301
|
Bröer A, Rahimi F, Bröer S. Deletion of Amino Acid Transporter ASCT2 (SLC1A5) Reveals an Essential Role for Transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to Sustain Glutaminolysis in Cancer Cells. J Biol Chem 2016; 291:13194-205. [PMID: 27129276 DOI: 10.1074/jbc.m115.700534] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
Many cancer cells depend on glutamine as they use the glutaminolysis pathway to generate building blocks and energy for anabolic purposes. As a result, glutamine transporters are essential for cancer growth and are potential targets for cancer chemotherapy with ASCT2 (SLC1A5) being investigated most intensively. Here we show that HeLa epithelial cervical cancer cells and 143B osteosarcoma cells express a set of glutamine transporters including SNAT1 (SLC38A1), SNAT2 (SLC38A2), SNAT4 (SLC38A4), LAT1 (SLC7A5), and ASCT2 (SLC1A5). Net glutamine uptake did not depend on ASCT2 but required expression of SNAT1 and SNAT2. Deletion of ASCT2 did not reduce cell growth but caused an amino acid starvation response and up-regulation of SNAT1 to replace ASCT2 functionally. Silencing of GCN2 in the ASCT2(-/-) background reduced cell growth, showing that a combined targeted approach would inhibit growth of glutamine-dependent cancer cells.
Collapse
Affiliation(s)
- Angelika Bröer
- From the Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Farid Rahimi
- From the Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stefan Bröer
- From the Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
302
|
Pore N, Jalla S, Liu Z, Higgs B, Sorio C, Scarpa A, Hollingsworth R, Tice DA, Michelotti E. In Vivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors. Neoplasia 2016; 17:473-80. [PMID: 26152355 PMCID: PMC4719001 DOI: 10.1016/j.neo.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs) targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX), monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT) were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.
Collapse
Affiliation(s)
| | | | - Zheng Liu
- MedImmune, LLC, Gaithersburg, MD, USA
| | | | - Claudio Sorio
- ARC-NET Research Centre and Department of Pathology and Diagnostics, University of Verona Medical School, Verona, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre and Department of Pathology and Diagnostics, University of Verona Medical School, Verona, Italy
| | | | | | | |
Collapse
|
303
|
Osorio JS, Lohakare J, Bionaz M. Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol Genomics 2016; 48:231-56. [DOI: 10.1152/physiolgenomics.00016.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.
Collapse
Affiliation(s)
| | - Jayant Lohakare
- Oregon State University, Corvallis, Oregon; and
- Kangwon National University, Chuncheon, South Korea
| | | |
Collapse
|
304
|
Formisano TM, Van Winkle LJ. At Least Three Transporters Likely Mediate Threonine Uptake Needed for Mouse Embryonic Stem Cell Proliferation. Front Cell Dev Biol 2016; 4:17. [PMID: 27014692 PMCID: PMC4791362 DOI: 10.3389/fcell.2016.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/29/2016] [Indexed: 01/19/2023] Open
Abstract
Stem cells are at the forefront of current regenerative and biomedical research. Thus, there exists an imperative and urgent need to understand the mechanisms that drive stem cell function in order to exploit their use as a therapeutic tool. Amino acids are potent inducers of signaling cascades that drive stem cell proliferation and differentiation. With a focus on mouse embryonic stem (mES) cells, Threonine (Thr) is the only amino acid required in culture media for mES cell proliferation. Current research associates this need for Thr with threonine dehydrogenase (TDH), which catabolizes Thr to glycine and acetyl-CoA in mES cells. This theory depends, in part, on the ability of 3- hydroxynorvaline (3-HNV) to inhibit both TDH and mES cell proliferation. However, the concentration of 3-HNV needed to inhibit mES cell proliferation is more than an order of magnitude less than its apparent Ki for TDH inhibition. Additionally, 3-HNV inhibits human embryonic stem (hES) cell proliferation, but hES cells do not express a functional tdh gene. Such findings indicate another mechanism for Thr stimulated mES and hES cell proliferation. Since amino acid transporters may be inducers of signaling cascades, we characterized the Thr transport systems in mES cells. We found that there is a Na+-dependent and a Na+-independent component of substrate-saturable transport, with the Na+-dependent component predominating. We also found that of 20 amino acids tested, the amino acids that were the strongest inhibitors of the Na+-dependent component of radiolabeled Thr transport were Ser, Cys, 4-OH-Pro, Asn, Met, and non-radiolabeled Thr itself. Such findings are consistent with characteristics of the ASC transport system, suggesting that this ASC system is responsible for the majority of Thr transport in mES cells. We confirmed expression of mRNA encoding the ASC system transporters, ASCT1 and ASCT2, in mES cells using RT-PCR. In conclusion, mES cells likely express at least three transporters of Thr; at least two Na+-dependent transporters and one Na+-independent one.
Collapse
Affiliation(s)
- Tara M Formisano
- Department of Biochemistry, Midwestern University College of Health Science Downers Grove, IL, USA
| | - Lon J Van Winkle
- Department of Biochemistry, Midwestern University College of Health Science Downers Grove, IL, USA
| |
Collapse
|
305
|
Bouhlel A, Alyami W, Li A, Yuan L, Rich K, McConathy J. Effect of α-Methyl versus α-Hydrogen Substitution on Brain Availability and Tumor Imaging Properties of Heptanoic [F-18]Fluoroalkyl Amino Acids for Positron Emission Tomography (PET). J Med Chem 2016; 59:3515-31. [PMID: 26967318 DOI: 10.1021/acs.jmedchem.6b00189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two [(18)F]fluoroalkyl substituted amino acids differing only by the presence or absence of a methyl group on the α-carbon, (S)-2-amino-7-[(18)F]fluoro-2-methylheptanoic acid ((S)-[(18)F]FAMHep, (S)-[(18)F]14) and (S)-2-amino-7-[(18)F]fluoroheptanoic acid ((S)-[(18)F]FAHep, (S)-[(18)F]15), were developed for brain tumor imaging and compared to the well-established system L amino acid tracer, O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET), in the delayed brain tumor (DBT) mouse model of high-grade glioma. Cell uptake, biodistribution, and PET/CT imaging studies showed differences in amino acid transport of these tracer by DBT cells. Recognition of (S)-[(18)F]15 but not (S)-[(18)F]14 by system L amino acid transporters led to approximately 8-10-fold higher uptake of the α-hydrogen substituted analogue (S)-[(18)F]15 in normal brain. (S)-[(18)F]15 had imaging properties similar to those of (S)-[(18)F]FET in the DBT tumor model while (S)-[(18)F]14 afforded higher tumor to brain ratios due to much lower uptake by normal brain. These results have important implications for the future development of α-alkyl and α,α-dialkyl substituted amino acids for brain tumor imaging.
Collapse
Affiliation(s)
- Ahlem Bouhlel
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States.,Inserm, Vascular Center of Marseille (UMR_S1076), CERIMED, Aix-Marseille University , Marseille, France
| | - Wadha Alyami
- Doisy College of Health Sciences, Saint Louis University , St. Louis, Missouri 63103, United States
| | - Aixiao Li
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States
| | - Liya Yuan
- Department of Neurosurgery, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Keith Rich
- Department of Neurosurgery, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Jonathan McConathy
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States.,Department of Radiology, University of Alabama at Birmingham , Birmingham, Alabama 35249, United States
| |
Collapse
|
306
|
Rodríguez-Banqueri A, Errasti-Murugarren E, Bartoccioni P, Kowalczyk L, Perálvarez-Marín A, Palacín M, Vázquez-Ibar JL. Stabilization of a prokaryotic LAT transporter by random mutagenesis. ACTA ACUST UNITED AC 2016; 147:353-68. [PMID: 26976827 PMCID: PMC4810068 DOI: 10.1085/jgp.201511510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis L-serine/L-threonine exchanger is the best-known prokaryotic paradigm of the mammalian L-amino acid transporter (LAT) family. Unfortunately, SteT's lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest.
