301
|
Disruption of medial prefrontal synchrony in the subchronic phencyclidine model of schizophrenia in rats. Neuroscience 2014; 287:157-63. [PMID: 25542422 PMCID: PMC4317768 DOI: 10.1016/j.neuroscience.2014.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022]
Abstract
Subchronic PCP pretreatment reduced theta oscillations in medial prefrontal cortex. Subchronic PCP pretreatment produced abnormal cortical synchronization in putative cortical pyramidal cells. Subchronic PCP pretreatment produced abnormal locking of cortical spikes to lower oscillation frequencies.
Subchronic treatment with the N-methyl-d-aspartate (NMDA) antagonist phencyclidine (PCP) produces behavioral abnormalities in rodents which are considered a reliable pharmacological model of neurocognitive deficits in schizophrenia. Alterations in prefrontal neuronal firing after acute PCP administration have been observed, however enduring changes in prefrontal activity after subchronic PCP treatment have not been studied. To address this we have recorded cortical oscillations and unit responses in putative cortical pyramidal cells in subchronic PCP-treated rats (2 mg/kg twice daily for 7 days) under urethane anesthesia. We found that this regimen reduced theta oscillations in the medial prefrontal cortex. It further produced abnormal cortical synchronization in putative cortical pyramidal cells. These alterations in prefrontal cortex functioning may contribute to cognitive deficits seen in subchronic NMDA antagonist pre-treated animals in prefrontal-dependent tasks.
Collapse
|
302
|
Aguilar DD, Chen L, Lodge DJ. Increasing endocannabinoid levels in the ventral pallidum restore aberrant dopamine neuron activity in the subchronic PCP rodent model of schizophrenia. Int J Neuropsychopharmacol 2014; 18:pyu035. [PMID: 25539511 PMCID: PMC4332795 DOI: 10.1093/ijnp/pyu035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Schizophrenia is a debilitating disorder that affects 1% of the US population. While the exogenous administration of cannabinoids such as tetrahydrocannabinol is reported to exacerbate psychosis in schizophrenia patients, augmenting the levels of endogenous cannabinoids has gained attention as a possible alternative therapy to schizophrenia due to clinical and preclinical observations. Thus, patients with schizophrenia demonstrate an inverse relationship between psychotic symptoms and levels of the endocannabinoid anandamide. In addition, increasing endocannabinoid levels (by blockade of enzymatic degradation) has been reported to attenuate social withdrawal in a preclinical model of schizophrenia. Here we examine the effects of increasing endogenous cannabinoids on dopamine neuron activity in the sub-chronic phencyclidine (PCP) model. Aberrant dopamine system function is thought to underlie the positive symptoms of schizophrenia. METHODS Using in vivo extracellular recordings in chloral hydrate-anesthetized rats, we now demonstrate an increase in dopamine neuron population activity in PCP-treated rats. RESULTS Interestingly, endocannabinoid upregulation, induced by URB-597, was able to normalize this aberrant dopamine neuron activity. Furthermore, we provide evidence that the ventral pallidum is the site where URB-597 acts to restore ventral tegmental area activity. CONCLUSIONS Taken together, we provide preclinical evidence that augmenting endogenous cannabinoids may be an effective therapy for schizophrenia, acting in part to restore ventral pallidal activity.
Collapse
Affiliation(s)
- David D Aguilar
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, Texas (Aguilar, Drs Chen and Lodge); Departments of Physiology & Pathophysiology, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, China (Dr Chen).
| | | | | |
Collapse
|
303
|
Guo X, Chen ZH, Wang HL, Liu ZC, Wang XP, Zhou BH, Yang C, Zhang XP, Xiao L, Shu C, Chen JX, Wang GH. WSKY, a traditional Chinese decoction, rescues cognitive impairment associated with NMDA receptor antagonism by enhancing BDNF/ERK/CREB signaling. Mol Med Rep 2014; 11:2927-34. [PMID: 25503442 DOI: 10.3892/mmr.2014.3086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/30/2014] [Indexed: 11/06/2022] Open
Abstract
Warm‑supplementing kidney yang (WSKY) is an herbal prescription that has been used in Traditional Chinese Medicine for the treatment of psychiatric conditions. A previous study by our group found that WSKY significantly improved cognitive function of schizophrenia patients. In the present study, the effects of WSKY on cognitive function and their underlying mechanisms were investigated. WSKY was administered to an MK‑801‑induced rat model of chronic schizophrenia for 14 days. Memory performance was assessed using the Morris water maze (MWM) test. The expression of brain‑derived neurotrophic factor (BDNF), activation of cAMP response element binding protein (pCREB/CREB) and activation of extracellular signal‑regulated kinase (pERK/ERK) in the hippocampus was detected using western blot analysis. In the acquisition phase of the MWM test, the escape latency was significantly increased in the MK‑801‑treated group compared with the normal control group (P<0.01). Treatment with WSKY for 14 days at doses of 100 or 250 mg/kg rescued this cognitive impairment (P<0.05). In the probe test, 250 mg/kg WSKY treatment increased the time spent in the target quadrant (P<0.05) and number of platform crossings (P<0.01). Western blot analysis demonstrated that the levels of BDNF expression in the hippocampus of rats without behavioral tests were elevated following 14 days of WSKY treatment, and the effect of WSKY treatment on hippocampal BDNF expression was presented in an inverted U‑shaped dose‑response pattern. The pERK1/2 in the hippocampus was significantly enhanced following 100 mg/kg (P<0.01) and 250 mg/kg (P<0.01) WSKY treatment, while only 250 mg/kg WSKY increased the phosphorylation of CREB (P<0.01). The results of the present study indicated that WSKY enhances cognitive performance via the upregulation of BDNF/ERK/CREB signaling, and that WSKY has potential therapeutic implications for cognitive impairment of schizophrenia.
Collapse
Affiliation(s)
- Xin Guo
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zheng-Hua Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui-Ling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhong-Chun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Ping Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ben-Hong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Can Yang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xue-Ping Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian-Xin Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gao-Hua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
304
|
Fellini L, Kumar G, Gibbs S, Steckler T, Talpos J. Re-evaluating the PCP challenge as a pre-clinical model of impaired cognitive flexibility in schizophrenia. Eur Neuropsychopharmacol 2014; 24:1836-49. [PMID: 25300235 DOI: 10.1016/j.euroneuro.2014.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 08/08/2014] [Accepted: 08/16/2014] [Indexed: 01/18/2023]
Abstract
NMDA-R antagonists are a popular translational pharmacological challenge to induce cognitive deficits associated with schizophrenia. Amongst their many cognitive and non-cognitive effects is an ability to impair cognitive flexibility in general, and reversal learning in particular. Here, we test the hypothesis that the NMDA-R antagonist phencyclidine when given acutely selectively effects reversal learning by simultaneously measuring reversal learning and baseline responding, or acquisition and baseline responding, under identical conditions. Animals were trained to simultaneously perform two different visual discriminations in a touch-screen equipped operant box. Accordingly the reward contingencies associated with one pair could be altered, while the second pair acted as an experimental control. As such, the effect of a manipulation on reversal learning, stimuli acquisition, or baseline responding can be more accurately evaluated through the use of a double visual discrimination. A similar approach was also used to investigate the influence of sub-chronic phencyclidine administration on cognitive flexibility. Phencyclidine (1mg/kg) given before testing caused a slowing in acquisition and reversal learning, while having a minimal effect on secondary measures. Sub-chronic phencyclidine administration had no significant effect on any of the measures used within this study. While acute phencyclidine impairs reversal learning, it is clear from these results that other aspects of cognition (learning/relearning) are also impaired, potentially questioning the specificity of acute phencyclidine in conjunction with reversal learning paradigms as a model of impaired cognitive flexibility.
Collapse
Affiliation(s)
- Laetitia Fellini
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Gaurav Kumar
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Steven Gibbs
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Thomas Steckler
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - John Talpos
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
305
|
Park SJ, Lee Y, Oh HK, Lee HE, Lee Y, Ko SY, Kim B, Cheong JH, Shin CY, Ryu JH. Oleanolic acid attenuates MK-801-induced schizophrenia-like behaviors in mice. Neuropharmacology 2014; 86:49-56. [DOI: 10.1016/j.neuropharm.2014.06.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 12/29/2022]
|
306
|
Pinacho R, Valdizán EM, Pilar-Cuellar F, Prades R, Tarragó T, Haro JM, Ferrer I, Ramos B. Increased SP4 and SP1 transcription factor expression in the postmortem hippocampus of chronic schizophrenia. J Psychiatr Res 2014; 58:189-96. [PMID: 25175639 DOI: 10.1016/j.jpsychires.2014.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/20/2022]
Abstract
Altered levels of transcription factor specificity protein 4 (SP4) and 1 (SP1) in the cerebellum, prefrontal cortex and/or lymphocytes have been reported in severe psychiatric disorders, including early psychosis, bipolar disorder, and chronic schizophrenia subjects who have undergone long-term antipsychotic treatments. SP4 transgenic mice show altered hippocampal-dependent psychotic-like behaviours and altered development of hippocampal dentate gyrus. Moreover, NMDAR activity regulates SP4 function. The aim of this study was to investigate SP4 and SP1 expression levels in the hippocampus in schizophrenia, and the possible effect of antipsychotics and NMDAR blockade on SP protein levels in rodent hippocampus. We analysed SP4 and SP1 expression levels in the postmortem hippocampus of chronic schizophrenia (n = 14) and control (n = 11) subjects by immunoblot and quantitative RT-PCR. We tested the effect of NMDAR blockade on SP factors in the hippocampus of mouse treated with an acute dose of MK801. We also investigated the effect of subacute treatments with haloperidol and clozapine on SP protein levels in the rat hippocampus. We report that SP4 protein and both SP4 and SP1 mRNA expression levels are significantly increased in the hippocampus in chronic schizophrenia. Likewise, acute treatment with MK801 increased both SP4 and SP1 protein levels in mouse hippocampus. In contrast, subacute treatment with haloperidol and clozapine did not significantly alter SP protein levels in rat hippocampus. These results suggest that SP4 and SP1 upregulation may be part of the mechanisms deregulated downstream of glutamate signalling pathways in schizophrenia and might be contributing to the hippocampal-dependent cognitive deficits of the disorder.
