301
|
Abstract
Clinical neurologists and scientists who study multiple sclerosis face open questions regarding the integration of epidemiological data with genome-wide association studies and clinical management of patients. It is becoming evident that the interplay of environmental influences and individual genetic susceptibility modulates disease presentation and therapeutic responsiveness. The molecular mechanisms through which environmental signals are translated into changes in gene expression include DNA methylation, post-translational modification of nucleosomal histones, and non-coding RNAs. These mechanisms are regulated by families of specialised enzymes that are tissue selective and cell-type specific. A model of multiple sclerosis pathogenesis should integrate underlying risk related to genetic susceptibility with cell-type specific epigenetic changes occurring in the immune system and in the brain in response to ageing and environmental stimuli.
Collapse
|
302
|
Hadwiger LA, Druffel K, Humann JL, Schroeder BK. Nuclease released by Verticillium dahliae is a signal for non-host resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 201-202:98-107. [PMID: 23352407 DOI: 10.1016/j.plantsci.2012.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 06/01/2023]
Abstract
A DNase released from the fungal pathogen of bean, Fusarium solani f. sp. phaseoli (Fsph), was previously shown to signal the activation of total disease resistance and activate pathogenesis-related (PR) genes in pea. Data in the current study which used the pea-endocarp model to research non-host resistance, indicated that DNase released by Verticillium dahliae (Vd), pathogenic on potato also has non-host resistance-inducing capabilities in peas. Other strains of Vd that release DNase are pathogenic on other plant species. DNase catalytic activity was also released from representative genera of other pathogenic fungi. Purified VdDNase induced pisatin and pea gene DRR49 (PR-10 gene) in pea endocarp tissue. VdDNase reduced the in vitro growth of Vd but completely inhibited that of F. solani f. sp. pisi (Fspi) and a Colletotrichum pathogen of potato. VdDNase (2 units) applied to pea endocarp tissue both broke resistance to Fsph and increased resistance to Fspi. Pea DNA damage generated both by the VdDNase enzyme and the intact Vd spores indicated that the host DNA alteration is a component of the non-host resistance response (innate immunity). These data support the previously reported inductive potential of fungal DNase and further implicate fungal DNases as signals in activating non-host resistance responses.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, Washington State University, Pullman, WA 99164 6430, USA.
| | | | | | | |
Collapse
|
303
|
ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Mol Cell 2013; 49:1108-20. [PMID: 23453805 DOI: 10.1016/j.molcel.2013.01.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/18/2012] [Accepted: 01/23/2013] [Indexed: 12/23/2022]
Abstract
Crosstalk between H2B ubiquitylation (H2Bub) and H3 K4 methylation plays important roles in coordinating functions of diverse cofactors during transcription activation. The underlying mechanism for this trans-tail signaling pathway is poorly defined in higher eukaryotes. Here, we show the following: (1) ASH2L in the MLL complex is essential for H2Bub-dependent H3 K4 methylation. Deleting or mutating K99 of the N-terminal winged helix (WH) motif in ASH2L abrogates H2Bub-dependent regulation. (2) Crosstalk can occur in trans and does not require ubiquitin to be on nucleosomes or histones to exert regulatory effects. (3) trans-regulation by ubiquitin promotes MLL activity for all three methylation states. (4) MLL3, an MLL homolog, does not respond to H2Bub, highlighting regulatory specificity for MLL family histone methyltransferases. Altogether, our results potentially expand the classic histone crosstalk to nonhistone proteins, which broadens the scope of chromatin regulation by ubiquitylation signaling.
Collapse
|
304
|
Lee C, Clark SE. Core pathways controlling shoot meristem maintenance. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:671-84. [PMID: 24014453 DOI: 10.1002/wdev.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Essential to the function of shoot meristems in plants to act as sites of continuous organ and tissue formation is the ability of cells within the meristem to remain undifferentiated and proliferate indefinitely. These are characteristics of the stem cells within meristems that are critical for their growth properties. Stem cells are found in tight association with the stem cell niche-those cells that signal to maintain stem cells. Shoot meristems are unique among stem cell systems in that the stem cell niche is a constantly changing population of recent daughter stem cells. Recent progress from Arabidopsis and other systems have uncovered a large number of genes with defined roles in meristem structure and maintenance. This review will focus on well-studied pathways that represent signaling between the stem cells and the niche, that prevent ectopic differentiation of stem cells, that regulate the chromatin status of stem cell factors, and that reveal intersection of hormone signaling and meristem maintenance.
Collapse
Affiliation(s)
- Chunghee Lee
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
305
|
Abstract
Ubiquitylation and sumoylation, the covalent attachment of the polypeptides ubiquitin and SUMO, respectively, to target proteins, are pervasive mechanisms for controlling cellular functions. Here, we summarize the key steps and enzymes involved in ubiquitin and SUMO conjugation and provide an overview of how they are crucial for maintaining genome stability. Specifically, we review research that has revealed how ubiquitylation and sumoylation regulate and coordinate various pathways of DNA damage recognition, signaling, and repair at the biochemical, cellular, and whole-organism levels. In addition to providing key insights into the control and importance of DNA repair and associated processes, such work has established paradigms for regulatory control that are likely to extend to other cellular processes and that may provide opportunities for better understanding and treatment of human disease.
Collapse
Affiliation(s)
- Stephen P Jackson
- The Gurdon Institute and the Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
306
|
Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia. Proc Natl Acad Sci U S A 2013; 110:3901-6. [PMID: 23412334 DOI: 10.1073/pnas.1301045110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mixed-lineage leukemia (MLL) fusions are potent oncogenes that initiate aggressive forms of acute leukemia. As aberrant transcriptional regulators, MLL-fusion proteins alter gene expression in hematopoietic cells through interactions with the histone H3 lysine 79 (H3K79) methyltransferase DOT1L. Notably, interference with MLL-fusion cofactors like DOT1L is an emerging therapeutic strategy in this disease. Here, we identify the histone H2B E3 ubiquitin ligase ring finger protein 20 (RNF20) as an additional chromatin regulator that is necessary for MLL-fusion-mediated leukemogenesis. Suppressing the expression of Rnf20 in diverse models of MLL-rearranged leukemia leads to inhibition of cell proliferation, under tissue culture conditions as well as in vivo. Rnf20 knockdown leads to reduced expression of MLL-fusion target genes, effects resembling Dot1l inhibition. Using ChIP-seq, we found that H2B ubiquitination is enriched in the body of MLL-fusion target genes, correlating with sites of H3K79 methylation and transcription elongation. Furthermore, Rnf20 is required to maintain local levels of H3K79 methylation by Dot1l at Hoxa9 and Meis1. These findings support a model whereby cotranscriptional recruitment of Rnf20 at MLL-fusion target genes leads to amplification of Dot1l-mediated H3K79 methylation, thereby rendering leukemia cells dependent on Rnf20 to maintain their oncogenic transcriptional program.
