301
|
Colicchia V, Petroni M, Guarguaglini G, Sardina F, Sahún-Roncero M, Carbonari M, Ricci B, Heil C, Capalbo C, Belardinilli F, Coppa A, Peruzzi G, Screpanti I, Lavia P, Gulino A, Giannini G. PARP inhibitors enhance replication stress and cause mitotic catastrophe in MYCN-dependent neuroblastoma. Oncogene 2017; 36:4682-4691. [PMID: 28394338 DOI: 10.1038/onc.2017.40] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 12/18/2022]
Abstract
High-risk and MYCN-amplified neuroblastomas are among the most aggressive pediatric tumors. Despite intense multimodality therapies, about 50% of these patients succumb to their disease, making the search for effective therapies an absolute priority. Due to the important functions of poly (ADP-ribose) polymerases, PARP inhibitors have entered the clinical settings for cancer treatment and are being exploited in a variety of preclinical studies and clinical trials. PARP inhibitors based combination schemes have also been tested in neuroblastoma preclinical models with encouraging results. However, the expression of PARP enzymes in human neuroblastoma and the biological consequences of their inhibition remained largely unexplored. Here, we show that high PARP1 and PARP2 expression is significantly associated with high-risk neuroblastoma cases and poor survival, highlighting its previously unrecognized prognostic value for human neuroblastoma. In vitro, PARP1 and 2 are abundant in MYCN amplified and MYCN-overexpressing cells. In this context, PARP inhibitors with high 'PARP trapping' potency, such as olaparib or talazoparib, yield DNA damage and cell death preceded by intense signs of replication stress. Notwithstanding the activation of a CHK1-CDC25A replication stress response, PARP-inhibited MYCN amplified and overexpressing cells fail to sustain a prolonged checkpoint and progress through mitosis in the presence of damaged DNA, eventually undergoing mitotic catastrophe. CHK1-targeted inhibition of the replication stress checkpoint exacerbated this phenotype. These data highlight a novel route for cell death induction by PARP inhibitors and support their introduction, together with CHK1 inhibitors, in therapeutic approaches for neuroblastomas with high MYC(N) activity.
Collapse
Affiliation(s)
- V Colicchia
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - M Petroni
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - G Guarguaglini
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o University La Sapienza, Rome, Italy
| | - F Sardina
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - M Sahún-Roncero
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - M Carbonari
- Department of Clinical Medicine, University La Sapienza, Rome, Italy
| | - B Ricci
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - C Heil
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - C Capalbo
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - F Belardinilli
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - A Coppa
- Department of Experimental Medicine, University La Sapienza, Rome, Italy
| | - G Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - I Screpanti
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - P Lavia
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o University La Sapienza, Rome, Italy
| | - A Gulino
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - G Giannini
- Department of Molecular Medicine, University La Sapienza, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Molecular Medicine, University La Sapienza, Rome, Italy
| |
Collapse
|
302
|
Marnef A, Cohen S, Legube G. Transcription-Coupled DNA Double-Strand Break Repair: Active Genes Need Special Care. J Mol Biol 2017; 429:1277-1288. [PMID: 28363678 DOI: 10.1016/j.jmb.2017.03.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022]
Abstract
For decades, it has been speculated that specific loci on eukaryotic chromosomes are inherently susceptible to breakage. The advent of high-throughput genomic technologies has now paved the way to their identification. A wealth of data suggests that transcriptionally active loci are particularly fragile and that a specific DNA damage response is activated and dedicated to their repair. Here, we review current understanding of the crosstalk between transcription and double-strand break repair, from the reasons underlying the intrinsic fragility of genes to the mechanisms that restore the integrity of damaged transcription units.
Collapse
Affiliation(s)
- Aline Marnef
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, 118 Route de Narbonne, 31062 Toulouse, France
| | - Sarah Cohen
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, 118 Route de Narbonne, 31062 Toulouse, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
303
|
So A, Le Guen T, Lopez BS, Guirouilh-Barbat J. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells. FEBS J 2017; 284:2324-2344. [PMID: 28244221 DOI: 10.1111/febs.14053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to profound genome rearrangements and/or cell death. They routinely occur in genomes due to endogenous or exogenous stresses. Efficient repair systems, canonical non-homologous end-joining and homologous recombination exist in the cell and not only ensure the maintenance of genome integrity but also, via specific programmed DNA double-strand breaks, permit its diversity and plasticity. However, these repair systems need to be tightly controlled because they can also generate genomic rearrangements. Thus, when DSB repair is not properly regulated, genome integrity is no longer guaranteed. In this review, we will focus on non-programmed genome rearrangements generated by DSB repair, in somatic cells. We first discuss genome rearrangements induced by homologous recombination and end-joining. We then discuss recently described rearrangement mechanisms, driven by microhomologies, that do not involve the joining of DNA ends but rather initiate DNA synthesis (microhomology-mediated break-induced replication, fork stalling and template switching and microhomology-mediated template switching). Finally, we discuss chromothripsis, which is the shattering of a localized region of the genome followed by erratic rejoining.
Collapse
Affiliation(s)
- Ayeong So
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Tangui Le Guen
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Bernard S Lopez
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Josée Guirouilh-Barbat
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| |
Collapse
|
304
|
DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. Nat Commun 2017; 8:14728. [PMID: 28317845 PMCID: PMC5364389 DOI: 10.1038/ncomms14728] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/26/2017] [Indexed: 12/18/2022] Open
Abstract
Following DNA damage caused by exogenous sources, such as ionizing radiation, the tumour suppressor p53 mediates cell cycle arrest via expression of the CDK inhibitor, p21. However, the role of p21 in maintaining genomic stability in the absence of exogenous DNA-damaging agents is unclear. Here, using live single-cell measurements of p21 protein in proliferating cultures, we show that naturally occurring DNA damage incurred over S-phase causes p53-dependent accumulation of p21 during mother G2- and daughter G1-phases. High p21 levels mediate G1 arrest via CDK inhibition, yet lower levels have no impact on G1 progression, and the ubiquitin ligases CRL4Cdt2 and SCFSkp2 couple to degrade p21 prior to the G1/S transition. Mathematical modelling reveals that a bistable switch, created by CRL4Cdt2, promotes irreversible S-phase entry by keeping p21 levels low, preventing premature S-phase exit upon DNA damage. Thus, we characterize how p21 regulates the proliferation-quiescence decision to maintain genomic stability. Cell cycle arrest after DNA damage is achieved by the expression of the CDK inhibitor p21. Here the authors show that spontaneous DNA damage incurred in unperturbed cell cycles, leads to cell populations exhibiting a bistable state, with p53 and p21 regulating the proliferation-quiescence decision.
Collapse
|
305
|
Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat Struct Mol Biol 2017; 24:353-361. [PMID: 28263325 PMCID: PMC5385132 DOI: 10.1038/nsmb.3387] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/07/2017] [Indexed: 12/29/2022]
Abstract
The ability of DNA Double Strand Breaks (DSBs) to cluster in mammalian cells has been subjected to intense debate over the past few years. Here we used a high throughput chromosome conformation capture assay (Capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. We unambiguously found that DSBs do cluster but only when induced in transcriptionally active genes. Clustering of damaged genes mainly occurs during the G1 cell cycle phase and coincides with delayed repair. Moreover DSB clustering depends on the MRN complex, as well as the Formin 2 (FMN2) nuclear actin organizer and the LINC (LInker of Nuclear and Cytoplasmic skeleton) complex, suggesting that active mechanisms promote DSB clustering. This work reveals that when damaged, active genes exhibit a very peculiar behavior compared to the rest of the genome, being mostly left unrepaired and clustered in G1 while being repaired by homologous recombination in post-replicative cells.
Collapse
|
306
|
Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes (Basel) 2017; 8:genes8020073. [PMID: 28218679 PMCID: PMC5333062 DOI: 10.3390/genes8020073] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-minichromosome maintenance complex proteins 2-7 (Mcm2-7)-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.