Collapse
Affiliation(s)
- Arturo Rodríguez-Banqueri
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Paola Bartoccioni
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain Spanish Biomedical Research Center in Rare Diseases (CIBERER), 08028 Barcelona, Spain
| | - Lukasz Kowalczyk
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Cerdanyola del Vallés, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain Spanish Biomedical Research Center in Rare Diseases (CIBERER), 08028 Barcelona, Spain Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - José Luis Vázquez-Ibar
- Institute for Integrative Biology of the Cell (I2BC), CEA, French National Centre for Scientific Research (CNRS) UMR 9198, University Paris-Sud, University Paris-Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
307
|
Scalise M, Pochini L, Galluccio M, Indiveri C. Glutamine transport. From energy supply to sensing and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1147-1157. [PMID: 26951943 DOI: 10.1016/j.bbabio.2016.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
Glutamine is the most abundant amino acid in plasma and is actively involved in many biosynthetic and regulatory processes. It can be synthesized endogenously but becomes "conditionally essential" in physiological or pathological conditions of high proliferation rate. To accomplish its functions glutamine has to be absorbed and distributed in the whole body. This job is efficiently carried out by a network of membrane transporters that differ in transport mechanisms and energetics, belonging to families SLC1, 6, 7, 38, and possibly, 25. Some of the transporters are involved in glutamine traffic across different membranes for metabolic purposes; others are involved in specific signaling functions through mTOR. Structure/function relationships and regulatory aspects of glutamine transporters are still at infancy. In the while, insights in involvement of these transporters in cell redox control, cancer metabolism and drug interactions are arising, stimulating basic research to uncover molecular mechanisms of transport and regulation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
308
|
Honjo H, Kaira K, Miyazaki T, Yokobori T, Kanai Y, Nagamori S, Oyama T, Asao T, Kuwano H. Clinicopathological significance of LAT1 and ASCT2 in patients with surgically resected esophageal squamous cell carcinoma. J Surg Oncol 2016; 113:381-9. [PMID: 26936531 DOI: 10.1002/jso.24160] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/26/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Amino acid transporters are highly expressed in various human cancers. L-type amino acid transporter 1 (LAT1) and system alanine-serine-cysteine amino acid transporter-2 (ASCT2) play a crucial role in tumor progression and survival. However, the clinicopathological significance of these transporters in patients with esophageal squamous cell carcinoma (ESCC) remains unclear. METHODS One hundred and fifty-seven patients with surgically resected ESCC were evaluated. Immunohistochemical analysis was performed for LAT1, ASCT2, CD98, Ki-67, and micro-vessel density (MVD), as determined by CD34 expression. RESULTS LAT1 and ASCT2 were positively expressed in 59% (93/157) and 48% (76/157) of tumors respectively. LAT1 and ASCT2 expression significantly correlated with T factor, N factor, lymphatic permeation, vascular invasion, and CD98 expression. The 5-year survival rates of LAT1-high and -low and ASCT2-high and -low expressing patients were 62.0% and 69.6% (P < 0.05) and 59.6% and 70.1% (P = 0.068), respectively. The combined positive expression of LAT1 and ASCT2 was a significant prognostic factor in univariate analysis. CONCLUSION High expression of LAT1 and ASCT2 correlates with metastasis and invasion. Accordingly, these proteins could serve as prognostic biomarkers and therapeutic targets for treating patients with surgically resectable ESCC. J. Surg. Oncol. 2016;113:381-389. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiroaki Honjo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Takehiko Yokobori
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shushi Nagamori
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Takayuki Asao
- Department of Oncology Clinical Development, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Gunma, Japan
| |
Collapse
|
309
|
Rosner J, Gupta M, McGill M, Xue X, Chatterjee P, Yoshida-Hay M, Robeson W, Metz C. Magnesium deficiency during pregnancy in mice impairs placental size and function. Placenta 2016; 39:87-93. [DOI: 10.1016/j.placenta.2016.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/23/2015] [Accepted: 01/08/2016] [Indexed: 02/06/2023]
|
310
|
Nair RN, Mishra JK, Li F, Tortosa M, Yang C, Doherty JR, Cameron M, Cleveland JL, Roush WR, Bannister TD. Exploiting the co-reliance of tumours upon transport of amino acids and lactate: Gln and Tyr conjugates of MCT1 inhibitors. MEDCHEMCOMM 2016; 7:900-905. [PMID: 27347360 DOI: 10.1039/c5md00579e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glutamine and tyrosine-based amino acid conjugates of monocarboxylate transporter types 1 and 2 inhibitors (MCT1/2) were designed, synthesized and evaluated for their potency in blocking the proliferation of a human B lymphoma cell line that expresses the transporters Asct2, LAT1 and MCT1. Appropriate placement of an amino acid transporter recognition element was shown to augment anti-tumour efficacy vs. Raji cells. Amino acid conjugation also improves the pharmacodynamic properties of experimental MCT1/2 inhibitors.
Collapse
Affiliation(s)
- Reji N Nair
- Department of Chemistry, The Scripps Research Institute, 110 Scripps Way, Jupiter, FL 33458, USA
| | - Jitendra K Mishra
- Department of Chemistry, The Scripps Research Institute, 110 Scripps Way, Jupiter, FL 33458, USA
| | - Fangzheng Li
- Department of Chemistry, The Scripps Research Institute, 110 Scripps Way, Jupiter, FL 33458, USA
| | - Mariola Tortosa
- Department of Chemistry, The Scripps Research Institute, 110 Scripps Way, Jupiter, FL 33458, USA
| | - Chunying Yang
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Joanne R Doherty
- Department of Cancer Biology, The Scripps Research Institute, 110 Scripps Way, Jupiter, FL 33458, USA
| | - Michael Cameron
- Department of Molecular Therapeutics, The Scripps Research Institute, 110 Scripps Way, Jupiter, FL 33458, USA
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, 110 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas D Bannister
- Department of Chemistry, The Scripps Research Institute, 110 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
311
|
l -Type amino acid transporter 1 (lat1)-mediated targeted delivery of perforin inhibitors. Int J Pharm 2016; 498:205-16. [DOI: 10.1016/j.ijpharm.2015.12.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 01/17/2023]
|
312
|
He B, Zhang N, Zhao R. Dexamethasone Downregulates SLC7A5 Expression and Promotes Cell Cycle Arrest, Autophagy and Apoptosis in BeWo Cells. J Cell Physiol 2016; 231:233-42. [PMID: 26094588 DOI: 10.1002/jcp.25076] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Synthetic glucocorticoids (GCs) such as dexamethasone (Dex) are widely given to pregnant women to induce maturation and improve viability of preterm infants. Despite the beneficial effects, synthetic GCs have adverse effects on placental growth and nutrient transport system. However, the molecular mechanisms involved in these events remain unknown. Here we use a human placental choriocarcinoma cell line (BeWo) as model to explore the pathway linking amino acids transport with cell viability under Dex challenge. BeWo cells treated with Dex (100 nM) for 24 h demonstrated G1/S cell cycle arrest together with enhanced autophagy and apoptosis. Concurrently, the amino acid carrier SLC7A5 was down-regulated in association with impaired cellular amino acids uptake and inhibition of mammalian target of rapamycin (mTOR) signaling. Similar cellular responses were observed in BeWo cells treated with BCH, a classical System L inhibitor which inactivates SLC7A5. The glucocorticoid receptor (GR) antagonist RU486 was able to diminish Dex-induced translocation of GR into nucleus and to abolish these effects. Furthermore, Dex treatment significantly promoted the binding of GR to the proximal promoter sequence of SLC7A5 gene. Taken together, our results show that Dex downregulates SLC7A5 expression via GR-mediated transrepression. The impaired amino acids uptake leads to inhibition of mTOR signaling which in turn causes inhibited proliferation and enhanced autophagy and apoptosis in BeWo cells. These findings indicate that SLC7A5 mediates the effect of Dex on cell viability, thus providing a novel molecular target for the prevention and treatment of Dex-induced cell cycle arrest and apoptosis in placental cells.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Nana Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
313
|
Structure–activity relations of leucine derivatives reveal critical moieties for cellular uptake and activation of mTORC1-mediated signaling. Amino Acids 2016; 48:1045-1058. [DOI: 10.1007/s00726-015-2158-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/16/2015] [Indexed: 01/21/2023]
|
314
|
Abstract
The study of tumor metabolism has resulted in new understandings of how cancer cells modify metabolic pathways that control cellular energetics to allow increased proliferation and survival. Tumor cells have been shown to alter metabolic pathways involved in glucose, glutamine, and mitochondrial metabolism to generate raw materials needed for rapid cellular proliferation, maintain favorable cellular redox environments, modify cellular epigenetics, and even promote and maintain oncogenic transformation. As a consequence, there has been intense scientific and clinical interest in targeting metabolic alterations that are commonly adopted by tumor cells for therapeutic purposes. In this review, we describe common metabolic alterations seen in tumor cells and discuss how these alterations are being investigated as potential targets for pharmacological intervention in preclinical and clinical settings. We also discuss some of the challenges associated with using tumor metabolism as a therapeutic target in cancer therapy, along with potential avenues to overcome these challenges.
Collapse
|
315
|
Le Vee M, Jouan E, Lecureur V, Fardel O. Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells. Toxicol Appl Pharmacol 2015; 290:74-85. [PMID: 26621329 DOI: 10.1016/j.taap.2015.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 11/25/2022]
Abstract
The heterodimeric L-type amino acid transporter (LAT) 1/CD98hc is overexpressed in lung cancers with a poor prognosis factor. Factors that contribute to LAT1/CD98hc overexpression in lung cells remain however to be determined, but the implication of atmospheric pollution can be suspected. The present study was therefore designed to analyze the effects of diesel exhaust particle (DEP) extract (DEPe) on LAT1/CD98hc expression in bronchial epithelial BEAS-2B cells. Exposure to DEPe up-regulated LAT1 and CD98hc mRNA levels in a concentration-dependent manner, with DEPe EC50 values (around 0.2 μg/mL) relevant to environmental situations. DEPe concomitantly induced LAT1/CD98hc protein expression and LAT1-mediated leucine accumulation in BEAS-2B cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway through the use of a chemical AhR antagonist or the siRNA-mediated silencing of AhR expression was next found to prevent DEPe-mediated induction of LAT1/CD98hc, indicating that this regulation depends on AhR, known to be activated by major chemical DEP components like polycyclic aromatic hydrocarbons. DEPe exposure was finally shown to induce mRNA expression and activity of matrix metalloproteinase (MMP)-2 in BEAS-2B cells, in a CD98hc/focal adhesion kinase (FAK)/extracellular regulated kinase (ERK) manner, thus suggesting that DEPe-mediated induction of CD98hc triggers activation of the integrin/FAK/ERK signaling pathway known to be involved in MMP-2 regulation. Taken together, these data demonstrate that exposure to DEPe induces functional overexpression of the amino acid transporter LAT1/CD98hc in lung cells. Such a regulation may participate to pulmonary carcinogenic effects of DEPs, owing to the well-documented contribution of LAT1 and CD98hc to cancer development.
