301
|
Lalli MA, Avey D, Dougherty JD, Milbrandt J, Mitra RD. High-throughput single-cell functional elucidation of neurodevelopmental disease-associated genes reveals convergent mechanisms altering neuronal differentiation. Genome Res 2020; 30:1317-1331. [PMID: 32887689 PMCID: PMC7545139 DOI: 10.1101/gr.262295.120] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
The overwhelming success of exome- and genome-wide association studies in discovering thousands of disease-associated genes necessitates developing novel high-throughput functional genomics approaches to elucidate the molecular mechanisms of these genes. Here, we have coupled multiplexed repression of neurodevelopmental disease–associated genes to single-cell transcriptional profiling in differentiating human neurons to rapidly assay the functions of multiple genes in a disease-relevant context, assess potentially convergent mechanisms, and prioritize genes for specific functional assays. For a set of 13 autism spectrum disorder (ASD)–associated genes, we show that this approach generated important mechanistic insights, revealing two functionally convergent modules of ASD genes: one that delays neuron differentiation and one that accelerates it. Five genes that delay neuron differentiation (ADNP, ARID1B, ASH1L, CHD2, and DYRK1A) mechanistically converge, as they all dysregulate genes involved in cell-cycle control and progenitor cell proliferation. Live-cell imaging after individual ASD-gene repression validated this functional module, confirming that these genes reduce neural progenitor cell proliferation and neurite growth. Finally, these functionally convergent ASD gene modules predicted shared clinical phenotypes among individuals with mutations in these genes. Altogether, these results show the utility of a novel and simple approach for the rapid functional elucidation of neurodevelopmental disease-associated genes.
Collapse
Affiliation(s)
- Matthew A Lalli
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| | - Denis Avey
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.,Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
302
|
Fischer S, Schlotthauer I, Kizner V, Macartney T, Dorner-Ciossek C, Gillardon F. Loss-of-function Mutations of CUL3, a High Confidence Gene for Psychiatric Disorders, Lead to Aberrant Neurodevelopment In Human Induced Pluripotent Stem Cells. Neuroscience 2020; 448:234-254. [PMID: 32890664 DOI: 10.1016/j.neuroscience.2020.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/25/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Both rare, high risk, loss-of-function mutations and common, low risk, genetic variants in the CUL3 gene are strongly associated with neuropsychiatric disorders. Network analyses of neuropsychiatric risk genes have shown high CUL3 expression in the prenatal human brain and an enrichment in neural precursor cells (NPCs) and cortical neurons. The role of CUL3 in human neurodevelopment however, is poorly understood. In the present study, we used CRISPR/Cas9 nickase to knockout CUL3 in human induced pluripotent stem cells (iPSCs). iPSCs were subsequently differentiated into cortical glutamatergic neurons using two different protocols and tested for structural/functional alterations. Immunocytochemical analysis and transcriptomic profiling revealed that pluripotency of heterozygous CUL3 knockout (KO) iPSCs remained unchanged compared to isogenic control iPSCs. Following small molecule-mediated differentiation into cortical glutamatergic neurons however, we detected a significant delay in transition from proliferating radial glia cells/NPCs to postmitotic neurons in CUL3 KO cultures. Notably, direct neural conversion of CUL3 KO iPSCs by lentiviral expression of Neurogenin-2 massively attenuated the neurodevelopmental delay. However, both optogenetic and electrical stimulation of induced neurons revealed decreased excitability in Cullin-3 deficient cultures, while basal synaptic transmission remained unchanged. Analysis of target gene expression pointed to alterations in FGF signaling in CUL3 KO NPCs, which is required for NPC proliferation and self-renewal, while RhoA and Notch signaling appeared unaffected. Our data provide first evidence for a major role of Cullin-3 in neuronal differentiation, and for neurodevelopmental deficits underlying neuropsychiatric disorders associated with CUL3 mutations.