Collapse
|
307
|
Condensin, master organizer of the genome. Chromosome Res 2017; 25:61-76. [PMID: 28181049 DOI: 10.1007/s10577-017-9553-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
A fundamental requirement in nature is for a cell to correctly package and divide its replicated genome. Condensin is a mechanical multisubunit complex critical to this process. Condensin uses ATP to power conformational changes in DNA to enable to correct DNA compaction, organization, and segregation of DNA from the simplest bacteria to humans. The highly conserved nature of the condensin complex and the structural similarities it shares with the related cohesin complex have provided important clues as to how it functions in cells. The fundamental requirement for condensin in mitosis and meiosis is well established, yet the precise mechanism of action is still an open question. Mutation or removal of condensin subunits across a range of species disrupts orderly chromosome condensation leading to errors in chromosome segregation and likely death of the cell. There are divergences in function across species for condensin. Once considered to function solely in mitosis and meiosis, an accumulating body of evidence suggests that condensin has key roles in also regulating the interphase genome. This review will examine how condensin organizes our genomes, explain where and how it binds the genome at a mechanical level, and highlight controversies and future directions as the complex continues to fascinate and baffle biologists.
Collapse
|
308
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
309
|
Kobayashi D, Oike T, Shibata A, Niimi A, Kubota Y, Sakai M, Amornwhichet N, Yoshimoto Y, Hagiwara Y, Kimura Y, Hirota Y, Sato H, Isono M, Yoshida Y, Kohno T, Ohno T, Nakano T. Mitotic catastrophe is a putative mechanism underlying the weak correlation between sensitivity to carbon ions and cisplatin. Sci Rep 2017; 7:40588. [PMID: 28091564 PMCID: PMC5238371 DOI: 10.1038/srep40588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
In cancer therapy today, carbon ion radiotherapy is used mainly as monotherapy, whereas cisplatin is used concomitantly with X-ray radiotherapy. The effectiveness of concomitant carbon ions and cisplatin is unclear. To obtain the information on the mechanisms potentially shared between carbon ions or X-rays and cisplatin, we assessed the correlation of sensitivity to the single treatments. In 20 human cancer cell lines, sensitivity to X-rays strongly correlated with sensitivity to cisplatin, indicating the presence of potentially shared target mechanisms. Interestingly, the correlation of sensitivity to carbon ions and cisplatin was much weaker than that of sensitivity to X-rays and cisplatin, indicating the presence of potentially different target mechanisms between carbon ions and cisplatin. Assessment of clonogenic cell death by 4′,6-diamidino-2-phenylindole dihydrochloride staining showed that mitotic catastrophe was more efficiently induced by carbon ions than by the same physical dose of X-rays, while apoptosis and senescence were not. These data indicate that the correlation of sensitivity to carbon ions and cisplatin is weaker than that of sensitivity to X-rays and cisplatin, which are helpful as biological basis to understand the potentially shared mechanism among these treatments. Further investigation is mandatory to elucidate the clinical efficacy of carbon ions and cisplatin combination.
Collapse
Affiliation(s)
- Daijiro Kobayashi
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Atsushi Shibata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan
| | - Atsuko Niimi
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma, Japan
| | - Yoshiki Kubota
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Napapat Amornwhichet
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Radiology, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Yuya Yoshimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yoshihiko Hagiwara
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma, Japan
| | - Yuka Kimura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuka Hirota
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Mayu Isono
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| |
Collapse
|
310
|
Bloom's syndrome: Why not premature aging?: A comparison of the BLM and WRN helicases. Ageing Res Rev 2017; 33:36-51. [PMID: 27238185 DOI: 10.1016/j.arr.2016.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023]
Abstract
Genomic instability is a hallmark of cancer and aging. Premature aging (progeroid) syndromes are often caused by mutations in genes whose function is to ensure genomic integrity. The RecQ family of DNA helicases is highly conserved and plays crucial roles as genome caretakers. In humans, mutations in three RecQ genes - BLM, WRN, and RECQL4 - give rise to Bloom's syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS), respectively. WS is a prototypic premature aging disorder; however, the clinical features present in BS and RTS do not indicate accelerated aging. The BLM helicase has pivotal functions at the crossroads of DNA replication, recombination, and repair. BS cells exhibit a characteristic form of genomic instability that includes excessive homologous recombination. The excessive homologous recombination drives the development in BS of the many types of cancers that affect persons in the normal population. Replication delay and slower cell turnover rates have been proposed to explain many features of BS, such as short stature. More recently, aberrant transcriptional regulation of growth and survival genes has been proposed as a hypothesis to explain features of BS.
Collapse
|
311
|
Profiling DNA damage response following mitotic perturbations. Nat Commun 2016; 7:13887. [PMID: 27976684 PMCID: PMC5172227 DOI: 10.1038/ncomms13887] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/09/2016] [Indexed: 01/01/2023] Open
Abstract
Genome integrity relies on precise coordination between DNA replication and chromosome segregation. Whereas replication stress attracted much attention, the consequences of mitotic perturbations for genome integrity are less understood. Here, we knockdown 47 validated mitotic regulators to show that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed phenotypes. To demonstrate the potential of this resource, we show that DNA breakage after cytokinesis failure is preceded by replication stress, which mounts during consecutive cell cycles and coincides with decreased proliferation. Together, our results provide a resource to gauge the magnitude and dynamics of DNA breakage associated with mitotic aberrations and suggest that replication stress might limit propagation of cells with abnormal karyotypes.
DNA damage arising from replication stress is well studied, but the effect of mitotic errors on genome integrity is less understood. Here the authors knock down 47 mitotic regulators and record how they impact on DNA breakage events, providing a resource for future studies on the relation between cell division and genome integrity.
Collapse
|
312
|
Cimmino L, Aifantis I. Alternative roles for oxidized mCs and TETs. Curr Opin Genet Dev 2016; 42:1-7. [PMID: 27939598 DOI: 10.1016/j.gde.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023]
Abstract
Ten-eleven-translocation (TET) proteins oxidize 5-methylcytosine (5mC) to form stable or transient modifications (oxi-mCs) in the mammalian genome. Genome-wide mapping and protein interaction studies have shown that 5mC and oxi-mCs have unique distribution patterns and alternative roles in gene expression. In addition, oxi-mCs may interact with specific chromatin regulators, transcription factors and DNA repair proteins to maintain genomic integrity or alter DNA replication and transcriptional elongation rates. In this review we will discuss recent advances in our understanding of how TETs and 5hmC exert their epigenetic function as tumor suppressors by playing alternative roles in transcriptional regulation and genomic stability.
Collapse
Affiliation(s)
- Luisa Cimmino
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
313
|
Beresova L, Vesela E, Chamrad I, Voller J, Yamada M, Furst T, Lenobel R, Chroma K, Gursky J, Krizova K, Mistrik M, Bartek J. Role of DNA Repair Factor Xeroderma Pigmentosum Protein Group C in Response to Replication Stress As Revealed by DNA Fragile Site Affinity Chromatography and Quantitative Proteomics. J Proteome Res 2016; 15:4505-4517. [PMID: 27794614 DOI: 10.1021/acs.jproteome.6b00622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Replication stress (RS) fuels genomic instability and cancer development and may contribute to aging, raising the need to identify factors involved in cellular responses to such stress. Here, we present a strategy for identification of factors affecting the maintenance of common fragile sites (CFSs), which are genomic loci that are particularly sensitive to RS and suffer from increased breakage and rearrangements in tumors. A DNA probe designed to match the high flexibility island sequence typical for the commonly expressed CFS (FRA16D) was used as specific DNA affinity bait. Proteins significantly enriched at the FRA16D fragment under normal and replication stress conditions were identified using stable isotope labeling of amino acids in cell culture-based quantitative mass spectrometry. The identified proteins interacting with the FRA16D fragment included some known CFS stabilizers, thereby validating this screening approach. Among the hits from our screen so far not implicated in CFS maintenance, we chose Xeroderma pigmentosum protein group C (XPC) for further characterization. XPC is a key factor in the DNA repair pathway known as global genomic nucleotide excision repair (GG-NER), a mechanism whose several components were enriched at the FRA16D fragment in our screen. Functional experiments revealed defective checkpoint signaling and escape of DNA replication intermediates into mitosis and the next generation of XPC-depleted cells exposed to RS. Overall, our results provide insights into an unexpected biological role of XPC in response to replication stress and document the power of proteomics-based screening strategies to elucidate mechanisms of pathophysiological significance.
