301
|
Liu J, Song H, Zhang L, Xu H, Zhao X. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro. Macromol Biosci 2011; 10:1164-70. [PMID: 20552605 DOI: 10.1002/mabi.200900450] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The promising potential of a RAD-16 self-assembly-peptide hydrogel as a scaffold for tissue-engineered cartilage was investigated. Within 3 weeks of in vitro culture, chondrocytes within the hydrogel produced a high amount of GAG and type-II collagen, which are the components of cartilage-specific extracellular matrix (ECM). With the culture time increased, toluidine-blue staining for GAG and immuno-histochemistry staining for type-II collagen of the chondrocytes-hydrogel composites became more intense. Analysis of the gene expression of the ECM molecules also confirmed the chondrocytes in the peptide hydrogel maintained their phenotype within 3 weeks of in vitro culture.
Collapse
Affiliation(s)
- Jingping Liu
- Nanomedicine Laboratory, West China Hospital, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | | | | | | | | |
Collapse
|
302
|
Sheehy EJ, Buckley CT, Kelly DJ. Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions. J Tissue Eng Regen Med 2011; 5:747-58. [DOI: 10.1002/term.385] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 10/13/2010] [Indexed: 12/18/2022]
|
303
|
Wang ZH, Yang ZQ, He XJ, Kamal BE, Xing Z. Lentivirus-mediated knockdown of aggrecanase-1 and -2 promotes chondrocyte-engineered cartilage formation in vitro. Biotechnol Bioeng 2011; 107:730-6. [PMID: 20632367 DOI: 10.1002/bit.22862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondrocyte-based tissue engineering has emerged as a promising approach for repair of injured cartilage tissues that have a poor self-healing capacity. However, this technique faces a major limitation: dedifferentiation of chondrocytes occurs following several passages in culture. Aggrecan, a major component of cartilage extracellular matrix, plays an essential role in chondrocyte differentiation. The aim of this study is to determine whether inhibition of chondrocyte aggrecanases, key degradative enzymes for aggrecan in cartilage, could benefit chondrocyte differentiation and the preservation of chondrocyte phenotype within a long-term period. Lentivirus-mediated RNA interference (RNAi) was employed to target both aggrecanase-1 and -2 in primary rat chondrocytes, and the transduced cells were seeded into chitosan-gelatin three-dimensional scaffolds. Histological, morphological, and biochemical analyses were performed at 1-8 weeks post-implantation to study chondrocyte survival, differentiation, and function. We found that lentivirus-mediated RNAi notably decreased the abundance of aggrecanase transcripts in chondrocytes but did not affect cell viability. Most importantly, compared to the control constructs seeded with untransduced chondrocytes, the aggrecanase inhibition increased chondrocyte proliferation and reinforced the production of glycosaminoglycans and total collagen, indicative of chondrocyte differentiation. The mRNA expression of chondrocyte marker genes (collagen II and aggrecan) was enhanced by aggrecanase silencing relative to the control. Together our data demonstrate that inhibition of endogenous aggrecanases facilitates chondrocyte differentiation and chondrocyte-engineered cartilage formation in vitro. The combination of lentiviral delivery system and genetic manipulation techniques provides a useful tool for modulation of chondrocyte phenotype in cartilage engineering.
Collapse
Affiliation(s)
- Zheng-Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Xi'an Jiao Tong University, Xi'an, China.
| | | | | | | | | |
Collapse
|
304
|
Qi J, Chen A, You H, Li K, Zhang D, Guo F. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds. Biomed Mater 2011; 6:015006. [PMID: 21205995 DOI: 10.1088/1748-6041/6/1/015006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell-based tissue engineering has provided an alternative strategy to treat cartilage lesions, and synovium-derived mesenchymal stem cells (SMSCs) are considered as a promising cell source for cartilage repair. In this study, the SMSCs were isolated from rat synovium, and CD105-positive (CD105(+)) cells were enriched using magnetic activated cell sorting. Sorted cells were subsequently seeded onto the chitosan-alginate composite three-dimensional (3D) porous scaffolds and cultured in chondrogenic culture medium in the presence of TGF-β₃ and BMP-2 for 2 weeks in vitro. After 2 weeks in culture, scanning electron microscopy results showed that cells attached and proliferated well on scaffolds, and secreted extracellular matrix were also observed. From day 7 to day 14, the total DNA and glucosaminoglycan content of the cells cultured in scaffolds were found to have increased significantly, and cell cycle analyses revealed that the percentage of cells in the S and G2/M phases increased and the percentage of cells in the G0/G1 phase decreased. Compared with non-sorted cells, the sorted cells cultured in scaffolds underwent more chondrogenic differentiation, as evidenced by higher expression of type II collagen and Sox9 at the protein and mRNA levels. The results suggest that CD105(+) enriched SMSCs may be a potential cell source for cartilage tissue engineering, and the chitosan-alginate composite 3D porous scaffold could provide a favorable microenvironment for supporting proliferation and chondrogenic differentiation of cells.