Collapse
Affiliation(s)
- Sandra Fischer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Ines Schlotthauer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Valeria Kizner
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Cornelia Dorner-Ciossek
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Frank Gillardon
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
303
|
Schrauben M, Dempster E, Lunnon K. Applying gene-editing technology to elucidate the functional consequence of genetic and epigenetic variation in Alzheimer's disease. Brain Pathol 2020; 30:992-1004. [PMID: 32654206 PMCID: PMC8018012 DOI: 10.1111/bpa.12881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
Recent studies have highlighted a potential role of genetic and epigenetic variation in the development of Alzheimer's disease. Application of the CRISPR-Cas genome-editing platform has enabled investigation of the functional impact that Alzheimer's disease-associated gene mutations have on gene expression. Moreover, recent advances in the technology have led to the generation of CRISPR-Cas-based tools that allow for high-throughput interrogation of different risk variants to elucidate the interplay between genomic regulatory features, epigenetic modifications, and chromatin structure. In this review, we examine the various iterations of the CRISPR-Cas system and their potential application for exploring the complex interactions and disruptions in gene regulatory circuits that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
| | - Emma Dempster
- University of Exeter Medical SchoolExeter UniversityExeterUK
| | - Katie Lunnon
- University of Exeter Medical SchoolExeter UniversityExeterUK
| |
Collapse
|
304
|
Moyses-Oliveira M, Yadav R, Erdin S, Talkowski ME. New gene discoveries highlight functional convergence in autism and related neurodevelopmental disorders. Curr Opin Genet Dev 2020; 65:195-206. [PMID: 32846283 DOI: 10.1016/j.gde.2020.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023]
Abstract
Over the last two years, remarkable gene discovery efforts have implicated disruption of pathways involving gene regulatory functions and neuronal processes in autism spectrum disorder (ASD), and more broadly defined neurodevelopmental disorders (NDDs). Functional studies in the developing brain and across cell types demonstrate that the spatiotemporal expression patterns of many of these genes coalesce on subnetworks with distinct developmental trajectories. Here, we review the convergent biological processes derived from gene discovery and functional genomics in ASD and NDD from 2018-2020. We further probe the mechanistic insights that suggest these frequently perturbed pathways are interconnected and, ultimately, converge on specific functional deficits in human neurodevelopment.
Collapse
Affiliation(s)
- Mariana Moyses-Oliveira
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston MA, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, United States; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge MA, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
305
|
Integrating CRISPR Engineering and hiPSC-Derived 2D Disease Modeling Systems. J Neurosci 2020; 40:1176-1185. [PMID: 32024766 DOI: 10.1523/jneurosci.0518-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized research on human diseases, particularly neurodegenerative and psychiatric disorders, making it possible to study mechanisms of disease risk and initiation in otherwise inaccessible patient-specific cells. Today, the integration of CRISPR engineering approaches with hiPSC-based models permits precise isogenic comparisons of human neurons and glia. This review is intended as a guideline for neuroscientists and clinicians interested in translating their research to hiPSC-based studies. It offers state-of-the-art approaches to tackling the challenges that are unique to human in vitro disease models, particularly interdonor and intradonor variability, and limitations in neuronal maturity and circuit complexity. Finally, we provide a detailed overview of the immense possibilities the field has to offer, highlighting efficient neural differentiation and induction strategies for the major brain cell types and providing perspective into integrating CRISPR-based methods into study design. The combination of hiPSC-based disease modeling, CRISPR technology, and high-throughput approaches promises to advance our scientific knowledge and accelerate progress in drug discovery.Dual Perspectives Companion Paper: Studying Human Neurodevelopment and Diseases Using 3D Brain Organoids, by Ai Tian, Julien Muffat, and Yun Li.
Collapse
|
306
|
Gao Y, Gao K, Yang H. CRISPR/Cas: a potential gene-editing tool in the nervous system. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:12. [PMID: 32761306 PMCID: PMC7406588 DOI: 10.1186/s13619-020-00044-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
The rapidly developmental RNA-guided CRISPR/Cas system is a powerful tool for RNA and DNA editing in a variety of cells from different species and makes a great contribution to gene function research, disease model generation and gene therapy development in the past few years. The ease of use, low cost and high efficiency of CRISPR/Cas make it commonly used in various conditions. In this review, we introduce the CRISPR/Cas system and its diverse applications in nervous system briefly, which provides a better understanding for its potential application values.