Collapse
Affiliation(s)
- Lucie Beresova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic.,Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University , Olomouc, Czech Republic
| | - Eva Vesela
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Ivo Chamrad
- Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University , Olomouc, Czech Republic
| | - Jiri Voller
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Masayuki Yamada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Tomas Furst
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Rene Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University , Olomouc, Czech Republic
| | - Katarina Chroma
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Jan Gursky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Katerina Krizova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic.,Danish Cancer Society Research Center , Copenhagen, Denmark.,Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Biochemistry and Biophysics, Karolinska Institute , Stockholm, Sweden
| |
Collapse
|
314
|
Cellular responses to replication stress: Implications in cancer biology and therapy. DNA Repair (Amst) 2016; 49:9-20. [PMID: 27908669 DOI: 10.1016/j.dnarep.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
DNA replication is essential for cell proliferation. Any obstacles during replication cause replication stress, which may lead to genomic instability and cancer formation. In this review, we summarize the physiological DNA replication process and the normal cellular response to replication stress. We also outline specialized therapies in clinical trials based on current knowledge and future perspectives in the field.
Collapse
|
315
|
Griffin NI, Sharma G, Zhao X, Mirza S, Srivastava S, Dave BJ, Aleskandarany M, Rakha E, Mohibi S, Band H, Band V. ADA3 regulates normal and tumor mammary epithelial cell proliferation through c-MYC. Breast Cancer Res 2016; 18:113. [PMID: 27852327 PMCID: PMC5112670 DOI: 10.1186/s13058-016-0770-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Background We have established the critical role of ADA3 as a coactivator of estrogen receptor (ER), as well as its role in cell cycle progression. Furthermore, we showed that ADA3 is predominantly nuclear in mammary epithelium, and in ER+, but is cytoplasmic in ER- breast cancers, the latter correlating with poor survival. However, the role of nuclear ADA3 in human mammary epithelial cells (hMECs), and in ER+ breast cancer cells, as well as the importance of ADA3 expression in relation to patient prognosis and survival in ER+ breast cancer have remained uncharacterized. Methods We overexpressed ADA3 in hMECs or in ER+ breast cancer cells and assessed the effect on cell proliferation. The expression of ADA3 was analyzed then correlated with the expression of various prognostic markers, as well as survival of breast cancer patients. Results Overexpression of ADA3 in ER- hMECs as well as in ER+ breast cancer cell lines enhanced cell proliferation. These cells showed increased cyclin B and c-MYC, decreased p27 and increased SKP2 levels. This was accompanied by increased mRNA levels of early response genes c-FOS, EGR1, and c-MYC. Analysis of breast cancer tissue specimens showed a significant correlation of ADA3 nuclear expression with c-MYC expression. Furthermore, nuclear ADA3 and c-MYC expression together showed significant correlation with tumor grade, mitosis, pleomorphism, NPI, ER/PR status, Ki67 and p27 expression. Importantly, within ER+ cases, expression of nuclear ADA3 and c-MYC also significantly correlated with Ki67 and p27 expression. Univariate Kaplan Meier analysis of four groups in the whole, as well as the ER+ patients showed that c-MYC and ADA3 combinatorial phenotypes showed significantly different breast cancer specific survival with c-MYC-high and ADA3-Low subgroup had the worst outcome. Using multivariate analyses within the whole cohort and the ER+ subgroups, the significant association of ADA3 and c-MYC expression with patients’ outcome was independent of tumor grade, stage and size, and ER status. Conclusion ADA3 overexpression enhances cell proliferation that is associated with increased expression of c-MYC. Expression patterns with respect to ADA3/c-MYC can divide patients into four significantly different subgroups, with c-MYC High and ADA3 Low status independently predicting poor survival in patients. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0770-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas I Griffin
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gayatri Sharma
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiangshan Zhao
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sameer Mirza
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shashank Srivastava
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhavana J Dave
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Departments of Human Genetics Laboratories, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohammed Aleskandarany
- School of Molecular Medical Sciences and Cellular Pathology, University of Nottingham and Nottingham University Hospital, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, USA
| | - Emad Rakha
- School of Molecular Medical Sciences and Cellular Pathology, University of Nottingham and Nottingham University Hospital, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, USA
| | - Shakur Mohibi
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hamid Band
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Departments of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vimla Band
- Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA. .,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
316
|
Distinct functions of human RecQ helicases during DNA replication. Biophys Chem 2016; 225:20-26. [PMID: 27876204 DOI: 10.1016/j.bpc.2016.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 12/31/2022]
Abstract
DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition.
Collapse
|
317
|
BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity. Nat Commun 2016; 7:13398. [PMID: 27845331 PMCID: PMC5116074 DOI: 10.1038/ncomms13398] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022] Open
Abstract
Oncogene-evoked replication stress (RS) fuels genomic instability in diverse cancer types. Here we report that BRCA1, traditionally regarded a tumour suppressor, plays an unexpected tumour-promoting role in glioblastoma (GBM), safeguarding a protective response to supraphysiological RS levels. Higher BRCA1 positivity is associated with shorter survival of glioma patients and the abrogation of BRCA1 function in GBM enhances RS, DNA damage (DD) accumulation and impairs tumour growth. Mechanistically, we identify a novel role of BRCA1 as a transcriptional co-activator of RRM2 (catalytic subunit of ribonucleotide reductase), whereby BRCA1-mediated RRM2 expression protects GBM cells from endogenous RS, DD and apoptosis. Notably, we show that treatment with a RRM2 inhibitor triapine reproduces the BRCA1-depletion GBM-repressive phenotypes and sensitizes GBM cells to PARP inhibition. We propose that GBM cells are addicted to the RS-protective role of the BRCA1-RRM2 axis, targeting of which may represent a novel paradigm for therapeutic intervention in GBM. BRCA1 loss can result in collapse of replication forks into DNA double strand breaks that can contribute to malignant transformation. Here, the authors find that BRCA1 promotes the expression of RRM2 protecting glioblastoma cells from replication stress, DNA damage and apoptosis.
Collapse
|
318
|
Despras E, Sittewelle M, Pouvelle C, Delrieu N, Cordonnier AM, Kannouche PL. Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA. Nat Commun 2016; 7:13326. [PMID: 27811911 PMCID: PMC5097173 DOI: 10.1038/ncomms13326] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 09/23/2016] [Indexed: 01/08/2023] Open
Abstract
Translesion polymerase eta (polη) was characterized for its ability to replicate ultraviolet-induced DNA lesions that stall replicative polymerases, a process promoted by Rad18-dependent PCNA mono-ubiquitination. Recent findings have shown that polη also acts at intrinsically difficult to replicate sequences. However, the molecular mechanisms that regulate its access to these loci remain elusive. Here, we uncover that polη travels with replication forks during unchallenged S phase and this requires its SUMOylation on K163. Abrogation of polη SUMOylation results in replication defects in response to mild replication stress, leading to chromosome fragments in mitosis and damage transmission to daughter cells. Rad18 plays a pivotal role, independently of its ubiquitin ligase activity, acting as a molecular bridge between polη and the PIAS1 SUMO ligase to promote polη SUMOylation. Our results provide the first evidence that SUMOylation represents a new way to target polη to replication forks, independent of the Rad18-mediated PCNA ubiquitination, thereby preventing under-replicated DNA. Translesion synthesis polymerase eta has a well characterized role in replicating past UV-induced DNA lesions and has recently been shown to act at difficult to replicate sequences. Here the authors show that its SUMOylation is required to recruit pol eta at the replication fork and to prevent under-replicated DNA.