Collapse
|
307
|
Ma T, Chen Y, Zhang F, Yang CY, Wang S, Yu X. RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Mol Cell 2013; 49:897-907. [PMID: 23394999 DOI: 10.1016/j.molcel.2013.01.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/24/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
Ubiquitin-like proteins have been shown to be covalently conjugated to targets. However, the functions of these ubiquitin-like proteins are largely unknown. Here, we have screened most known ubiquitin-like proteins after DNA damage and found that NEDD8 is involved in the DNA damage response. Following various DNA damage stimuli, NEDD8 accumulated at DNA damage sites; this accumulation was dependent on an E2 enzyme (UBE2M) and an E3 ubiquitin ligase (RNF111). We further found that histone H4 was polyneddylated in response to DNA damage, and NEDD8 was conjugated to the N-terminal lysine residues of H4. Interestingly, the DNA damage-induced polyneddylation chain could be recognized by the MIU (motif interacting with ubiquitin) domain of RNF168. Loss of DNA damage-induced neddylation negatively regulated DNA damage-induced foci formation of RNF168 and its downstream functional partners, such as 53BP1 and BRCA1, thus affecting the normal DNA damage repair process.
Collapse
Affiliation(s)
- Teng Ma
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
308
|
Deshmukh AS, Srivastava S, Dhar SK. Plasmodium falciparum: epigenetic control of var gene regulation and disease. Subcell Biochem 2013; 61:659-682. [PMID: 23150271 DOI: 10.1007/978-94-007-4525-4_28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plasmodium falciparum, one of the deadliest parasites on earth causes human malaria resulting one million deaths annually. Central to the parasite pathogenicity and morbidity is the switching of parasite virulence (var) gene expression causing host immune evasion. The regulation of Plasmodium var gene expression is poorly understood. The complex life cycle of Plasmodium and mutually exclusive expression pattern of var genes make this disease difficult to control. Recent studies have demonstrated the pivotal role of epigenetic mechanism for control of coordinated expression of var genes, important for various clinical manifestations of malaria. In this review, we discuss about different Plasmodium histones and their various modifications important for gene expression and gene repression.Contribution of epigenetic mechanism to understand the var gene expression is also highlighted. We also describe in details P. falciparum nuclear architecture including heterochromatin, euchromatin and telomeric regions and their importance in subtelomeric and centrally located var gene expression. Finally, we explore the possibility of using Histone Acetyl Transferase (HAT) and Histone Deacetylase (HDAC)inhibitors against multi-drug resistance malaria parasites to provide another line of treatment for malaria.
Collapse
Affiliation(s)
- Abhijit S Deshmukh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | |
Collapse
|
309
|
Hadwiger LA, Polashock J. Fungal mitochondrial DNases: effectors with the potential to activate plant defenses in nonhost resistance. PHYTOPATHOLOGY 2013; 103:81-90. [PMID: 23228145 DOI: 10.1094/phyto-04-12-0085-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Previous reports on the model nonhost resistance interaction between Fusarium solani f. sp. phaseoli and pea endocarp tissue have described the disease resistance-signaling role of a fungal DNase1-like protein. The response resulted in no further growth beyond spore germination. This F. solani f. sp. phaseoli DNase gene, constructed with a pathogenesis-related (PR) gene promoter, when transferred to tobacco, generated resistance against Pseudomonas syringe pv. tabaci. The current analytical/theoretical article proposes similar roles for the additional nuclear and mitochondrial nucleases, the coding regions for which are identified in newly available fungal genome sequences. The amino acid sequence homologies within functional domains are conserved within a wide array of fungi. The potato pathogen Verticillium dahliae nuclease was divergent from that of the saprophyte, yeast; however, the purified DNase from yeast also elicited nonhost defense responses in pea, including pisatin accumulation, PR gene induction, and resistance against a true pea pathogen. The yeast mitochondrial DNase gene (open reading frame) predictably codes for a signal peptide providing the mechanism for secretion. Mitochondrial DNase genes appear to provide an unlimited source of components for developing transgenic resistance in all transformable plants.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, 100 Dairy Road, Washington State University, Pullman 99164-6430, USA.
| | | |
Collapse
|
310
|
Zografou T, Turck F. Epigenetic Control of Flowering Time. EPIGENETIC MEMORY AND CONTROL IN PLANTS 2013. [DOI: 10.1007/978-3-642-35227-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
311
|
Trujillo KM, Osley MA. A role for H2B ubiquitylation in DNA replication. Mol Cell 2012; 48:734-46. [PMID: 23103252 PMCID: PMC3525772 DOI: 10.1016/j.molcel.2012.09.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 06/12/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Abstract
The monoubiquitylation of histone H2B plays an important role in gene expression by contributing to the regulation of transcription elongation and mRNA processing and export. We explored additional cellular functions of this histone modification by investigating its localization to intergenic regions. H2B ubiquitylation is present in chromatin around origins of DNA replication in budding yeast, and as DNA is replicated its levels are maintained on daughter strands by the Bre1 ubiquitin ligase. In the absence of H2B ubiquitylation, the prereplication complex is formed and activated, but replication fork progression is slowed down and the replisome becomes unstable in the presence of hydroxyurea. H2B ubiquitylation promotes the assembly or stability of nucleosomes on newly replicated DNA, and this function is postulated to contribute to fork progression and replisome stability.
Collapse
Affiliation(s)
- Kelly M Trujillo
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | |
Collapse
|
312
|
Fierz B, Kilic S, Hieb AR, Luger K, Muir TW. Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis. J Am Chem Soc 2012; 134:19548-51. [PMID: 23163596 DOI: 10.1021/ja308908p] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Post-translational modifications (PTMs) of histones are an essential feature in the dynamic regulation of chromatin. One of these modifications, ubiquitylation, has been speculated to directly influence the stability of the nucleosome, which represents the basic building block of chromatin. Here we report a strategy for the semisynthesis of site-specifically ubiquitylated histone H2A (uH2A). This branched protein was generated through a three-piece expressed protein ligation approach including a traceless ligation at valine. uH2A could be efficiently incorporated into nucleosomes, thereby opening the way to detailed biochemical and biophysical studies on the function of this PTM. Accordingly, we used uH2A, as well as a previously generated ubiquitylated H2B, in chaperone-coupled nucleosome stability assays to demonstrate that the direct effect of ubiquitylated histones on nucleosomal stability is in fact modest.
Collapse
Affiliation(s)
- Beat Fierz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | | | | | | | | |
Collapse
|
313
|
Abstract
p53 is an important tumor suppressor, functioning as a transcriptional activator and repressor. Upon receiving signals from multiple stress related pathways, p53 regulates numerous activities such as cell cycle arrest, senescence, and cell death. When p53 activities are not required, the protein is held in check by interacting with 2 key homologous regulators, Mdm2 and MdmX, and a search for inhibitors of these interactions is well underway. However, it is now recognized that Mdm2 and MdmX function beyond simple inhibition of p53, and a complete understanding of Mdm2 and MdmX functions is ever more important. Indeed, increasing evidence suggests that Mdm2 and MdmX affect p53 target gene specificity and influence the activity of other transcription factors, and Mdm2 itself may even function as a transcription co-factor through post-translational modification of chromatin. Additionally, Mdm2 affects post-transcriptional activities such as mRNA stability and translation of a variety of transcripts. Thus, Mdm2 and MdmX influence the expression of many genes through a wide variety of mechanisms, which are discussed in this review.
Collapse
Affiliation(s)
- Lynn Biderman
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
314
|
Abstract
The histone variant H2AX is a principal component of chromatin involved in the detection, signaling, and repair of DNA double-strand breaks (DSBs). H2AX is thought to operate primarily through its C-terminal S139 phosphorylation, which mediates the recruitment of DNA damage response (DDR) factors to chromatin at DSB sites. Here, we describe a comprehensive screen of 67 residues in H2AX to determine their contributions to H2AX functions. Our analysis revealed that H2AX is both sumoylated and ubiquitylated. Individual residues defective for sumoylation, ubiquitylation, and S139 phosphorylation in untreated and damaged cells were identified. Specifically, we identified an acidic triad region in both H2A and H2AX that is required in cis for their ubiquitylation. We also report the characterization of a human H2AX knockout cell line, which exhibits DDR defects, including p53 activation, following DNA damage. Collectively, this work constitutes the first genetic complementation system for a histone in human cells. Finally, our data reveal new roles for several residues in H2AX and define distinct functions for H2AX in human cells.
