged DNA is still an area of active investigation. In this review we describe HMGB1's actions in the nucleotide excision repair (NER) pathway, and we discuss aspects of both the "repair shielding" and "repair enhancing" hypotheses that have been suggested. We also report information regarding HMGB1's roles in the mismatch repair (MMR), nonhomologous end-joining (NHEJ), and V(D)J recombination pathways, as well as its newly-discovered involvement in the base excision repair (BER) pathway. We further explore the potential of HMGB1 in DNA repair in the context of chromatin. The elucidation of HMGB1's role in DNA repair is critical for the complete understanding of HMGB1's intracellular functions, which is particularly relevant in the context of anti-HMGB1 therapies that are being developed to treat inflammatory diseases.
Collapse
Affiliation(s)
- Sabine S Lange
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
328
|
Stoyanova T, Roy N, Kopanja D, Bagchi S, Raychaudhuri P. DDB2 decides cell fate following DNA damage. Proc Natl Acad Sci U S A 2009; 106:10690-10695. [PMID: 19541625 PMCID: PMC2705559 DOI: 10.1073/pnas.0812254106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Indexed: 12/23/2022] Open
Abstract
The xeroderma pigmentosum complementation group E (XP-E) gene product damaged-DNA binding protein 2 (DDB2) plays important roles in nucleotide excision repair (NER). Previously, we showed that DDB2 participates in NER by regulating the level of p21(Waf1/Cip1). Here we show that the p21(Waf1/Cip1) -regulatory function of DDB2 plays a central role in defining the response (apoptosis or arrest) to DNA damage. The DDB2-deficient cells are resistant to apoptosis in response to a variety of DNA-damaging agents, despite activation of p53 and the pro-apoptotic genes. Instead, these cells undergo cell cycle arrest. Also, the DDB2-deficient cells are resistant to E2F1-induced apoptosis. The resistance to apoptosis of the DDB2-deficient cells is caused by an increased accumulation of p21(Waf1/Cip1) after DNA damage. We provide evidence that DDB2 targets p21(Waf1/Cip1) for proteolysis. The resistance to apoptosis in DDB2-deficient cells also involves Mdm2 in a manner that is distinct from the p53-regulatory activity of Mdm2. Our results provide evidence for a new regulatory loop involving the NER protein DDB2, Mdm2, and p21(Waf1/Cip1) that is critical in deciding cell fate (apoptosis or arrest) upon DNA damage.
Collapse
Affiliation(s)
- Tanya Stoyanova
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607; and
| | - Nilotpal Roy
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607; and
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607; and
| | - Srilata Bagchi
- Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 South Paulina Avenue, Chicago, IL 60612
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607; and
| |
Collapse
|
329
|
Abstract
Although CUL4-containing ubiquitin ligases regulate DNA repair and DNA damage checkpoints, Liu et al. (2009) report in this issue of Molecular Cell that Cul4a-deficient mice exhibit surprising resistance to ultraviolet-induced skin tumors, providing insight into how ubiquitination regulates genome integrity.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
330
|
Lin HC, Wu JT, Tan BCM, Chien CT. Cul4 and DDB1 regulate Orc2 localization, BrdU incorporation and Dup stability during gene amplification in Drosophila follicle cells. J Cell Sci 2009; 122:2393-401. [PMID: 19531585 DOI: 10.1242/jcs.042861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In higher eukaryotes, the pre-replication complex (pre-RC) component Cdt1 is the major regulator in licensing control for DNA replication. The Cul4-DDB1-based ubiquitin ligase mediates Cdt1 ubiquitylation for subsequent proteolysis. During the initiation of chorion gene amplification, Double-parked (Dup), the Drosophila ortholog of Cdt1, is restricted to chorion gene foci. We found that Dup accumulated in nuclei in Cul4 mutant follicle cells, and the accumulation was less prominent in DDB1 mutant cells. Loss of Cul4 or DDB1 activity in follicle cells also compromised chorion gene amplification and induced ectopic genomic DNA replication. The focal localization of Orc2, a subunit of the origin recognition complex, is frequently absent in Cul4 mutant follicle cells. Therefore, Cul4 and DDB1 have differential functions during chorion gene amplification.