Collapse
Affiliation(s)
- Emmanuelle Despras
- Univ Paris-Sud, Laboratory Genetic stability and Oncogenesis, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif 94805, France.,CNRS-UMR 8200, Villejuif 94805, France.,Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Méghane Sittewelle
- Univ Paris-Sud, Laboratory Genetic stability and Oncogenesis, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif 94805, France.,CNRS-UMR 8200, Villejuif 94805, France.,Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Caroline Pouvelle
- Univ Paris-Sud, Laboratory Genetic stability and Oncogenesis, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif 94805, France.,CNRS-UMR 8200, Villejuif 94805, France.,Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Noémie Delrieu
- Univ Paris-Sud, Laboratory Genetic stability and Oncogenesis, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif 94805, France.,CNRS-UMR 8200, Villejuif 94805, France.,Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Agnès M Cordonnier
- CNRS-UMR 7242, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Ecole Supérieure de Biotechnologie, Illkirch 67412, France
| | - Patricia L Kannouche
- Univ Paris-Sud, Laboratory Genetic stability and Oncogenesis, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif 94805, France.,CNRS-UMR 8200, Villejuif 94805, France.,Gustave Roussy Cancer Campus, Villejuif 94805, France
| |
Collapse
|
319
|
Nähse V, Christ L, Stenmark H, Campsteijn C. The Abscission Checkpoint: Making It to the Final Cut. Trends Cell Biol 2016; 27:1-11. [PMID: 27810282 DOI: 10.1016/j.tcb.2016.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
Cytokinesis is the final stage of cell division and is concluded by abscission of the intercellular bridge to physically separate the daughter cells. Timing of cytokinetic abscission is monitored by a molecular machinery termed the abscission checkpoint. This machinery delays abscission in cells with persistent chromatin in the intercellular bridge. Recent work has also uncovered its response to high membrane tension, nuclear pore defects, and DNA replication stress. Although it is known that the abscission checkpoint depends on persistent activity of the Aurora B protein kinase, we have only recently begun to understand its molecular basis. We propose here a molecular framework for abscission checkpoint signaling and we discuss outstanding questions relating to its function and physiological relevance.
Collapse
Affiliation(s)
- Viola Nähse
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Liliane Christ
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Faculty of Medicine, 7491 Trondheim, Norway.
| | - Coen Campsteijn
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
| |
Collapse
|
320
|
Oestergaard VH, Lisby M. Transcription-replication conflicts at chromosomal fragile sites-consequences in M phase and beyond. Chromosoma 2016; 126:213-222. [PMID: 27796495 DOI: 10.1007/s00412-016-0617-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Abstract
Collision between the molecular machineries responsible for transcription and replication is an important source of genome instability. Certain transcribed regions known as chromosomal fragile sites are particularly prone to recombine and mutate in a manner that correlates with specific transcription and replication patterns. At the same time, these chromosomal fragile sites engage in aberrant DNA structures in mitosis. Here, we discuss the mechanistic details of transcription-replication conflicts including putative scenarios for R-loop-induced replication inhibition to understand how transcription-replication conflicts transition from S phase into various aberrant DNA structures in mitosis.
Collapse
Affiliation(s)
- Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200, Copenhagen N, Denmark.
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
321
|
Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V, Sagar, Erny D, Stefanowski J, Rogell L, Klein C, Gharun K, Follo M, Seidl M, Kremer B, Münke N, Senges J, Fliegauf M, Aschman T, Pfeifer D, Sarrazin S, Sieweke MH, Wagner D, Dierks C, Haaf T, Ness T, Zaiss MM, Voll RE, Deshmukh SD, Prinz M, Goldmann T, Hölscher C, Hauser AE, Lopez-Contreras AJ, Grün D, Gorgoulis V, Diefenbach A, Henneke P, Triantafyllopoulou A. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas. Cell 2016; 167:1264-1280.e18. [PMID: 28084216 DOI: 10.1016/j.cell.2016.09.054] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/26/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Granulomas are immune cell aggregates formed in response to persistent inflammatory stimuli. Granuloma macrophage subsets are diverse and carry varying copy numbers of their genomic information. The molecular programs that control the differentiation of such macrophage populations in response to a chronic stimulus, though critical for disease outcome, have not been defined. Here, we delineate a macrophage differentiation pathway by which a persistent Toll-like receptor (TLR) 2 signal instructs polyploid macrophage fate by inducing replication stress and activating the DNA damage response. Polyploid granuloma-resident macrophages formed via modified cell divisions and mitotic defects and not, as previously thought, by cell-to-cell fusion. TLR2 signaling promoted macrophage polyploidy and suppressed genomic instability by regulating Myc and ATR. We propose that, in the presence of persistent inflammatory stimuli, pathways previously linked to oncogene-initiated carcinogenesis instruct a long-lived granuloma-resident macrophage differentiation program that regulates granulomatous tissue remodeling.
Collapse
Affiliation(s)
- Laura Herrtwich
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Indrajit Nanda
- Institute of Human Genetics, Biozentrum, Am Hubland, 97074 Würzburg, Germany
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Teodora Nikolova
- Institute of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Veronika Horn
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sagar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jonathan Stefanowski
- Immune Dynamics, Charité Universitätsmedizin and Deutsches Rheumaforschungszentrum, 10117 Berlin, Germany
| | - Leif Rogell
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany; Research Center for Immunology and Immunotherapy, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Claudius Klein
- Department of Medicine I, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kourosh Gharun
- Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Bernhard Kremer
- Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Nikolas Münke
- Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Julia Senges
- Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Manfred Fliegauf
- Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Tom Aschman
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | | | - Michael H Sieweke
- Aix-Marseille Univ, CNRS, INSERM, CIML, 13288 Marseille, France; Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), 13125 Berlin, Germany
| | - Dirk Wagner
- Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Division of Infectious Diseases, Department of Internal Medicine 2, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christine Dierks
- Department of Medicine I, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Biozentrum, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Ness
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sachin D Deshmukh
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Torsten Goldmann
- Department of Pathology, Schleswig-Holstein University Hospital, Campus Lübeck and Research Center Borstel, 23845 Borstel, Germany
| | - Christoph Hölscher
- Division of Infection Immunology, Research Center Borstel, 23845 Borstel, Germany; Cluster of Excellence, Inflammation at Interfaces (Borstel-Kiel-Lübeck-Plön), 24118 Kiel, Germany; German Centre for Infection Research, 23845 Borstel, Germany
| | - Anja E Hauser
- Immune Dynamics, Charité Universitätsmedizin and Deutsches Rheumaforschungszentrum, 10117 Berlin, Germany
| | - Andres J Lopez-Contreras
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Dominic Grün
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; Faculty Institute of Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4QL, UK; Biomedical Research Foundation, Academy of Athens, 115 27 Athens, Greece; Department of Pathophysiology School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Andreas Diefenbach
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany; Research Center for Immunology and Immunotherapy, University of Mainz Medical Center, 55131 Mainz, Germany.
| | - Philipp Henneke
- Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Antigoni Triantafyllopoulou
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center of Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
322
|
Gallina I, Christiansen SK, Pedersen RT, Lisby M, Oestergaard VH. TopBP1-mediated DNA processing during mitosis. Cell Cycle 2016; 15:176-83. [PMID: 26701150 DOI: 10.1080/15384101.2015.1128595] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.