Collapse
|
315
|
Abstract
UBLs (ubiquitin-like proteins) are a major class of eukaryotic post-translational modifiers. UBLs are attached to numerous cellular proteins and to other macromolecules, thereby regulating a wide array of cellular processes. In this chapter we highlight a subset of UBLs and describe their regulatory roles in the cell.
Collapse
|
316
|
Abstract
Ubiquitination, the covalent attachment of the small protein modifier ubiquitin to a substrate protein is involved in virtually all cellular processes by mediating the regulated degradation of proteins. Aside from proteasomal degradation, ubiquitination plays important roles in transcriptional regulation, protein trafficking, including endocytosis and lysosomal targeting, and activation of kinases involved in signalling processes. A three-tiered enzymatic cascade consisting of E1 or ubiquitin-activating enzyme, E2 or ubiquitin-conjugating enzyme, and E3, or ubiquitin ligases, is necessary to achieve the many forms of ubiquitination known to date. In this chapter, we summarize the current knowledge on the enzymatic machinery necessary for ubiquitin activation and ligation, as well as its removal, and provide some insight into the complexity of regulatory processes governed by ubiquitination.
Collapse
|
317
|
Galán A, Rodríguez-Navarro S. Sus1/ENY2: a multitasking protein in eukaryotic gene expression. Crit Rev Biochem Mol Biol 2012; 47:556-68. [PMID: 23057668 DOI: 10.3109/10409238.2012.730498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this review is to provide a complete overview on the functions of the transcription/export factor Sus1. Sus1 is a tiny conserved factor in sequence and functions through the eukaryotic kingdom. Although it was discovered recently, research done to address the role of Sus1/ENY2 has provided in deep description of different mechanisms influencing gene expression. Initially found to interact with the transcription and mRNA export machinery in yeast, it is now clear that it has a broad role in mRNA biogenesis. Sus1 is necessary for histone H2B deubiquitination, mRNA export and gene gating. Moreover, interesting observations also suggest a link with the cytoplasmatic mRNP fate. Although the role of Sus1 in human cells is largely unknown, preliminary results suggest interesting links to pathological states that range from rare diseases to diabetes. We will describe what is known about Sus1/ENY2 in yeast and other eukaryotes and discuss some exciting open questions to be solved in the future.
Collapse
Affiliation(s)
- Amparo Galán
- Centro de Investigación Príncipe Felipe, CIPF. Gene Expression coupled to RNA Transport Laboratory, Eduardo Primo Yúfera, Valencia, Spain
| | | |
Collapse
|
318
|
Scarpa M, Stylianou E. Epigenetics: Concepts and relevance to IBD pathogenesis. Inflamm Bowel Dis 2012; 18:1982-96. [PMID: 22407855 DOI: 10.1002/ibd.22934] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/07/2012] [Indexed: 12/12/2022]
Abstract
The purpose of this review is to introduce the exciting field of epigenetics and to describe how it could explain the mechanisms by which environmental changes induce pathological gene expression and determine cell phenotype and function in IBD. We outline how epigenetics research in the context of a variety of clinical conditions, but mainly in cancer, has begun to define the role of multiple combinations of modifications to chromatin, diverse families of enzymes, and non-coding RNAs in determining transcriptional outcomes. These findings are applicable to understanding the context-specific events that underlie the expression of genes in diseases like IBD and have the potential to reveal new targets for improved IBD therapy. The current status of epigenetics-based therapies is also summarized.
Collapse
Affiliation(s)
- Melania Scarpa
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | |
Collapse
|
319
|
Kim SK, Jung I, Lee H, Kang K, Kim M, Jeong K, Kwon CS, Han YM, Kim YS, Kim D, Lee D. Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression. J Biol Chem 2012; 287:39698-709. [PMID: 23012353 DOI: 10.1074/jbc.m112.384057] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone-modifying enzymes play a pivotal role in gene expression and repression. In human, DOT1L (Dot1-like) is the only known histone H3 lysine 79 methyltransferase. hDOT1L is associated with transcriptional activation, but the general mechanism connecting hDOT1L to active transcription remains largely unknown. Here, we report that hDOT1L interacts with the phosphorylated C-terminal domain of actively transcribing RNA polymerase II (RNAPII) through a region conserved uniquely in multicellular DOT1 proteins. Genome-wide profiling analyses indicate that the occupancy of hDOT1L largely overlaps with that of RNAPII at actively transcribed genes, especially surrounding transcriptional start sites, in embryonic carcinoma NCCIT cells. We also find that C-terminal domain binding or H3K79 methylations by hDOT1L is important for the expression of target genes such as NANOG and OCT4 and a marker for pluripotency in NCCIT cells. Our results indicate that a functional interaction between hDOT1L and RNAPII targets hDOT1L and subsequent H3K79 methylations to actively transcribed genes.
Collapse
Affiliation(s)
- Seung-Kyoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Lin AE, Guttman JA. The Escherichia coli adherence factor plasmid of enteropathogenic Escherichia coli causes a global decrease in ubiquitylated host cell proteins by decreasing ubiquitin E1 enzyme expression through host aspartyl proteases. Int J Biochem Cell Biol 2012; 44:2223-32. [PMID: 22999844 DOI: 10.1016/j.biocel.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/08/2012] [Accepted: 09/06/2012] [Indexed: 01/04/2023]
Abstract
Ubiquitylation is a widespread post-translational global regulatory system that is essential for the proper functioning of various cellular events. Recent studies have shown that certain types of Escherichia coli can exploit specific aspects of the ubiquitylation system to influence downstream targets. Despite these findings, examination of the effects pathogenic E. coli have on the overall host ubiquitylation system remain unexplored. To study the impact that pathogenic E. coli have on the ubiquitylation levels of host proteins during infections, we analyzed the entire ubiquitylation system during enteropathogenic E. coli infections of cultured cells. We found that these microbes caused a dramatic decrease in ubiquitylated host proteins during these infections. This occurred with a concomitant reduction in the expression of essential E1 activating enzymes in the host, which are integral for the initiation of the ubiquitylation cascade. Control of host E1 enzyme levels was dependent on the E. coli adherence factor plasmid which acted on host aspartyl proteases within enteropathogenic E. coli. Hijacking of the ubiquitylation system did not require the plasmid-encoded regulator or bundle forming pilus expression, as enteropathogenic E. coli mutated in those factors did not revert the ubiquitylation of host proteins or the abundance of E1 enzyme proteins to uninfected levels. Our work shows that E. coli have developed strategies to usurp post-translational systems by targeting crucial enzymes. The ability of enteropathogenic E. coli to inactivate host protein ubiquitylation could enable more efficient effector protein functionality, providing increased bacterial control of host cells during enteropathogenic E. coli pathogenesis.