Collapse
Affiliation(s)
- Raquel Pinacho
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | - Elsa M Valdizán
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Avda. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Fuencisla Pilar-Cuellar
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Avda. Cardenal Herrera Oria s/n, 39011, Santander, Spain
| | - Roger Prades
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Baldiri I Reixac, 10, 08028 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Baldiri I Reixac, 10, 08028 Barcelona, Spain
| | - Josep Maria Haro
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | - Isidre Ferrer
- Instituto de Neuropatología, IDIBELL-Hospital Universitario de Bellvitge, Universitat de Barcelona, Centro de Investigación Biomédica en Red para enfermedades neurodegenerativas, CIBERNED. Feixa Llarga s/n, 08907 Hospitalet de LLobregat, Barcelona, Spain
| | - Belén Ramos
- Unitat de recerca, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM. Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain.
| |
Collapse
|
307
|
Barnes SA, Sawiak SJ, Caprioli D, Jupp B, Buonincontri G, Mar AC, Harte MK, Fletcher PC, Robbins TW, Neill JC, Dalley JW. Impaired limbic cortico-striatal structure and sustained visual attention in a rodent model of schizophrenia. Int J Neuropsychopharmacol 2014; 18:pyu010. [PMID: 25552430 PMCID: PMC4368881 DOI: 10.1093/ijnp/pyu010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/09/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) dysfunction is thought to contribute to the pathophysiology of schizophrenia. Accordingly, NMDAR antagonists such as phencyclidine (PCP) are used widely in experimental animals to model cognitive impairment associated with this disorder. However, it is unclear whether PCP disrupts the structural integrity of brain areas relevant to the profile of cognitive impairment in schizophrenia. METHODS Here we used high-resolution magnetic resonance imaging and voxel-based morphometry to investigate structural alterations associated with sub-chronic PCP treatment in rats. RESULTS Sub-chronic exposure of rats to PCP (5mg/kg twice daily for 7 days) impaired sustained visual attention on a 5-choice serial reaction time task, notably when the attentional load was increased. In contrast, sub-chronic PCP had no significant effect on the attentional filtering of a pre-pulse auditory stimulus in an acoustic startle paradigm. Voxel-based morphometry revealed significantly reduced grey matter density bilaterally in the hippocampus, anterior cingulate cortex, ventral striatum, and amygdala. PCP-treated rats also exhibited reduced cortical thickness in the insular cortex. CONCLUSIONS These findings demonstrate that sub-chronic NMDA receptor antagonism is sufficient to produce highly-localized morphological abnormalities in brain areas implicated in the pathogenesis of schizophrenia. Furthermore, PCP exposure resulted in dissociable impairments in attentional function.
Collapse
Affiliation(s)
- Samuel A Barnes
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Stephen J Sawiak
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Daniele Caprioli
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Bianca Jupp
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Guido Buonincontri
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Adam C Mar
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Michael K Harte
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Paul C Fletcher
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Trevor W Robbins
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Jo C Neill
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill)
| | - Jeffrey W Dalley
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (Dr Barnes); Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Downing St, Cambridge UK (Drs Sawiak, Caprioli, Jupp, Mar, Fletcher, Robbins, and Dalley); Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Sawiak and Buonincontri); Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (Drs Fletcher and Dalley); Manchester Pharmacy School, University of Manchester, UK (Drs Harte and Neill).
| |
Collapse
|
308
|
The neural bases of crossmodal object recognition in non-human primates and rodents: a review. Behav Brain Res 2014; 285:118-30. [PMID: 25286314 DOI: 10.1016/j.bbr.2014.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/13/2022]
Abstract
The ability to integrate information from different sensory modalities to form unique multisensory object representations is a highly adaptive cognitive function. Surprisingly, non-human animal studies of the neural substrates of this form of multisensory integration have been somewhat sparse until very recently, and this may be due in part to a relative paucity of viable testing methods. Here we review the historical development and use of various "crossmodal" cognition tasks for non-human primates and rodents, focusing on tests of "crossmodal object recognition", the ability to recognize an object across sensory modalities. Such procedures have great potential to elucidate the cognitive and neural bases of object representation as it pertains to perception and memory. Indeed, these studies have revealed roles in crossmodal cognition for various brain regions (e.g., prefrontal and temporal cortices) and neurochemical systems (e.g., acetylcholine). A recent increase in behavioral and physiological studies of crossmodal cognition in rodents augurs well for the future of this research area, which should provide essential information about the basic mechanisms of object representation in the brain, in addition to fostering a better understanding of the causes of, and potential treatments for, cognitive deficits in human diseases characterized by atypical multisensory integration.
Collapse
|
309
|
Pollard M, Bartolome JM, Conn PJ, Steckler T, Shaban H. Modulation of neuronal microcircuit activities within the medial prefrontal cortex by mGluR5 positive allosteric modulator. J Psychopharmacol 2014; 28:935-46. [PMID: 25031220 PMCID: PMC4356529 DOI: 10.1177/0269881114542856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Suppressing anxiety and fear memory relies on bidirectional projections between the medial prefrontal cortex and the amygdala. Positive allosteric modulators of mGluR5 improve cognition in animal models of schizophrenia and retrieval of newly formed associations such as extinction of fear-conditioned behaviour. The increase in neuronal network activities of the medial prefrontal cortex is influenced by both mGluR1 and mGluR5; however, it is not well understood how they modulate network activities and downstream information processing. To map mGluR5-mediated network activity in relation to its emergence as a viable cognitive enhancer, we tested group I mGluR compounds on medial prefrontal cortex network activity via multi-electrode array neuronal spiking and whole-cell patch clamp recordings. Results indicate that mGluR5 activation promotes feed-forward inhibition that depends on recruitment of neuronal activity by carbachol-evoked up states. The rate of neuronal spiking activity under the influence of carbachol was reduced by the mGluR5 positive allosteric modulator, N-(1,3-Diphenyl-1H-pyrazolo-5-yl)-4-nitrobenzamide (VU-29), and enhanced by the mGluR5 negative allosteric modulator, 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine hydrochloride (MTEP). Spontaneous inhibitory post-synaptic currents were increased upon application of carbachol and in combination with VU-29. These results emphasize a bias towards tonic mGluR5-mediated inhibition that might serve as a signal-to-noise enhancer of sensory inputs projected from associated limbic areas onto the medial prefrontal cortex neuronal microcircuit.
Collapse
Affiliation(s)
| | | | - P Jeffrey Conn
- Department of Pharmacology, and the Vanderbilt Center for Neuroscience Drug Discovery 2, Vanderbilt University Medical School, Nashville, TN, USA
| | | | | |
Collapse
|
310
|
McKibben CE, Reynolds GP, Jenkins TA. Analysis of sociability and preference for social novelty in the acute and subchronic phencyclidine rat. J Psychopharmacol 2014; 28:955-63. [PMID: 25122039 DOI: 10.1177/0269881114544778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Both acute and sub-chronic phencyclidine administration produce behavioural and pathophysiological changes that resemble some features of schizophrenia. The present study aimed to determine if acute and sub-chronic phencyclidine treatment in male rats produces deficits in sociability and social novelty preference, which may reflect aspects of the negative symptomatology observed in schizophrenia. Rats were treated with phencyclidine acutely (2 or 5 mg/kg) or subchronically (2 or 5 mg/kg bi-daily for one week followed by a one week wash-out period) or vehicle. Social affiliative behaviour was assessed using the sociability and preference for social novelty paradigm where social interaction time was measured in (a) a chamber containing an unfamiliar conspecific vs an empty chamber (sociability), or (b) a chamber containing an unfamiliar conspecific vs a chamber containing a familiar conspecific (preference for social novelty). Results showed that acute administration of phencyclidine produced a reduction in measures of sociability but had no effect on preference for social novelty while sub-chronic administration of phencyclidine had no effect on sociability or social novelty. This study provides further evidence for the usefulness of phencyclidine models in modelling the symptomatology of schizophrenia.