Collapse
Affiliation(s)
- Irene Gallina
- a Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| | | | | | - Michael Lisby
- a Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| | - Vibe H Oestergaard
- a Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| |
Collapse
|
323
|
Mansilla SF, Bertolin AP, Bergoglio V, Pillaire MJ, González Besteiro MA, Luzzani C, Miriuka SG, Cazaux C, Hoffmann JS, Gottifredi V. Cyclin Kinase-independent role of p21 CDKN1A in the promotion of nascent DNA elongation in unstressed cells. eLife 2016; 5. [PMID: 27740454 PMCID: PMC5120883 DOI: 10.7554/elife.18020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023] Open
Abstract
The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21’s PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis. DOI:http://dx.doi.org/10.7554/eLife.18020.001 Cancer develops when cells in the body mutate in ways that allow them to rapidly grow and divide. To protect cells from becoming cancerous, various molecules act like guardians to prevent cells from dividing when their DNA is damaged, or if they are short of energy. Other guardian molecules monitor the DNA copying process to ensure that the newly-made DNA is as identical as possible to the original DNA template. A protein called p21 belongs to the first group of guardian molecules: DNA damage triggers the production of p21, which prevents the cell from copying its DNA. This role relies on a section of the protein called the CDK binding domain. Cells that have already started to copy their genetic material also have low levels of p21. Mansilla et al. used human cells to investigate whether p21 is also involved in the process of copying DNA. The experiments show that the low levels of p21 act to increase the speed at which the DNA is copied. This activity helps to ensure that all of the cell’s DNA is copied within the time available, including sections of DNA that are harder to copy because they are more fragile and prone to damage. This newly identified role does not involve the CDK binding domain, but instead requires a different section of the p21 protein known as the PCNA interacting region. Mansilla et al. propose that p21 plays a dual role in protecting us from developing cancer. The PCNA interacting region is also found in other proteins that are involved in copying DNA. Therefore, a future challenge is to find out how these proteins interact with each other to ensure that cells accurately copy their DNA in a timely fashion. DOI:http://dx.doi.org/10.7554/eLife.18020.002
Collapse
Affiliation(s)
- Sabrina F Mansilla
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Agustina P Bertolin
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Valérie Bergoglio
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,INSERM, Universite Paul Sabatier-CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer, Toulouse, France
| | - Marie-Jeanne Pillaire
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,INSERM, Universite Paul Sabatier-CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer, Toulouse, France
| | - Marina A González Besteiro
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos Luzzani
- Laboratorio de Investigaciones Aplicadas en Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Belén de Escobar, Argentina
| | - Santiago G Miriuka
- Laboratorio de Investigaciones Aplicadas en Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Belén de Escobar, Argentina
| | - Christophe Cazaux
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,INSERM, Universite Paul Sabatier-CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer, Toulouse, France
| | - Jean-Sébastien Hoffmann
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,INSERM, Universite Paul Sabatier-CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer, Toulouse, France
| | - Vanesa Gottifredi
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
324
|
Ismail IH, Dronyk A, Hu X, Hendzel MJ, Shaw AR. BCL10 is recruited to sites of DNA damage to facilitate DNA double-strand break repair. Cell Cycle 2016; 15:84-94. [PMID: 26771713 DOI: 10.1080/15384101.2015.1121322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Recent studies have found BCL10 can localize to the nucleus and that this is linked to tumor aggression and poorer prognosis. These studies suggest that BCL10 localization plays a novel role in the nucleus that may contribute to cellular transformation and carcinogenesis. In this study, we show that BCL10 functions as part of the DNA damage response (DDR). We found that BCL10 facilitates the rapid recruitment of RPA, BRCA1 and RAD51 to sites of DNA damage. Furthermore, we also found that ATM phosphorylates BCL10 in response to DNA damage. Functionally, BCL10 promoted DNA double-strand breaks repair, enhancing cell survival after DNA damage. Taken together our results suggest a novel role for BCL10 in the repair of DNA lesions.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- a Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada.,b Biophysics Department , Faculty of Science, Cairo University , Giza , Egypt
| | - Ashley Dronyk
- a Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Xiuying Hu
- a Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| | - Michael J Hendzel
- a Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada.,c Department of Cell Biology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Andrew R Shaw
- a Department of Oncology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada
| |
Collapse
|
325
|
Martin CA, Murray JE, Carroll P, Leitch A, Mackenzie KJ, Halachev M, Fetit AE, Keith C, Bicknell LS, Fluteau A, Gautier P, Hall EA, Joss S, Soares G, Silva J, Bober MB, Duker A, Wise CA, Quigley AJ, Phadke SR, Wood AJ, Vagnarelli P, Jackson AP. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev 2016; 30:2158-2172. [PMID: 27737959 PMCID: PMC5088565 DOI: 10.1101/gad.286351.116] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022]
Abstract
Martin et al. report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of condensin complexes, cause microcephaly. Frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis are the consequence of failed sister chromatid disentanglement during chromosome compaction. Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish “condensinopathies” as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size.
Collapse
Affiliation(s)
- Carol-Anne Martin
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Jennie E Murray
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Paula Carroll
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Andrea Leitch
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Karen J Mackenzie
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Mihail Halachev
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Ahmed E Fetit
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Charlotte Keith
- South East Scotland Cytogenetics Service, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Louise S Bicknell
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.,Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Adeline Fluteau
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Philippe Gautier
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Emma A Hall
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Shelagh Joss
- West of Scotland Genetic Service, Southern General Hospital, Glasgow G51 4TF, United Kingdom
| | - Gabriela Soares
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar do Porto, 4099-028 Porto, Portugal
| | - João Silva
- Instituto de Biologia Molecular e Celular (IBMC), 4150 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Michael B Bober
- Division of Genetics, Department of Pediatrics, A.I. duPont Hospital for Children, Wilmington, Delaware 19803, USA
| | - Angela Duker
- Division of Genetics, Department of Pediatrics, A.I. duPont Hospital for Children, Wilmington, Delaware 19803, USA
| | - Carol A Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA.,Department of Orthopedic Surgery, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA.,Department of Pediatrics, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219, USA.,McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75350, USA
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, United Kingdom
| | - Shubha R Phadke
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | | | - Andrew J Wood
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Paola Vagnarelli
- Biosciences, Research Institute for Health and Environment, Brunel University, London UB8 3PH, United Kingdom
| | - Andrew P Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
326
|
Kotsantis P, Silva LM, Irmscher S, Jones RM, Folkes L, Gromak N, Petermann E. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun 2016; 7:13087. [PMID: 27725641 PMCID: PMC5062618 DOI: 10.1038/ncomms13087] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/31/2016] [Indexed: 12/28/2022] Open
Abstract
Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRASV12 promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRASV12, elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer. Cancer cells proliferate at high rates and incur replication stress. Here, the authors show that this can be the consequence of oncogene-induced higher transcriptional activity, which, through increased RNA synthesis and R-loop accumulation, results in replication fork slowing and DNA damage.
Collapse
Affiliation(s)
- Panagiotis Kotsantis
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lara Marques Silva
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sarah Irmscher
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Rebecca M Jones
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lisa Folkes
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
327
|
Activation of the ATR kinase by the RPA-binding protein ETAA1. Nat Cell Biol 2016; 18:1196-1207. [PMID: 27723717 DOI: 10.1038/ncb3422] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway in vertebrates, mediated by the uncharacterized protein ETAA1 (Ewing's tumour-associated antigen 1). Human ETAA1 accumulates at DNA damage sites via dual RPA-binding motifs and promotes replication fork progression and integrity, ATR signalling and cell survival after genotoxic insults. Mechanistically, this requires a conserved domain in ETAA1 that potently and directly stimulates ATR kinase activity independently of TopBP1. Simultaneous loss of ETAA1 and TopBP1 gives rise to synthetic lethality characterized by massive genome instability and abrogation of ATR-dependent signalling. Our findings demonstrate that parallel TopBP1- and ETAA1-mediated pathways underlie ATR activation and that their combined action is essential for coping with replication stress.
Collapse
|
328
|
Styles EB, Founk KJ, Zamparo LA, Sing TL, Altintas D, Ribeyre C, Ribaud V, Rougemont J, Mayhew D, Costanzo M, Usaj M, Verster AJ, Koch EN, Novarina D, Graf M, Luke B, Muzi-Falconi M, Myers CL, Mitra RD, Shore D, Brown GW, Zhang Z, Boone C, Andrews BJ. Exploring Quantitative Yeast Phenomics with Single-Cell Analysis of DNA Damage Foci. Cell Syst 2016; 3:264-277.e10. [PMID: 27617677 PMCID: PMC5689480 DOI: 10.1016/j.cels.2016.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/27/2016] [Accepted: 08/11/2016] [Indexed: 01/12/2023]
Abstract
A significant challenge of functional genomics is to develop methods for genome-scale acquisition and analysis of cell biological data. Here, we present an integrated method that combines genome-wide genetic perturbation of Saccharomyces cerevisiae with high-content screening to facilitate the genetic description of sub-cellular structures and compartment morphology. As proof of principle, we used a Rad52-GFP marker to examine DNA damage foci in ∼20 million single cells from ∼5,000 different mutant backgrounds in the context of selected genetic or chemical perturbations. Phenotypes were classified using a machine learning-based automated image analysis pipeline. 345 mutants were identified that had elevated numbers of DNA damage foci, almost half of which were identified only in sensitized backgrounds. Subsequent analysis of Vid22, a protein implicated in the DNA damage response, revealed that it acts together with the Sgs1 helicase at sites of DNA damage and preferentially binds G-quadruplex regions of the genome. This approach is extensible to numerous other cell biological markers and experimental systems.