Collapse
Affiliation(s)
- Hsiu-Chen Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
331
|
Sugasawa K. UV-DDB: a molecular machine linking DNA repair with ubiquitination. DNA Repair (Amst) 2009; 8:969-72. [PMID: 19493704 DOI: 10.1016/j.dnarep.2009.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 04/29/2009] [Accepted: 05/01/2009] [Indexed: 11/17/2022]
Abstract
UV-damaged DNA-binding protein (UV-DDB) is characterized by its very high affinity and specificity for UV-damaged DNA. Although precise roles for UV-DDB have been quite enigmatic since its discovery, accumulating evidence indicates that it promotes recognition of and protein assembly on UV photolesions in the global genome nucleotide excision repair pathway. The recently solved crystal structure of UV-DDB bound to DNA containing a (6-4) photoproduct has revealed that the DDB2/XPE subunit is responsible for the interaction, which induces flipping out of the two affected bases into a binding pocket, indicating that UV-DDB has evolved especially to recognize dinucleotide lesions, like UV photolesions. Taken together with the previously solved structure of the DDB1-CUL4A E3 ligase, this study has also novel insights into how this factor coordinates ubiquitination of various protein substrates around the site of DNA damage.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
332
|
Abstract
With the discovery in the late 1980s that the DNA-repair gene RAD6 encodes a ubiquitin-conjugating enzyme, it became clear that protein modification by ubiquitin conjugation has a much broader significance than had previously been assumed. Now, two decades later, ubiquitin and its cousin SUMO are implicated in a range of human diseases, including breast cancer and Fanconi anaemia, giving fresh momentum to studies focused on the relationships between ubiquitin, SUMO and DNA-repair pathways.
Collapse
|
333
|
Abstract
Eukaryotic cells repair ultraviolet light (UV)- and chemical carcinogen-induced DNA strand-distorting damage through the nucleotide excision repair (NER) pathway. Concurrent activation of the DNA damage checkpoints is also required to arrest the cell cycle and allow time for NER action. Recent studies uncovered critical roles for ubiquitin-mediated post-translational modifications in controlling both NER and checkpoint functions. In this review, we will discuss recent progress in delineating the roles of cullin-RING E3 ubiquitin ligases in orchestrating the cellular DNA damage response through ubiquitination of NER factors, histones, and checkpoint effectors.
Collapse
Affiliation(s)
- Jeffrey Hannah
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065
| |
Collapse
|
334
|
Abstract
Misregulation of the Wnt pathway is a common route to cancer, including primary breast cancers. In this issue of Genes & Development, Miranda-Carboni and colleagues (3121-3134) demonstrate that the cyclin-dependent kinase inhibitor p27(Kip1) is ubiquitylated for proteasomal degradation in Wnt10b-induced mammary tumors exclusively by the Cul4A E3 ligase, which is strongly induced by Wnt signaling. The discovery of a new Wnt-induced proteolytic targeting system has important implications for the mechanism of Wnt-initiated tumorigenesis.
Collapse
Affiliation(s)
- Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
335
|
Leung-Pineda V, Huh J, Piwnica-Worms H. DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res 2009; 69:2630-7. [PMID: 19276361 PMCID: PMC2776040 DOI: 10.1158/0008-5472.can-08-3382] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Chk1 protein kinase preserves genome integrity in normal proliferating cells and in cells experiencing replicative and genotoxic stress. Chk1 is currently being targeted in anticancer regimens. Here, we identify damaged DNA-binding protein 1 (DDB1) as a novel Chk1-interacting protein. DDB1 is part of an E3 ligase complex that includes the cullin proteins Cul4A and Cul4B. We report that Cul4A/DDB1 negatively regulates Chk1 stability in vivo. Chk1 associates with Cul4A/DDB1 during an unperturbed cell division cycle and both Chk1 phosphorylation and replication stress enhanced these interactions. Cul4A/DDB1 regulates Chk1 ubiquitination in vivo and Chk1 is directly ubiquitinated in vitro in a Cul4A/DDB1-dependent manner. Furthermore, Chk1 is stabilized in cells deficient for Cul4A/DDB1. This study shows that Chk1 abundance is regulated by the Cul4A/DDB1 ubiquitin ligase during an unperturbed cell division cycle, in response to replicative stress and on heat shock protein 90 inhibition, and that deregulation of the Chk1/Cul4A/DDB1 pathway perturbs the ionizing radiation-induced G(2) checkpoint.