Collapse
Affiliation(s)
- Jun Qi
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
305
|
Waese EY, Stanford WL. One-step generation of murine embryonic stem cell-derived mesoderm progenitors and chondrocytes in a serum-free monolayer differentiation system. Stem Cell Res 2011; 6:34-49. [DOI: 10.1016/j.scr.2010.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 08/23/2010] [Accepted: 08/27/2010] [Indexed: 01/21/2023] Open
|
306
|
Bouffi C, Bony C, Courties G, Jorgensen C, Noël D. IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS One 2010; 5:e14247. [PMID: 21151872 PMCID: PMC2998425 DOI: 10.1371/journal.pone.0014247] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/09/2010] [Indexed: 12/13/2022] Open
Abstract
Background Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSC) are intensively studied for various clinical applications. Although it has been shown in vitro that the immunomodulatory effect of MSCs mainly occurs through the secretion of soluble mediators, the mechanism is still not completely understood. The aim of the present study was to better understand the mechanisms underlying the suppressive effect of MSCs in vivo, using cells isolated from mice deficient in the production of inducible nitric oxide synthase (iNOS) or interleukin (IL)-6 in the murine model of collagen-induced arthritis. Principal Findings In the present study, we show that primary murine MSCs from various strains of mice or isolated from mice deficient for iNOS or IL-6 exhibit different immunosuppressive potential. The immunomodulatory function of MSCs was mainly attributed to IL-6-dependent secretion of prostaglandin E2 (PGE2) with a minor role for NO. To address the role of these molecules in vivo, we used the collagen-induced arthritis as an experimental model of immune-mediated disorder. MSCs effectively inhibited collagen-induced inflammation during a narrow therapeutic window. In contrast to wild type MSCs, IL-6-deficient MSCs and to a lesser extent iNOS-deficient MSCs were not able to reduce the clinical signs of arthritis. Finally, we show that, independently of NO or IL-6 secretion or Treg cell induction, MSCs modulate the host response by inducing a switch to a Th2 immune response. Significance Our data indicate that MSCs mediate their immunosuppressive effect via two modes of action: locally, they reduce inflammation through the secretion of anti-proliferative mediators, such as NO and mainly PGE2, and systemically they switch the host response from a Th1/Th17 towards a Th2 immune profile.
Collapse
Affiliation(s)
- Carine Bouffi
- Inserm, Unité 844, Montpellier, France
- Université Montpellier 1, Montpellier, France
| | - Claire Bony
- Inserm, Unité 844, Montpellier, France
- Université Montpellier 1, Montpellier, France
| | - Gabriel Courties
- Inserm, Unité 844, Montpellier, France
- Université Montpellier 1, Montpellier, France
| | - Christian Jorgensen
- Inserm, Unité 844, Montpellier, France
- Université Montpellier 1, Montpellier, France
- Service d'Immuno-Rhumatologie Thérapeutique, Hôpital Lapeyronie, Montpellier, France
| | - Danièle Noël
- Inserm, Unité 844, Montpellier, France
- Université Montpellier 1, Montpellier, France
- * E-mail:
| |
Collapse
|
307
|
Liu X, Sun H, Yan D, Zhang L, Lv X, Liu T, Zhang W, Liu W, Cao Y, Zhou G. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 2010; 31:9406-14. [DOI: 10.1016/j.biomaterials.2010.08.052] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/23/2010] [Indexed: 01/07/2023]
|
308
|
Umlauf D, Frank S, Pap T, Bertrand J. Cartilage biology, pathology, and repair. Cell Mol Life Sci 2010; 67:4197-211. [PMID: 20734104 PMCID: PMC11115553 DOI: 10.1007/s00018-010-0498-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/27/2010] [Accepted: 08/04/2010] [Indexed: 02/07/2023]
Abstract
Osteoarthritis is one of the most common forms of musculoskeletal disease and the most prominent type of arthritis encountered in all countries. Although great efforts have been made to investigate cartilage biology and osteoarthritis pathology, the treatment has lagged behind that of other arthritides, as there is a lack of effective disease-modifying therapies. Numerous approaches for dealing with cartilage degradation have been tried, but enjoyed very little success to develop approved OA treatments with not only symptomatic improvement but also structure-modifying effect. In this review we discuss the most recent findings regarding the regulation of cartilage biology and pathology and highlight their potential therapeutic values.