Collapse
Affiliation(s)
- Erin B Styles
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Karen J Founk
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Lee A Zamparo
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Sciences, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Tina L Sing
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Dogus Altintas
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Cyril Ribeyre
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Virginie Ribaud
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Jacques Rougemont
- Laboratory of Computational Systems Biology, Ecole Polytéchnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - David Mayhew
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Michael Costanzo
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Matej Usaj
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Adrian J Verster
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniele Novarina
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, 20122 Milano, Italy
| | - Marco Graf
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz 55128, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Ackermannweg 4, Mainz 55128, Germany
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, 20122 Milano, Italy
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robi David Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - David Shore
- Department of Molecular Biology, NCCR Program "Frontiers in Genetics", Institute of Genetics, Genomics, Geneva (iGE3), University of Geneva, 30, quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Grant W Brown
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Zhaolei Zhang
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Brenda J Andrews
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
329
|
Kanu N, Cerone MA, Goh G, Zalmas LP, Bartkova J, Dietzen M, McGranahan N, Rogers R, Law EK, Gromova I, Kschischo M, Walton MI, Rossanese OW, Bartek J, Harris RS, Venkatesan S, Swanton C. DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer. Genome Biol 2016; 17:185. [PMID: 27634334 PMCID: PMC5025597 DOI: 10.1186/s13059-016-1042-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The APOBEC3 family of cytidine deaminases mutate the cancer genome in a range of cancer types. Although many studies have documented the downstream effects of APOBEC3 activity through next-generation sequencing, less is known about their upstream regulation. In this study, we sought to identify a molecular basis for APOBEC3 expression and activation. RESULTS HER2 amplification and PTEN loss promote DNA replication stress and APOBEC3B activity in vitro and correlate with APOBEC3 mutagenesis in vivo. HER2-enriched breast carcinomas display evidence of elevated levels of replication stress-associated DNA damage in vivo. Chemical and cytotoxic induction of replication stress, through aphidicolin, gemcitabine, camptothecin or hydroxyurea exposure, activates transcription of APOBEC3B via an ATR/Chk1-dependent pathway in vitro. APOBEC3B activation can be attenuated through repression of oncogenic signalling, small molecule inhibition of receptor tyrosine kinase signalling and alleviation of replication stress through nucleoside supplementation. CONCLUSION These data link oncogene, loss of tumour suppressor gene and drug-induced replication stress with APOBEC3B activity, providing new insights into how cytidine deaminase-induced mutagenesis might be activated in tumourigenesis and limited therapeutically.
Collapse
Affiliation(s)
- Nnennaya Kanu
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Paul O'Gorman Building, Huntley St., London, UK
| | - Maria Antonietta Cerone
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Paul O'Gorman Building, Huntley St., London, UK
| | - Gerald Goh
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Paul O'Gorman Building, Huntley St., London, UK
| | | | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Karolinska Institute, Stockholm, Sweden
| | - Michelle Dietzen
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Paul O'Gorman Building, Huntley St., London, UK
| | - Nicholas McGranahan
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK
| | - Rebecca Rogers
- CRUK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Emily K Law
- Howard Hughes Medical Institute, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Irina Gromova
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Joseph-Rovan-Allee 2, D-53424, Remagen, Germany
| | - Michael I Walton
- CRUK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Olivia W Rossanese
- CRUK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Karolinska Institute, Stockholm, Sweden
| | - Reuben S Harris
- Howard Hughes Medical Institute, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Subramanian Venkatesan
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Paul O'Gorman Building, Huntley St., London, UK.
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK.
| | - Charles Swanton
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Paul O'Gorman Building, Huntley St., London, UK.
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
330
|
ATM/CHK/p53 Pathway Dependent Chemopreventive and Therapeutic Activity on Lung Cancer by Pterostilbene. PLoS One 2016; 11:e0162335. [PMID: 27612029 PMCID: PMC5017581 DOI: 10.1371/journal.pone.0162335] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/22/2016] [Indexed: 01/16/2023] Open
Abstract
Among the many stilbenoids found in a variety of berries, resveratrol and pterostilbene are of particular interest given their potential for use in cancer therapeutics and prevention. We purified four stilbenoids from R. undulatum and found that pterostilbene inhibits cancer cell proliferation more efficiently than rhapontigenin, piceatannol and resveratrol. To investigate the underlying mechanism of this superior action of pterostilbene on cancer cells, we utilized a reverse-phase protein array followed by bioinformatic analysis and found that the ATM/CHK pathway is modified by pterostilbene in a lung cancer cell line. Given that ATM/CHK signaling requires p53 for its biological effects, we hypothesized that p53 is required for the anticancer effect of pterostilbene. To test this hypothesis, we used two molecularly defined precancerous human bronchial epithelial cell lines, HBECR and HBECR/p53i, with normal p53 and suppressed p53 expression, respectively, to represent premalignant states of squamous lung carcinogenesis. Pterostilbene inhibited the cell cycle more efficiently in HBECR cells compared to HBECR/p53i cells, suggesting that the presence of p53 is required for the action of pterostilbene. Pterostilbene also activated ATM and CHK1/2, which are upstream of p53, in both cell lines, though pterostilbene-induced senescence was dependent on the presence of p53. Finally, pterostilbene more effectively inhibited p53-dependent cell proliferation compared to the other three stilbenoids. These results strongly support the potential chemopreventive effect of pterostilbene on p53-positive cells during early carcinogenesis.
Collapse
|
331
|
Abstract
The ATR (ATM and rad3-related) pathway is crucial for proliferation, responding to DNA replication stress and DNA damage. This critical signaling pathway is carefully orchestrated through a multistep process requiring initial priming of ATR prior to damage, recruitment of ATR to DNA damage lesions, activation of ATR signaling, and, finally, modulation of ATR activity through a variety of post-translational modifications. Following activation, ATR functions in several vital cellular processes, including suppression of replication origin firing, promotion of deoxynucleotide synthesis and replication fork restart, prevention of double-stranded DNA break formation, and avoidance of replication catastrophe and mitotic catastrophe. In many cancers, tumor cells have increased dependence on ATR signaling for survival, making ATR a promising target for cancer therapy. Tumor cells compromised in DNA repair pathways or DNA damage checkpoints, cells reliant on homologous recombination, and cells with increased replication stress are particularly sensitive to ATR inhibition. Understanding ATR signaling and modulation is essential to unraveling which tumors have increased dependence on ATR signaling as well as how the ATR pathway can best be exploited for targeted cancer therapy.
Collapse
Affiliation(s)
- Stephanie A Yazinski
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129;
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129; .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
332
|
Nielsen CF, Hickson ID. PICH promotes mitotic chromosome segregation: Identification of a novel role in rDNA disjunction. Cell Cycle 2016; 15:2704-11. [PMID: 27565185 DOI: 10.1080/15384101.2016.1222336] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
PICH is an SNF2-family DNA translocase that appears to play a role specifically in mitosis. Characterization of PICH in human cells led to the initial discovery of "ultra-fine DNA bridges" (UFBs) that connect the 2 segregating DNA masses in the anaphase of mitosis. These bridge structures, which arise from specific regions of the genome, are a normal feature of anaphase but had escaped detection previously because they do not stain with commonly used DNA dyes. Nevertheless, UFBs are important for genome maintenance because defects in UFB resolution can lead to cytokinesis failure. We reported recently that PICH stimulates the unlinking (decatenation) of entangled DNA by Topoisomerase IIα (Topo IIα), and is important for the resolution of UFBs. We also demonstrated that PICH and Topo IIα co-localize at the rDNA (rDNA). In this Extra View article, we discuss the mitotic roles of PICH and explore further the role of PICH in the timely segregation of the rDNA locus.