Collapse
Affiliation(s)
- Van Leung-Pineda
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110-1093
| | - Jiwon Huh
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110-1093
| | - Helen Piwnica-Worms
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110-1093
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110-1093
- Howard Hughes Medical Institute, Washington University School of Medicine, Campus Box 8228, 660 S. Euclid Ave., St. Louis, MO 63110-1093
| |
Collapse
|
336
|
The XPE gene of xeroderma pigmentosum, its product and biological roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 637:57-64. [PMID: 19181111 DOI: 10.1007/978-0-387-09599-8_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
337
|
Zhu Q, Wani G, Arab HH, El-Mahdy MA, Ray A, Wani AA. Chromatin restoration following nucleotide excision repair involves the incorporation of ubiquitinated H2A at damaged genomic sites. DNA Repair (Amst) 2009; 8:262-73. [PMID: 19059499 PMCID: PMC2718537 DOI: 10.1016/j.dnarep.2008.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/30/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
Restoration of functionally intact chromatin structure following DNA damage processing is crucial for maintaining genetic and epigenetic information in human cells. Here, we show the UV-induced uH2A foci formation in cells lacking XPC, DDB2, CSA or CSB, but not in cells lacking XPA, XPG or XPF indicating that uH2A incorporation relied on successful damage repair occurring through either GGR or TCR sub-pathway. In contrast, XPA, XPG or XPF were not required for formation of gammaH2AX foci in asynchronous cells. Notably, the H2A ubiquitin ligase Ring1B, a component of Polycomb repressor complex 1, did not localize at DNA damage sites. However, histone chaperone CAF-1 showed distinct localization to the damage sites. Knockdown of CAF-1 p60 abolished CAF-1 as well as uH2A foci formation. CAF-1 p150 was found to associate with NER factors TFIIH, RPA p70 and PCNA in chromatin. These data demonstrate that successful NER of genomic lesions and prompt CAF-1-mediated chromatin restoration link uH2A incorporation at the sites of damage repair within chromatin.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Gulzar Wani
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Hany H. Arab
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Mohamed A. El-Mahdy
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Alo Ray
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Altaf A. Wani
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, United States
- James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
338
|
Wakasugi M, Kasashima H, Fukase Y, Imura M, Imai R, Yamada S, Cleaver JE, Matsunaga T. Physical and functional interaction between DDB and XPA in nucleotide excision repair. Nucleic Acids Res 2009; 37:516-25. [PMID: 19056823 PMCID: PMC2632899 DOI: 10.1093/nar/gkn964] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 11/09/2008] [Accepted: 11/12/2008] [Indexed: 11/18/2022] Open
Abstract
Damaged DNA-binding protein (DDB), consisting of DDB1 and DDB2 subunits recognizes a wide spectrum of DNA lesions. DDB is dispensable for in vitro nucleotide excision repair (NER) reaction, but stimulates this reaction especially for cyclobutane pyrimidine dimer (CPD). Here we show that DDB directly interacts with XPA, one of core NER factors, mainly through DDB2 subunit and the amino-acid residues between 185 and 226 in XPA are important for the interaction. Interestingly, the point mutation causing the substitution from Arg-207 to Gly, which was previously identified in a XP-A revertant cell-line XP129, diminished the interaction with DDB in vitro and in vivo. In a defined system containing R207G mutant XPA and other core NER factors, DDB failed to stimulate the excision of CPD, although the mutant XPA was competent for the basal NER reaction. Moreover, in vivo experiments revealed that the mutant XPA is recruited to damaged DNA sites with much less efficiency compared with wild-type XPA and fails to support the enhancement of CPD repair by ectopic expression of DDB2 in SV40-transformed human cells. These results suggest that the physical interaction between DDB and XPA plays an important role in the DDB-mediated NER reaction.