Collapse
Affiliation(s)
- Yanxia Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kexin Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
307
|
Abstract
Neurodegenerative, neurodevelopmental and neuropsychiatric disorders are among the greatest public health challenges, as many lack disease-modifying treatments. A major reason for the absence of effective therapies is our limited understanding of the causative molecular and cellular mechanisms. Genome-wide association studies are providing a growing catalogue of disease-associated genetic variants, and the next challenge is to elucidate how these variants cause disease and to translate this understanding into therapies. This Review describes how new CRISPR-based functional genomics approaches can uncover disease mechanisms and therapeutic targets in neurological diseases. The bacterial CRISPR system can be used in experimental disease models to edit genomes and to control gene expression levels through CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa). These genetic perturbations can be implemented in massively parallel genetic screens to evaluate the functional consequences for human cells. CRISPR screens are particularly powerful in combination with induced pluripotent stem cell technology, which enables the derivation of differentiated cell types, such as neurons and glia, and brain organoids from cells obtained from patients. Modelling of disease-associated changes in gene expression via CRISPRi and CRISPRa can pinpoint causal changes. In addition, genetic modifier screens can be used to elucidate disease mechanisms and causal determinants of cell type-selective vulnerability and to identify therapeutic targets.
Collapse
|
308
|
Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front Bioeng Biotechnol 2020; 8:692. [PMID: 32671050 PMCID: PMC7326781 DOI: 10.3389/fbioe.2020.00692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell culture methods have been widely used on a range of cell types, including stem cells to modulate precisely the cellular biophysical and biochemical microenvironment and control various cell signaling cues. As a result, more in vivo-like microenvironments are recapitulated, particularly through the formation of multicellular spheroids and organoids, which may yield more valid mechanisms of disease. Recently, genome-engineering tools such as CRISPR Cas9 have expanded the repertoire of techniques to control gene expression, which complements external signaling cues with intracellular control elements. As a result, the combination of CRISPR Cas9 and 3D cell culture methods enhance our understanding of the molecular mechanisms underpinning several disease phenotypes and may lead to developing new therapeutics that may advance more quickly and effectively into clinical candidates. In addition, using CRISPR Cas9 tools to rescue genes brings us one step closer to its use as a gene therapy tool for various degenerative diseases. Herein, we provide an overview of bridging of CRISPR Cas9 genome editing with 3D spheroid and organoid cell culture to better understand disease progression in both patient and non-patient derived cells, and we address potential remaining gaps that must be overcome to gain widespread use.
Collapse
Affiliation(s)
- Sneha Gopal
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - André Lopes Rodrigues
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
309
|
Tang X, Toro A, T G S, Gao J, Chalk J, Oskarsson B, Zhang K. Divergence, Convergence, and Therapeutic Implications: A Cell Biology Perspective of C9ORF72-ALS/FTD. Mol Neurodegener 2020; 15:34. [PMID: 32513219 PMCID: PMC7282082 DOI: 10.1186/s13024-020-00383-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Ever since a GGGGCC hexanucleotide repeat expansion mutation in C9ORF72 was identified as the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), three competing but nonexclusive hypotheses to explain how this mutation causes diseases have been proposed and are still under debate. Recent studies in the field have tried to understand how the repeat expansion disrupts cellular physiology, which has suggested interesting convergence of these hypotheses on downstream, functional defects in cells, such as nucleocytoplasmic transport disruption, membrane-less organelle defects, and DNA damage. These studies have not only provided an integrated view of the disease mechanism but also revealed novel cell biology implicated in neurodegeneration. Furthermore, some of the discoveries have given rise to new ideas for therapeutic development. Here, we review the research progress on cellular pathophysiology of C9ORF72-mediated ALS and FTD and its therapeutic implication. We suggest that the repeat expansion drives pathogenesis through a combination of downstream defects, of which some can be therapeutic targets.