Collapse
Affiliation(s)
- Daniel Umlauf
- Institute of Experimental Musculoskeletal Medicine IEMM, University Hospital Muenster, Domagkstrasse 3, 48149 Muenster, Germany
| | - Svetlana Frank
- Institute of Experimental Musculoskeletal Medicine IEMM, University Hospital Muenster, Domagkstrasse 3, 48149 Muenster, Germany
| | - Thomas Pap
- Institute of Experimental Musculoskeletal Medicine IEMM, University Hospital Muenster, Domagkstrasse 3, 48149 Muenster, Germany
| | - Jessica Bertrand
- Institute of Experimental Musculoskeletal Medicine IEMM, University Hospital Muenster, Domagkstrasse 3, 48149 Muenster, Germany
| |
Collapse
|
309
|
de Girolamo L, Bertolini G, Cervellin M, Sozzi G, Volpi P. Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone. Injury 2010; 41:1172-7. [PMID: 20934693 DOI: 10.1016/j.injury.2010.09.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cartilage repair is still an unsolved problem. In the last years many cell-based treatments have been proposed, in order to obtain good regeneration of cartilage defects. The Autologous Matrix-Induced Chondrogenesis technique (AMIC(®)) combines the micro-fracture procedure with the use of a specific biological membrane. The phenotypic feature of bone marrow cell population, harvested from iliac crest and knee subchondral bone of patients treated with the AMIC(®) technique, enhanced by autologous concentrated bone marrow, was analysed to evaluate potential variations of the cell population. Samples of eleven patients, with isolated chondral lesions grade III or IV were treated with the AMIC(®) technique, enhanced by the use of autologous concentrated bone marrow. A small fraction of bone marrow samples, both from iliac crest and from the created micro-fractures, was analysed by FACS analysis and then cultured to verify their proliferative and differentiation potential. An average of 0.04% of concentrated bone marrow cells harvested from the iliac crest, presented mesenchymal stem cell phenotype (CD34(-)/CD45(low)/CD271(high)), whereas just 0.02% of these cells were identified from the samples harvested during the creation of micro-fractures at the knee. After two passages in culture, cells expressed a peculiar profile for MSC. Only MSC from bone marrow could be long-term propagated and were able to efficiently differentiate in the cultures. Although the AMIC(®) approach has many advantages, the surgical technique in the application of the microfracture technique remains essential and affects the final result.
Collapse
Affiliation(s)
- Laura de Girolamo
- Orthopaedic Biotechnologies Lab, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
310
|
Quirici N, Scavullo C, de Girolamo L, Lopa S, Arrigoni E, Deliliers GL, Brini AT. Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells Dev 2010; 19:915-25. [PMID: 19929314 DOI: 10.1089/scd.2009.0408] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cells hold great promise in tissue engineering for repairing tissues damaged by disease or injury. Mesenchymal stem cells (MSCs) are multipotent cells able to proliferate and differentiate into multiple mesodermal tissues such as bone, cartilage, muscle, tendon, and fat. We have previously reported that the low-affinity nerve growth factor receptor (L-NGFR or CD271) defines a subset of cells with high proliferative, clonogenic, and multipotential differentiation ability in adult bone marrow (BM). It has been recently shown that adipose tissue is an alternative source of adult multipotent stem cells and human adipose-derived stem cells, selected by plastic adherence (PA hASCs), have been extensively characterized for their functional potentials in vitro. In this study, immunoselected L-NGFR(+) and CD34(+) subpopulations have been analyzed and compared with the PA hASCs. Phenotypic profile of freshly purified subpopulations showed an enrichment in the expression of some stem cell markers; indeed, a great percentage of L-NGFR(+) cells co-expressed CD34 and CD117 antigens, whereas the endothelial-committed progenitor markers KDR and P1H12 were mainly expressed on CD34(+) cells. Differently from PA hASCs, the immunoseparated fractions showed high increments in cell proliferation, and the fibroblast colony-forming activity (CFU-F) was maintained throughout the time of culture. Furthermore, the immunoselected populations showed a greater differentiative potential toward adipocytes, osteoblasts, and chondrocyte-like cells, compared to PA hASCs. Our data suggest that both CD34(+) and L-NGFR(+) hASCs can be considered alternative candidates for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Nadia Quirici
- Fondazione Matarelli, Department of Medical Pharmacology, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
311
|