Collapse
Affiliation(s)
- Claire E McKibben
- Division of Psychiatry and Neuroscience, Queen's University Belfast, Belfast, UK
| | - Gavin P Reynolds
- Division of Psychiatry and Neuroscience, Queen's University Belfast, Belfast, UK Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Trisha A Jenkins
- Division of Psychiatry and Neuroscience, Queen's University Belfast, Belfast, UK School of Medical Sciences, Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
311
|
Stone TW, Darlington LG. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol 2014; 169:1211-27. [PMID: 23647169 DOI: 10.1111/bph.12230] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 02/06/2023] Open
Abstract
Understanding the neurochemical basis for cognitive function is one of the major goals of neuroscience, with a potential impact on the diagnosis, prevention and treatment of a range of psychiatric and neurological disorders. In this review, the focus will be on a biochemical pathway that remains under-recognized in its implications for brain function, even though it can be responsible for moderating the activity of two neurotransmitters fundamentally involved in cognition - glutamate and acetylcholine. Since this pathway - the kynurenine pathway of tryptophan metabolism - is induced by immunological activation and stress, it also stands in a unique position to mediate the effects of environmental factors on cognition and behaviour. Targeting the pathway for new drug development could, therefore, be of value not only for the treatment of existing psychiatric conditions, but also for preventing the development of cognitive disorders in response to environmental pressures.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Neuroscience & Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
312
|
Callahan PM, Terry AV, Tehim A. Effects of the nicotinic α7 receptor partial agonist GTS-21 on NMDA-glutamatergic receptor related deficits in sensorimotor gating and recognition memory in rats. Psychopharmacology (Berl) 2014; 231:3695-706. [PMID: 24595504 PMCID: PMC4748388 DOI: 10.1007/s00213-014-3509-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/11/2014] [Indexed: 12/11/2022]
Abstract
RATIONALE Disturbances in information processing and cognitive function are key features of schizophrenia. Nicotinic α7 acetylcholine receptors (α7-nAChR) are involved in sensory gating and cognition, thereby representing a viable therapeutic strategy. OBJECTIVES AND METHODS We investigated the effects of GTS-21, an α7-nAChR partial agonist, on prepulse inhibition (PPI) of acoustic startle in two pharmacologic impairment models in Wistar male rats: NMDA-glutamate receptor antagonism by MK-801 and dopamine receptor agonism by apomorphine. The cognitive effects of GTS-21 were assessed using the object recognition task (ORT) at short (3 h) and long (48 h) delays in Sprague-Dawley male rats. Pharmacological specificity was assessed by methyllycaconitine (MLA) coadministration with GTS-21. RESULTS In the PPI task, GTS-21 (1-10 mg/kg) alone did not alter the PPI response or startle amplitude. Coadministration of GTS-21 with MK-801 (0.1 mg/kg) or apomorphine (0.5 mg/kg) abolished the pharmacologic-induced PPI impairment as did the antipsychotics clozapine (5.0 mg/kg) and haloperidol (0.3 mg/kg). MK-801 alone increased startle amplitude which was blocked by GTS-21. In the ORT, GTS-21 (0.1-10 mg/kg) reversed the MK-801 (0.08 mg/kg)-induced memory deficit at the 3 h delay and enhanced memory at the 48 h delay, an effect abolished by MLA (0.313-5 mg/kg). CONCLUSIONS The results extend our preclinical pharmacological understanding of GTS-21 to include the ability of GTS-21 to modulate NMDA-glutamate receptor function, in vivo. Given the role of NMDA-glutamate receptor involvement in schizophrenia, α7-nAChR agonists may represent a novel treatment strategy for the pathophysiological deficits of schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, Small Animal Behavior Core, Georgia Regents University, Augusta, GA, 30912, USA,
| | | | | |
Collapse
|
313
|
Maeda K, Lerdrup L, Sugino H, Akazawa H, Amada N, McQuade RD, Stensbøl TB, Bundgaard C, Arnt J, Kikuchi T. Brexpiprazole II: antipsychotic-like and procognitive effects of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther 2014; 350:605-14. [PMID: 24947464 DOI: 10.1124/jpet.114.213819] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Brexpiprazole (OPC-34712, 7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one) is a novel serotonin-dopamine activity modulator with partial agonist activity at serotonin 1A (5-HT1A) and D2/3 receptors, combined with potent antagonist effects on 5-HT2A, α1B-, and α2C-adrenergic receptors. Brexpiprazole inhibited conditioned avoidance response (ED50 = 6.0 mg/kg), apomorphine- or d-amphetamine-induced hyperactivity (ED50 = 2.3 and 0.90, respectively), and apomorphine-induced stereotypy (ED50 = 2.9) in rats at clinically relevant D2 receptor occupancies. Brexpiprazole also potently inhibited apomorphine-induced eye blinking in monkeys. The results suggest that brexpiprazole has antipsychotic potential. Brexpiprazole induced catalepsy (ED50 = 20) well above clinically relevant D2 receptor occupancies, suggesting a low risk for extrapyramidal side effects. Subchronic treatment with phencyclidine (PCP) induced cognitive impairment in both novel object recognition (NOR) and attentional set-shifting (ID-ED) tests in rats. Brexpiprazole reversed the PCP-induced cognitive impairment in the NOR test at 1.0 and 3.0 mg/kg, and in the ID-ED test at 1.0 mg/kg. However, aripiprazole (10 mg/kg) was ineffective in both tests, despite achieving relevant D2 occupancies. In the NOR test, the 5-HT1A agonist buspirone and the 5-HT2A antagonist M100907 [(R)-(2,3-dimethoxyphenyl)[1-(4-fluorophenethyl)piperidin-4-yl]methanol] partially but significantly reversed PCP-induced impairment. Furthermore, the effect of brexpiprazole was reversed by cotreatment with the 5-HT1A antagonist WAY100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate). The results indicate that brexpiprazole has antipsychotic-like activity and robust efficacy in relevant models of cognitive impairment associated with schizophrenia. The effects of brexpiprazole in the cognitive tests are superior to those of aripiprazole. We propose that the pharmacologic profile of brexpiprazole be based on its balanced effects on 5-HT1A, D2, and 5-HT2A receptors, with possible modulating activity through additional monoamine receptors.
Collapse
Affiliation(s)
- Kenji Maeda
- Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan (K.M., H.S., H.A., N.A., T.K.); Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (R.D.M.); and Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark (L.L., T.B.S., C.B., J.A.)
| | - Linda Lerdrup
- Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan (K.M., H.S., H.A., N.A., T.K.); Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (R.D.M.); and Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark (L.L., T.B.S., C.B., J.A.)
| | - Haruhiko Sugino
- Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan (K.M., H.S., H.A., N.A., T.K.); Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (R.D.M.); and Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark (L.L., T.B.S., C.B., J.A.)
| | - Hitomi Akazawa
- Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan (K.M., H.S., H.A., N.A., T.K.); Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (R.D.M.); and Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark (L.L., T.B.S., C.B., J.A.)
| | - Naoki Amada
- Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan (K.M., H.S., H.A., N.A., T.K.); Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (R.D.M.); and Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark (L.L., T.B.S., C.B., J.A.)
| | - Robert D McQuade
- Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan (K.M., H.S., H.A., N.A., T.K.); Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (R.D.M.); and Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark (L.L., T.B.S., C.B., J.A.)
| | - Tine Bryan Stensbøl
- Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan (K.M., H.S., H.A., N.A., T.K.); Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (R.D.M.); and Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark (L.L., T.B.S., C.B., J.A.)
| | - Christoffer Bundgaard
- Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan (K.M., H.S., H.A., N.A., T.K.); Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (R.D.M.); and Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark (L.L., T.B.S., C.B., J.A.)
| | - Jørn Arnt
- Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan (K.M., H.S., H.A., N.A., T.K.); Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (R.D.M.); and Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark (L.L., T.B.S., C.B., J.A.)
| | - Tetsuro Kikuchi
- Qs' Research Institute, Otsuka Pharmaceutical Co., Ltd. Tokushima, Japan (K.M., H.S., H.A., N.A., T.K.); Otsuka Pharmaceutical Development & Commercialization, Princeton, New Jersey (R.D.M.); and Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark (L.L., T.B.S., C.B., J.A.)
| |
Collapse
|
314
|
Cai B, Chen X, Liu F, Li J, Gu L, Liu JR, Liu J. A cell-based functional assay using a green fluorescent protein-based calcium indicator dCys-GCaMP. Assay Drug Dev Technol 2014; 12:342-51. [PMID: 25105973 DOI: 10.1089/adt.2014.584] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Measurement of the changes in intracellular Ca2+ levels is an important assay for drug discovery. In this report, we describe a novel Ca2+ indicator, dCys-GCaMP, based on the green fluorescent protein and the development of a rapid and simple cell-based functional assay using this new Ca2+ indicator. We demonstrated the sensitivity and reliability of the assay by measuring the cellular responses to the agonists, antagonists, channel blockers, and modulators of the ionotropic N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. HEK293 cells coexpressing the NMDA receptor and dCys-GCaMP displayed a strong increase in fluorescence intensity when stimulated with the agonist glutamate. This increase in the fluorescence signal was agonist concentration dependent and could be blocked by NMDAR antagonists and channel blockers. The pharmacological parameters measured with the dCys-GCaMP assay are in close agreement with those derived from conventional assays with synthetic dye fluo-4 and literature values. In addition, we showed that this assay could be used on G protein-coupled receptors as well, as exemplified by studies on the α1A adrenergic receptor. A limited scale evaluation of the assay performance in a 96-well compound screening format suggests that the dCys-GCaMP assay could be easily adapted to a high-throughput screening environment. The most important advantage of this new assay over the conventional fluo-4 and aequorin assays is the elimination of the dye-loading or substrate-loading process.
Collapse
Affiliation(s)
- Bin Cai
- 1 Rugen Therapeutics Ltd. , Suzhou Industrial Park, China
| | | | | | | | | | | | | |
Collapse
|
315
|
Nikiforuk A, Popik P. The effects of acute and repeated administration of ketamine on attentional performance in the five-choice serial reaction time task in rats. Eur Neuropsychopharmacol 2014; 24:1381-93. [PMID: 24846536 DOI: 10.1016/j.euroneuro.2014.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/27/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
Abstract
Ketamine, the non-competitive antagonist of the N-methyl-d-aspartate receptors, is used in clinical and preclinical studies to produce schizophrenia-like cognitive impairments. However, the impact of ketamine on attentional functions remains poorly characterised. In the present study, we further examine the effects of ketamine on attentional processes assessed in the five-choice serial reaction time task (5-CSRTT) in rats. The applied schedules of ketamine administration have been previously demonstrated to evoke frontal-dependent set-shifting impairments. Rats were trained to reach a stable baseline performance. Afterwards, animals received a single injection of ketamine (0, 3 and 10 mg/kg, IP) 45 min before the 5-CSRTT session (experiment 1). In experiment 2, ketamine (0 and 30 mg/kg, IP) was administered after the daily test session for 10 consecutive days. The rats' performance was assessed at 22 h following ketamine administration and for 4 days after the last dose. Acute and repeated administration of ketamine disrupted rats performance on the 5-CSRTT. Reduced speed of responding and an increased number of omissions were noted in the absence of reduced food motivation. The within-session pattern of responding differed between rats treated acutely and repeatedly with ketamine. Specifically, repeated drug administration evoked an increase in omissions toward the end of the session, and this effect was not secondary to the reduced motivation. Ketamine affected performance during the withdrawal period only when testing with variable inter-trial intervals. The repeated administration of ketamine can impair rats' ability to sustain attention over the course of session, suggesting some utility for modelling attentional disturbances.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| |
Collapse
|
316
|
Redrobe JP, Jørgensen M, Christoffersen CT, Montezinho LP, Bastlund JF, Carnerup M, Bundgaard C, Lerdrup L, Plath N. In vitro and in vivo characterisation of Lu AF64280, a novel, brain penetrant phosphodiesterase (PDE) 2A inhibitor: potential relevance to cognitive deficits in schizophrenia. Psychopharmacology (Berl) 2014; 231:3151-67. [PMID: 24577516 DOI: 10.1007/s00213-014-3492-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/05/2014] [Indexed: 12/25/2022]
Abstract
Here, we present the pharmacological characterisation of Lu AF64280, a novel, selective, brain penetrant phosphodiesterase (PDE) 2A inhibitor, in in vitro/in vivo assays indicative of PDE2A inhibition, and in vivo models/assays relevant to cognitive processing or antipsychotic-like activity. The in vitro selectivity of Lu AF64280 was determined against a panel of PDE enzymes and 3',5'-cyclic guanosine monophosphate (cGMP) levels in the hippocampus were determined using in vivo microdialysis. Lu AF64280 potently inhibited hPDE2A (Ki = 20 nM), 50-fold above moderate inhibition of both hPDE9A (Ki = 1,000 nM) and hPDE10A (Ki = 1,800 nM), and displayed a >250-fold selectivity over all other full-length human recombinant PDE family members (Ki above 5,000 nM). Lu AF64280 (20 mg/kg) significantly increased cGMP levels in the hippocampus (p < 0.01 versus vehicle-treated mice), attenuated sub-chronic phencyclidine-induced deficits in novel object exploration in rats (10 mg/kg, p < 0.001 versus vehicle-treated), blocked early postnatal phencyclidine-induced deficits in the intradimensional/extradimensional shift task in rats (1 and 10 mg/kg, p < 0.001 versus vehicle-treated) and attenuated spontaneous P20-N40 auditory gating deficits in DBA/2 mice (20 mg/kg, p < 0.05 versus vehicle-treated). In contrast, Lu AF64280 failed to attenuate phencyclidine-induced hyperactivity in mice, and was devoid of antipsychotic-like activity in the conditioned avoidance response paradigm in rats, at any dose tested. Lu AF64280 represents a novel tool compound for selective PDE2A inhibition that substantiates a critical role of this enzyme in cognitive processes under normal and pathological conditions.