Collapse
Affiliation(s)
- Mitsuo Wakasugi
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan and Auerback Melanoma Laboratory, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Hiromi Kasashima
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan and Auerback Melanoma Laboratory, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Yuko Fukase
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan and Auerback Melanoma Laboratory, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Mayumi Imura
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan and Auerback Melanoma Laboratory, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Rika Imai
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan and Auerback Melanoma Laboratory, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Saki Yamada
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan and Auerback Melanoma Laboratory, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - James E. Cleaver
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan and Auerback Melanoma Laboratory, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Tsukasa Matsunaga
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan and Auerback Melanoma Laboratory, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| |
Collapse
|
339
|
Chapter 6 Application of New Methods for Detection of DNA Damage and Repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:217-51. [DOI: 10.1016/s1937-6448(09)77006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
340
|
Zhai L, Joo HY, Wang H. In vitro and in vivo assays for studying histone ubiquitination and deubiquitination. Methods Mol Biol 2009; 523:295-309. [PMID: 19381930 DOI: 10.1007/978-1-59745-190-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Posttranslational histone modifications play important roles in regulating chromatin structure and function (Martin and Zhang, Nat Rev Mol Cell Biol 6:838-849, 2005; Jenuwein and Allis, Science 293:1074-1080, 2001). One example of such modifications is histone ubiquitination, which occurs predominately on H2A and H2B. Recent studies have highlighted important regulatory roles of H2A ubiquitination in Polycomb group proteins-mediated gene silencing (Wang et al., Nature 431:873-878, 2004; Joo et al., Nature 449:1068-1072, 2007) and H2B ubiquitination in transcription, H3 methylation, and DNA methylation (Zhang, Genes Dev 17:2733-2740, 2003; Sun and Allis, Nature 418:104-108, 2002; Sridhar et al., Nature 447:735-738, 2007). Here we describe methods for in vitro histone ubiquitination and deubiquitination assays. We also describe approaches to investigate the in vivo function of a putative histone ubiquitin ligase and deubiquitinase. These experimental procedures are largely based on our studies in mammalian cells. These methods should provide useful tools for studying this bulky histone modification.
Collapse
Affiliation(s)
- Ling Zhai
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | |
Collapse
|
341
|
Scrima A, Koníčková R, Czyzewski BK, Kawasaki Y, Jeffrey PD, Groisman R, Nakatani Y, Iwai S, Pavletich NP, Thomä NH. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 2008; 135:1213-23. [PMID: 19109893 PMCID: PMC2676164 DOI: 10.1016/j.cell.2008.10.045] [Citation(s) in RCA: 337] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/25/2008] [Accepted: 10/31/2008] [Indexed: 11/18/2022]
Abstract
Ultraviolet (UV) light-induced pyrimidine photodimers are repaired by the nucleotide excision repair pathway. Photolesions have biophysical parameters closely resembling undamaged DNA, impeding discovery through damage surveillance proteins. The DDB1-DDB2 complex serves in the initial detection of UV lesions in vivo. Here we present the structures of the DDB1-DDB2 complex alone and bound to DNA containing either a 6-4 pyrimidine-pyrimidone photodimer (6-4PP) lesion or an abasic site. The structure shows that the lesion is held exclusively by the WD40 domain of DDB2. A DDB2 hairpin inserts into the minor groove, extrudes the photodimer into a binding pocket, and kinks the duplex by approximately 40 degrees. The tightly localized probing of the photolesions, combined with proofreading in the photodimer pocket, enables DDB2 to detect lesions refractory to detection by other damage surveillance proteins. The structure provides insights into damage recognition in chromatin and suggests a mechanism by which the DDB1-associated CUL4 ubiquitin ligase targets proteins surrounding the site of damage.