Collapse
Affiliation(s)
- Marc Le Vee
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Elodie Jouan
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Valérie Lecureur
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
316
|
Liu Y, Yang L, An H, Chang Y, Zhang W, Zhu Y, Xu L, Xu J. High expression of Solute Carrier Family 1, member 5 (SLC1A5) is associated with poor prognosis in clear-cell renal cell carcinoma. Sci Rep 2015; 5:16954. [PMID: 26599282 PMCID: PMC4657035 DOI: 10.1038/srep16954] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Solute Carrier Family 1, member 5 (SLC1A5), also named as ASCT2, a major glutamine transporter, is highly expressed in various malignancies and plays a critical role in the transformation, growth and survival of cancer cells. The aim of this study was to assess the clinical significance of SLC1A5 in patients with clear-cell renal cell carcinoma (ccRCC). SLC1A5 expression was evaluated by immunohistochemistry on tissue microarrays. Kaplan-Meier method was conducted to compare survival curves. Univariate and multivariate Cox regression models were applied to assess the impact of prognostic factors on overall survival (OS). A nomogram was then constructed on the basis of the independent prognosticators identified on multivariate analysis. The predictive ability of the models was compared using Receiver operating characteristic (ROC) analysis. Our data indicated that high expression of SLC1A5 was significantly associated with advanced TNM stage, higher Fuhrman grade and shorter OS in ccRCC patients. Multivariate analysis confirmed that SLC1A5 was an independent prognosticator for OS. A nomogram integrating SLC1A5 and other independent prognosticators was constructed, which showed a better prognostic value for OS than TNM staging system. In conclusion, high SLC1A5 expression is an independent predictor of adverse clinical outcome in ccRCC patients after surgery.
Collapse
Affiliation(s)
- Yidong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huimin An
- Department of Urology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
317
|
[14C]Fluciclovine (alias anti-[14C]FACBC) uptake and ASCT2 expression in castration-resistant prostate cancer cells. Nucl Med Biol 2015; 42:887-92. [DOI: 10.1016/j.nucmedbio.2015.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 11/22/2022]
|
318
|
Colas C, Grewer C, Otte NJ, Gameiro A, Albers T, Singh K, Shere H, Bonomi M, Holst J, Schlessinger A. Ligand Discovery for the Alanine-Serine-Cysteine Transporter (ASCT2, SLC1A5) from Homology Modeling and Virtual Screening. PLoS Comput Biol 2015; 11:e1004477. [PMID: 26444490 PMCID: PMC4596572 DOI: 10.1371/journal.pcbi.1004477] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022] Open
Abstract
The Alanine-Serine-Cysteine transporter ASCT2 (SLC1A5) is a membrane protein that transports neutral amino acids into cells in exchange for outward movement of intracellular amino acids. ASCT2 is highly expressed in peripheral tissues such as the lung and intestines where it contributes to the homeostasis of intracellular concentrations of neutral amino acids. ASCT2 also plays an important role in the development of a variety of cancers such as melanoma by transporting amino acid nutrients such as glutamine into the proliferating tumors. Therefore, ASCT2 is a key drug target with potentially great pharmacological importance. Here, we identify seven ASCT2 ligands by computational modeling and experimental testing. In particular, we construct homology models based on crystallographic structures of the aspartate transporter GltPh in two different conformations. Optimization of the models' binding sites for protein-ligand complementarity reveals new putative pockets that can be targeted via structure-based drug design. Virtual screening of drugs, metabolites, fragments-like, and lead-like molecules from the ZINC database, followed by experimental testing of 14 top hits with functional measurements using electrophysiological methods reveals seven ligands, including five activators and two inhibitors. For example, aminooxetane-3-carboxylate is a more efficient activator than any other known ASCT2 natural or unnatural substrate. Furthermore, two of the hits inhibited ASCT2 mediated glutamine uptake and proliferation of a melanoma cancer cell line. Our results improve our understanding of how substrate specificity is determined in amino acid transporters, as well as provide novel scaffolds for developing chemical tools targeting ASCT2, an emerging therapeutic target for cancer and neurological disorders.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacology and Systems Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Christof Grewer
- Department of Chemistry, Binghamton University, Binghamton, New York, United States of America
| | - Nicholas James Otte
- Origins of Cancer Laboratory Centenary Program, Camperdown, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Armanda Gameiro
- Department of Chemistry, Binghamton University, Binghamton, New York, United States of America
| | - Thomas Albers
- Department of Chemistry, Binghamton University, Binghamton, New York, United States of America
| | - Kurnvir Singh
- Department of Chemistry, Binghamton University, Binghamton, New York, United States of America
| | - Helen Shere
- Department of Pharmacology and Systems Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | | | - Jeff Holst
- Origins of Cancer Laboratory Centenary Program, Camperdown, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- * E-mail: (JH); (AS)
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (JH); (AS)
| |
Collapse
|
319
|
99mTc-MDM Brain SPECT for the Detection of Recurrent/Remnant Glioma—Comparison With ceMRI and 18F-FLT PET Imaging. Clin Nucl Med 2015. [DOI: 10.1097/rlu.0000000000000881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
320
|
Chen L, Cui H. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach. Int J Mol Sci 2015; 16:22830-55. [PMID: 26402672 PMCID: PMC4613338 DOI: 10.3390/ijms160922830] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
Glutamine metabolism has been proved to be dysregulated in many cancer cells, and is essential for proliferation of most cancer cells, which makes glutamine an appealing target for cancer therapy. In order to be well used by cells, glutamine must be transported to cells by specific transporters and converted to glutamate by glutaminase. There are currently several drugs that target glutaminase under development or clinical trials. Also, glutamine metabolism restriction has been proved to be effective in inhibiting tumor growth both in vivo and vitro through inducing apoptosis, growth arrest and/or autophagy. Here, we review recent researches about glutamine metabolism in cancer, and cell death induced by targeting glutamine, and their potential roles in cancer therapy.
Collapse
Affiliation(s)
- Lian Chen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Ya'an 625014, China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Ya'an 625014, China.
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
321
|
Namikawa M, Kakizaki S, Kaira K, Tojima H, Yamazaki Y, Horiguchi N, Sato K, Oriuchi N, Tominaga H, Sunose Y, Nagamori S, Kanai Y, Oyama T, Takeyoshi I, Yamada M. Expression of amino acid transporters (LAT1, ASCT2 and xCT) as clinical significance in hepatocellular carcinoma. Hepatol Res 2015; 45:1014-1022. [PMID: 25297701 DOI: 10.1111/hepr.12431] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 12/13/2022]
Abstract
AIM Amino acid transporters play an important role in tumor progression and survival of cancer cells. However, the prognostic significance of L-type amino acid transporter 1 (LAT1), system ASC amino acid transporter-2 (ASCT2) and xCT expression in patients with hepatocellular carcinoma (HCC) remains unclear. The aim of this study is to investigate the clinicopathological significance of these amino acid transporters in patients with HCC. METHODS We examined 84 patients with surgically resected HCC. Tumor sections were stained by immunohistochemistry for LAT1, ASCT2, xCT, 4F2hc/CD98hc (4F2hc), Ki-67 and microvessel density (MVD) determined by CD34. RESULTS LAT1, 4F2hc, ASCT2 and xCT were positively expressed in 61% (50/84), 77% (65/84), 63% (53/84) and 65% (55/84), respectively. Positive LAT1 expression was significantly associated with 4F2hc expression, Ki-67 and the serum albumin. By univariate analysis, LAT1 expression, disease stage and albumin had a significant relationship with overall survival. Tumor size, disease stage, portal vein invasion, albumin and α-fetoprotein had a significant relationship with progression-free survival. Multivariate analysis confirmed that LAT1 expression is an independent and significant prognostic factor for predicting worse outcome after surgery. CONCLUSION LAT1 can serve as a significant prognostic marker for predicting negative prognosis after surgery.
Collapse
Affiliation(s)
- Masashi Namikawa
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
- Department of Internal Medicine, Kiryu Kosei General Hospital, Kiryu, Japan
| | - Satoru Kakizaki
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| | - Kyoichi Kaira
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
- Department of Oncology Clinical Development, Gunma University, Gunma, Japan
| | - Hiroki Tojima
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| | - Yuichi Yamazaki
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| | - Norio Horiguchi
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| | - Ken Sato
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| | - Noboru Oriuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, Gunma, Japan
| | - Hideyuki Tominaga
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Yutaka Sunose
- Department of Thoracic and Visceral Surgery, Gunma University, Gunma, Japan
| | - Shushi Nagamori
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Izumi Takeyoshi
- Department of Thoracic and Visceral Surgery, Gunma University, Gunma, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| |
Collapse
|
322
|
Liu Z, Chen H, Chen K, Shao Y, Kiesewetter DO, Niu G, Chen X. Boramino acid as a marker for amino acid transporters. SCIENCE ADVANCES 2015; 1:e1500694. [PMID: 26601275 PMCID: PMC4643766 DOI: 10.1126/sciadv.1500694] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/08/2015] [Indexed: 06/05/2023]
Abstract
Amino acid transporters (AATs) are a series of integral channels for uphill cellular uptake of nutrients and neurotransmitters. Abnormal expression of AATs is often associated with cancer, addiction, and multiple mental diseases. Although methods to evaluate in vivo expression of AATs would be highly useful, efforts to develop them have been hampered by a lack of appropriate tracers. We describe a new class of AA mimics-boramino acids (BAAs)-that can serve as general imaging probes for AATs. The structure of a BAA is identical to that of the corresponding natural AA, except for an exotic replacement of the carboxylate with -BF3 (-). Cellular studies demonstrate strong AAT-mediated cell uptake, and animal studies show high tumor-specific accumulation, suggesting that BAAs hold great promise for the development of new imaging probes and smart AAT-targeting drugs.