Collapse
Affiliation(s)
- Xiaoqiang Tang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Arturo Toro
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sahana T G
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Jessica Chalk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. .,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| |
Collapse
|
310
|
Yang SG, Li CP, Peng XQ, Teng ZQ, Liu CM, Zhou FQ. Strategies to Promote Long-Distance Optic Nerve Regeneration. Front Cell Neurosci 2020; 14:119. [PMID: 32477071 PMCID: PMC7240020 DOI: 10.3389/fncel.2020.00119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian retinal ganglion cells (RGCs) in the central nervous system (CNS) often die after optic nerve injury and surviving RGCs fail to regenerate their axons, eventually resulting in irreversible vision loss. Manipulation of a diverse group of genes can significantly boost optic nerve regeneration of mature RGCs by reactivating developmental-like growth programs or suppressing growth inhibitory pathways. By injury of the vision pathway near their brain targets, a few studies have shown that regenerated RGC axons could form functional synapses with targeted neurons but exhibited poor neural conduction or partial functional recovery. Therefore, the functional restoration of eye-to-brain pathways remains a greatly challenging issue. Here, we review recent advances in long-distance optic nerve regeneration and the subsequent reconnecting to central targets. By summarizing our current strategies for promoting functional recovery, we hope to provide potential insights into future exploration in vision reformation after neural injuries.
Collapse
Affiliation(s)
- Shu-Guang Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chang-Ping Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue-Qi Peng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
311
|
Abstract
PURPOSE OF REVIEW We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyra Feuer
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marah Wahbeh
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
312
|
Seah C, Brennand KJ. If there is not one cure for schizophrenia, there may be many. NPJ SCHIZOPHRENIA 2020; 6:11. [PMID: 32313122 PMCID: PMC7170875 DOI: 10.1038/s41537-020-0101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/28/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Carina Seah
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
313
|
Fernando MB, Ahfeldt T, Brennand KJ. Modeling the complex genetic architectures of brain disease. Nat Genet 2020; 52:363-369. [PMID: 32203467 PMCID: PMC7909729 DOI: 10.1038/s41588-020-0596-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
The genetic architecture of each individual comprises common and rare variants that, acting alone and in combination, confer risk of disease. The cell-type-specific and/or context-dependent functional consequences of the risk variants linked to brain disease must be resolved. Coupling human induced pluripotent stem cell (hiPSC)-based technology with CRISPR-based genome engineering facilitates precise isogenic comparisons of variants across genetic backgrounds. Although functional-validation studies are typically performed on one variant in isolation and in one cell type at a time, complex genetic diseases require multiplexed gene perturbations to interrogate combinations of genes and resolve physiologically relevant disease biology. Our aim is to discuss advances at the intersection of genomics, hiPSCs and CRISPR. A better understanding of the molecular mechanisms underlying disease risk will improve genetic diagnosis, drive phenotypic drug discovery and pave the way toward precision medicine.
Collapse
Affiliation(s)
- Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Alper Neural Stem Cell Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
314
|
Abstract
The spread of protein aggregates during disease progression is a common theme underlying many neurodegenerative diseases. The microtubule-associated protein tau (MAPT) plays a central role in the pathogenesis of several forms of dementia known as tauopathies, including Alzheimer’s disease (AD), frontotemporal dementia (FTD) and chronic traumatic encephalopathy (CTE)1. Progression of these diseases is characterized by the sequential spread and deposition of protein aggregates in a predictable pattern that correlates with clinical severity2. This observation and complementary experimental studies3,4 have suggested that tau can spread in a prion-like manner by passing to naïve cells where it templates misfolding and aggregation. However, while tau propagation has been extensively studied, the underlying cellular mechanisms remain poorly understood. Here we show that the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) controls tau endocytosis and subsequent spread. Knockdown of LRP1 significantly reduced tau uptake in H4 neuroglioma cells and iPS-derived neurons. The interaction between tau and LRP1 is mediated by lysine residues in the microtubule binding repeat region of tau. Furthermore, we find that downregulation of LRP1 in an in vivo mouse model of tau spread effectively reduced tau propagation between neurons. Our results identify LRP1 as a key regulator of tau spread in the brain and, thus, as a novel target for diseases of tau spread and aggregation.