Collapse
Affiliation(s)
- Christian F Nielsen
- a Center for Chromosome Stability , Department of Cellular and Molecular Medicine , University of Copenhagen , Copenhagen , Denmark.,b Chromosome Research, Murdoch Children's Research Institute, Royal Children's Hospital , Parkville , VIC , Australia
| | - Ian D Hickson
- a Center for Chromosome Stability , Department of Cellular and Molecular Medicine , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
333
|
Legartová S, Sehnalová P, Malyšková B, Küntziger T, Collas P, Cmarko D, Raška I, Sorokin DV, Kozubek S, Bártová E. Localized Movement and Levels of 53BP1 Protein Are Changed by γ-irradiation in PML Deficient Cells. J Cell Biochem 2016; 117:2583-96. [PMID: 27526954 DOI: 10.1002/jcb.25551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/23/2016] [Indexed: 01/07/2023]
Abstract
We studied epigenetics, distribution pattern, kinetics, and diffusion of proteins recruited to spontaneous and γ-radiation-induced DNA lesions. We showed that PML deficiency leads to an increased number of DNA lesions, which was accompanied by changes in histone signature. In PML wt cells, we observed two mobile fractions of 53BP1 protein with distinct diffusion in spontaneous lesions. These protein fractions were not detected in PML-deficient cells, characterized by slow-diffusion of 53BP1. Single particle tracking analysis revealed limited local motion of 53BP1 foci in PML double null cells and local motion 53BP1 foci was even more reduced after γ-irradiation. However, radiation did not change co-localization between 53BP1 nuclear bodies and interchromatin granule-associated zones (IGAZs), nuclear speckles, or chromocenters. This newly observed interaction pattern imply that 53BP1 protein could be a part of not only DNA repair, but also process mediated via components accumulated in IGAZs, nuclear speckles, or paraspeckles. Together, PML deficiency affected local motion of 53BP1 nuclear bodies and changed composition and a number of irradiation-induced foci. J. Cell. Biochem. 117: 2583-2596, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Barbora Malyšková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | | | - Philippe Collas
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Dušan Cmarko
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic
| | - Dmitry V Sorokin
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic.,Faculty of Informatics, Masaryk University, Botanická 68a, Brno, 602 00, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic. .,Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic.
| |
Collapse
|
334
|
Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A 2016; 113:E5757-64. [PMID: 27516545 PMCID: PMC5047195 DOI: 10.1073/pnas.1603252113] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To prevent rereplication of genomic segments, the eukaryotic cell cycle is divided into two nonoverlapping phases. During late mitosis and G1 replication origins are "licensed" by loading MCM2-7 double hexamers and during S phase licensed replication origins activate to initiate bidirectional replication forks. Replication forks can stall irreversibly, and if two converging forks stall with no intervening licensed origin-a "double fork stall" (DFS)-replication cannot be completed by conventional means. We previously showed how the distribution of replication origins in yeasts promotes complete genome replication even in the presence of irreversible fork stalling. This analysis predicts that DFSs are rare in yeasts but highly likely in large mammalian genomes. Here we show that complementary strand synthesis in early mitosis, ultrafine anaphase bridges, and G1-specific p53-binding protein 1 (53BP1) nuclear bodies provide a mechanism for resolving unreplicated DNA at DFSs in human cells. When origin number was experimentally altered, the number of these structures closely agreed with theoretical predictions of DFSs. The 53BP1 is preferentially bound to larger replicons, where the probability of DFSs is higher. Loss of 53BP1 caused hypersensitivity to licensing inhibition when replication origins were removed. These results provide a striking convergence of experimental and theoretical evidence that unreplicated DNA can pass through mitosis for resolution in the following cell cycle.
Collapse
|
335
|
Bétous R, Renoud M, Hoede C, Gonzalez I, Jones N, Longy M, Sensebé L, Cazaux C, Hoffmann J. Human Adipose-Derived Stem Cells Expanded Under Ambient Oxygen Concentration Accumulate Oxidative DNA Lesions and Experience Procarcinogenic DNA Replication Stress. Stem Cells Transl Med 2016; 6:68-76. [PMID: 28170194 PMCID: PMC5442744 DOI: 10.5966/sctm.2015-0401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/08/2016] [Indexed: 01/15/2023] Open
Abstract
Adipose‐derived stem cells (ADSCs) have led to growing interest in cell‐based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA‐seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress‐associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine2017;6:68–76
Collapse
Affiliation(s)
- Rémy Bétous
- Equipe Labellisée La Ligue Contre Le Cancer, Paris, France
- Laboratoire d'Excellence Toulouse Cancer Labex Toucan, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France
- University Paul Sabatier, Toulouse, France
| | - Marie‐Laure Renoud
- University Paul Sabatier, Toulouse, France
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France
- INSERM U1031, UMR5273, Toulouse, France
| | - Claire Hoede
- Institut National de la Recherche Agronomique (INRA), UR 875, Unité de Mathématique et Informatique Appliquées, PF Bioinfo Genotoul, Castanet Tolosan, France
| | - Ignacio Gonzalez
- Institut National de la Recherche Agronomique (INRA), UR 875, Unité de Mathématique et Informatique Appliquées, PF Bioinfo Genotoul, Castanet Tolosan, France
| | - Natalie Jones
- INSERM U916 Vinco, Université de Bordeaux, Institut Bergonié, Bordeaux, France
| | - Michel Longy
- INSERM U916 Vinco, Université de Bordeaux, Institut Bergonié, Bordeaux, France
| | - Luc Sensebé
- University Paul Sabatier, Toulouse, France
- Etablissement Français du Sang Pyrénées Méditerranée, Toulouse, France
- INSERM U1031, UMR5273, Toulouse, France
| | - Christophe Cazaux
- Equipe Labellisée La Ligue Contre Le Cancer, Paris, France
- Laboratoire d'Excellence Toulouse Cancer Labex Toucan, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France
- University Paul Sabatier, Toulouse, France
| | - Jean‐Sébastien Hoffmann
- Equipe Labellisée La Ligue Contre Le Cancer, Paris, France
- Laboratoire d'Excellence Toulouse Cancer Labex Toucan, Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, Toulouse, France
- University Paul Sabatier, Toulouse, France
| |
Collapse
|
336
|
Kanu N, Zhang T, Burrell RA, Chakraborty A, Cronshaw J, Da Costa C, Grönroos E, Pemberton HN, Anderton E, Gonzalez L, Sabbioneda S, Ulrich HD, Swanton C, Behrens A. RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress. Oncogene 2016; 35:4009-19. [PMID: 26549024 PMCID: PMC4842010 DOI: 10.1038/onc.2015.427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023]
Abstract
The DNA replication machinery invariably encounters obstacles that slow replication fork progression, and threaten to prevent complete replication and faithful segregation of sister chromatids. The resulting replication stress activates ATR, the major kinase involved in resolving impaired DNA replication. In addition, replication stress also activates the related kinase ATM, which is required to prevent mitotic segregation errors. However, the molecular mechanism of ATM activation by replication stress is not defined. Here, we show that monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA), a marker of stalled replication forks, interacts with the ATM cofactor ATMIN via WRN-interacting protein 1 (WRNIP1). ATMIN, WRNIP1 and RAD18, the E3 ligase responsible for PCNA monoubiquitination, are specifically required for ATM signalling and 53BP1 focus formation induced by replication stress, not ionising radiation. Thus, WRNIP1 connects PCNA monoubiquitination with ATMIN/ATM to activate ATM signalling in response to replication stress and contribute to the maintenance of genomic stability.