Collapse
Affiliation(s)
- Zhibo Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Haojun Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Department of nuclear medicine, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yihan Shao
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
323
|
Napolitano L, Scalise M, Galluccio M, Pochini L, Albanese LM, Indiveri C. LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. Int J Biochem Cell Biol 2015; 67:25-33. [PMID: 26256001 DOI: 10.1016/j.biocel.2015.08.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/10/2015] [Accepted: 08/04/2015] [Indexed: 01/25/2023]
Abstract
LAT1 (SLC7A5) and CD98 (SLC3A2) constitute a heterodimeric transmembrane protein complex that catalyzes amino acid transport. Whether one or both subunits are competent for transport is still unclear. The present work aims to solve this question using different experimental strategies. Firstly, LAT1 and CD98 were immuno-detected in protein extracts from SiHa cells. Under oxidizing conditions, i.e., without addition of SH (thiol) reducing agent DTE, both proteins were revealed as a 120kDa major band. Upon DTE treatment separated bands, corresponding to LAT1(35kDa) or CD98(80kDa), were detected. LAT1 function was evaluated in intact cells as BCH sensitive [(3)H]His transport inhibited by hydrophobic amino acids. Antiport of [(3)H]His was measured in proteoliposomes reconstituted with SiHa cell extract in presence of internal His. Transport was increased by DTE. Hydrophobic amino acids were best inhibitors in addition to hydrophilic Tyr, Gln, Asn and Lys. Cys, Tyr and Gln, included in the intraliposomal space, were transported in antiport with external [(3)H]His. Similar experiments were performed in proteoliposomes reconstituted with the recombinant purified hLAT1. Results overlapping those obtained with native protein were achieved. Lower transport of [(3)H]Leu and [(3)H]Gln with respect to [(3)H]His was detected. Kinetic asymmetry was found with external Km for His lower than internal one. No transport was detected in proteoliposomes reconstituted with recombinant hCD98. The experimental data demonstrate that LAT1 is the sole transport competent subunit of the heterodimer. This conclusion has important outcome for following studies on functional characterization and identification of specific inhibitors with potential application in human therapy.
Collapse
Affiliation(s)
- Lara Napolitano
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Leticia Maria Albanese
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
324
|
Evaluation of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid accumulation in low-grade glioma in chemically induced rat models: PET and autoradiography compared with morphological images and histopathological findings. Nucl Med Biol 2015; 42:664-72. [DOI: 10.1016/j.nucmedbio.2015.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/17/2022]
|
325
|
Accumulation of trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid in prostate cancer due to androgen-induced expression of amino acid transporters. Mol Imaging Biol 2015; 16:756-64. [PMID: 24943499 DOI: 10.1007/s11307-014-0756-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Androgens play a crucial role in prostate cancer progression, and trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid (anti-[(18) F]FACBC) are used for visualization of prostate cancer. We examined the effect of androgen on the expression of amino acid transporters related to anti-[(18)F]FACBC transport and uptake of trans-1-amino-3-fluoro-[1-(14)C]cyclobutanecarboxylic acid (anti-[(14)C]FACBC). PROCEDURES Expression of amino acid transporters and uptake of anti-[(14)C]FACBC in androgen receptor (AR)-positive LNCaP and AR-negative DU145 human prostate cancer cells cultured with/without 5α-dihydrotestosterone (DHT) and the effect of bicalutamide, an AR antagonist, on DHT-associated changes were investigated. RESULTS DHT stimulated the expression of amino acid transporters ASCT2, SNAT5, 4F2 heavy chain, and LAT3 in LNCaP but not in DU145 cells. Anti-[(14)C]FACBC uptake was enhanced, in a DHT-dependent manner, in LNCaP cells only. CONCLUSIONS DHT enhanced the expression of ASCT2, the transporter responsible for anti-[(18)F]FACBC uptake, thereby increasing anti-[(14)C]FACBC uptake in AR-positive LNCaP cells. Androgen-mediated induction may contribute to the distinct anti-[(18)F]FACBC accumulation pattern in prostate cancer.
Collapse
|
326
|
Luderer MJ, de la Puente P, Azab AK. Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharm Res 2015; 32:2824-36. [DOI: 10.1007/s11095-015-1718-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/18/2015] [Indexed: 01/16/2023]
|
327
|
Nikkuni O, Kaira K, Toyoda M, Shino M, Sakakura K, Takahashi K, Tominaga H, Oriuchi N, Suzuki M, Iijima M, Asao T, Nishiyama M, Nagamori S, Kanai Y, Oyama T, Chikamatsu K. Expression of Amino Acid Transporters (LAT1 and ASCT2) in Patients with Stage III/IV Laryngeal Squamous Cell Carcinoma. Pathol Oncol Res 2015; 21:1175-81. [PMID: 26024742 DOI: 10.1007/s12253-015-9954-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/14/2015] [Indexed: 01/28/2023]
Abstract
The aim of this study is to evaluate the clinicopathological significance of L-type amino acid transporter 1 (LAT1) expression in patients with advanced laryngeal squamous cell carcinoma (LSCC). A total of 73 patients with advanced LSCC were retrospectively reviewed. Tumor sections were stained by immunohistochemistry for LAT1, 4F2hc, system ASC amino acid transporter-2 (ASCT2), cell proliferation by Ki-67, microvessel density (MVD) determined by CD34 and p53. A positive LAT1, 4F2hc and ASCT2 expression (staining more than a quarter) in the primary sites were recognized in 85, 80 and 45 %, respectively, and a high LAT1, 4F2hc and ASCT2 expression (staining more than a half) yielded 48, 31 and 18 %, respectively. High expression of LAT1 was significantly associated with lymph node metastasis, 4F2hc, ASCT2, Ki-67 and p53. The expression of LAT1 was significantly correlated with ASCT2, 4F2hc, cell proliferation, and MVD. By univariate analysis, there was no statistically significant relationship between LAT1 expression and prognosis in advanced LSCC. LAT1, 4F2hc and ASCT2 were highly expressed in patients with advanced laryngeal cancer. Our study suggests that the expression of LAT1 plays a crucial role in the metastasis and tumor progression in advanced LSCC.
Collapse
Affiliation(s)
- Osamu Nikkuni
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Jin SE, Jin HE, Hong SS. Targeting L-type amino acid transporter 1 for anticancer therapy: clinical impact from diagnostics to therapeutics. Expert Opin Ther Targets 2015; 19:1319-37. [DOI: 10.1517/14728222.2015.1044975] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
329
|
Bouhlel A, Zhou D, Li A, Yuan L, Rich KM, McConathy J. Synthesis, Radiolabeling, and Biological Evaluation of (R)- and (S)-2-Amino-5-[(18)F]fluoro-2-methylpentanoic Acid ((R)-, (S)-[(18)F]FAMPe) as Potential Positron Emission Tomography Tracers for Brain Tumors. J Med Chem 2015; 58:3817-29. [PMID: 25843369 DOI: 10.1021/jm502023y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel (18)F-labeled α,α-disubstituted amino acid-based tracer, 2-amino-5-[(18)F]fluoro-2-methylpentanoic acid ([(18)F]FAMPe), has been developed for brain tumor imaging with a longer alkyl side chain than previously reported compounds to increase brain availability via system L amino acid transport. Both enantiomers of [(18)F]FAMPe were obtained in good radiochemical yield (24-52% n = 8) and high radiochemical purity (>99%). In vitro uptake assays in mouse DBT gliomas cells revealed that (S)-[(18)F]FAMPe enters cells partly via sodium-independent system L transporters and also via other nonsystem A transport systems including transporters that recognize glutamine. Biodistribution and small animal PET/CT studies in the mouse DBT model of glioblastoma showed that both (R)- and (S)-[(18)F]FAMPe have good tumor imaging properties with the (S)-enantiomer providing higher tumor uptake and tumor to brain ratios. Comparison of the SUVs showed that (S)-[(18)F]FAMPe had higher tumor to brain ratios compared to (S)-[(18)F]FET, a well-established system L substrate.