Collapse
|
315
|
Herholt A, Galinski S, Geyer PE, Rossner MJ, Wehr MC. Multiparametric Assays for Accelerating Early Drug Discovery. Trends Pharmacol Sci 2020; 41:318-335. [PMID: 32223968 DOI: 10.1016/j.tips.2020.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Drug discovery campaigns are hampered by substantial attrition rates largely due to a lack of efficacy and safety reasons associated with candidate drugs. This is true in particular for genetically complex diseases, where insufficient knowledge of the modulatory actions of candidate drugs on targets and entire target pathways further adds to the problem of attrition. To better profile compound actions on targets, potential off-targets, and disease-linked pathways, new innovative technologies need to be developed that can elucidate the complex cellular signaling networks in health and disease. Here, we discuss progress in genetically encoded multiparametric assays and mass spectrometry (MS)-based proteomics, which both represent promising toolkits to profile multifactorial actions of drug candidates in disease-relevant cellular systems to promote drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Alexander Herholt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Sabrina Galinski
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany; NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; OmicEra Diagnostics GmbH, Am Klopferspitz 19, 82152, Planegg, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C Wehr
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany.
| |
Collapse
|
316
|
Sandoval A, Elahi H, Ploski JE. Genetically Engineering the Nervous System with CRISPR-Cas. eNeuro 2020; 7:ENEURO.0419-19.2020. [PMID: 32098761 PMCID: PMC7096538 DOI: 10.1523/eneuro.0419-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
The multitude of neuronal subtypes and extensive interconnectivity of the mammalian brain presents a substantial challenge to those seeking to decipher its functions. While the molecular mechanisms of several neuronal functions remain poorly characterized, advances in next-generation sequencing (NGS) and gene-editing technology have begun to close this gap. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (CRISPR-Cas) system has emerged as a powerful genetic tool capable of manipulating the genome of essentially any organism and cell type. This technology has advanced our understanding of complex neurologic diseases by enabling the rapid generation of novel, disease-relevant in vitro and transgenic animal models. In this review, we discuss recent developments in the rapidly accelerating field of CRISPR-mediated genome engineering. We begin with an overview of the canonical function of the CRISPR platform, followed by a functional review of its many adaptations, with an emphasis on its applications for genetic interrogation of the normal and diseased nervous system. Additionally, we discuss limitations of the CRISPR editing system and suggest how future modifications to existing platforms may advance our understanding of the brain.
Collapse
Affiliation(s)
- Alfredo Sandoval
- School of Behavioral and Brain Sciences and the Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080
| | - Hajira Elahi
- School of Behavioral and Brain Sciences and the Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences and the Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
317
|
Guo X, Aviles G, Liu Y, Tian R, Unger BA, Lin YHT, Wiita AP, Xu K, Correia MA, Kampmann M. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature 2020; 579:427-432. [PMID: 32132707 PMCID: PMC7147832 DOI: 10.1038/s41586-020-2078-2] [Citation(s) in RCA: 404] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
In mammalian cells, mitochondrial dysfunction triggers the integrated stress response (ISR), in which eIF2α phosphorylation induces the transcription factor ATF41-3. However, how mitochondrial stress is relayed to ATF4 is unknown. We found that HRI is the eIF2α kinase necessary and sufficient for this relay. In a genome-wide CRISPRi screen, we identified factors upstream of HRI: OMA1, a mitochondrial stress-activated protease, and DELE1, a little-characterized protein we found to be associated with the inner mitochondrial membrane. Mitochondrial stress stimulates OMA1-dependent cleavage of DELE1, leading to its accumulation in the cytosol, where it interacts with HRI and activates its eIF2α kinase activity. Additionally, DELE1 is required for ATF4 translation downstream of eIF2α phosphorylation. Blockade of the OMA1-DELE1-HRI pathway triggers an alternative response inducing specific molecular chaperones. Therefore, this pathway is a potential therapeutic target enabling fine-tuning of the ISR for beneficial outcomes in diseases involving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Giovanni Aviles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Yi Liu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ruilin Tian
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA.,Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Bret A Unger
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Yu-Hsiu T Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ke Xu
- Chan Zuckerberg Biohub, San Francisco, CA, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - M Almira Correia
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.,The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
318
|
Jost M, Santos DA, Saunders RA, Horlbeck MA, Hawkins JS, Scaria SM, Norman TM, Hussmann JA, Liem CR, Gross CA, Weissman JS. Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs. Nat Biotechnol 2020; 38:355-364. [PMID: 31932729 PMCID: PMC7065968 DOI: 10.1038/s41587-019-0387-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
A lack of tools to precisely control gene expression has limited our ability to evaluate relationships between expression levels and phenotypes. Here, we describe an approach to titrate expression of human genes using CRISPR interference and series of single-guide RNAs (sgRNAs) with systematically modulated activities. We used large-scale measurements across multiple cell models to characterize activities of sgRNAs containing mismatches to their target sites and derived rules governing mismatched sgRNA activity using deep learning. These rules enabled us to synthesize a compact sgRNA library to titrate expression of ~2,400 genes essential for robust cell growth and to construct an in silico sgRNA library spanning the human genome. Staging cells along a continuum of gene expression levels combined with single-cell RNA-seq readout revealed sharp transitions in cellular behaviors at gene-specific expression thresholds. Our work provides a general tool to control gene expression, with applications ranging from tuning biochemical pathways to identifying suppressors for diseases of dysregulated gene expression.