Collapse
Affiliation(s)
- John P Redrobe
- Neuroscience Research DK, H. Lundbeck A/S, Ottiliavej 9, Valby, 2500, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Meneses A. 5-HT7 receptor stimulation and blockade: a therapeutic paradox about memory formation and amnesia. Front Behav Neurosci 2014; 8:207. [PMID: 24971055 PMCID: PMC4053683 DOI: 10.3389/fnbeh.2014.00207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/22/2014] [Indexed: 12/30/2022] Open
Affiliation(s)
- Alfredo Meneses
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico NacionalMexico City, Mexico
| |
Collapse
|
318
|
Carli M, Invernizzi RW. Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task. Front Neural Circuits 2014; 8:58. [PMID: 24966814 PMCID: PMC4052821 DOI: 10.3389/fncir.2014.00058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 01/13/2023] Open
Abstract
Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neurotransmission along these circuits and in turn to optimize circuit performance for specific aspects of executive control over behavior. In this review, we focus on the 5-choice serial reaction time task which is able to provide various measures of attention and executive control over performance in rodents and the ability of prefrontocortical and striatal serotonin 5-HT1A, 5-HT2A, and 5-HT2C as well as dopamine D1- and D2-like receptors to modulate different aspects of executive and attention disturbances induced by NMDA receptor hypofunction in the prefrontal cortex. These behavioral studies are integrated with findings from microdialysis studies. These studies illustrate the control of attention selectivity by serotonin 5-HT1A, 5-HT2A, 5-HT2C, and dopamine D1- but not D2-like receptors and a distinct contribution of these cortical and striatal serotonin and dopamine receptors to the control of different aspects of executive control over performance such as impulsivity and compulsivity. An association between NMDA antagonist-induced increase in glutamate release in the prefrontal cortex and attention is suggested. Collectively, this review highlights the functional interaction of serotonin and dopamine with NMDA dependent glutamate neurotransmission in the cortico-striatal circuitry for specific cognitive demands and may shed some light on how dysregulation of neuronal processing in these circuits may be implicated in specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mirjana Carli
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milano, Italy
| | - Roberto W Invernizzi
- Laboratory of Neurochemistry and Behavior, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" Milano, Italy
| |
Collapse
|
319
|
Grayson B, Adamson L, Harte M, Leger M, Marsh S, Piercy C, Neill JC. The involvement of distraction in memory deficits induced by NMDAR antagonism: Relevance to cognitive deficits in schizophrenia. Behav Brain Res 2014; 266:188-92. [DOI: 10.1016/j.bbr.2014.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
|
320
|
Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A. The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 2014; 12:219-38. [PMID: 24851087 PMCID: PMC4023453 DOI: 10.2174/1570159x12666140324183406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 01/23/2023] Open
Abstract
Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately
1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its
pathophysiology to postsynaptic abnormalities.
The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia.
More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and
metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being
implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD
constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests
that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including
schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for
the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of
current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this
devastating illness.
The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia
pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic
molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the
possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be
discussed.
Collapse
Affiliation(s)
- Felice Iasevoli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| |
Collapse
|
321
|
Xiu Y, Kong XR, Zhang L, Qiu X, Chao FL, Peng C, Gao Y, Huang CX, Wang SR, Tang Y. White matter injuries induced by MK-801 in a mouse model of schizophrenia based on NMDA antagonism. Anat Rec (Hoboken) 2014; 297:1498-507. [PMID: 24788877 DOI: 10.1002/ar.22942] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
The etiology of schizophrenia (SZ) is complex and largely unknown. Neuroimaging and postmortem studies have suggested white matter disturbances in SZ. In the present study, we tested the white matter deficits hypothesis of SZ using a mouse model of SZ induced by NMDA receptor antagonist MK-801. We found that mice with repeated chronic MK-801 administration showed increased locomotor activity in the open field test, less exploration of a novel environment in the hole-board test, and increased anxiety in the elevated plus maze but no impairments were observed in coordination or motor function on accelerating rota-rod. The total white matter volume and corpus callosum volume in mice treated with MK-801 were significantly decreased compared to control mice treated with saline. Myelin basic protein and 2', 3'-cyclic nucleotide 3'-phosphodiesterase were also significantly decreased in the mouse model of SZ. Furthermore, we observed degenerative changes of myelin sheaths in the mouse model of SZ. These results provide further evidence of white matter deficits in SZ and indicate that the animal model of SZ induced by MK-801 is a useful model to investigate mechanisms underlying white matter abnormalities in SZ.
Collapse
Affiliation(s)
- Yun Xiu
- Institute of Life Science, Chongqing Medical University, Chongqing, People's Republic of China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Barnes SA, Der-Avakian A, Markou A. Anhedonia, avolition, and anticipatory deficits: assessments in animals with relevance to the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 2014; 24:744-58. [PMID: 24183826 PMCID: PMC3986268 DOI: 10.1016/j.euroneuro.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/30/2013] [Accepted: 10/05/2013] [Indexed: 12/11/2022]
Abstract
Schizophrenia represents a complex, heterogeneous disorder characterized by several symptomatic domains that include positive and negative symptoms and cognitive deficits. Negative symptoms reflect a cluster of symptoms that remains therapeutically unresponsive to currently available medications. Therefore, the development of animal models that may contribute to the discovery of novel and efficacious treatment strategies is essential. An animal model consists of both an inducing condition or manipulation (i.e., independent variable) and an observable measure(s) (i.e., dependent variables) that are used to assess the construct(s) under investigation. The objective of this review is to describe currently available experimental procedures that can be used to characterize constructs relevant to the negative symptoms of schizophrenia in experimental animals. While negative symptoms can encompass aspects of social withdrawal and emotional blunting, this review focuses on the assessment of reward deficits that result in anhedonia, avolition, and abnormal reward anticipation. The development and utilization of animal procedures that accurately assess reward-based constructs related to negative symptomatology in schizophrenia will provide an improved understanding of the neural substrates involved in these processes.
Collapse
Affiliation(s)
- Samuel A Barnes
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Andre Der-Avakian
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA.
| |
Collapse
|
323
|
Clozapine ameliorates epigenetic and behavioral abnormalities induced by phencyclidine through activation of dopamine D1 receptor. Int J Neuropsychopharmacol 2014; 17:723-37. [PMID: 24345457 DOI: 10.1017/s1461145713001466] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Accumulating evidence suggests that dysregulation of histone modification is involved in the pathogenesis and/or pathophysiology of psychiatric disorders. However, the abnormalities in histone modification in the animal model of schizophrenia and the efficacy of antipsychotics for such abnormalities remain unclear. Here, we investigated the involvement of histone modification in phencyclidine-induced behavioral abnormalities and the effects of antipsychotics on these abnormalities. After repeated phencyclidine (10 mg/kg) treatment for 14 consecutive days, mice were treated with antipsychotics (clozapine or haloperidol) or the histone deacetylase inhibitor sodium butyrate for 7 d. Repeated phencyclidine treatments induced memory impairment and social deficit in the mice. The acetylation of histone H3 at lysine 9 residues decreased in the prefrontal cortex with phencyclidine treatment, whereas the expression level of histone deacetylase 5 increased. In addition, the phosphorylation of Ca²⁺/calmodulin-dependent protein kinase II in the nucleus decreased in the prefrontal cortex of phencyclidine-treated mice. These behavioral and epigenetic changes in phencyclidine-treated mice were attenuated by clozapine and sodium butyrate but not by haloperidol. The dopamine D1 receptor antagonist SCH-23390 blocked the ameliorating effects of clozapine but not of sodium butyrate. Furthermore, clozapine and sodium butyrate attenuated the decrease in expression level of GABAergic system-related genes in the prefrontal cortex of phencyclidine-treated mice. These findings suggest that the antipsychotic effect of clozapine develops, at least in part, through epigenetic modification by activation of the dopamine D1 receptor in the prefrontal cortex.