Owen JR, Wayne JS. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone. Biomech Model Mechanobiol 2010; 10:461-71. [DOI: 10.1007/s10237-010-0247-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
|
312
|
Gabay O, Sanchez C, Taboas JM. [Not Available]. REVUE DU RHUMATISME (ED. FRANCAISE : 1993) 2010; 77:319-322. [PMID: 21057647 PMCID: PMC2967788 DOI: 10.1016/j.rhum.2010.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Odile Gabay
- Service d’Orthopédie et de Biologie du Cartilage, Groupe de Génétique Moléculaire du Cartilage, NIAMS, Institut National de la Santé, Bethesda, MD
| | - Christelle Sanchez
- Unité de Recherche sur l’Os et le Cartilage, Université de Liège, Liège, Belgique
| | - Juan M Taboas
- Centre d’Ingénierie Cellulaire et Moléculaire, Université de Pittsburgh, Faculté de Médecine, Service de Chirurgie Orthopédique, Pittsburgh, PA
| |
Collapse
|
313
|
Gabay O, Sanchez C, Taboas JM. Update in cartilage bio-engineering. Joint Bone Spine 2010; 77:283-6. [DOI: 10.1016/j.jbspin.2010.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
314
|
The role of pharmacologically active microcarriers releasing TGF-beta3 in cartilage formation in vivo by mesenchymal stem cells. Biomaterials 2010; 31:6485-93. [PMID: 20570347 DOI: 10.1016/j.biomaterials.2010.05.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/07/2010] [Indexed: 11/20/2022]
Abstract
Cartilage engineering using mesenchymal stem cells (MSC) will require the use of a scaffold which will act as a support for cell adhesion keeping the cells in the cartilage defect. Optimally, a tissue engineered construct should allow sustained delivery of bioactive factors capable of inducing MSC differentiation into chondrocytes and should be easily injected inside the cartilage lesions to avoid surgical operations. We therefore developed pharmacologically active microcarriers (PAM) made of poly-lactic-co-glycolic acid (PLGA) produced using an oil-in-water (o/w) emulsion method. The microspheres were coated with a biomimetic surface of fibronectin (FN) and engineered to release TGF-beta3 as a chondrogenic differentiation factor. When human MSCs were incubated in vitro with TGF-beta3 releasing FN-coated PAMs in chondrogenic medium, they firmly adhered onto the surface of PAMs rapidly forming cell aggregates. After 3 weeks, strong up-regulation of cartilage-specific markers was observed both at the mRNA and protein level whereas osteogenic or adipogenic genes could not be detected. Importantly, implantation of MSC/TGF-beta3 releasing PAM complexes in SCID mice resulted in the formation of histologically resembling cartilage which stained positive for chondrocyte markers, collagen II and aggrecan. The present study demonstrated that functionalized PLGA-based microparticles can provide an appropriate environment for chondrogenic differentiation of MSCs and should contribute to injectable biomedical device development improving in vivo cartilage engineering.
Collapse
|
315
|
Gong M, Zhang D, Wan Y, Edmondson B, Cui Q, Li X. Engineered synovial joint condyle using demineralized bone matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
316
|
Effect of crosslinking temperature on compression strength of gelatin scaffold for articular cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
317
|
Clouet J, Vinatier C, Merceron C, Pot-Vaucel M, Hamel O, Weiss P, Grimandi G, Guicheux J. The intervertebral disc: From pathophysiology to tissue engineering. Joint Bone Spine 2009; 76:614-8. [DOI: 10.1016/j.jbspin.2009.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2009] [Indexed: 01/09/2023]
|
318
|
Henrotin Y, Dubuc JE. Cartilage repair in osteoarthritic patients: utopia or real opportunity? F1000 MEDICINE REPORTS 2009; 1. [PMID: 20948690 PMCID: PMC2948300 DOI: 10.3410/m1-88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As medical advances lengthen average life expectancy, osteoarthritis (OA) will become a larger public health problem - not only because it is a manifestation of aging but also because it usually takes many years to reach clinical relevance. OA is already one of the ten most disabling diseases in industrialized countries. The huge financial burden emphasizes the acute need for new and more effective treatments for articular cartilage defects, especially since there are few disease modifying drugs or treatments for OA. There is no cure for OA and the management of OA is largely palliative, focusing on the alleviation of symptoms. Recent longitudinal non-controlled trials suggest that autologous chondrocyte transplantation techniques, which are indicated for young people with traumatic cartilage defects, could also be used in degenerative defects of elderly people with OA. This report discusses this therapeutic opportunity in view of some recently published data.