Collapse
Affiliation(s)
- Ahlem Bouhlel
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Dong Zhou
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Aixiao Li
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Liya Yuan
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Keith M Rich
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Jonathan McConathy
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
330
|
Hummel J, Kämmerer U, Müller N, Avota E, Schneider-Schaulies S. Human endogenous retrovirus envelope proteins target dendritic cells to suppress T-cell activation. Eur J Immunol 2015; 45:1748-59. [PMID: 25752285 DOI: 10.1002/eji.201445366] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 01/27/2023]
Abstract
Though mostly defective, human endogenous retroviruses (HERV) can retain open reading frames, which are especially expressed in the placenta. There, the envelope (env) proteins of HERV-W (Syncytin-1), HERV-FRD (Syncytin-2), and HERV-K (HML-2) were implicated in tolerance against the semi-allogenic fetus. Here, we show that the known HERV env-binding receptors ASCT-1 and -2 and MFSD2 are expressed by DCs and T-cells. When used as effectors in coculture systems, CHO cells transfected to express Syncytin-1, -2, or HML-2 did not affect T-cell expansion or overall LPS-driven phenotypic DC maturation, however, promoted release of IL-12 and TNF-α rather than IL-10. In contrast, HERV env expressing choriocarcinoma cell lines suppressed T-cell proliferation and LPS-induced TNF-α and IL-12 release, however, promoted IL-10 accumulation, indicating that these effects might not rely on HERV env interactions. However, DCs conditioned by choriocarcinoma, but also transgenic CHO cells failed to promote allogenic T-cell expansion. This was associated with a loss of DC/T-cell conjugate frequencies, impaired Ca(2+) mobilization, and aberrant patterning of f-actin and tyrosine phosphorylated proteins in T-cells. Altogether, these findings suggest that HERV env proteins target T-cell activation indirectly by modulating the stimulatory activity of DCs.
Collapse
Affiliation(s)
- Jonas Hummel
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Ulrike Kämmerer
- Department of Obstetrics and Gynaecology, University of Wuerzburg, Wuerzburg, Germany
| | - Nora Müller
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
331
|
Prognostic value of volume-based measurements on (11)C-methionine PET in glioma patients. Eur J Nucl Med Mol Imaging 2015; 42:1071-80. [PMID: 25852010 DOI: 10.1007/s00259-015-3046-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/10/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE (11)C-methionine (MET) PET is an established diagnostic tool for glioma. Studies have suggested that MET uptake intensity in the tumor is a useful index for predicting patient outcome. Because MET uptake is known to reflect tumor expansion more accurately than MRI, we aimed to elucidate the association between volume-based tumor measurements and patient prognosis. METHODS The study population comprised 52 patients with newly diagnosed glioma who underwent PET scanning 20 min after injection of 370 MBq MET. The tumor was contoured using a threshold of 1.3 times the activity of the contralateral normal cortex. Metabolic tumor volume (MTV) was defined as the total volume within the boundary. Total lesion methionine uptake (TLMU) was defined as MTV times the mean standardized uptake value (SUVmean) within the boundary. The tumor-to-normal ratio (TNR), calculated as the maximum standardized uptake value (SUVmax) divided by the contralateral reference value, was also recorded. All patients underwent surgery (biopsy or tumor resection) targeting the tissue with high MET uptake. The Kaplan-Meier method was used to estimate the predictive value of each measurement. RESULTS Grade II tumor was diagnosed in 12 patients (3 diffuse astrocytoma, 2 oligodendroglioma, and 7 oligoastrocytoma), grade III in 18 patients (8 anaplastic astrocytoma, 6 anaplastic oligodendroglioma, and 4 anaplastic oligoastrocytoma), and grade IV in 22 patients (all glioblastoma). TNR, MTV and TLMU were 3.1 ± 1.2, 51.6 ± 49.9 ml and 147.7 ± 153.3 ml, respectively. None of the three measurements was able to categorize the glioma patients in terms of survival when all patients were analyzed. However, when only patients with astrocytic tumor (N = 33) were analyzed (i.e., when those with oligodendroglial components were excluded), MTV and TLMU successfully predicted patient outcome with higher values associated with a poorer prognosis (P < 0.05 and P < 0.01, respectively), while the predictive ability of TNR did not reach statistical significance (P = NS). CONCLUSION MTV and TLMU may be useful for predicting outcome in patients with astrocytic tumor.
Collapse
|
332
|
Console L, Scalise M, Tarmakova Z, Coe IR, Indiveri C. N-linked glycosylation of human SLC1A5 (ASCT2) transporter is critical for trafficking to membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1636-45. [PMID: 25862406 DOI: 10.1016/j.bbamcr.2015.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022]
Abstract
The human amino acid transporter SLC1A5 (ASCT2) contains two N-glycosylation sites (N163 and N212) located in the large extracellular loop. In the homology structural model of ASCT2 these Asn residues are extracellularly exposed. Mutants of the two Asn exhibited altered electrophoretic mobility. N163Q and N212Q displayed multiple bands with apparent molecular masses from 80kDa to 50kDa. N163/212Q displayed a single band of 50kDa corresponding to the unglycosylated protein. The presence in membrane of WT and mutants was evaluated by protein biotinylation assay followed by immunoblotting. The double mutation significantly impaired the presence of the protein in membrane, without impairment in protein synthesis. [(3)H]glutamine transport was measured in cells transiently transfected with the WT or mutants. N163/212Q exhibited a strongly reduced transport activity correlating with reduced surface expression. The same proteins extracted from cells and reconstituted in liposomes showed comparable transport activities demonstrating that the intrinsic transport function of the mutants was not affected. The rate of endocytosis of ASCT2 was assayed by a reversible biotinylation strategy. N212Q and N163/212Q showed strongly increased rates of endocytosis respect to WT. ASCT2 stability was determined using cycloheximide. N163Q or N163/212Q showed a slightly or significantly lower stability with respect to WT. To assess trafficking to the membrane, a brefeldin-based assay, which caused retention of proteins in ER, was performed. One hour after brefeldin removal WT protein was localized to the plasma membrane while the double mutant was localized in the cytosol. The results demonstrate that N-glycosylation is critical for trafficking.
Collapse
Affiliation(s)
- Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy; Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Zlatina Tarmakova
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Imogen R Coe
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
333
|
Wang Q, Hardie RA, Hoy AJ, van Geldermalsen M, Gao D, Fazli L, Sadowski MC, Balaban S, Schreuder M, Nagarajah R, Wong JJL, Metierre C, Pinello N, Otte NJ, Lehman ML, Gleave M, Nelson CC, Bailey CG, Ritchie W, Rasko JEJ, Holst J. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol 2015; 236:278-89. [PMID: 25693838 PMCID: PMC4973854 DOI: 10.1002/path.4518] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/19/2015] [Accepted: 02/12/2015] [Indexed: 12/11/2022]
Abstract
Glutamine is conditionally essential in cancer cells, being utilized as a carbon and nitrogen source for macromolecule production, as well as for anaplerotic reactions fuelling the tricarboxylic acid (TCA) cycle. In this study, we demonstrated that the glutamine transporter ASCT2 (SLC1A5) is highly expressed in prostate cancer patient samples. Using LNCaP and PC‐3 prostate cancer cell lines, we showed that chemical or shRNA‐mediated inhibition of ASCT2 function in vitro decreases glutamine uptake, cell cycle progression through E2F transcription factors, mTORC1 pathway activation and cell growth. Chemical inhibition also reduces basal oxygen consumption and fatty acid synthesis, showing that downstream metabolic function is reliant on ASCT2‐mediated glutamine uptake. Furthermore, shRNA knockdown of ASCT2 in PC‐3 cell xenografts significantly inhibits tumour growth and metastasis in vivo, associated with the down‐regulation of E2F cell cycle pathway proteins. In conclusion, ASCT2‐mediated glutamine uptake is essential for multiple pathways regulating the cell cycle and cell growth, and is therefore a putative therapeutic target in prostate cancer. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Qian Wang
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Rae-Anne Hardie
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Andrew J Hoy
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Michelle van Geldermalsen
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Dadi Gao
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Bioinformatics, Centenary Institute, Camperdown, NSW, Australia
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Seher Balaban
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Mark Schreuder
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Rajini Nagarajah
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Justin J-L Wong
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Cynthia Metierre
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Natalia Pinello
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Nicholas J Otte
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Melanie L Lehman
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Martin Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Charles G Bailey
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - William Ritchie
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Bioinformatics, Centenary Institute, Camperdown, NSW, Australia
| | - John E J Rasko
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jeff Holst
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| |
Collapse
|
334
|
Hanaoka H, Ohshima Y, Suzuki Y, Yamaguchi A, Watanabe S, Uehara T, Nagamori S, Kanai Y, Ishioka NS, Tsushima Y, Endo K, Arano Y. Development of a Widely Usable Amino Acid Tracer: ⁷⁶Br-α-Methyl-Phenylalanine for Tumor PET Imaging. J Nucl Med 2015; 56:791-7. [PMID: 25814518 DOI: 10.2967/jnumed.114.152215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Radiolabeled amino acids are superior PET tracers for the imaging of malignant tumors, and amino acids labeled with (76)Br, an attractive positron emitter because of its relatively long half-life (16.2 h), could potentially be a widely usable tumor imaging tracer. In this study, in consideration of its stability and tumor specificity, we designed two (76)Br-labeled amino acid derivatives, 2-(76)Br-bromo-α-methyl-l-phenylalanine (2-(76)Br-BAMP) and 4-(76)Br-bromo-α-methyl-l-phenylalanine (4-(76)Br-BAMP), and investigated their potential as tumor imaging agents. METHODS Both (76)Br- and (77)Br-labeled amino acid derivatives were prepared. We performed in vitro and in vivo stability studies and cellular uptake studies using the LS180 colon adenocarcinoma cell line. Biodistribution studies in normal mice and in LS180 tumor-bearing mice were performed, and the tumors were imaged with a small-animal PET scanner. RESULTS Both (77)Br-BAMPs were stable in the plasma and in the murine body. Although both (77)Br-BAMPs were taken up by LS180 cells and the uptake was inhibited by L-type amino acid transporter 1 inhibitors, 2-(77)Br-BAMP exhibited higher uptake than 4-(77)Br-BAMP. In the biodistribution studies, 2-(77)Br-BAMP showed more rapid blood clearance and lower renal accumulation than 4-(77)Br-BAMP. More than 90% of the injected radioactivity was excreted in the urine by 6 h after the injection of 2-(77)Br-BAMP. High tumor accumulation of 2-(77)Br-BAMP was observed in tumor-bearing mice, and PET imaging with 2-(76)Br-BAMP enabled clear visualization of the tumors. CONCLUSION 2-(77)Br-BAMP exhibited preferred pharmacokinetics and high LS180 tumor accumulation, and 2-(76)Br-BAMP enabled clear visualization of the tumors by PET imaging. These findings suggest that 2-(76)Br-BAMP could constitute a potential new PET tracer for tumor imaging and may eventually enable the wider use of amino acid tracers.