Collapse
Affiliation(s)
- Ann E Lin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
321
|
de Bie P, Ciechanover A. RING1B ubiquitination and stability are regulated by ARF. Biochem Biophys Res Commun 2012; 426:49-53. [PMID: 22910419 DOI: 10.1016/j.bbrc.2012.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 11/17/2022]
Abstract
The activity and stability of the E3 ubiquitin ligase RING1B are controlled by the ubiquitin system. Self-ubiquitination of RING1B, generating K6, K27 and K48-based mixed polyubiquitin chains, is a prerequisite for its activity as an E3 ligase for histone H2A. Monoubiquitination of histone H2A is one of the hallmarks of Polycomb-mediated gene silencing. The destruction of RING1B however, is mediated through K48 polyubiquitination catalyzed by the ubiquitin ligase E6-AP. Both forms of ubiquitination of RING1B are mutually exclusive and therefore the balance between them may constitute a point of regulation of Polycomb-mediated gene repression. Here we identify ARF as a regulator of RING1B ubiquitination. ARF appears to selectively prevent RING1B self-ubiquitination, probably allowing more efficient E6-AP-mediated ubiquitination and subsequent degradation of RING1B. By binding to the RING domain of RING1B, ARF disrupts RING1B homodimerization, providing a potential mechanism for its effect on RING1B self-ubiquitination.
Collapse
Affiliation(s)
- Prim de Bie
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | | |
Collapse
|
322
|
Vierstra RD. The expanding universe of ubiquitin and ubiquitin-like modifiers. PLANT PHYSIOLOGY 2012; 160:2-14. [PMID: 22693286 PMCID: PMC3440198 DOI: 10.1104/pp.112.200667] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/09/2012] [Indexed: 05/18/2023]
Affiliation(s)
- Richard D Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
323
|
Arora M, Zhang J, Heine GF, Ozer G, Liu HW, Huang K, Parvin JD. Promoters active in interphase are bookmarked during mitosis by ubiquitination. Nucleic Acids Res 2012; 40:10187-202. [PMID: 22941662 PMCID: PMC3488253 DOI: 10.1093/nar/gks820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis.
Collapse
Affiliation(s)
- Mansi Arora
- Department of Biomedical Informatics and the Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
324
|
Shen Z, Prasanth SG. Orc2 protects ORCA from ubiquitin-mediated degradation. Cell Cycle 2012; 11:3578-89. [PMID: 22935713 DOI: 10.4161/cc.21870] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Origin recognition complex (ORC) is highly dynamic, with several ORC subunits getting posttranslationally modified by phosphorylation or ubiquitination in a cell cycle-dependent manner. We have previously demonstrated that a WD repeat containing protein ORC-associated (ORCA/LRWD1) stabilizes the ORC on chromatin and facilitates pre-RC assembly. Further, ORCA levels are cell cycle-regulated, with highest levels during G(1), and progressively decreasing during S phase, but the mechanism remains to be elucidated. We now demonstrate that ORCA is polyubiquitinated in vivo, with elevated ubiquitination observed at the G(1)/S boundary. ORCA utilizes lysine-48 (K48) ubiquitin linkage, suggesting that ORCA ubiquitination mediates its regulated degradation. Ubiquitinated ORCA is re-localized in the form of nuclear aggregates and is predominantly associated with chromatin. We demonstrate that ORCA associates with the E3 ubiquitin ligase Cul4A-Ddb1. ORCA is ubiquitinated at the WD40 repeat domain, a region that is also recognized by Orc2. Furthermore, Orc2 associates only with the non-ubiquitinated form of ORCA, and Orc2 depletion results in the proteasome-mediated destabilization of ORCA. Based on the results, we suggest that Orc2 protects ORCA from ubiquitin-mediated degradation in vivo.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | |
Collapse
|
325
|
Brown SJ, Stoilov P, Xing Y. Chromatin and epigenetic regulation of pre-mRNA processing. Hum Mol Genet 2012; 21:R90-6. [PMID: 22936691 DOI: 10.1093/hmg/dds353] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
New data are revealing a complex landscape of gene regulation shaped by chromatin states that extend into the bodies of transcribed genes and associate with distinct RNA elements such as exons, introns and polyadenylation sites. Exons are characterized by increased levels of nucleosome positioning, DNA methylation and certain histone modifications. As pre-mRNA splicing occurs co-transcriptionally, changes in the transcription elongation rate or epigenetic marks can influence exon splicing. These new discoveries broaden our understanding of the epigenetic code and ascribe a novel role for chromatin in controlling pre-mRNA processing. In this review, we summarize the recently discovered interplay between the modulation of chromatin states and pre-mRNA processing with the particular focus on how these processes communicate with one another to control gene expression.
Collapse
Affiliation(s)
- Seth J Brown
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
326
|
Moir RD, Gross DA, Silver DL, Willis IM. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. PLoS Genet 2012; 8:e1002890. [PMID: 22927826 PMCID: PMC3426550 DOI: 10.1371/journal.pgen.1002890] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022] Open
Abstract
The ability to store nutrients in lipid droplets (LDs) is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT) proteins are conserved ER–resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2) and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol) to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER stress. The ability to form lipid droplets is a conserved property of eukaryotic cells that allows the storage of excess metabolic energy in a form that can be readily accessed. In adipose tissue, the storage of excess calories in lipid droplets normally protects other tissues from lipotoxicity and insulin resistance, but this protection is lost with chronic over-nutrition. The FAT storage-inducing transmembrane (FIT) proteins were recently identified as a conserved family of proteins that reside in the lipid bilayer of the endoplasmic reticulum and are implicated in lipid droplet formation. In this work we show that specific functions of the FIT proteins are conserved between yeast and humans and that SCS3 and YFT2, the yeast homologs of mammalian FIT2, are part of a large genetic interaction network connecting lipid metabolism, vesicle trafficking, transcription, and protein synthesis. From these interactions we determined that yeast strains lacking SCS3 and YFT2 are defective in their response to chronic ER stress and cannot induce the unfolded protein response pathway or transcription of phospholipid biosynthetic genes in low inositol. Our findings suggest that the mammalian FIT genes may play an important role in ER stress pathways, which are linked to obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Gross
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke–NUS Graduate Medical School Singapore, Singapore, Singapore
| | - David L. Silver
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke–NUS Graduate Medical School Singapore, Singapore, Singapore
- * E-mail: (IMW); (DLS)
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (IMW); (DLS)
| |
Collapse
|
327
|
|
328
|
Burgess RC, Misteli T, Oberdoerffer P. DNA damage, chromatin, and transcription: the trinity of aging. Curr Opin Cell Biol 2012; 24:724-30. [PMID: 22902297 DOI: 10.1016/j.ceb.2012.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/25/2012] [Indexed: 01/01/2023]
Abstract
Aging brings about numerous cellular defects. Amongst the most prominent are elevated levels of persistent DNA damage, changes to chromatin structure and epigenetic modifications, and alterations of global transcription programs. These are not independent events and recent work begins to shed light on the intricate interplay between these aging-related defects.