Collapse
|
324
|
Neill JC, Harte MK, Haddad PM, Lydall ES, Dwyer DM. Acute and chronic effects of NMDA receptor antagonists in rodents, relevance to negative symptoms of schizophrenia: a translational link to humans. Eur Neuropsychopharmacol 2014; 24:822-35. [PMID: 24287012 DOI: 10.1016/j.euroneuro.2013.09.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/06/2013] [Accepted: 09/26/2013] [Indexed: 12/11/2022]
Abstract
Negative symptoms of schizophrenia remain an unmet clinical need as they are common, persistent, respond poorly to existing treatments and lead to disability. Blunted affect, alogia, asociality, anhedonia and avolition are regarded as key negative symptoms despite DSM-IV-TR specifying a more limited range. The key to development of improved therapies is improved animal models that mimic the human condition in terms of behaviour and pathology and that predict efficacy of novel treatments in patients. Accumulating evidence shows that NMDA receptor (NMDAR) antagonists mimic cognitive deficits of relevance to schizophrenia in animals, along with associated pathological changes. This review examines evidence for the ability of NMDAR antagonists to mimic anhedonia and asociality, two negative symptoms of schizophrenia, in animals. The use of various species, paradigms and treatment regimens are reviewed. We conclude that sub-chronic treatment with NMDAR antagonists, typically PCP, induces social withdrawal in animals but not anhedonia. NMDAR antagonists have further effects in paradigms such as motivational salience that may be useful for mimicking other aspects of negative symptoms but these require further development. Sub-chronic treatment regimens of NMDAR antagonists also have some neurobiological effects of relevance to negative symptoms. It is our view that a sub-chronic treatment regime with NMDAR antagonists, particularly PCP, with animals tested following a wash-out period and in a battery of tests to assess certain behaviours of relevance to negative symptoms and social withdrawal (the animal equivalent of asociality) is valuable. This will enhance our understanding of the psycho and neuropathology of specific negative symptom domains and allow early detection of novel pharmacological targets.
Collapse
Affiliation(s)
- Joanna C Neill
- Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | - Michael K Harte
- Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Peter M Haddad
- Neuroscience and Psychiatry Unit, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Emma S Lydall
- Public Health Wales, Unit 1 Charnwood Court, Heol Billingsley, Parc Nantgarw, Cardiff CF15 7QZ, UK
| | - Dominic M Dwyer
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
325
|
Millan MJ, Fone K, Steckler T, Horan WP. Negative symptoms of schizophrenia: clinical characteristics, pathophysiological substrates, experimental models and prospects for improved treatment. Eur Neuropsychopharmacol 2014; 24:645-92. [PMID: 24820238 DOI: 10.1016/j.euroneuro.2014.03.008] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a complex and multifactorial disorder generally diagnosed in young adults at the time of the first psychotic episode of delusions and hallucinations. These positive symptoms can be controlled in most patients by currently-available antipsychotics. Conversely, they are poorly effective against concomitant neurocognitive dysfunction, deficits in social cognition and negative symptoms (NS), which strongly contribute to poor functional outcome. The precise notion of NS has evolved over the past century, with recent studies - underpinned by novel rating methods - suggesting two major sub-domains: "decreased emotional expression", incorporating blunted affect and poverty of speech, and "avolition", which embraces amotivation, asociality and "anhedonia" (inability to anticipate pleasure). Recent studies implicate a dysfunction of frontocortico-temporal networks in the aetiology of NS, together with a disruption of cortico-striatal circuits, though other structures are also involved, like the insular and parietal cortices, amygdala and thalamus. At the cellular level, a disruption of GABAergic-glutamatergic balance, dopaminergic signalling and, possibly, oxytocinergic and cannibinoidergic transmission may be involved. Several agents are currently under clinical investigation for the potentially improved control of NS, including oxytocin itself, N-Methyl-d-Aspartate receptor modulators and minocycline. Further, magnetic-electrical "stimulation" strategies to recruit cortical circuits and "cognitive-behavioural-psychosocial" therapies likewise hold promise. To acquire novel insights into the causes and treatment of NS, experimental study is crucial, and opportunities are emerging for improved genetic, pharmacological and developmental modelling, together with more refined readouts related to deficits in reward, sociality and "expression". The present article comprises an integrative overview of the above issues as a platform for this Special Issue of European Neuropsychopharmacology in which five clinical and five preclinical articles treat individual themes in greater detail. This Volume provides, then, a framework for progress in the understanding - and ultimately control - of the debilitating NS of schizophrenia.
Collapse
Affiliation(s)
- Mark J Millan
- Pole of Innovation in Neuropsychiatry, Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| | - Kevin Fone
- School of Biomedical Sciences, Medical School, Queen׳s Medical Centre, Nottingham University, Nottingham NG72UH, UK
| | - Thomas Steckler
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - William P Horan
- VA Greater Los Angeles Healthcare System, University of California, Los Angeles, MIRECC 210A, Bldg. 210, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA
| |
Collapse
|
326
|
Napolitano A, Shah K, Schubert MI, Porkess V, Fone KCF, Auer DP. In vivo neurometabolic profiling to characterize the effects of social isolation and ketamine-induced NMDA antagonism: a rodent study at 7.0 T. Schizophr Bull 2014; 40:566-74. [PMID: 23671195 PMCID: PMC3984514 DOI: 10.1093/schbul/sbt067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Continued efforts are undertaken to develop animal models of schizophrenia with translational value in the quest for much needed novel drugs. Existing models mimic specific neurobiological aspects of schizophrenia, but not its full complexity. Here, we used proton magnetic resonance spectroscopy ((1)H-MRS) to assess the metabolic profile in the prefrontal cortex (PFC) of two established models, rearing in social isolation and acute N-methyl-D-aspartate receptor (NMDA-R) antagonism and their combination. Rats reared in social isolation or group housed underwent (1)H-MRS at baseline and dynamically after ketamine challenge (25mg/kg, intraperitoneal) under isoflurane anesthesia. A 7 T animal scanner was used to perform spectra acquisition from the anterior cingulate/medial PFC. LCModel was used for metabolite quantification and effects of rearing and ketamine injection were analyzed. Social isolation did not lead to significant differences in the metabolic profile of the PFC at baseline. Ketamine induced a significant increase in glutamine in both groups with significance specifically reached by the group-housed animals alone. Only rats reared in social isolation showed a significant 11% γ-aminobutyric acid (GABA) decrease. This study provides preliminary evidence that social interactions in early life predict the glutamatergic and GABAergic response to acute NMDA-R blockade. The similarity between the prefrontal GABA reduction in patients with schizophrenia and in rats reared as social isolates after challenge with ketamine suggests good potential translational value of this combined animal model for drug development.
Collapse
Affiliation(s)
- Antonio Napolitano
- *To whom correspondence should be addressed; tel: +39 06 68592437, fax: +39 06 68593856, e-mail:
| | - Khalid Shah
- Division of Radiological and Imaging Sciences, School of Clinical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Mirjam I. Schubert
- Division of Radiological and Imaging Sciences, School of Clinical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Veronica Porkess
- School of Biomedical Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
| | - Kevin C. F. Fone
- School of Biomedical Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
| | - Dorothee P. Auer
- Division of Radiological and Imaging Sciences, School of Clinical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| |
Collapse
|
327
|
Wilson CA, Koenig JI. Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 2014; 24:759-73. [PMID: 24342774 PMCID: PMC4481734 DOI: 10.1016/j.euroneuro.2013.11.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/16/2013] [Accepted: 11/17/2013] [Indexed: 12/20/2022]
Abstract
Negative symptoms (e.g., asociality and anhedonia) are a distinct symptomatic domain that has been found to significantly affect the quality of life in patients diagnosed with schizophrenia. Additionally, the primary negative symptom of asociality (i.e., withdrawal from social contact that derives from indifference or lack of desire to have social contact) is a major contributor to poor psychosocial functioning and has been found to play an important role in the course of the disorder. Nonetheless, the pathophysiology underlying these symptoms is unknown and currently available treatment options (e.g., antipsychotics and cognitive-behavioral therapy) fail to reliably produce efficacious benefits. Utilizing rodent paradigms that measure social behaviors (e.g., social withdrawal) to elucidate the neurobiological substrates that underlie social dysfunction and to identify novel therapeutic targets may be highly informative and useful to understand more about the negative symptoms of schizophrenia. Accordingly, the purpose of this review is to provide an overview of the behavioral tasks for assessing social functioning that may be translationally relevant for investigating negative symptoms associated with schizophrenia.
Collapse
Affiliation(s)
- Christina A Wilson
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA.
| | - James I Koenig
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| |
Collapse
|
328
|
Modeling combined schizophrenia-related behavioral and metabolic phenotypes in rodents. Behav Brain Res 2014; 276:130-42. [PMID: 24747658 DOI: 10.1016/j.bbr.2014.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic, debilitating disorder with a complex behavioral and cognitive phenotype underlined by a similarly complex etiology involving an interaction between susceptibility genes and environmental factors during early development. Limited progress has been made in developing novel pharmacotherapy, partly due to a lack of valid animal models. The recent recognition of the potentially causal role of central and peripheral energy metabolism in the pathophysiology of schizophrenia raises the need of research on animal models that combine both behavioral and metabolic phenotypic domains, similar to what have been identified in humans. In this review we focus on selected genetic (DBA/2J mice, leptin receptor mutants, and PSD-93 knockout mice), early neurodevelopmental (maternal protein deprivation) and pharmacological (acute phencyclidine) animal models that capture the combined behavioral and metabolic abnormalities shown by schizophrenic patients. In reviewing behavioral phenotypes relevant to schizophrenia we apply the principles established by the Research Domain Criteria (RDoC) for better translation. We demonstrate that etiologically diverse manipulations such as specific breeding, deletion of genes that are primarily involved in metabolic regulation and in synaptic plasticity, as well as early metabolic deprivation and adult pharmacological challenge of the glutamate system can lead to schizophrenia-related behavioral and metabolic phenotypes, which suggest that these pathways might be interlinked. We propose that using animal models that combine different domains of schizophrenia can be used as a translationally valid approach to capture the system-level complex interplay between peripheral and central processes in the development of psychopathology.
Collapse
|
329
|
Frau R, Bini V, Pillolla G, Malherbe P, Pardu A, Thomas AW, Devoto P, Bortolato M. Positive allosteric modulation of GABAB receptors ameliorates sensorimotor gating in rodent models. CNS Neurosci Ther 2014; 20:679-84. [PMID: 24703381 DOI: 10.1111/cns.12261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Converging evidence points to the involvement of γ-amino-butyric acid B receptors (GABABRs) in the regulation of information processing. We previously showed that GABABR agonists exhibit antipsychotic-like properties in rodent models of sensorimotor gating deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. The therapeutic potential of these agents, however, is limited by their neuromuscular side effects; thus, in this study, we analyzed whether rac-BHFF, a potent GABABR-positive allosteric modulator (PAM), could counter spontaneous and pharmacologically induced PPI deficits across various rodent models. METHODS We tested the antipsychotic effects of rac-BHFF on the PPI deficits caused by the N-methyl-D-aspartate glutamate receptor antagonist dizocilpine, in Sprague-Dawley rats and C57BL/6 mice. Furthermore, we verified whether rac-BHFF ameliorated the spontaneous PPI impairments in DBA/2J mice. RESULTS rac-BHFF dose-dependently countered the PPI deficits across all three models, in a fashion akin to the GABABR agonist baclofen and the atypical antipsychotic clozapine; in contrast with these compounds, however, rac-BHFF did not affect startle magnitude. CONCLUSIONS The present data further support the implication of GABABRs in the modulation of sensorimotor gating and point to their PAMs as a novel promising tool for antipsychotic treatment, with fewer side effects than GABABR agonists.