Collapse
Affiliation(s)
- Andrea Scrima
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058, Basel, Switzerland
| | - Renata Koníčková
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058, Basel, Switzerland
| | - Bryan K. Czyzewski
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Yusuke Kawasaki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Philip D. Jeffrey
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Regina Groisman
- CNRS, FRE 2944, Institut Andre Lwoff, Univ Paris-Sud, Villejuif, F-94801
| | - Yoshihiro Nakatani
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Nikola P. Pavletich
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Nicolas H. Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058, Basel, Switzerland
| |
Collapse
|
342
|
Pollack BP, Sapkota B, Boss JM. Ultraviolet radiation-induced transcription is associated with gene-specific histone acetylation. Photochem Photobiol 2008; 85:652-62. [PMID: 19076306 DOI: 10.1111/j.1751-1097.2008.00485.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UVR is an important environmental carcinogen and a powerful modulator of the cutaneous immune system. Exposure to UVR activates many signaling pathways leading to changes in the expression of several hundred genes. While the covalent modification of histones has been shown to play a central role in regulating gene expression, the impact of UVR on histone modifications and the contribution of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the UVR-induced transcriptional response have not been completely characterized. In this report, we have examined the impact of UVR on histone H3 K9/14 acetylation. The potential role of UVR-induced histone acetylation in the UVR transcriptional response was also explored using the HAT inhibitor curcumin and HDAC inhibitor trichostatin A (TSA). We found that UVR caused an increase in histone H3 acetylation within the promoter regions of ATF3, COX2, IL-8, MKP1 and MnSOD. In most of the regions examined, histone H3 acetylation peaked 24 h after UVR and then returned to baseline levels by 72 h. The induction of ATF3, COX2 and MKP1 was blocked in the presence of curcumin at doses that decrease in vivo histone H3 acetylation but not at lower doses that do not affect acetylation levels. We also provide evidence that for ATF3, a transcriptional superinduction occurs after repeat exposures to UVR that can be recapitulated when the second UVR exposure is replaced with TSA treatment. Thus, UVR can alter histone acetylation within human keratinocytes and these changes may contribute to the UVR-transcriptional response.
Collapse
Affiliation(s)
- Brian P Pollack
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | |
Collapse
|
343
|
Dinant C, Houtsmuller AB, Vermeulen W. Chromatin structure and DNA damage repair. Epigenetics Chromatin 2008; 1:9. [PMID: 19014481 PMCID: PMC2596136 DOI: 10.1186/1756-8935-1-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/12/2008] [Indexed: 11/10/2022] Open
Abstract
The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by nucleotide excision repair. We will discuss the role of histone modifications as well as their displacement or exchange in nucleotide excision repair and make a comparison with their requirement in transcription and double strand break repair.
Collapse
Affiliation(s)
- Christoffel Dinant
- Department of Cell Biology and Genetics, Erasmus MC, Dr, Molewaterplein 50, 3015 GE Rotterdam, the Netherlands.
| | | | | |
Collapse
|
344
|
Cellular concentrations of DDB2 regulate dynamic binding of DDB1 at UV-induced DNA damage. Mol Cell Biol 2008; 28:7402-13. [PMID: 18936169 DOI: 10.1128/mcb.01108-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleotide excision repair (NER) is the principal pathway for counteracting cytotoxic and mutagenic effects of UV irradiation. To provide insight into the in vivo regulation of the DNA damage recognition step of global genome NER (GG-NER), we constructed cell lines expressing fluorescently tagged damaged DNA binding protein 1 (DDB1). DDB1 is a core subunit of a number of cullin 4-RING ubiquitin ligase complexes. UV-activated DDB1-DDB2-CUL4A-ROC1 ubiquitin ligase participates in the initiation of GG-NER and triggers the UV-dependent degradation of its subunit DDB2. We found that DDB1 rapidly accumulates on DNA damage sites. However, its binding to damaged DNA is not static, since DDB1 constantly dissociates from and binds to DNA lesions. DDB2, but not CUL4A, was indispensable for binding of DDB1 to DNA damage sites. The residence time of DDB1 on the damage site is independent of the main damage-recognizing protein of GG-NER, XPC, as well as of UV-induced proteolysis of DDB2. The amount of DDB1 that is temporally immobilized on damaged DNA critically depends on DDB2 levels in the cell. We propose a model in which UV-dependent degradation of DDB2 is important for the release of DDB1 from continuous association to unrepaired DNA and makes DDB1 available for its other DNA damage response functions.