Collapse
Affiliation(s)
- Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel A Santos
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A Saunders
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
| | - John S Hawkins
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Sonia M Scaria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas M Norman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Christina R Liem
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
319
|
Chen JJ, Nathaniel DL, Raghavan P, Nelson M, Tian R, Tse E, Hong JY, See SK, Mok SA, Hein MY, Southworth DR, Grinberg LT, Gestwicki JE, Leonetti MD, Kampmann M. Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J Biol Chem 2019; 294:18952-18966. [PMID: 31578281 PMCID: PMC6916486 DOI: 10.1074/jbc.ra119.009432] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/26/2019] [Indexed: 12/22/2022] Open
Abstract
Intercellular propagation of protein aggregation is emerging as a key mechanism in the progression of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia (FTD). However, we lack a systematic understanding of the cellular pathways controlling prion-like propagation of aggregation. To uncover such pathways, here we performed CRISPR interference (CRISPRi) screens in a human cell-based model of propagation of tau aggregation monitored by FRET. Our screens uncovered that knockdown of several components of the endosomal sorting complexes required for transport (ESCRT) machinery, including charged multivesicular body protein 6 (CHMP6), or CHMP2A in combination with CHMP2B (whose gene is linked to familial FTD), promote propagation of tau aggregation. We found that knocking down the genes encoding these proteins also causes damage to endolysosomal membranes, consistent with a role for the ESCRT pathway in endolysosomal membrane repair. Leakiness of the endolysosomal compartment significantly enhanced prion-like propagation of tau aggregation, likely by making tau seeds more available to pools of cytoplasmic tau. Together, these findings suggest that endolysosomal escape is a critical step in tau propagation in neurodegenerative diseases.
Collapse
Affiliation(s)
- John J Chen
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
| | - Diane L Nathaniel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
| | | | - Maxine Nelson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94158
| | - Ruilin Tian
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
- Biophysics Graduate Program, University of California, San Francisco, California 94158
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
| | - Jason Y Hong
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
| | - Stephanie K See
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
- Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, California 94158
| | - Sue-Ann Mok
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
| | - Marco Y Hein
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Lea T Grinberg
- Department of Neurology, University of California, San Francisco, California 94158
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | | | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California 94158
- Chan Zuckerberg Biohub, San Francisco, California 94158
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
320
|
So RWL, Chung SW, Lau HHC, Watts JJ, Gaudette E, Al-Azzawi ZAM, Bishay J, Lin LTW, Joung J, Wang X, Schmitt-Ulms G. Application of CRISPR genetic screens to investigate neurological diseases. Mol Neurodegener 2019; 14:41. [PMID: 31727120 PMCID: PMC6857349 DOI: 10.1186/s13024-019-0343-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
The adoption of CRISPR-Cas9 technology for functional genetic screens has been a transformative advance. Due to its modular nature, this technology can be customized to address a myriad of questions. To date, pooled, genome-scale studies have uncovered genes responsible for survival, proliferation, drug resistance, viral susceptibility, and many other functions. The technology has even been applied to the functional interrogation of the non-coding genome. However, applications of this technology to neurological diseases remain scarce. This shortfall motivated the assembly of a review that will hopefully help researchers moving in this direction find their footing. The emphasis here will be on design considerations and concepts underlying this methodology. We will highlight groundbreaking studies in the CRISPR-Cas9 functional genetics field and discuss strengths and limitations of this technology for neurological disease applications. Finally, we will provide practical guidance on navigating the many choices that need to be made when implementing a CRISPR-Cas9 functional genetic screen for the study of neurological diseases.