Collapse
Affiliation(s)
- Roberto Frau
- "Guy Everett" Laboratory, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Tourette Syndrome Center, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
330
|
Daya R, Bhandari J, Hui P, Tian Y, Farncombe T, Mishra R. Effects of MK-801 treatment across several pre-clinical analyses including a novel assessment of brain metabolic function utilizing PET and CT fused imaging in live rats. Neuropharmacology 2014; 77:325-33. [DOI: 10.1016/j.neuropharm.2013.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022]
|
331
|
Rial D, Lara DR, Cunha RA. The Adenosine Neuromodulation System in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:395-449. [DOI: 10.1016/b978-0-12-801022-8.00016-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
332
|
Scott D, Taylor JR. Chronic nicotine attenuates phencyclidine-induced impulsivity in a mouse serial reaction time task. Behav Brain Res 2013; 259:164-73. [PMID: 24239695 DOI: 10.1016/j.bbr.2013.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/16/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a disorder characterized by positive, negative, and cognitive symptoms. While positive symptoms can be effectively treated with typical antipsychotic medication, which generally affects the dopaminergic system, negative and cognitive symptoms, including attentional deficits and impulsive behavior, are less sensitive to standard treatments. It has further been well documented that schizophrenic patients use tobacco products at a rate much higher than the general population, and this persists despite treatment. It has been argued this behavior may be a form of self-medication, to alleviate some symptoms of schizophrenia. It has further been posited that prefrontal glutamatergic hypofunction may underlie some aspects of schizophrenia, and in accordance with this model, systemic phencyclidine has been used to model the disease. We employed a modified 5-choice serial reaction time test, a paradigm that is often used to investigate many of the treatment-resistant symptoms of schizophrenia including impulsivity, selective attention, and sustained attention/cognitive vigilance, to determine the medicinal effects of nicotine. We demonstrate that chronic oral, but not acute injections of nicotine can selectively attenuate phencyclidine-induced increases in impulsivity without affecting other measures of attention. This suggests that nicotine use by schizophrenics may provide some relief of distinct symptoms that involve impulsive behaviors.
Collapse
Affiliation(s)
- Daniel Scott
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT, United States
| | - Jane R Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT, United States.
| |
Collapse
|
333
|
Zamberletti E, Beggiato S, Steardo L, Prini P, Antonelli T, Ferraro L, Rubino T, Parolaro D. Alterations of prefrontal cortex GABAergic transmission in the complex psychotic-like phenotype induced by adolescent delta-9-tetrahydrocannabinol exposure in rats. Neurobiol Dis 2013; 63:35-47. [PMID: 24200867 DOI: 10.1016/j.nbd.2013.10.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/14/2013] [Accepted: 10/27/2013] [Indexed: 12/12/2022] Open
Abstract
Although several findings indicate an association between adolescent cannabis abuse and the risk to develop schizophrenia later in life, the evidence for a causal relationship is still inconclusive. In the present study, we investigated the emergence of psychotic-like behavior in adult female rats chronically exposed to delta-9-tetrahydrocannabinol (THC) during adolescence. To this aim, female Sprague-Dawley rats were treated with THC during adolescence (PND 35-45) and, in adulthood (PND 75), a series of behavioral tests and biochemical assays were performed in order to investigate the long-term effects of adolescent THC exposure. Adolescent THC pretreatment leads to long-term behavioral alterations, characterized by recognition memory deficits, social withdrawal, altered emotional reactivity and sensitization to the locomotor activating effects of acute PCP. Moreover, since cortical disinhibition seems to be a key feature of many different animal models of schizophrenia and GABAergic hypofunction in the prefrontal cortex (PFC) has been observed in postmortem brains from schizophrenic patients, we then investigated the long-lasting consequences of adolescent THC exposure on GABAergic transmission in the adult rat PFC. Biochemical analyses revealed that adolescent THC exposure results in reduced GAD67 and basal GABA levels within the adult PFC. GAD67 expression is reduced both in parvalbumin (PV)- and cholecystokinin (CCK)-containing interneurons; this alteration may be related to the altered emotional reactivity triggered by adolescent THC, as silencing PFC GAD67 expression through a siRNA-mediated approach is sufficient to impact rats' behavior in the forced swim test. Finally, the cellular underpinnings of the observed sensitized response to acute PCP in adult THC-treated rats could be ascribed to the increased cFos immunoreactivity and glutamate levels in the PFC and dorsal striatum. The present findings support the hypothesis that adolescent THC exposure may represent a risk factor for the development of a complex psychotic-like behavior in adulthood.
Collapse
Affiliation(s)
- Erica Zamberletti
- Dept. of Theoretical and Applied Sciences, Biomedical Division and Center of Neuroscience, Univ. of Insubria, Busto Arsizio (VA), Italy
| | - Sarah Beggiato
- Dept. of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Luca Steardo
- Dept. of Psychiatry, Univ. of Naples SUN, Naples, Italy
| | - Pamela Prini
- Dept. of Theoretical and Applied Sciences, Biomedical Division and Center of Neuroscience, Univ. of Insubria, Busto Arsizio (VA), Italy
| | - Tiziana Antonelli
- Dept. of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Luca Ferraro
- Dept. of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Tiziana Rubino
- Dept. of Theoretical and Applied Sciences, Biomedical Division and Center of Neuroscience, Univ. of Insubria, Busto Arsizio (VA), Italy
| | - Daniela Parolaro
- Dept. of Theoretical and Applied Sciences, Biomedical Division and Center of Neuroscience, Univ. of Insubria, Busto Arsizio (VA), Italy; Zardi-Gori Foundation, Milan, Italy.
| |
Collapse
|
334
|
Monte AS, de Souza GC, McIntyre RS, Soczynska JK, dos Santos JV, Cordeiro RC, Ribeiro BMM, de Lucena DF, Vasconcelos SMM, de Sousa FCF, Carvalho AF, Macêdo DS. Prevention and reversal of ketamine-induced schizophrenia related behavior by minocycline in mice: Possible involvement of antioxidant and nitrergic pathways. J Psychopharmacol 2013; 27:1032-43. [PMID: 24045882 DOI: 10.1177/0269881113503506] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been hypothesized that oxidative imbalance and alterations in nitrergic signaling play a role in the neurobiology of schizophrenia. Preliminary evidence suggests that adjunctive minocycline treatment is efficacious for cognitive and negative symptoms of schizophrenia. This study investigated the effects of minocycline in the prevention and reversal of ketamine-induced schizophrenia-like behaviors in mice. In the reversal protocol, animals received ketamine (20 mg/kg per day intraperitoneally or saline for 14 days, and minocycline (25 or 50 mg/kg daily), risperidone or vehicle treatment from days 8 to 14. In the prevention protocol, mice were pretreated with minocycline, risperidone or vehicle prior to ketamine. Behaviors related to positive (locomotor activity and prepulse inhibition of startle), negative (social interaction) and cognitive (Y maze) symptoms of schizophrenia were also assessed. Glutathione (GSH), thiobarbituric acid-reactive substances (TBARS) and nitrite levels were measured in the prefrontal cortex, hippocampus and striatum. Minocycline and risperidone prevented and reversed ketamine-induced alterations in behavioral paradigms, oxidative markers (i.e. ketamine-induced decrease and increase in GSH levels and TBARS content, respectively) as well as nitrite levels in the striatum. These data provide a rationale for evaluating minocycline as a novel psychotropic agent and suggest that its mechanism of action includes antioxidant and nitrergic systems.
Collapse
Affiliation(s)
- Aline Santos Monte
- 1Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 2013; 16:2181-94. [PMID: 24099265 DOI: 10.1017/s1461145713000928] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) antagonists, phencyclidine (PCP), dizocilpine (MK-801), or ketamine, given subchronically (sc) to rodents and primates, produce prolonged deficits in cognitive function, including novel object recognition (NOR), an analog of human declarative memory, one of the cognitive domains impaired in schizophrenia. Atypical antipsychotic drugs (AAPDs) have been reported to improve declarative memory in some patients with schizophrenia, as well as to ameliorate and prevent the NOR deficit in rodents following scNMDAR antagonist treatment. While the efficacy of AAPDs to improve cognitive impairment in schizophrenia (CIS) is limited, at best, and controversial, single doses of all currently available AAPDs so far tested transiently restore NOR in rodents following scNMDAR antagonist treatment. Typical antipsychotic drugs (APDs), e.g. haloperidol and perphenazine, are ineffective in this rodent model, and may be less effective as treatments of some domains of CIS. Serotonergic mechanisms, including, but not limited to serotonin (5-HT)2A and 5-HT7 antagonism, 5-HT(1A), and GABA(A) agonism, contribute to the efficacy of the AAPDs in the scNMDAR antagonist rodent models, which are relevant to the loss of GABA interneuron/hyperglutamate hypothesis of the etiology of CIS. The ability of sub-effective doses of the atypical APDs to ameliorate NOR in the scNMDAR-treated rodents can be restored by the addition of a sub-effective dose of the 5-HT(1A) partial agonist, tandospirone, or the 5-HT7 antagonist, SB269970. The mGluR2/3 agonist, LY379268, which itself is unable to restore NOR in the scNMDAR-treated rodents, can also restore NOR when given with lurasidone, an AAPD. Enhancing cortical and hippocampal dopamine and acetylcholine efflux, or both, may contribute to the restoration of NOR by the atypical APDs. Importantly, co-administration of lurasidone, tandospirone, or SB269970, with PCP, to rodents, at doses 5-10 fold greater than those acutely effective to restore NOR following scNMDAR treatment, prevents the effect of scPCP to produce an enduring deficit in NOR. This difference in dosage may be relevant to utilizing AAPDs to prevent the onset of CIS in individuals at high risk for developing schizophrenia. The scNMDAR paradigm may be useful for identifying possible means to treat and prevent CIS.