Collapse
|
329
|
Na CH, Jones DR, Yang Y, Wang X, Xu Y, Peng J. Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J Proteome Res 2012; 11:4722-32. [PMID: 22871113 DOI: 10.1021/pr300536k] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein ubiquitination is an essential post-translational modification regulating neurodevelopment, synaptic plasticity, learning, and memory, and its dysregulation contributes to the pathogenesis of neurological diseases. Here we report a systematic analysis of ubiquitinated proteome (ubiquitome) in rat brain using a newly developed monoclonal antibody that recognizes the diglycine tag on lysine residues in trypsinized peptides (K-GG peptides). Initial antibody specificity analysis showed that the antibody can distinguish K-GG peptides from linear GG peptides or pseudo K-GG peptides derived from iodoacetamide. To evaluate the false discovery rate of K-GG peptide matches during database search, we introduced a null experiment using bacterial lysate that contains no such peptides. The brain ubiquitome was then analyzed by this antibody enrichment with or without strong cation exchange (SCX) prefractionation. During SCX chromatography, although the vast majority of K-GG peptides were detected in the fractions containing at least three positive charged peptides, specific K-GG peptides with two positive charges (e.g., protein N-terminal acetylated and C-terminal non-K/R peptides) were also identified in early fractions. The reliability of C-terminal K-GG peptides was also extensively investigated. Finally, we collected a data set of 1786 K-GG sites on 2064 peptides in 921 proteins and estimated their abundance by spectral counting. The study reveals a wide range of ubiquitination events on key components in presynaptic region (e.g., Bassoon, NSF, SNAP25, synapsin, synaptotagmin, and syntaxin) and postsynaptic density (e.g., PSD-95, GKAP, CaMKII, as well as receptors for NMDA, AMPA, GABA, serotonin, and acetylcholine). We also determined ubiquitination sites on amyloid precursor protein and alpha synuclein that are thought to be causative agents in Alzhermer's and Parkinson's disorders, respectively. As K-GG peptides can also be produced from Nedd8 or ISG15 modified proteins, we quantified these proteins in the brain and found that their levels are less than 2% of ubiquitin. Together, this study demonstrates that a large number of neuronal proteins are modified by ubiquitination and provides a feasible method for profiling the ubiquitome in the brain.
Collapse
Affiliation(s)
- Chan Hyun Na
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
330
|
The neurobiology of chromatin-associated mechanisms in the context of psychosisand mood spectrum disorders. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
331
|
Sansó M, Lee KM, Viladevall L, Jacques PÉ, Pagé V, Nagy S, Racine A, St. Amour CV, Zhang C, Shokat KM, Schwer B, Robert F, Fisher RP, Tanny JC. A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast. PLoS Genet 2012; 8:e1002822. [PMID: 22876190 PMCID: PMC3410854 DOI: 10.1371/journal.pgen.1002822] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/24/2012] [Indexed: 11/25/2022] Open
Abstract
Transcript elongation by RNA polymerase II (RNAPII) is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1) plays a key role in coordinating co-transcriptional histone modification by promoting site-specific methylation of histone H3. H2Bub1 also regulates gene expression through an unidentified, methylation-independent mechanism. Here we reveal bidirectional communication between H2Bub1 and Cdk9, the ortholog of metazoan positive transcription elongation factor b (P-TEFb), in the fission yeast Schizosaccharomyces pombe. Chemical and classical genetic analyses indicate that lowering Cdk9 activity or preventing phosphorylation of its substrate, the transcription processivity factor Spt5, reduces H2Bub1 in vivo. Conversely, mutations in the H2Bub1 pathway impair Cdk9 recruitment to chromatin and decrease Spt5 phosphorylation. Moreover, an Spt5 phosphorylation-site mutation, combined with deletion of the histone H3 Lys4 methyltransferase Set1, phenocopies morphologic and growth defects due to H2Bub1 loss, suggesting independent, partially redundant roles for Cdk9 and Set1 downstream of H2Bub1. Surprisingly, mutation of the histone H2B ubiquitin-acceptor residue relaxes the Cdk9 activity requirement in vivo, and cdk9 mutations suppress cell-morphology defects in H2Bub1-deficient strains. Genome-wide analyses by chromatin immunoprecipitation also demonstrate opposing effects of Cdk9 and H2Bub1 on distribution of transcribing RNAPII. Therefore, whereas mutual dependence of H2Bub1 and Spt5 phosphorylation indicates positive feedback, mutual suppression by cdk9 and H2Bub1-pathway mutations suggests antagonistic functions that must be kept in balance to regulate elongation. Loss of H2Bub1 disrupts that balance and leads to deranged gene expression and aberrant cell morphologies, revealing a novel function of a conserved, co-transcriptional histone modification. Modification of histone proteins is an important transcriptional regulatory mechanism in eukaryotic cells. Although various histone modifications are found primarily within the coding regions of transcribed genes, how they influence transcription elongation remains unclear. Among these modifications is mono-ubiquitylation of histone H2B (H2Bub1), which is needed for co-transcriptional methylation of histone H3 at specific sites. Here we show that H2Bub1 and Cdk9, the kinase component of positive transcription elongation factor b (P-TEFb), are jointly regulated by a positive feedback loop: Cdk9 activity is needed for co-transcriptional H2Bub1, and H2Bub1 in turn stimulates Cdk9 activity toward one of its major substrates, the conserved elongation factor Spt5. We provide genetic evidence that the combined action of H2Bub1 on Spt5 phosphorylation and histone methylation accounts for the gene-regulatory effects of this modification. Surprisingly, our genetic and genome-wide studies indicate that P-TEFb and H2Bub1 act in opposition on elongating RNA polymerase. We suggest that the positive feedback linking P-TEFb and H2Bub1 helps to maintain a balance between their opposing actions. These results highlight a novel regulatory role for a conserved histone modification during transcription elongation.
Collapse
Affiliation(s)
- Miriam Sansó
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Karen M. Lee
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Laia Viladevall
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | | | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Stephen Nagy
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Ariane Racine
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Courtney V. St. Amour
- Programs in Biochemistry, Cell and Molecular Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - Chao Zhang
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Kevan M. Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - François Robert
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Robert P. Fisher
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (RPF); (JCT)
| | - Jason C. Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
- * E-mail: (RPF); (JCT)
| |
Collapse
|
332
|
D'Arcy P, Linder S. Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol 2012; 44:1729-38. [PMID: 22819849 DOI: 10.1016/j.biocel.2012.07.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/27/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a conserved pathway regulating numerous biological processes including protein turnover, DNA repair, and intracellular trafficking. Tumor cells are dependent on a functioning UPS, making it an ideal target for the development of novel anti-cancer therapies. The development of bortezomib (Velcade(®)) as a treatment for multiple myeloma and mantle cell lymphoma has verified this and suggests that targeting other components of the UPS may be a viable strategy for the treatment for cancer. We recently described a novel class of proteasome inhibitors that function by an alternative mechanism of action (D'Arcy et al., 2011). The small molecule b-AP15 blocks the deubiquitinase (DUB) activity of the 19S regulatory particle (19S RP) without inhibiting the proteolytic activities of the 20S core particle (20S CP). b-AP15 inhibits two proteasome-associated DUBs, USP14 and UCHL5, resulting in a rapid accumulation of high molecular weight ubiquitin conjugates and a functional proteasome shutdown. Interestingly, b-AP15 displays several differences to bortezomib including insensitivity to over-expression of the anti-apoptotic mediator Bcl-2 and anti-tumor activity in solid tumor models. In this review we will discuss the potential of proteasome deubiquitinase inhibitors as additions to the therapeutic arsenal against cancer.