Collapse
|
345
|
Ohtake F, Fujii-Kuriyama Y, Kato S. AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem Pharmacol 2008; 77:474-84. [PMID: 18838062 DOI: 10.1016/j.bcp.2008.08.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
The arylhydrocarbon receptor (AhR) mediates the adverse effects of dioxins, including modulation of sex steroid hormone signaling. The role of AhR as a transcription factor is well described. AhR regulates the expression of target genes such as CYP1A1; however, the mechanisms of AhR function through other target-selective systems remain elusive. Accumulating evidence suggests that AhR modulates the functions of other transcription factors. The ligand-activated AhR directly associates with estrogen or androgen receptors (ERalpha or AR) and modulates their function both positively and negatively. This may, in part explain the sex steroid hormone-related adverse effects of dioxins. AhR has recently been shown to promote the proteolysis of ERalpha/AR through assembling a ubiquitin ligase complex, CUL4B(AhR). In the CUL4B(AhR) complex, AhR acts as a substrate-recognition subunit to recruit ERalpha/AR. This action defines a novel role for AhR as a ligand-dependent E3 ubiquitin ligase. We propose that target-specific regulation of protein destruction, as well as gene expression, is modulated by environmental toxins through the E3 ubiquitin ligase activity of AhR.
Collapse
Affiliation(s)
- Fumiaki Ohtake
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
346
|
Chiganças V, Lima-Bessa KM, Stary A, Menck CFM, Sarasin A. Defective transcription/repair factor IIH recruitment to specific UV lesions in trichothiodystrophy syndrome. Cancer Res 2008; 68:6074-83. [PMID: 18676829 DOI: 10.1158/0008-5472.can-07-6695] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most trichothiodystrophy (TTD) patients present mutations in the xeroderma pigmentosum D (XPD) gene, coding for a subunit of the transcription/repair factor IIH (TFIIH) complex involved in nucleotide excision repair (NER) and transcription. After UV irradiation, most TTD/XPD patients are more severely affected in the NER of cyclobutane pyrimidine dimers (CPD) than of 6-4-photoproducts (6-4PP). The reasons for this differential DNA repair defect are unknown. Here we report the first study of NER in response to CPDs or 6-4PPs separately analyzed in primary fibroblasts. This was done by using heterologous photorepair; recombinant adenovirus vectors carrying photolyases enzymes that repair CPD or 6-4PP specifically by using the energy of light were introduced in different cell lines. The data presented here reveal that some TTD/XPD mutations affect the recruitment of TFIIH specifically to CPDs, but not to 6-4PPs. This deficiency is further confirmed by the inability of TTD/XPD cells to recruit, specifically for CPDs, NER factors that arrive in a TFIIH-dependent manner later in the NER pathway. For 6-4PPs, we show that TFIIH complexes carrying an NH(2)-terminal XPD mutated protein are also deficient in recruitment of NER proteins downstream of TFIIH. Treatment with the histone deacetylase inhibitor trichostatin A allows the recovery of TFIIH recruitment to CPDs in the studied TTD cells and, for COOH-terminal XPD mutations, increases the repair synthesis and survival after UV, suggesting that this defect can be partially related with accessibility of DNA damage in closed chromatin regions.
Collapse
Affiliation(s)
- Vanessa Chiganças
- Laboratory of Genetic Stability and Oncogenesis, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 2939, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France.
| | | | | | | | | |
Collapse
|
347
|
Srivastava N, Gochhait S, de Boer P, Bamezai RNK. Role of H2AX in DNA damage response and human cancers. Mutat Res 2008; 681:180-188. [PMID: 18804552 DOI: 10.1016/j.mrrev.2008.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/12/2008] [Accepted: 08/22/2008] [Indexed: 12/25/2022]
Abstract
H2AX, the evolutionarily conserved variant of histone H2A, has been identified as one of the key histones to undergo various post-translational modifications in response to DNA double-strand breaks (DSBs). By virtue of these modifications, that include acetylation, phosphorylation and ubiquitination, H2AX marks the damaged DNA double helix, facilitating local recruitment and retention of DNA repair and chromatin remodeling factors to restore genomic integrity. These modifications are essential for effective DSB repair, so is their removal for cell, to recover from checkpoint arrest. Because of these vital roles during DSB signaling and also its activation during early cancer stages, H2AX is emerging as an intriguing gene in tumor biology, supported further by frequent deletion of the region harboring this gene. This review focuses on the insights gained from recent studies on dynamic regulation of H2AX in DSB repair. Also, posing future challenges in the area of chromatin reorganization and retention of epigenetic signature post-DSB-repair with implication of its haploinsufficiency in human cancers.