Collapse
Affiliation(s)
- Hirofumi Hanaoka
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, Maebashi, Japan Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Yasuhiro Ohshima
- Medical Radioisotope Application Group, Life Science and Biotechnology Division, Quantum Beam Science Center, Research Department of Nuclear Science, Japan Atomic Energy Agency, Takasaki, Japan
| | - Yurika Suzuki
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Aiko Yamaguchi
- Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigeki Watanabe
- Medical Radioisotope Application Group, Life Science and Biotechnology Division, Quantum Beam Science Center, Research Department of Nuclear Science, Japan Atomic Energy Agency, Takasaki, Japan
| | - Tomoya Uehara
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Shushi Nagamori
- Division of Biosystem Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan; and
| | - Yoshikatsu Kanai
- Division of Biosystem Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan; and
| | - Noriko S Ishioka
- Medical Radioisotope Application Group, Life Science and Biotechnology Division, Quantum Beam Science Center, Research Department of Nuclear Science, Japan Atomic Energy Agency, Takasaki, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Keigo Endo
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| |
Collapse
|
335
|
Wongthai P, Hagiwara K, Miyoshi Y, Wiriyasermkul P, Wei L, Ohgaki R, Kato I, Hamase K, Nagamori S, Kanai Y. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci 2015; 106:279-86. [PMID: 25580517 PMCID: PMC4376436 DOI: 10.1111/cas.12602] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 01/30/2023] Open
Abstract
The efficacy of boron neutron capture therapy relies on the selective delivery of boron carriers to malignant cells. p-Boronophenylalanine (BPA), a boron delivery agent, has been proposed to be localized to cells through transporter-mediated mechanisms. In this study, we screened aromatic amino acid transporters to identify BPA transporters. Human aromatic amino acid transporters were functionally expressed in Xenopus oocytes and examined for BPA uptake and kinetic parameters. The roles of the transporters in BPA uptake were characterized in cancer cell lines. For the quantitative assessment of BPA uptake, HPLC was used throughout the study. Among aromatic amino acid transporters, ATB0,+, LAT1 and LAT2 were found to transport BPA with Km values of 137.4 ± 11.7, 20.3 ± 0.8 and 88.3 ± 5.6 μM, respectively. Uptake experiments in cancer cell lines revealed that the LAT1 protein amount was the major determinant of BPA uptake at 100 μM, whereas the contribution of ATB0,+ became significant at 1000 μM, accounting for 20–25% of the total BPA uptake in MCF-7 breast cancer cells. ATB0,+, LAT1 and LAT2 transport BPA at affinities comparable with their endogenous substrates, suggesting that they could mediate effective BPA uptake in vivo. The high and low affinities of LAT1 and ATB0,+, respectively, differentiate their roles in BPA uptake. ATB0,+, as well as LAT1, could contribute significantly to the tumor accumulation of BPA at clinical dose.
Collapse
Affiliation(s)
- Printip Wongthai
- Division of Bio-system Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
IL4 receptor α mediates enhanced glucose and glutamine metabolism to support breast cancer growth. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1219-28. [PMID: 25746764 DOI: 10.1016/j.bbamcr.2015.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/03/2015] [Accepted: 02/24/2015] [Indexed: 12/14/2022]
Abstract
The type II interleukin-4 receptor (IL4R) is expressed in human breast cancer, and in murine models thereof. It is activated by interleukin-4 (IL4), a cytokine produced predominantly by immune cells. Previously, we showed that expression of IL4Rα, a signaling component of IL4R, mediates enhanced metastatic growth through promotion of tumor cell survival and proliferation. In lymphocytes, these processes are supported by increased glucose and glutamine metabolism, and B lymphocyte survival is dependent upon IL4/IL4R-induced glucose metabolism. However, it is unknown whether IL4R-mediated metabolic reprogramming could support tumor growth. Here, we show that IL4Rα expression increases proliferation thus enhancing primary mammary tumor growth. In vitro, IL4-enhanced glucose consumption and lactate production in 4T1 cells was mediated by IL4Rα. Expression of the glucose transporter GLUT1 increased in response to IL4 in vitro, and enhanced GLUT1 expression was associated with the presence of IL4Rα in 4T1 mammary tumors in vivo. Although IL4 treatment did not induce changes in glucose metabolism in MDA-MB-231 human breast cancer cells, it increased expression of the main glutamine transporter, ASCT2, and enhanced glutamine consumption in both MDA-MB-231 and 4T1 cells. Pharmacologic inhibition of glutamine metabolism with compound 968 blocked IL4/IL4Rα-increased cell number in both cell lines. Our results demonstrate that IL4R mediates enhanced glucose and glutamine metabolism in 4T1 cancer cells, and that IL4-induced growth is supported by IL4/IL4R-enhanced glutamine metabolism in both human and murine mammary cancer cells. This highlights IL4Rα as a possible target for effective breast cancer therapy.
Collapse
|
337
|
Weber J, Haberkorn U, Mier W. Cancer stratification by molecular imaging. Int J Mol Sci 2015; 16:4918-46. [PMID: 25749472 PMCID: PMC4394457 DOI: 10.3390/ijms16034918] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022] Open
Abstract
The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2). Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter), as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers.
Collapse
Affiliation(s)
- Justus Weber
- Heidelberg University Hospital, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Uwe Haberkorn
- Heidelberg University Hospital, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Walter Mier
- Heidelberg University Hospital, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| |
Collapse
|
338
|
Abstract
Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabeled PET substrates can be traced at subphysiological concentrations, allowing noninvasive imaging of metabolism and intratumoral heterogeneity in systems ranging from advanced cancer models to patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of the tumor, including carbohydrate, amino acid, and fatty acid metabolism. In this review, we briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism are considered alongside new technical developments, such as combined PET/magnetic resonance imaging scanners, which could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine.
Collapse
Affiliation(s)
- David Y. Lewis
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Dmitry Soloviev
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Kevin M. Brindle
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|
339
|
Wang Q, Hardie RA, Hoy AJ, van Geldermalsen M, Gao D, Fazli L, Sadowski MC, Balaban S, Schreuder M, Nagarajah R, Wong JJL, Metierre C, Pinello N, Otte NJ, Lehman ML, Gleave M, Nelson CC, Bailey CG, Ritchie W, Rasko JEJ, Holst J. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol 2015. [PMID: 25693838 DOI: 10.1002/path.4518.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glutamine is conditionally essential in cancer cells, being utilized as a carbon and nitrogen source for macromolecule production, as well as for anaplerotic reactions fuelling the tricarboxylic acid (TCA) cycle. In this study, we demonstrated that the glutamine transporter ASCT2 (SLC1A5) is highly expressed in prostate cancer patient samples. Using LNCaP and PC-3 prostate cancer cell lines, we showed that chemical or shRNA-mediated inhibition of ASCT2 function in vitro decreases glutamine uptake, cell cycle progression through E2F transcription factors, mTORC1 pathway activation and cell growth. Chemical inhibition also reduces basal oxygen consumption and fatty acid synthesis, showing that downstream metabolic function is reliant on ASCT2-mediated glutamine uptake. Furthermore, shRNA knockdown of ASCT2 in PC-3 cell xenografts significantly inhibits tumour growth and metastasis in vivo, associated with the down-regulation of E2F cell cycle pathway proteins. In conclusion, ASCT2-mediated glutamine uptake is essential for multiple pathways regulating the cell cycle and cell growth, and is therefore a putative therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Qian Wang
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Rae-Anne Hardie
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Andrew J Hoy
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Michelle van Geldermalsen
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Dadi Gao
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Bioinformatics, Centenary Institute, Camperdown, NSW, Australia
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Seher Balaban
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Mark Schreuder
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Rajini Nagarajah
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Justin J-L Wong
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Cynthia Metierre
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Natalia Pinello
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Nicholas J Otte
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Melanie L Lehman
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Martin Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Charles G Bailey
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - William Ritchie
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Bioinformatics, Centenary Institute, Camperdown, NSW, Australia
| | - John E J Rasko
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jeff Holst
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| |
Collapse
|
340
|
Analysis and interpretation of transcriptomic data obtained from extended Warburg effect genes in patients with clear cell renal cell carcinoma. Oncoscience 2015; 2:151-86. [PMID: 25859558 PMCID: PMC4381708 DOI: 10.18632/oncoscience.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
Background Many cancers adopt a metabolism that is characterized by the well-known Warburg effect (aerobic glycolysis). Recently, numerous attempts have been made to treat cancer by targeting one or more gene products involved in this pathway without notable success. This work outlines a transcriptomic approach to identify genes that are highly perturbed in clear cell renal cell carcinoma (CCRCC). Methods We developed a model of the extended Warburg effect and outlined the model using Cytoscape. Following this, gene expression fold changes (FCs) for tumor and adjacent normal tissue from patients with CCRCC (GSE6344) were mapped on to the network. Gene expression values with FCs of greater than two were considered as potential targets for treatment of CCRCC. Results The Cytoscape network includes glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP), the TCA cycle, the serine/glycine pathway, and partial glutaminolysis and fatty acid synthesis pathways. Gene expression FCs for nine of the 10 CCRCC patients in the GSE6344 data set were consistent with a shift to aerobic glycolysis. Genes involved in glycolysis and the synthesis and transport of lactate were over-expressed, as was the gene that codes for the kinase that inhibits the conversion of pyruvate to acetyl-CoA. Interestingly, genes that code for unique proteins involved in gluconeogenesis were strongly under-expressed as was also the case for the serine/glycine pathway. These latter two results suggest that the role attributed to the M2 isoform of pyruvate kinase (PKM2), frequently the principal isoform of PK present in cancer: i.e. causing a buildup of glucose metabolites that are shunted into branch pathways for synthesis of key biomolecules, may not be operative in CCRCC. The fact that there was no increase in the expression FC of any gene in the PPP is consistent with this hypothesis. Literature protein data generally support the transcriptomic findings. Conclusions A number of key genes have been identified that could serve as valid targets for anti-cancer pharmaceutical agents. Genes that are highly over-expressed include ENO2, HK2, PFKP, SLC2A3, PDK1, and SLC16A1. Genes that are highly under-expressed include ALDOB, PKLR, PFKFB2, G6PC, PCK1, FBP1, PC, and SUCLG1.