Collapse
Affiliation(s)
- Pádraig D'Arcy
- Institute for Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, 17176 Stockholm, Sweden.
| | | |
Collapse
|
333
|
Bourbousse C, Ahmed I, Roudier F, Zabulon G, Blondet E, Balzergue S, Colot V, Bowler C, Barneche F. Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis. PLoS Genet 2012; 8:e1002825. [PMID: 22829781 PMCID: PMC3400566 DOI: 10.1371/journal.pgen.1002825] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/25/2012] [Indexed: 12/28/2022] Open
Abstract
Profiling of DNA and histone modifications has recently allowed the establishment of reference epigenomes from several model organisms. This identified a major chromatin state for active genes that contains monoubiquitinated H2B (H2Bub), a mark linked to transcription elongation. However, assessment of dynamic chromatin changes during the reprogramming of gene expression in response to extrinsic or developmental signals has been more difficult. Here we used the major developmental switch that Arabidopsis thaliana plants undergo upon their initial perception of light, known as photomorphogenesis, as a paradigm to assess spatial and temporal dynamics of monoubiquitinated H2B (H2Bub) and its impact on transcriptional responses. The process involves rapid and extensive transcriptional reprogramming and represents a developmental window well suited to studying cell division–independent chromatin changes. Genome-wide H2Bub distribution was determined together with transcriptome profiles at three time points during early photomorphogenesis. This revealed de novo marking of 177 genes upon the first hour of illumination, illustrating the dynamic nature of H2Bub enrichment in a genomic context. Gene upregulation was associated with H2Bub enrichment, while H2Bub levels generally remained stable during gene downregulation. We further report that H2Bub influences the modulation of gene expression, as both gene up- and downregulation were globally weaker in hub1 mutant plants that lack H2Bub. H2Bub-dependent regulation notably impacted genes with fast and transient light induction, and several circadian clock components whose mRNA levels are tightly regulated by sharp oscillations. Based on these findings, we propose that H2B monoubiquitination is part of a transcription-coupled, chromatin-based mechanism to rapidly modulate gene expression. In eukaryotes, chromatin-based mechanisms overlay with DNA sequence information to determine the transcriptional output of the genome. Evaluating the role of chromatin state variations in the regulation of gene expression is therefore key to understanding their contribution to development. Several transcriptional coactivators contribute to the selective regulation of cellular pathways by coordinating histone H2B monoubiquitination (H2Bub) with other histone modifications. Although H2Bub is present on a large number of genes, its loss was shown to affect RNA levels for only a small subset of genes, and therefore its influence on gene expression is not well understood. Here we assessed the impact of H2Bub on expression changes during a rapid developmental transition that initiates upon exposure of plants to light. This revealed that H2Bub marking is highly dynamic in a genomic context. Furthermore, a large repertoire of light-responsive genes was impaired for rapid up- or downregulation, indicating that H2Bub is important for attaining appropriate expression levels. Regulatory factors and circadian clock components are well represented within the set of genes impacted by H2Bub dynamics for rapid changes in RNA levels, indicating that some genes whose mRNAs need tight and rapid control are particularly sensitive to chromatin-based mechanisms linked to H2Bub deposition.
Collapse
Affiliation(s)
- Clara Bourbousse
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Ikhlak Ahmed
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - François Roudier
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Gérald Zabulon
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Eddy Blondet
- Génomiques Fonctionnelles d'Arabidopsis, Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 – Université d'Evry Val d'Essonne – ERL CNRS 8196, Evry, France
| | - Sandrine Balzergue
- Génomiques Fonctionnelles d'Arabidopsis, Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 – Université d'Evry Val d'Essonne – ERL CNRS 8196, Evry, France
| | - Vincent Colot
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Chris Bowler
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
- * E-mail: (F Barneche); (C Bowler)
| | - Fredy Barneche
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
- * E-mail: (F Barneche); (C Bowler)
| |
Collapse
|
334
|
Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 2012; 17:282-301. [PMID: 22044276 PMCID: PMC3353821 DOI: 10.1089/ars.2011.4381] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones. RECENT ADVANCES DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases. Methylation, demethylation, acetylation, and deacetylation of histone proteins are performed by histone methyltransferase, histone demethylase, histone acetyltransferase, and histone deacetyltransferase, respectively. Histone activities are also influenced by phosphorylation, ubiquitination, ADP-ribosylation, sumoylation, and glycosylation. Metabolism of amino acids (glycine, histidine, methionine, and serine) and vitamins (B6, B12, and folate) plays a key role in provision of methyl donors for DNA and protein methylation. CRITICAL ISSUES Disruption of epigenetic mechanisms can result in oxidative stress, obesity, insulin resistance, diabetes, and vascular dysfunction in animals and humans. Despite a recognized role for epigenetics in fetal programming of metabolic syndrome, research on therapies is still in its infancy. Possible interventions include: 1) inhibition of DNA methylation, histone deacetylation, and microRNA expression; 2) targeting epigenetically disturbed metabolic pathways; and 3) dietary supplementation with functional amino acids, vitamins, and phytochemicals. FUTURE DIRECTIONS Much work is needed with animal models to understand the basic mechanisms responsible for the roles of specific nutrients in fetal and neonatal programming. Such new knowledge is crucial to design effective therapeutic strategies for preventing and treating metabolic abnormalities in offspring born to mothers with a previous experience of malnutrition.
Collapse
Affiliation(s)
- Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Scott V. Dindot
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - M. Carey Satterfield
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W. Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
335
|
Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 2012; 11:1578-85. [PMID: 22790023 PMCID: PMC3518112 DOI: 10.1074/mcp.m112.017905] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Posttranslational modifications of proteins increase the complexity of the cellular proteome and enable rapid regulation of protein functions in response to environmental changes. Protein ubiquitylation is a central regulatory posttranslational modification that controls numerous biological processes including proteasomal degradation of proteins, DNA damage repair and innate immune responses. Here we combine high-resolution mass spectrometry with single-step immunoenrichment of di-glycine modified peptides for mapping of endogenous putative ubiquitylation sites in murine tissues. We identify more than 20,000 unique ubiquitylation sites on proteins involved in diverse biological processes. Our data reveals that ubiquitylation regulates core signaling pathways common for each of the studied tissues. In addition, we discover that ubiquitylation regulates tissue-specific signaling networks. Many tissue-specific ubiquitylation sites were obtained from brain highlighting the complexity and unique physiology of this organ. We further demonstrate that different di-glycine-lysine-specific monoclonal antibodies exhibit sequence preferences, and that their complementary use increases the depth of ubiquitylation site analysis, thereby providing a more unbiased view of protein ubiquitylation.
Collapse
Affiliation(s)
- Sebastian A Wagner
- Department of Proteomics, The NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Abstract
Inherited or acquired defects in detecting, signalling or repairing DNA damage are associated with various human pathologies, including immunodeficiencies, neurodegenerative diseases and various forms of cancer. Nuclear DNA is packaged into chromatin and therefore the true in vivo substrate of damaged DNA occurs within the context of chromatin. Our work aims to decipher the mechanisms by which cells detect DNA damage and signal its presence to the DNA-repair and cell-cycle machineries. In particular, much of our work has focused on DNA DSBs (double-strand breaks) that are generated by ionizing radiation and radiomimetic chemicals, and which can also arise when the DNA replication apparatus encounters other DNA lesions. In the present review, we describe some of our recent work, as well as the work of other laboratories, that has identified new chromatin proteins that mediate DSB responses, control SDB processing or modulate chromatin structure at DNA-damage sites. We also aim to survey several recent advances in the field that have contributed to our understanding of how particular histone modifications and involved in DNA repair. It is our hope that by understanding the role of chromatin and its modifications in promoting DNA repair and genome stability, this knowledge will provide opportunities for developing novel classes of drugs to treat human diseases, including cancer.