Collapse
|
336
|
Lustig C, Kozak R, Sarter M, Young JW, Robbins TW. CNTRICS final animal model task selection: control of attention. Neurosci Biobehav Rev 2013; 37:2099-110. [PMID: 22683929 PMCID: PMC3490036 DOI: 10.1016/j.neubiorev.2012.05.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 04/14/2012] [Accepted: 05/24/2012] [Indexed: 02/05/2023]
Abstract
Schizophrenia is associated with impaired attention. The top-down control of attention, defined as the ability to guide and refocus attention in accordance with internal goals and representations, was identified by the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative as an important construct for task development and research. A recent CNTRICS meeting identified three tasks commonly used with rodent models as having high construct validity and promise for further development: The 5-choice serial reaction time task, the 5-choice continuous performance task, and the distractor condition sustained attention task. Here we describe their current status, including data on their neural substrates, evidence for sensitivity to neuropharmacological manipulations and genetic influences, and data from animal models of the cognitive deficits of schizophrenia. A common strength is the development of parallel human tasks to facilitate connections to the neural circuitry and drug development research done in these animal models. We conclude with recommendations for the steps needed to improve testing so that it better represents the complex biological and behavioral picture presented by schizophrenia.
Collapse
Affiliation(s)
- C Lustig
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|
337
|
A combined metabonomic and proteomic approach identifies frontal cortex changes in a chronic phencyclidine rat model in relation to human schizophrenia brain pathology. Neuropsychopharmacology 2013; 38:2532-44. [PMID: 23942359 PMCID: PMC3799075 DOI: 10.1038/npp.2013.160] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/03/2013] [Accepted: 06/14/2013] [Indexed: 01/30/2023]
Abstract
Current schizophrenia (SCZ) treatments fail to treat the broad range of manifestations associated with this devastating disorder. Thus, new translational models that reproduce the core pathological features are urgently needed to facilitate novel drug discovery efforts. Here, we report findings from the first comprehensive label-free liquid-mass spectrometry proteomic- and proton nuclear magnetic resonance-based metabonomic profiling of the rat frontal cortex after chronic phencyclidine (PCP) intervention, which induces SCZ-like symptoms. The findings were compared with results from a proteomic profiling of post-mortem prefrontal cortex from SCZ patients and with relevant findings in the literature. Through this approach, we identified proteomic alterations in glutamate-mediated Ca(2+) signaling (Ca(2+)/calmodulin-dependent protein kinase II, PPP3CA, and VISL1), mitochondrial function (GOT2 and PKLR), and cytoskeletal remodeling (ARP3). Metabonomic profiling revealed changes in the levels of glutamate, glutamine, glycine, pyruvate, and the Ca(2+) regulator taurine. Effects on similar pathways were also identified in the prefrontal cortex tissue from human SCZ subjects. The discovery of similar but not identical proteomic and metabonomic alterations in the chronic PCP rat model and human brain indicates that this model recapitulates only some of the molecular alterations of the disease. This knowledge may be helpful in understanding mechanisms underlying psychosis, which, in turn, can facilitate improved therapy and drug discovery for SCZ and other psychiatric diseases. Most importantly, these molecular findings suggest that the combined use of multiple models may be required for more effective translation to studies of human SCZ.
Collapse
|
338
|
Different MK-801 administration schedules induce mild to severe learning impairments in an operant conditioning task: Role of buspirone and risperidone in ameliorating these cognitive deficits. Behav Brain Res 2013; 257:156-65. [DOI: 10.1016/j.bbr.2013.09.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/21/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023]
|
339
|
Maaswinkel H, Zhu L, Weng W. Assessing social engagement in heterogeneous groups of zebrafish: a new paradigm for autism-like behavioral responses. PLoS One 2013; 8:e75955. [PMID: 24116082 PMCID: PMC3792997 DOI: 10.1371/journal.pone.0075955] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/16/2013] [Indexed: 11/24/2022] Open
Abstract
Because of its highly developed social character, zebrafish is a promising model system for the study of the genetic and neurochemical basis of altered social engagement such as is common in autism and schizophrenia. The traditional shoaling paradigm investigates social cohesion in homogeneous groups of zebrafish. However, the social dynamics of mixed groups is gaining interest from a therapeutic point of view and thus warrants animal modeling. Furthermore, mutant zebrafish are not always available in large numbers. Therefore, we developed a new paradigm that allows exploring shoaling in heterogeneous groups. The effects of MK-801, a non-competitive antagonist of the glutamate N-methyl-D-aspartate (NMDA) receptor, on social cohesion were studied to evaluate the paradigm. The drug has previously been shown to mimic aspects of autism and schizophrenia. Our results show that a single MK-801-treated zebrafish reduced social cohesion of the entire shoal drastically. Preliminary observations suggest that the social dynamics of the shoal as a whole was altered.
Collapse
Affiliation(s)
- Hans Maaswinkel
- Research and Development, xyZfish, Ronkonkoma, New York, United States of America
- * E-mail:
| | - Liqun Zhu
- Research and Development, xyZfish, Ronkonkoma, New York, United States of America
| | - Wei Weng
- Research and Development, xyZfish, Ronkonkoma, New York, United States of America
| |
Collapse
|
340
|
de Bartolomeis A, Sarappa C, Buonaguro EF, Marmo F, Eramo A, Tomasetti C, Iasevoli F. Different effects of the NMDA receptor antagonists ketamine, MK-801, and memantine on postsynaptic density transcripts and their topography: role of Homer signaling, and implications for novel antipsychotic and pro-cognitive targets in psychosis. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:1-12. [PMID: 23800465 DOI: 10.1016/j.pnpbp.2013.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/10/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022]
Abstract
Administration of NMDA receptor antagonists, such as ketamine and MK-801, may induce psychotic-like behaviors in preclinical models of schizophrenia. Ketamine has also been observed to exacerbate psychotic symptoms in schizophrenia patients. However, memantine, a non-competitive NMDA receptor antagonist approved for Alzheimer's disease and proposed for antipsychotic augmentation, may challenge this view. To date, the molecular mechanisms by which these NMDA receptor antagonists cause different neurochemical, behavioral, and clinical effects are still a matter of debate. Here, we investigated by molecular imaging whether these agents could differently modulate gene expression and topographical distribution of glutamatergic postsynaptic density (PSD) proteins. We focused on Homer1a/Homer1b/PSD-95 signaling network, which may be implicated in glutamate-dependent synaptic plasticity, as well as in psychosis pathophysiology and treatment. Ketamine (25 and 50mg/kg) and MK-801 (0.8mg/kg) significantly induced the transcripts of immediate-early genes (Arc, c-fos, and Homer1a) in cortical regions compared to vehicle, whereas they reduced Homer1b and PSD-95 expression in cortical and striatal regions. Differently, memantine (5mg/kg) did not increase Homer1a signal compared to vehicle, whereas it induced c-fos in the somatosensory and in the medial agranular cortices. Moreover, memantine did not affect Homer1b and PSD-95 expression. When compared to ketamine and MK-801, memantine significantly increased the expression of c-fos, Homer1b and PSD-95. Overall, ketamine and MK-801 prominently increased Homer1a/Homer1b expression ratio, whereas memantine elicited the opposite effect. These data may support the view that ketamine, MK-801 and memantine exert divergent effects on PSD transcripts, which may contribute to their partially different behavioral and clinical effects.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
341
|
Hanks AN, Dlugolenski K, Hughes ZA, Seymour PA, Majchrzak MJ. Pharmacological disruption of mouse social approach behavior: Relevance to negative symptoms of schizophrenia. Behav Brain Res 2013; 252:405-14. [DOI: 10.1016/j.bbr.2013.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 12/26/2022]
|
342
|
Davis-MacNevin PL, Dekraker J, LaDouceur L, Holahan MR. Comparison of the MK-801-induced increase in non-rewarded appetitive responding with dopamine agonists and locomotor activity in rats. J Psychopharmacol 2013; 27:854-64. [PMID: 23761388 DOI: 10.1177/0269881113492029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Systemic administration of the noncompetitive N-methyl-D-aspartate (NMDA)- receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. Evidence has shown that MK-801 increases the probability of operant responding during extinction, possibly modeling perseveration, as would be seen in patients with schizophrenia. This MK-801-induced behavioral perseveration is reversed by dopamine receptor antagonism. To further explore the role of dopamine in this behavioral change, the current study sought to determine if the MK-801-induced increase in non-rewarded operant responding could be mimicked by dopamine agonism and determine how it was related to locomotor activity. Male Long Evans rats were treated systemically with MK-801, cocaine, GBR12909 or apomorphine (APO) and given a single trial operant extinction session, followed by a separate assessment of locomotor activity. Both MK-801 (0.05 mg/kg) and cocaine (10 mg/kg) significantly increased responding during the extinction session and both increased horizontal locomotor activity. No dose of GBR-12909 (5, 10 or 20 mg/kg) was found to effect non-rewarded operant responding or locomotor activity. APO (0.05, 0.5, 2 or 5 mg/kg) treatment produced a dose-dependent decrease in both operant responding and locomotor activity. These results suggest the possibility that, rather than a primary influence of increased dopamine concentration on elevating bar-pressing responses during extinction, other neurotransmitter systems may be involved.