Collapse
|
341
|
Barel M, Ramond E, Gesbert G, Charbit A. The complex amino acid diet of Francisella in infected macrophages. Front Cell Infect Microbiol 2015; 5:9. [PMID: 25705612 PMCID: PMC4319460 DOI: 10.3389/fcimb.2015.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis, the agent of the zoonotic disease tularemia, is a highly infectious bacterium for a large number of animal species and can be transmitted to humans by various means. The bacterium is able to infect a variety of cell types but replicates in mammalian hosts mainly in the cytosol of infected macrophages. In order to resist the stressful and nutrient-restricted intracellular environments, it encounters during its systemic dissemination, Francisella has developed dedicated stress resistance mechanisms and adapted its metabolic and nutritional needs. Recent data form our laboratory and from several other groups have shown that Francisella simultaneously relies on multiple host amino acid sources during its intracellular life cycle. This review will summarize how intracellular Francisella use different amino acid sources, and their role in phagosomal escape and/or cytosolic multiplication and systemic dissemination. We will first summarize the data that we have obtained on two amino acid transporters involved in Francisella phagosomal escape and cytosolic multiplication i.e., the glutamate transporter GadC and the asparagine transporter AnsP, respectively. The specific contribution of glutamate and asparagine to the physiology of the bacterium will be evoked. Then, we will discuss how Francisella has adapted to obtain and utilize host amino acid resources, and notably the contribution of host transporters and autophagy process in the establishment of a nutrient-replete intracellular niche.
Collapse
Affiliation(s)
- Monique Barel
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| | - Elodie Ramond
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| | - Gael Gesbert
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| |
Collapse
|
342
|
Burrill JS, Long EK, Reilly B, Deng Y, Armitage IM, Scherer PE, Bernlohr DA. Inflammation and ER stress regulate branched-chain amino acid uptake and metabolism in adipocytes. Mol Endocrinol 2015; 29:411-20. [PMID: 25635940 DOI: 10.1210/me.2014-1275] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation plays a critical role in the pathology of obesity-linked insulin resistance and is mechanistically linked to the effects of macrophage-derived cytokines on adipocyte energy metabolism, particularly that of the mitochondrial branched-chain amino acid (BCAA) and tricarboxylic acid (TCA) pathways. To address the role of inflammation on energy metabolism in adipocytes, we used high fat-fed C57BL/6J mice and lean controls and measured the down-regulation of genes linked to BCAA and TCA cycle metabolism selectively in visceral but not in subcutaneous adipose tissue, brown fat, liver, or muscle. Using 3T3-L1 cells, TNFα, and other proinflammatory cytokine treatments reduced the expression of the genes linked to BCAA transport and oxidation. Consistent with this, [(14)C]-leucine uptake and conversion to triglycerides was markedly attenuated in TNFα-treated adipocytes, whereas the conversion to protein was relatively unaffected. Because inflammatory cytokines lead to the induction of endoplasmic reticulum stress, we evaluated the effects of tunicamycin or thapsigargin treatment of 3T3-L1 cells and measured a similar down-regulation in the BCAA/TCA cycle pathway. Moreover, transgenic mice overexpressing X-box binding protein 1 in adipocytes similarly down-regulated genes of BCAA and TCA metabolism in vivo. These results indicate that inflammation and endoplasmic reticulum stress attenuate lipogenesis in visceral adipose depots by down-regulating the BCAA/TCA metabolism pathway and are consistent with a model whereby the accumulation of serum BCAA in the obese insulin-resistant state is linked to adipose inflammation.
Collapse
Affiliation(s)
- Joel S Burrill
- Department of Biochemistry, Molecular Biology, and Biophysics (J.S.B., E.K.L., B.R., I.M.A., D.A.B.), University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455; and Touchstone Diabetes Center (Y.D., P.E.S.) and Department of Internal Medicine (Y.D., P.E.S.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | | | | | | | | | |
Collapse
|
343
|
Ogihara K, Naya Y, Sato R, Onda K, Ochiai H. Analysis of L-type amino acid transporter in canine hepatocellular carcinoma. J Vet Med Sci 2015; 77:527-34. [PMID: 25649314 PMCID: PMC4478731 DOI: 10.1292/jvms.14-0392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Analysis of L-type amino acid transport expression of hepatocellular carcinoma cells
(HCCs) of the dog was performed. The leucine transport activity of canine HCCs was 0.628 ±
0.018 nmol/mg protein/min. The inhibitor of LAT 2-aminobicyclo[2.2.1]heptane-2-carboxylic
acid (BCH) reduced 90% of the activity at 1 mM. The deduced amino acid sequences of canine
LAT2, LAT3 and LAT4 were well conserved in mammalians, exhibiting 89, 88 and 77% homology,
respectively. RT-PCR revealed distinct LAT1 expression compared with normal hepatocytes.
Western blotting analysis confirmed the potent LAT1 expression in canine HCCs but not
hepatocytes, and real-time RT-PCR analysis indicated that canine HCCs possessed 28 times
higher LAT1 expression than hepatocytes. These results indicated that the leucine
transport activity of canine HCCs was due to LAT1.
Collapse
Affiliation(s)
- Kikumi Ogihara
- Laboratory of Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | | | | | | | | |
Collapse
|
344
|
Oka S, Okudaira H, Ono M, Schuster DM, Goodman MM, Kawai K, Shirakami Y. Differences in transport mechanisms of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol 2015; 16:322-9. [PMID: 24136390 DOI: 10.1007/s11307-013-0693-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE We aimed to elucidate trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid (anti-[(18)F]FACBC) uptake mechanisms in inflammatory and tumor cells, in comparison with those of L-[methyl-(11)C]methionine ([(11)C]Met) and 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG). PROCEDURES Using carbon-14-labeled tracers, in vitro time-course, pH dependence, and competitive inhibition uptake experiments were performed in rat inflammatory (T cells, B cells, granulocytes, macrophages), prostate cancer (MLLB2), and glioma (C6) cells. RESULTS Anti-[(14)C]FACBC uptake ratios of T/B cells to tumor cells were comparable, while those of granulocytes/macrophages to tumor cells were lower than those for [(14)C]FDG. Over half of anti-[(14)C]FACBC uptake by T/B and tumor cells was mediated by Na(+)-dependent amino acid transporters (system ASC), whereas most [(14)C]Met transport in all cells was mediated by Na(+)-independent carriers (system L). CONCLUSIONS The low anti-[(18)F]FACBC accumulation in granulocytes/macrophages may be advantageous in discriminating inflamed regions from tumors. The significant anti-[(18)F]FACBC uptake in T/B cells may cause false-positives in some cancer patients who undergo FACBC-positron emission tomography (PET).