Collapse
|
337
|
Gatti M, Pinato S, Maspero E, Soffientini P, Polo S, Penengo L. A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase. Cell Cycle 2012; 11:2538-44. [PMID: 22713238 PMCID: PMC3404880 DOI: 10.4161/cc.20919] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ubiquitination of histones plays a critical role in the regulation of several processes within the nucleus, including maintenance of genome stability and transcriptional regulation. The only known ubiquitination site on histones is represented by a conserved Lys residue located at the C terminus of the protein. Here, we describe a novel ubiquitin mark at the N-terminal tail of histone H2As consisting of two Lys residues at positions 13 and 15 (K13/K15). This “bidentate” site is a target of the DNA damage response (DDR) ubiquitin ligases RNF8 and RNF168. Histone mutants lacking the K13/K15 site impair RNF168- and DNA damage-dependent ubiquitination. Conversely, inactivation of the canonical C-terminal site prevents the constitutive monoubiquitination of histone H2As but does not abolish the ubiquitination induced by RNF168. A ubiquitination-defective mutant is obtained by inactivating both the N- and the C-terminal sites, suggesting that these are unique, non-redundant acceptors of ubiquitination on histone H2As. This unprecedented result implies that RNF168 generates a qualitatively different Ub mark on chromatin.
Collapse
Affiliation(s)
- Marco Gatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | | | | | | | | | | |
Collapse
|
338
|
Braun S, Madhani HD. Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin. EMBO Rep 2012; 13:619-30. [PMID: 22688965 DOI: 10.1038/embor.2012.78] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022] Open
Abstract
The organization of eukaryotic chromosomes into transcriptionally active euchromatin and repressed heterochromatin requires mechanisms that establish, maintain and distinguish these canonical chromatin domains. Post-translational modifications are fundamental in these processes. Monoubiquitylation of histones was discovered more than three decades ago, but its precise function has been enigmatic until recently. It is now appreciated that the spectrum of chromatin ubiquitylation is not restricted to monoubiquitylation of histones, but includes degradatory ubiquitylation of histones, histone-modifying enzymes and non-histone chromatin factors. These occur in a spatially and temporally controlled manner. In this review, we summarize our understanding of these mechanisms with a particular emphasis on how ubiquitylation shapes the physical landscape of chromatin.
Collapse
Affiliation(s)
- Sigurd Braun
- Department of Biochemistry & Biophysics, University of California, 600 16th Street, San Francisco, California 94158 2200, USA.
| | | |
Collapse
|
339
|
Begum NA, Honjo T. Evolutionary comparison of the mechanism of DNA cleavage with respect to immune diversity and genomic instability. Biochemistry 2012; 51:5243-56. [PMID: 22712724 DOI: 10.1021/bi3005895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is generally assumed that the genetic mechanism for immune diversity is unique and distinct from that for general genome diversity, in part because of the high efficiency and strict regulation of immune diversity. This expectation was partially met by the discovery of RAG1 and -2, which catalyze V(D)J recombination to generate the immune repertoire of B and T lymphocyte receptors. RAG1 and -2 were later shown to be derived from a transposon. On the other hand, activation-induced cytidine deaminase (AID), which mediates both somatic hypermutation (SHM) and the class-switch recombination (CSR) of the immunoglobulin genes, evolved earlier than RAG1 and -2 in jawless vertebrates. This review compares immune diversity and general genome diversity from an evolutionary perspective, shedding light on the roles of DNA-cleaving enzymes and target recognition markers. This comparison revealed that AID-mediated SHM and CSR share the cleaving enzyme topoisomerase 1 with transcription-associated mutation (TAM) and triplet contraction, which is involved in many genetic diseases. These genome-altering events appear to target DNA with non-B structure, which is induced by the inefficient correction of the excessive supercoiling that is caused by active transcription. Furthermore, an epigenetic modification on chromatin (histone H3K4 trimethylation) is used as a mark for DNA cleavage sites in meiotic recombination, V(D)J recombination, CSR, and SHM. We conclude that acquired immune diversity evolved via the appearance of an AID orthologue that utilized a preexisting mechanism for genomic instability, such as TAM.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|
340
|
Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast. Proc Natl Acad Sci U S A 2012; 109:10837-42. [PMID: 22699496 DOI: 10.1073/pnas.1116994109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone modifications regulate transcription by RNA polymerase II and maintain a balance between active and repressed chromatin states. The conserved Paf1 complex (Paf1C) promotes specific histone modifications during transcription elongation, but the mechanisms by which it facilitates these marks are undefined. We previously identified a 90-amino acid region within the Rtf1 subunit of Paf1C that is necessary for Paf1C-dependent histone modifications in Saccharomyces cerevisiae. Here we show that this histone modification domain (HMD), when expressed as the only source of Rtf1, can promote H3 K4 and K79 methylation and H2B K123 ubiquitylation in yeast. The HMD can restore histone modifications in rtf1Δ cells whether or not it is directed to DNA by a fusion to a DNA binding domain. The HMD can facilitate histone modifications independently of other Paf1C subunits and does not bypass the requirement for Rad6-Bre1. The isolated HMD localizes to chromatin, and this interaction requires residues important for histone modification. When expressed outside the context of full-length Rtf1, the HMD associates with and causes Paf1C-dependent histone modifications to appear at transcriptionally inactive loci, suggesting that its function has become deregulated. Finally, the Rtf1 HMDs from other species can function in yeast. Our findings suggest a direct and conserved role for Paf1C in coupling histone modifications to transcription elongation.
Collapse
|
341
|
Sidoli S, Cheng L, Jensen ON. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteomics 2012; 75:3419-33. [PMID: 22234360 DOI: 10.1016/j.jprot.2011.12.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Affiliation(s)
- Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
342
|
Jung I, Kim SK, Kim M, Han YM, Kim YS, Kim D, Lee D. H2B monoubiquitylation is a 5'-enriched active transcription mark and correlates with exon-intron structure in human cells. Genome Res 2012; 22:1026-35. [PMID: 22421545 PMCID: PMC3371706 DOI: 10.1101/gr.120634.111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/07/2012] [Indexed: 11/25/2022]
Abstract
H2B monoubiquitylation (H2Bub1), which is required for multiple methylations of both H3K4 and H3K79, has been implicated in gene expression in numerous organisms ranging from yeast to human. However, the molecular crosstalk between H2Bub1 and other modifications, especially the methylations of H3K4 and H3K79, remains unclear in vertebrates. To better understand the functional role of H2Bub1, we measured genome-wide histone modification patterns in human cells. Our results suggest that H2Bub1 has dual roles, one that is H3 methylation dependent, and another that is H3 methylation independent. First, H2Bub1 is a 5'-enriched active transcription mark and co-occupies with H3K79 methylations in actively transcribed regions. Second, this study shows for the first time that H2Bub1 plays a histone H3 methylations-independent role in chromatin architecture. Furthermore, the results of this work indicate that H2Bub1 is largely positioned at the exon-intron boundaries of highly expressed exons, and it demonstrates increased occupancy in skipped exons compared with flanking exons in the human and mouse genomes. Our findings collectively suggest that a potentiating mechanism links H2Bub1 to both H3K79 methylations in actively transcribed regions and the exon-intron structure of highly expressed exons via the regulation of nucleosome dynamics during transcription elongation.