Collapse
Affiliation(s)
- Yves Henrotin
- Bone and Cartilage Research Unit, University of Liège CHU Sart-Tilman, 4000 Liège Belgium
| | | |
Collapse
|
319
|
|
320
|
Gordeladze JO, Djouad F, Brondello JM, Noël D, Duroux-Richard I, Apparailly F, Jorgensen C. Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs. Acta Pharmacol Sin 2009; 30:1369-84. [PMID: 19801995 DOI: 10.1038/aps.2009.143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bone and cartilage are being generated de novo through concerted actions of a plethora of signals. These act on stem cells (SCs) recruited for lineage-specific differentiation, with cellular phenotypes representing various functions throughout their life span. The signals are rendered by hormones and growth factors (GFs) and mechanical forces ensuring proper modelling and remodelling of bone and cartilage, due to indigenous and programmed metabolism in SCs, osteoblasts, chondrocytes, as well as osteoclasts and other cell types (eg T helper cells).This review focuses on the concerted action of such signals, as well as the regulatory and/or stabilizing control circuits rendered by a class of small RNAs, designated microRNAs. The impact on cell functions evoked by transcription factors (TFs) via various signalling molecules, also encompassing mechanical stimulation, will be discussed featuring microRNAs as important members of an integrative system. The present approach to cell differentiation in vitro may vastly influence cell engineering for in vivo tissue repair.
Collapse
|
321
|
Djouad F, Bouffi C, Ghannam S, Noël D, Jorgensen C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 2009; 5:392-9. [PMID: 19568253 DOI: 10.1038/nrrheum.2009.104] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs), or multipotent mesenchymal stromal cells as they are also known, have been identified in bone marrow as well as in other tissues of the joint, including adipose, synovium, periosteum, perichondrium, and cartilage. These cells are characterized by their phenotype and their ability to differentiate into three lineages: chondrocytes, osteoblasts and adipocytes. Importantly, MSCs also potently modulate immune responses, exhibit healing capacities, improve angiogenesis and prevent fibrosis. These properties might be explained at least in part by the trophic effects of MSCs through the secretion of a number of cytokines and growth factors. However, the mechanisms involved in the differentiation potential of MSCs, and their immunomodulatory and paracrine properties, are currently being extensively studied. These unique properties of MSCs confer on them the potential to be used for therapeutic applications in rheumatic diseases, including rheumatoid arthritis, osteoarthritis, genetic bone and cartilage disorders as well as bone metastasis.
Collapse
|
322
|
Bouffi C, Djouad F, Mathieu M, Noël D, Jorgensen C. Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit? Rheumatology (Oxford) 2009; 48:1185-9. [PMID: 19561159 DOI: 10.1093/rheumatology/kep162] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have raised interest mainly because of cartilage/bone differentiation potential which is now partly eclipsed by their capacity to counteract inflammation and suppress host immune responses as well as to prevent fibrosis. MSCs have been identified within joint tissues including synovium, cartilage, subchondral bone, periosteum or adipose tissue. They are characterized by their phenotype and their ability to differentiate into three lineages, chondrocytes, osteoblasts and adipocytes. MSCs have also paracrine effects through the secretion of a number of cytokines and growth factors. This may explain the trophic effects that may be of therapeutic value for rheumatic diseases including OA and RA. On the other hand, MSCs have been associated with tumour growth. MSCs migrate to the tumour stroma, express chemokines involved in the attraction of carcinoma cells in metastasis. Indeed, the aim of this review is not only to focus on new potential therapeutic applications in osteo-articular diseases, but also to assess the potential risk of MSC-based cell therapy.
Collapse
Affiliation(s)
- Carine Bouffi
- Inserm U844, CHU Saint-Eloi, Bâtiment INM, 80 avenue Augustin Fliche, Montpellier F-34295, France
| | | | | | | | | |
Collapse
|