Collapse
Affiliation(s)
- Shuntaro Oka
- Research Center, Nihon Medi-Physics Co., Ltd, Chiba, Japan,
| | | | | | | | | | | | | |
Collapse
|
345
|
Bazer FW, Johnson GA, Wu G. Amino Acids and Conceptus Development During the Peri-Implantation Period of Pregnancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:23-52. [DOI: 10.1007/978-1-4939-2480-6_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
346
|
Kaira K, Sunose Y, Arakawa K, Sunaga N, Shimizu K, Tominaga H, Oriuchi N, Nagamori S, Kanai Y, Oyama T, Takeyoshi I. Clinicopathological significance of ASC amino acid transporter-2 expression in pancreatic ductal carcinoma. Histopathology 2014; 66:234-43. [DOI: 10.1111/his.12464] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/16/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Kyoichi Kaira
- Department of Medicine and Molecular Science; Gunma University Graduate School of Medicine; Gunma Japan
- Department of Diagnostic Pathology; Gunma University Graduate School of Medicine; Gunma Japan
| | - Yutaka Sunose
- Department of Thoracic and Visceral Surgery; Gunma University Graduate School of Medicine; Gunma Japan
| | | | - Noriaki Sunaga
- Department of Medicine and Molecular Science; Gunma University Graduate School of Medicine; Gunma Japan
| | - Kimihiro Shimizu
- Department of Thoracic and Visceral Surgery; Gunma University Graduate School of Medicine; Gunma Japan
| | - Hideyuki Tominaga
- Department of Molecular Imaging; Gunma University Graduate School of Medicine; Gunma Japan
| | - Noboru Oriuchi
- Department of Diagnostic Radiology and Nuclear Medicine; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Shushi Nagamori
- Division of Bio-system Pharmacology; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology; Gunma University Graduate School of Medicine; Gunma Japan
| | - Izumi Takeyoshi
- Department of Thoracic and Visceral Surgery; Gunma University Graduate School of Medicine; Gunma Japan
| |
Collapse
|
347
|
Zhao Z, Wang Y, Han J, Wang K, Yang D, Yang Y, Du Q, Song Y, Yin X. Self-assembled micelles of amphiphilic poly(L-phenylalanine)-b-poly(L-serine) polypeptides for tumor-targeted delivery. Int J Nanomedicine 2014; 9:5849-62. [PMID: 25540585 PMCID: PMC4270381 DOI: 10.2147/ijn.s73111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aim of this work was to design, synthesize, and characterize self-assembled micelles based on polypeptides as a potential antitumor drug carrier. Amphiphilic poly(l-phenylalanine)-b-poly(l-serine) (PFS) polypeptides were obtained through the polymerization of N-carboxyanhydride. As a novel hydrophilic segment, poly(l-serine) was utilized to enhance tumor targeting due to a large demand of tumors for serine. PFS could self-assemble into micelles with an average diameter of 110–240 nm and a slightly negative charge. PFS polypeptides adopted random coil in pH 7.4 phosphate-buffered saline and could partly transform to α-helix induced by trifluoroethanol. PFS micelles with a low critical micelle concentration of 4.0 μg mL−1 were stable in pH 5–9 buffers and serum albumin solution. PFS micelles had a loading capacity of 3.8% for coumarin-6 and exhibited a sustained drug release. Coumarin-6 loaded rhodamine B isothiocyanate-labeled PFS micelles were incubated with Huh-7 tumor cells to study the correlation between drugs and carriers during endocytosis. The uptake of drugs was consistent with the micelles, illustrating that the intracellular transport of drugs highly depended on the micelles. PFS micelles diffused in whole cytoplasm while coumarin-6 assumed localized distribution, suggesting that the micelles could release the loaded drugs in particular areas. The internalization mechanism of PFS micelles was involved with clathrin-mediated endocytosis and macropinocytosis. Excess serine inhibited the uptake of PFS micelles, which demonstrated that serine receptors played a positive role in the internalization of PFS. The more interesting thing was that the uptake inhibition impacted on normal cells but not on tumor cells at the physiological concentration of serine. The difference in the uptake of PFS micelles was fourfold as high between the tumor cells and the normal cells, which indicated that PFS micelles had good tumor targeting in vitro. In conclusion, PFS micelles reported in this work were a promising drug delivery system for tumor targeting therapy.
Collapse
Affiliation(s)
- Ziming Zhao
- Department of Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China ; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China
| | - Yu Wang
- Department of Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China ; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China
| | - Jin Han
- Department of Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China ; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China
| | - Keli Wang
- Department of Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China
| | - Dan Yang
- Department of Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China ; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China
| | - Yihua Yang
- Department of Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China ; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China
| | - Qian Du
- Department of Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China ; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China
| | - Yuanjian Song
- Department of Basic Medical Sciences, Xuzhou Medical College, Xuzhou, People's Republic of China
| | - Xiaoxing Yin
- Department of Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China ; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People's Republic of China
| |
Collapse
|
348
|
Carrer A, Wellen KE. Metabolism and epigenetics: a link cancer cells exploit. Curr Opin Biotechnol 2014; 34:23-9. [PMID: 25461508 DOI: 10.1016/j.copbio.2014.11.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/24/2022]
Abstract
Both cellular nutrient metabolism and chromatin organization are remodeled in cancer cells, and these alterations play key roles in tumor development and growth. Many chromatin modifying-enzymes utilize metabolic intermediates as cofactors or substrates, and recent studies have demonstrated that the epigenome is sensitive to cellular metabolism. The contribution of metabolic alterations to epigenetic deregulation in cancer cells is just beginning to emerge, as are the roles of the metabolism-epigenetics link in tumorigenesis. Here we review the roles of acetyl-CoA and S-adenosylmethionine (SAM), donor substrates for acetylation and methylation reactions, respectively, in regulating chromatin modifications in response to nutrient metabolism. We further discuss how oncogenic signaling, cell metabolism, and histone modifications are interconnected and how their relationship might impact tumor growth.
Collapse
Affiliation(s)
- Alessandro Carrer
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
349
|
Tani H, Kurihara H, Hiroi K, Honda N, Yoshimoto M, Kono Y, Murakami R, Kumita S, Arai Y, Itami J. Correlation of (18)F-BPA and (18)F-FDG uptake in head and neck cancers. Radiother Oncol 2014; 113:193-7. [PMID: 25466367 DOI: 10.1016/j.radonc.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/16/2014] [Accepted: 11/01/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to compare the accumulation of 4-borono-2-(18)F-fluoro-phenylalanine ((18)F-BPA) with that of (18)F-fluorodeoxyglucose ((18)F-FDG) in head and neck cancers, and to assess the usefulness of (18)F-FDG PET for screening candidates for boron neutron capture therapy (BNCT). MATERIAL AND METHODS Twenty patients with pathologically proven malignant tumors of the head and neck were recruited from March 2012 to January 2014. All patients underwent both whole-body (18)F-BPA PET/CT and (18)F-FDG PET/CT within 2weeks of each other. The uptakes of (18)F-BPA and (18)F-FDG at 1h after injection were evaluated using the maximum standardized uptake value (SUVmax). RESULTS The accumulation of (18)F-FDG was significantly correlated with that of (18)F-BPA. The SUVmax of (18)F-FDG ⩾5.0 is considered to be suggestive of high (18)F-BPA accumulation. CONCLUSIONS (18)F-FDG PET might be an effective screening method performed prior to (18)F-BPA for selecting patients with head and neck cancer for treatment with BNCT.
Collapse
Affiliation(s)
- Hitomi Tani
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan; Department of Radiology, Nippon Medical School, Tokyo, Japan
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan.
| | - Kenta Hiroi
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan
| | - Natsuki Honda
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, Chiba, Japan
| | - Yuzuru Kono
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Yasuaki Arai
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
350
|
Schuster DM, Nanni C, Fanti S, Oka S, Okudaira H, Inoue Y, Sörensen J, Owenius R, Choyke P, Turkbey B, Bogsrud TV, Bach-Gansmo T, Halkar RK, Nye JA, Odewole OA, Savir-Baruch B, Goodman MM. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med 2014; 55:1986-92. [PMID: 25453047 DOI: 10.2967/jnumed.114.143628] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Anti-1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid ((18)F-FACBC) is a synthetic amino acid analog PET radiotracer undergoing clinical trials for the evaluation of prostate and other cancers. We aimed to describe common physiologic uptake patterns, incidental findings, and variants in patients who had undergone (18)F-FACBC PET. METHODS Sixteen clinical trials involving 611 (18)F-FACBC studies from 6 centers, which included dosimetry studies on 12 healthy volunteers, were reviewed. Qualitative observations of common physiologic patterns, incidental uptake, and variants that could simulate disease were recorded and compared with similar observations in studies of the healthy volunteers. Quantitative analysis of select data and review of prior published reports and observations were also made. RESULTS The liver and pancreas demonstrated the most intense uptake. Moderate salivary and pituitary uptake and variable mild to moderate bowel activity were commonly visualized. Moderate bone marrow and mild muscle activity were present on early images, with marrow activity decreasing and muscle activity increasing with time. Brain and lungs demonstrated activity less than blood pool. Though (18)F-FACBC exhibited little renal excretion or bladder uptake during the clinically useful early imaging time window, mild to moderate activity might accumulate in the bladder and interfere with evaluation of adjacent prostate bed and seminal vesicles in 5%-10% of patients. Uptake might also occur from benign processes such as infection, inflammation, prostatic hyperplasia, and metabolically active benign bone lesions such as osteoid osteoma. CONCLUSION Common physiologic uptake patterns were similar to those noted in healthy volunteers. The activity in organs followed the presence of amino acid transport and metabolism described with other amino acid-based PET radiotracers. As with other PET radiotracers such as (18)F-FDG, focal nonphysiologic uptake may represent incidental malignancy. Uptake due to benign etiologies distinct from physiologic background also occurred and could lead to misinterpretations if the reader is unaware of them.
Collapse
Affiliation(s)
- David M Schuster
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Cristina Nanni
- Department of Nuclear Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| | - Stefano Fanti
- Department of Nuclear Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| | - Shuntaro Oka
- Research Center, Nihon Medi-Physics Co., Ltd., Chiba, Japan
| | | | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Kitasato, Japan
| | - Jens Sörensen
- Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Rikard Owenius
- GE Healthcare, Life Sciences, Imaging R&D, Uppsala, Sweden
| | - Peter Choyke
- Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland
| | - Trond V Bogsrud
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; and Department of Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark
| | - Tore Bach-Gansmo
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; and
| | - Raghuveer K Halkar
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Oluwaseun A Odewole
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Bital Savir-Baruch
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| |
Collapse
|