Collapse
|
343
|
Zugno AI, Julião RF, Budni J, Volpato AM, Fraga DB, Pacheco FD, Deroza PF, Luca RD, de Oliveira MB, Heylmann AS, Quevedo J. Rivastigmine reverses cognitive deficit and acetylcholinesterase activity induced by ketamine in an animal model of schizophrenia. Metab Brain Dis 2013; 28:501-8. [PMID: 23775300 DOI: 10.1007/s11011-013-9417-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/28/2013] [Indexed: 01/27/2023]
Abstract
Schizophrenia is one of the most disabling mental disorders that affects up to 1 % of the population worldwide. Although the causes of this disorder remain unknown, it has been extensively characterized by a broad range of emotional, ideational and cognitive impairments. Studies indicate that schizophrenia affects neurotransmitters such as dopamine, glutamate and acetylcholine. Recent studies suggest that rivastigmine (an acetylcholinesterase inhibitor) is important to improve the cognitive symptoms of schizophrenia. Therefore, the present study evaluated the protective effect of rivastigmine against the ketamine-induced behavioral (hyperlocomotion and cognitive deficit) and biochemical (increase of acetylcholinesterase activity) changes which characterize an animal model of schizophrenia in rats. Our results indicated that rivastigmine was effective to improve the cognitive deficit in different task (immediate memory, long term memory and short term memory) induced by ketamine in rats. Moreover, we observed that rivastigmina reversed the increase of acetylcholinesterase activity induced by ketamine in the cerebral cortex, hippocampus and striatum. However, rivastigmine was not able to prevent the ketamine-induced hyperlocomotion. In conslusion, ours results indicate that cholinergic system might be an important therapeutic target in the physiopathology of schizophrenia, mainly in the cognition, but additional studies should be carried.
Collapse
Affiliation(s)
- Alexandra I Zugno
- Laboratório de Neurociências, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), and Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res 2013; 354:309-30. [DOI: 10.1007/s00441-013-1692-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022]
|
345
|
Noroozian M, Ghasemi S, Hosseini SMR, Modabbernia A, Khodaie-Ardakani MR, Mirshafiee O, Farokhnia M, Tajdini M, Rezaei F, Salehi B, Ashrafi M, Yekehtaz H, Tabrizi M, Akhondzadeh S. A placebo-controlled study of tropisetron added to risperidone for the treatment of negative symptoms in chronic and stable schizophrenia. Psychopharmacology (Berl) 2013; 228:595-602. [PMID: 23515583 DOI: 10.1007/s00213-013-3064-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
RATIONAL A growing body of evidence illustrates that 5-HT3 receptor antagonist drugs may be of benefit in the treatment of negative symptoms in schizophrenia. OBJECTIVE The objective of this study was to assess the efficacy and tolerability of tropisetron add-on to risperidone on negative symptoms in patients with chronic stable schizophrenia. METHODS In a double-blind, placebo-controlled 8-week trial, 40 patients with chronic schizophrenia who were stabilized on risperidone were randomized into tropisetron or placebo add-on groups. Psychotic symptoms were measured using the Positive and Negative Syndrome Scale (PANSS) every 2 weeks. Furthermore, extrapyramidal and depressive symptoms as well as side effects were assessed. The primary outcome measure was the difference in change from baseline of negative subscale scores between the two groups at week 8. RESULTS Tropisetron resulted in greater improvement of the total PANSS scores [F(1.860,70.699) = 37.366, p < 0.001] as well as negative scores [F(2.439,92.675) = 16.623, p < 0.001] and general psychopathology [F(1.767,67.158) = 4.602, p = 0.017], but not positive subscale scores [F(1.348, 51.218) = 0.048, p = 0.893] compared to placebo. In a multiple regression analysis controlling for positive, extrapyramidal, and depressive symptoms, treatment group (standardized β = -0.640) significantly predicted changes in primary negative symptoms. The side effect profile did not differ significantly between the two groups. CONCLUSION Tropisetron add-on to risperidone improves the primary negative symptoms of patients with chronic stable schizophrenia.
Collapse
Affiliation(s)
- Maryam Noroozian
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran, 13337, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Young JW, Geyer MA. Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharmacol 2013; 86:1122-32. [PMID: 23856289 DOI: 10.1016/j.bcp.2013.06.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
The group of schizophrenia disorders affects approximately 1% of the population and has both genetic and environmental etiologies. Sufferers report various behavioral abnormalities including hallucinations and delusions (positive symptoms), reduced joy and amotivation (negative symptoms), plus inattention and poor learning (cognitive deficits). Despite the heterogeneous symptoms experienced, most patients smoke. The self-medication hypothesis posits that patients smoke to alleviate symptoms, consistent with evidence for nicotine-induced enhancement of cognition. While nicotine acts on multiple nicotinic acetylcholine receptors (nAChRs), the primary target of research is often the homomeric α7 nAChR. Given genetic linkages between schizophrenia and this receptor, its association with P50 sensory gating deficits, and its reduced expression in post-mortem brains, many have attempted to develop α7 nAChR ligands for treating schizophrenia. Recent evidence that ligands can be orthosteric agonists or positive allosteric modulators (PAMs) has revitalized the hope for treatment discovery. Herein, we present evidence regarding: (1) pathophysiological alterations of α7 nAChRs that might occur in patients; (2) mechanistic evidence for the normal action of α7 nAChRs; (3) preclinical studies using α7 nAChR orthosteric agonists and type I/II PAMs; and (4) where successful translational testing has occurred for particular compounds, detailing what is still required. We report that the accumulating evidence is positive, but that greater work is required using positron emission tomography to understand current alterations in α7 nAChR expression and their relationship to symptoms. Finally, cross-species behavioral tasks should be used more regularly to determine the predictive efficacy of treatments.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, United States; Research Service, San Diego Veteran's Affairs Hospital, 3350 La Jolla Drive, San Diego, CA 92037, United States.
| | | |
Collapse
|
347
|
McIntosh AL, Ballard TM, Steward LJ, Moran PM, Fone KCF. The atypical antipsychotic risperidone reverses the recognition memory deficits induced by post-weaning social isolation in rats. Psychopharmacology (Berl) 2013; 228:31-42. [PMID: 23397053 DOI: 10.1007/s00213-013-3011-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/23/2013] [Indexed: 01/31/2023]
Abstract
RATIONALE Rearing rats in isolation from weaning is an established preclinical neurodevelopmental model which induces behavioural deficits with apparent translational relevance to some core symptoms of schizophrenia. OBJECTIVE This study evaluated the ability of the atypical antipsychotic risperidone to reverse behavioural deficits induced by post-weaning social isolation of rat pups and to further characterise the predictive validity of this model. METHOD Forty-five male Lister hooded rats were housed in groups of 3-4 (n = 16) or singly (n = 29) for 4 weeks immediately after weaning on postnatal day (PND) 22-24. On PND 51, novel cage-induced locomotor activity (LMA) was assessed to subdivide rats into groups balanced for behavioural response. On PNDs 58, 59, 65 and 72, rats received either vehicle (1 ml/kg; i.p.) or risperidone (0.2 or 0.5 mg/kg; i.p.) 30 min prior to testing in LMA, novel object discrimination (NOD), prepulse inhibition (PPI) of acoustic startle and conditioned emotional response (CER) learning paradigms, respectively. RESULTS Isolation rearing had no effect on PPI, but produced LMA hyperactivity and impaired NOD and CER compared to group-housed controls. Risperidone caused a dose-dependent reduction in LMA, irrespective of rearing condition, but selectively reversed the NOD deficit in isolation-reared rats. Risperidone did not reverse the isolation rearing-induced CER deficit. CONCLUSIONS Similar to its clinical profile, risperidone only partially reverses the schizophrenic symptomology; since it reversed some, but not all, of the learning and memory deficits induced by post-weaning isolation, the isolation rearing model may be useful to predict antipsychotic activity of novel therapeutic agents.
Collapse
Affiliation(s)
- Allison L McIntosh
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
348
|
Sabbagh JJ, Murtishaw AS, Bolton MM, Heaney CF, Langhardt M, Kinney JW. Chronic ketamine produces altered distribution of parvalbumin-positive cells in the hippocampus of adult rats. Neurosci Lett 2013; 550:69-74. [PMID: 23827228 DOI: 10.1016/j.neulet.2013.06.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/23/2013] [Accepted: 06/20/2013] [Indexed: 02/03/2023]
Abstract
The underlying mechanisms of schizophrenia pathogenesis are not well understood. Increasing evidence supports the glutamatergic hypothesis that posits a hypofunction of the N-methyl D-aspartate (NMDA) receptor on specific gamma amino-butyric acid (GABA)-ergic neurons may be responsible for the disorder. Alterations in the GABAergic system have been observed in schizophrenia, most notably a change in the expression of parvalbumin (PV) in the cortex and hippocampus. Several reports also suggest abnormal neuronal migration may play a role in the etiology of schizophrenia. The current study examined the positioning and distribution of PV-positive cells in the hippocampus following chronic treatment with the NMDA receptor antagonist ketamine. A robust increase was found in the number of PV-positive interneurons located outside the stratum oriens (SO), the layer where most of these cells are normally localized, as well as an overall numerical increase in CA3 PV cells. These results suggest ketamine leads to an abnormal distribution of PV-positive cells, which may be indicative of aberrant migratory activity and possibly related to the Morris water maze deficits observed. These findings may also be relevant to alterations observed in schizophrenia populations.
Collapse
Affiliation(s)
- Jonathan J Sabbagh
- Department of Psychology, University of Nevada Las Vegas, Las Vegas NV 89154, United States
| | | | | | | | | | | |
Collapse
|
349
|
Effects of a dopamine D1 agonist on ketamine-induced spatial working memory dysfunction in common marmosets. Behav Brain Res 2013; 249:109-15. [DOI: 10.1016/j.bbr.2013.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 12/14/2022]
|
350
|
Krystal JH, Sanacora G, Duman RS. Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 2013; 73:1133-41. [PMID: 23726151 PMCID: PMC3671489 DOI: 10.1016/j.biopsych.2013.03.026] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022]
Abstract
Traditional antidepressants require many weeks to reveal their therapeutic effects. However, the widely replicated observation that a single subanesthetic dose of the N-methyl-D-aspartate glutamate receptor antagonist ketamine produced meaningful clinical improvement within hours, suggested that rapid-acting antidepressants might be possible. The ketamine studies stimulated a new generation of basic antidepressant research that identified new neural signaling mechanisms in antidepressant response and provided a conceptual framework linking a group of novel antidepressant mechanisms. This article presents the path that led to the testing of ketamine, considers its promise as an antidepressant, and reviews novel treatment mechanisms that are emerging from this line of research.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT,for correspondence: Department of Psychiatry, Yale University School of Medicine, Suite #901, 300 George St, New Haven, CT 06511; , tel: 203-785-6396, fax: 203-785-6196
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|