Collapse
Affiliation(s)
- Inkyung Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| | - Seung-Kyoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| | - Mirang Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Yong-Mahn Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| | - Yong Sung Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| |
Collapse
|
343
|
Whitcomb SJ, Fierz B, McGinty RK, Holt M, Ito T, Muir TW, Allis CD. Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC2. J Biol Chem 2012; 287:23718-25. [PMID: 22619169 DOI: 10.1074/jbc.m112.361824] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is well established that chromatin is a destination for signal transduction, affecting many DNA-templated processes. Histone proteins in particular are extensively post-translationally modified. We are interested in how the complex repertoire of histone modifications is coordinately regulated to generate meaningful combinations of "marks" at physiologically relevant genomic locations. One important mechanism is "cross-talk" between pre-existing histone post-translational modifications and enzymes that subsequently add or remove modifications on chromatin. Here, we use chemically defined "designer" nucleosomes to investigate novel enzymatic cross-talk relationships between the most abundant histone ubiquitylation sites, H2AK119ub and H2BK120ub, and two important histone methyltransferases, Dot1L and PRC2. Although the presence of H2Bub in nucleosomes greatly stimulated Dot1L methylation of H3K79, we found that H2Aub did not influence Dot1L activity. In contrast, we show that H2Aub inhibited PRC2 methylation of H3K27, but H2Bub did not influence PRC2 activity. Taken together, these results highlight how the position of nucleosome monoubiquitylation affects the specificity and direction of cross-talk with enzymatic activities on chromatin.
Collapse
Affiliation(s)
- Sarah J Whitcomb
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
344
|
Gavin DP, Akbarian S. Epigenetic and post-transcriptional dysregulation of gene expression in schizophrenia and related disease. Neurobiol Dis 2012; 46:255-62. [DOI: 10.1016/j.nbd.2011.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/10/2011] [Accepted: 12/04/2011] [Indexed: 12/22/2022] Open
|
345
|
Wyrick JJ, Kyriss MNM, Davis WB. Ascending the nucleosome face: recognition and function of structured domains in the histone H2A-H2B dimer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:892-901. [PMID: 22521324 DOI: 10.1016/j.bbagrm.2012.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 12/23/2022]
Abstract
Research over the past decade has greatly expanded our understanding of the nucleosome's role as a dynamic hub that is specifically recognized by many regulatory proteins involved in transcription, silencing, replication, repair, and chromosome segregation. While many of these nucleosome interactions are mediated by post-translational modifications in the disordered histone tails, it is becoming increasingly apparent that structured regions of the nucleosome, including the histone fold domains, are also recognized by numerous regulatory proteins. This review will focus on the recognition of structured domains in the histone H2A-H2B dimer, including the acidic patch, the H2A docking domain, the H2B α3-αC helices, and the HAR/HBR domains, and will survey the known biological functions of histone residues within these domains. Novel post-translational modifications and trans-histone regulatory pathways involving structured regions of the H2A-H2B dimer will be highlighted, along with the role of intrinsic disorder in the recognition of structured nucleosome regions.
Collapse
Affiliation(s)
- John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
346
|
Luo M. Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 2012; 7:443-63. [PMID: 22220966 DOI: 10.1021/cb200519y] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein methyltransferases (PMTs) play various physiological and pathological roles through methylating histone and nonhistone targets. However, most PMTs including more than 60 human PMTs remain to be fully characterized. The current approaches to elucidate the functions of PMTs have been diversified by many emerging chemical biology technologies. This review focuses on progress in these aspects and is organized into four discussion modules (assays, substrates, cofactors, and inhibitors) that are important to elucidate biological functions of PMTs. These modules are expected to provide general guidance and present emerging methods for researchers to select and combine suitable PMT-activity assays, well-defined substrates, novel SAM surrogates, and PMT inhibitors to interrogate PMTs.
Collapse
Affiliation(s)
- Minkui Luo
- Molecular Pharmacology
and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New
York 10065, United States
| |
Collapse
|
347
|
Yao T, Ndoja A. Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol 2012; 23:523-9. [PMID: 22430757 DOI: 10.1016/j.semcdb.2012.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/06/2012] [Accepted: 02/10/2012] [Indexed: 12/26/2022]
Abstract
Transcription is the foremost regulatory point during the process of producing a functional protein. Not only specific genes need to be turned on and off according to growth and environmental conditions, the amounts and quality of transcripts produced are fine-tuned to offer optimal responses. As a result, numerous regulatory mechanisms converge to provide temporal and spatial specificity for this process. In the past decade, the ubiquitin-proteasome system (UPS), which is best known as a pathway for intracellular proteolysis, has emerged as another pivotal player in the control of gene expression. There is increasing evidence that the UPS has both proteolytic and non-proteolytic functions in multiple aspects of the transcription process, including initiation, elongation, mRNA processing as well as chromatin dynamics. In this review, we introduce the many interfaces between the UPS and transcription with focuses on the mechanistic understanding of UPS function in each process.
Collapse
Affiliation(s)
- Tingting Yao
- Colorado State University, Biochemistry and Molecular Biology, 1870 Campus Delivery, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
348
|
Abstract
Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription-from transcription initiation through to export of mRNA from the nucleus-is influenced by the UPS and that all major arms of the system--from the first step in ubiquitin (Ub) conjugation through to the proteasome-are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power.
Collapse
Affiliation(s)
- Fuqiang Geng
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8240, USA.
| | | | | |
Collapse
|
349
|
Abstract
Protein ubiquitination, the covalent attachment of ubiquitin to target proteins, has emerged as one of the most prevalent posttranslational modifications (PTMs), regulating nearly every cellular pathway. The diversity of signaling associated with this particular PTM stems from the myriad ways in which a target protein can be modified by ubiquitin, e.g., monoubiquitin, multi-monoubiquitin, and polyubiquitin linkages. In this Review, we focus on developments in both enzymatic and chemical methods that engender ubiquitin with new chemical and physical properties. Moreover, we highlight how these methods have enabled studies directed toward (i) characterizing enzymes responsible for reversing the ubiquitin modification, (ii) understanding the influence of ubiquitin on protein function and crosstalk with other PTMs, and (iii) uncovering the impact of polyubiquitin chain linkage and length on downstream signaling events.
Collapse
Affiliation(s)
- Eric R. Strieter
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| | - David A. Korasick
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706,
United States
| |
Collapse
|
350
|
Van Opdenbosch N, Favoreel H, Van de Walle GR. Histone modifications in herpesvirus infections. Biol Cell 2012; 104:139-64. [PMID: 22188068 DOI: 10.1111/boc.201100067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/02/2011] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, gene expression is not only regulated by transcription factors but also by several epigenetic mechanisms including post-translational modifications of histone proteins. There are numerous histone modifications described to date and methylation, acetylation, ubiquitination and phosphorylation are amongst the best studied. In parallel, certain viruses interact with the very same regulatory mechanisms, hereby manipulating the normal epigenetic landscape of the host cell, to fit their own replication needs. This review concentrates on herpesviruses specifically and how they interfere with the histone-modifying enzymes to regulate their replication cycles. Herpesviruses vary greatly with respect to the cell types they infect and the clinical diseases they cause, yet they share various common features including their capacity to encode viral proteins which affect and interfere with the normal functions of histone-modifying enzymes. Studying the epigenetic manipulation/dysregulation of herpesvirus-host interactions not only generates novel insights into the pathogenesis of these viruses but may also have important therapeutic implications.
Collapse
Affiliation(s)
- Nina Van Opdenbosch
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | |
Collapse
|