Collapse
Affiliation(s)
- Niloo Srivastava
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University (JNU), Aruna Asafali Marg, New Delhi 110067, India
| | - Sailesh Gochhait
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University (JNU), Aruna Asafali Marg, New Delhi 110067, India
| | - Peter de Boer
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Rameshwar N K Bamezai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University (JNU), Aruna Asafali Marg, New Delhi 110067, India.
| |
Collapse
|
348
|
The Cullin 4B–Based UV-Damaged DNA-Binding Protein Ligase Binds to UV-Damaged Chromatin and Ubiquitinates Histone H2A. Cancer Res 2008; 68:5014-22. [DOI: 10.1158/0008-5472.can-07-6162] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
349
|
Molinier J, Lechner E, Dumbliauskas E, Genschik P. Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet 2008; 4:e1000093. [PMID: 18551167 PMCID: PMC2396500 DOI: 10.1371/journal.pgen.1000093] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 05/12/2008] [Indexed: 11/18/2022] Open
Abstract
Plants use the energy in sunlight for photosynthesis, but as a consequence are exposed to the toxic effect of UV radiation especially on DNA. The UV-induced lesions on DNA affect both transcription and replication and can also have mutagenic consequences. Here we investigated the regulation and the function of the recently described CUL4-DDB1-DDB2 E3 ligase in the maintenance of genome integrity upon UV-stress using the model plant Arabidopsis. Physiological, biochemical, and genetic evidences indicate that this protein complex is involved in global genome repair (GGR) of UV-induced DNA lesions. Moreover, we provide evidences for crosstalks between GGR, the plant-specific photo reactivation pathway and the RAD1-RAD10 endonucleases upon UV exposure. Finally, we report that DDB2 degradation upon UV stress depends not only on CUL4, but also on the checkpoint protein kinase Ataxia telangiectasia and Rad3-related (ATR). Interestingly, we found that DDB1A shuttles from the cytoplasm to the nucleus in an ATR-dependent manner, highlighting an upstream level of control and a novel mechanism of regulation of this E3 ligase.
Collapse
Affiliation(s)
- Jean Molinier
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | - Eva Dumbliauskas
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
- * E-mail:
| |
Collapse
|
350
|
Belzile JP, Duisit G, Rougeau N, Mercier J, Finzi A, Cohen ÉA. HIV-1 Vpr-mediated G2 arrest involves the DDB1-CUL4AVPRBP E3 ubiquitin ligase. PLoS Pathog 2008; 3:e85. [PMID: 17630831 PMCID: PMC1914068 DOI: 10.1371/journal.ppat.0030085] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 05/07/2007] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has been shown to cause G2 cell cycle arrest in human cells by inducing ATR-mediated inactivation of p34cdc2, but factors directly engaged in this process remain unknown. We used tandem affinity purification to isolate native Vpr complexes. We found that damaged DNA binding protein 1 (DDB1), viral protein R binding protein (VPRBP), and cullin 4A (CUL4A)--components of a CUL4A E3 ubiquitin ligase complex, DDB1-CUL4A(VPRBP)--were able to associate with Vpr. Depletion of VPRBP by small interfering RNA impaired Vpr-mediated induction of G2 arrest. Importantly, VPRBP knockdown alone did not affect normal cell cycle progression or activation of ATR checkpoints, suggesting that the involvement of VPRBP in G2 arrest was specific to Vpr. Moreover, leucine/isoleucine-rich domain Vpr mutants impaired in their ability to interact with VPRBP and DDB1 also produced strongly attenuated G2 arrest. In contrast, G2 arrest-defective C-terminal Vpr mutants were found to maintain their ability to associate with these proteins, suggesting that the interaction of Vpr with the DDB1-VPRBP complex is necessary but not sufficient to block cell cycle progression. Overall, these results point toward a model in which Vpr could act as a connector between the DDB1-CUL4A(VPRBP) E3 ubiquitin ligase complex and an unknown cellular factor whose proteolysis or modulation of activity through ubiquitination would activate ATR-mediated checkpoint signaling and induce G2 arrest.
Collapse
Affiliation(s)
- Jean-Philippe Belzile
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Ghislaine Duisit
- Department of Microbiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Nicole Rougeau
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Johanne Mercier
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Éric A Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|