Collapse
Affiliation(s)
- Raphaella W. L. So
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Sai Wai Chung
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Heather H. C. Lau
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Jeremy J. Watts
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Erin Gaudette
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Zaid A. M. Al-Azzawi
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Jossana Bishay
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Lilian Tsai-Wei Lin
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Julia Joung
- Departments of Biological Engineering and Brain and Cognitive Science, and McGovern Institute for Brain Research at MIT, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Xinzhu Wang
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Gerold Schmitt-Ulms
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| |
Collapse
|
321
|
Karch CM, Kao AW, Karydas A, Onanuga K, Martinez R, Argouarch A, Wang C, Huang C, Sohn PD, Bowles KR, Spina S, Silva MC, Marsh JA, Hsu S, Pugh DA, Ghoshal N, Norton J, Huang Y, Lee SE, Seeley WW, Theofilas P, Grinberg LT, Moreno F, McIlroy K, Boeve BF, Cairns NJ, Crary JF, Haggarty SJ, Ichida JK, Kosik KS, Miller BL, Gan L, Goate AM, Temple S. A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. Stem Cell Reports 2019; 13:939-955. [PMID: 31631020 PMCID: PMC6895712 DOI: 10.1016/j.stemcr.2019.09.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Primary tauopathies are characterized neuropathologically by inclusions containing abnormal forms of the microtubule-associated protein tau (MAPT) and clinically by diverse neuropsychiatric, cognitive, and motor impairments. Autosomal dominant mutations in the MAPT gene cause heterogeneous forms of frontotemporal lobar degeneration with tauopathy (FTLD-Tau). Common and rare variants in the MAPT gene increase the risk for sporadic FTLD-Tau, including progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We generated a collection of fibroblasts from 140 MAPT mutation/risk variant carriers, PSP, CBD, and cognitively normal controls; 31 induced pluripotent stem cell (iPSC) lines from MAPT mutation carriers, non-carrier family members, and autopsy-confirmed PSP patients; 33 genome engineered iPSCs that were corrected or mutagenized; and forebrain neural progenitor cells (NPCs). Here, we present a resource of fibroblasts, iPSCs, and NPCs with comprehensive clinical histories that can be accessed by the scientific community for disease modeling and development of novel therapeutics for tauopathies. A collection of fibroblasts from 140 MAPT mutation carriers, PSP, CBD, and controls 31 iPSC lines reprogrammed from MAPT mutation carriers, PSP patients, and controls 33 iPSC lines engineered with CRISPR/Cas9 or TALENs Comprehensive resource for tauopathy modeling and discovery of novel therapeutics
Collapse
Affiliation(s)
- Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA.
| | - Aimee W Kao
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Karydas
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Khadijah Onanuga
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Andrea Argouarch
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chao Wang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Cindy Huang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Peter Dongmin Sohn
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Kathryn R Bowles
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Salvatore Spina
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jacob A Marsh
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Simon Hsu
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Derian A Pugh
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Nupur Ghoshal
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Yadong Huang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Suzee E Lee
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William W Seeley
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Panagiotis Theofilas
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lea T Grinberg
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fermin Moreno
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kathryn McIlroy
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Nigel J Cairns
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - John F Crary
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA; Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth S Kosik
- Department of Molecular Cellular and Developmental Biology, Neuroscience Research Institute, Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Bruce L Miller
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Li Gan
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Sally Temple
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| | | |
Collapse
|
322
|
Convergence in neuropsychiatric research. Nat Methods 2019; 16:961-964. [PMID: 31537909 DOI: 10.1038/s41592-019-0578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
323
|
Screen time: studying gene function in iPSCs. Nat Rev Neurosci 2019; 20:573. [PMID: 31467449 DOI: 10.1038/s41583-019-0217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|