Collapse
Affiliation(s)
- Nnennaya Kanu
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Tianyi Zhang
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Rebecca A. Burrell
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK and UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
| | - Atanu Chakraborty
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Janet Cronshaw
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Clive Da Costa
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Eva Grönroos
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK and UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
| | - Helen N. Pemberton
- Molecular Oncology Laboratory, Cancer Research UK, London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Emma Anderton
- Molecular Oncology Laboratory, Cancer Research UK, London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Laure Gonzalez
- DNA Damage Tolerance Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare-CNR, Via Abbiategrasso, 207 - 27100 Pavia, Italy
| | - Helle D. Ulrich
- DNA Damage Tolerance Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK and UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
| | - Axel Behrens
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
- School of Medicine, King’s College London, Guy’s Campus, London, SE1 1UL, UK
| |
Collapse
|
337
|
Chen CW, Tsao N, Huang LY, Yen Y, Liu X, Lehman C, Wang YH, Tseng MC, Chen YJ, Ho YC, Chen CF, Chang ZF. The Impact of dUTPase on Ribonucleotide Reductase-Induced Genome Instability in Cancer Cells. Cell Rep 2016; 16:1287-1299. [PMID: 27452458 DOI: 10.1016/j.celrep.2016.06.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
The appropriate supply of dNTPs is critical for cell growth and genome integrity. Here, we investigated the interrelationship between dUTP pyrophosphatase (dUTPase) and ribonucleotide reductase (RNR) in the regulation of genome stability. Our results demonstrate that reducing the expression of dUTPase increases genome stress in cancer. Analysis of clinical samples reveals a significant correlation between the combination of low dUTPase and high R2, a subunit of RNR, and a poor prognosis in colorectal and breast cancer patients. Furthermore, overexpression of R2 in non-tumorigenic cells progressively increases genome stress, promoting transformation. These cells display alterations in replication fork progression, elevated genomic uracil, and breaks at AT-rich common fragile sites. Consistently, overexpression of dUTPase abolishes R2-induced genome instability. Thus, the expression level of dUTPase determines the role of high R2 in driving genome instability in cancer cells.
Collapse
Affiliation(s)
- Chih-Wei Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Ning Tsao
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Lin-Yi Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yun Yen
- Department of Molecular Pharmacology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA; Taipei Medical University, Taipei 110, Taiwan
| | - Xiyong Liu
- Taipei Medical University, Taipei 110, Taiwan; California Cancer Institute, Sino-American Cancer Foundation, Temple City, CA 91780, USA
| | - Christine Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Yu-Ju Chen
- Department of Chemistry, National Taiwan University, Taipei 100, Taiwan; Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Yi-Chi Ho
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
338
|
Ferrari S, Gentili C. Maintaining Genome Stability in Defiance of Mitotic DNA Damage. Front Genet 2016; 7:128. [PMID: 27493659 PMCID: PMC4954828 DOI: 10.3389/fgene.2016.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| | - Christian Gentili
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| |
Collapse
|
339
|
Wang L, Zhang P, Molkentine DP, Chen C, Molkentine JM, Piao H, Raju U, Zhang J, Valdecanas DR, Tailor RC, Thames HD, Buchholz TA, Chen J, Ma L, Mason KA, Ang KK, Meyn RE, Skinner HD. TRIP12 as a mediator of human papillomavirus/p16-related radiation enhancement effects. Oncogene 2016; 36:820-828. [PMID: 27425591 DOI: 10.1038/onc.2016.250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 05/16/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) have better responses to radiotherapy and higher overall survival rates than do patients with HPV-negative HNSCC, but the mechanisms underlying this phenomenon are unknown. p16 is used as a surrogate marker for HPV infection. Our goal was to examine the role of p16 in HPV-related favorable treatment outcomes and to investigate the mechanisms by which p16 may regulate radiosensitivity. HNSCC cells and xenografts (HPV/p16-positive and -negative) were used. p16-overexpressing and small hairpin RNA-knockdown cells were generated, and the effect of p16 on radiosensitivity was determined by clonogenic cell survival and tumor growth delay assays. DNA double-strand breaks (DSBs) were assessed by immunofluorescence analysis of 53BP1 foci; DSB levels were determined by neutral comet assay; western blotting was used to evaluate protein changes; changes in protein half-life were tested with a cycloheximide assay; gene expression was examined by real-time polymerase chain reaction; and data from The Cancer Genome Atlas HNSCC project were analyzed. p16 overexpression led to downregulation of TRIP12, which in turn led to increased RNF168 levels, repressed DNA damage repair (DDR), increased 53BP1 foci and enhanced radioresponsiveness. Inhibition of TRIP12 expression further led to radiosensitization, and overexpression of TRIP12 was associated with poor survival in patients with HPV-positive HNSCC. These findings reveal that p16 participates in radiosensitization through influencing DDR and support the rationale of blocking TRIP12 to improve radiotherapy outcomes.
Collapse
Affiliation(s)
- L Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D P Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J M Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Piao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - U Raju
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D R Valdecanas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R C Tailor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H D Thames
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T A Buchholz
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K A Mason
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K-K Ang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R E Meyn
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H D Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
340
|
Mao P, Liu J, Zhang Z, Zhang H, Liu H, Gao S, Rong YS, Zhao Y. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat Commun 2016; 7:12154. [PMID: 27396625 PMCID: PMC4942568 DOI: 10.1038/ncomms12154] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/07/2016] [Indexed: 12/28/2022] Open
Abstract
Telomeres prevent chromosome ends from being recognized as double-stranded breaks (DSBs). Meanwhile, G/C-rich repetitive telomeric DNA is susceptible to attack by DNA-damaging agents. How cells balance the need to protect DNA ends and the need to repair DNA lesions in telomeres is unknown. Here we show that telomeric DSBs are efficiently repaired in proliferating cells, but are irreparable in stress-induced and replicatively senescent cells. Using the CRISPR-Cas9 technique, we specifically induce DSBs at telomeric or subtelomeric regions. We find that DSB repair (DSBR) at subtelomeres occurs in an error-prone manner resulting in small deletions, suggestive of NHEJ. However, DSBR in telomeres involves 'telomere-clustering', 3'-protruding C-rich telomeric ssDNA, and HR between sister-chromatid or interchromosomal telomeres. DSBR in telomeres is suppressed by deletion or inhibition of Rad51. These findings reveal proliferation-dependent DSBR in telomeres and suggest that telomeric HR, which is normally constitutively suppressed, is activated in the context of DSBR.
Collapse
Affiliation(s)
- Pingsu Mao
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China
| | - Jingfan Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China
- Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510006, China
| | - Zepeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiying Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yikang S. Rong
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
341
|
Diman A, Boros J, Poulain F, Rodriguez J, Purnelle M, Episkopou H, Bertrand L, Francaux M, Deldicque L, Decottignies A. Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. SCIENCE ADVANCES 2016; 2:e1600031. [PMID: 27819056 PMCID: PMC5087959 DOI: 10.1126/sciadv.1600031] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/29/2016] [Indexed: 05/07/2023]
Abstract
DNA breaks activate the DNA damage response and, if left unrepaired, trigger cellular senescence. Telomeres are specialized nucleoprotein structures that protect chromosome ends from persistent DNA damage response activation. Whether protection can be enhanced to counteract the age-dependent decline in telomere integrity is a challenging question. Telomeric repeat-containing RNA (TERRA), which is transcribed from telomeres, emerged as important player in telomere integrity. However, how human telomere transcription is regulated is still largely unknown. We identify nuclear respiratory factor 1 and peroxisome proliferator-activated receptor γ coactivator 1α as regulators of human telomere transcription. In agreement with an upstream regulation of these factors by adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), pharmacological activation of AMPK in cancer cell lines or in normal nonproliferating myotubes up-regulated TERRA, thereby linking metabolism to telomere fitness. Cycling endurance exercise, which is associated with AMPK activation, increased TERRA levels in skeletal muscle biopsies obtained from 10 healthy young volunteers. The data support the idea that exercise may protect against aging.
Collapse
Affiliation(s)
- Aurélie Diman
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Joanna Boros
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Florian Poulain
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Julie Rodriguez
- Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium
| | - Marin Purnelle
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium
| | - Harikleia Episkopou
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium
- Corresponding author. (L.D.); (A.D.)
| | - Anabelle Decottignies
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
- Corresponding author. (L.D.); (A.D.)
| |
Collapse
|
342
|
Zaaijer S, Shaikh N, Nageshan RK, Cooper JP. Rif1 Regulates the Fate of DNA Entanglements during Mitosis. Cell Rep 2016; 16:148-160. [PMID: 27320927 PMCID: PMC4929174 DOI: 10.1016/j.celrep.2016.05.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022] Open
Abstract
Clearance of entangled DNA from the anaphase mid-region must accurately proceed in order for chromosomes to segregate with high fidelity. Loss of Taz1 (fission yeast ortholog of human TRF1/TRF2) leads to stalled telomeric replication forks that trigger telomeric entanglements; the resolution of these entanglements fails at ≤20°C. Here, we investigate these entanglements and their promotion by the conserved replication/repair protein Rif1. Rif1 plays no role in taz1Δ fork stalling. Rather, Rif1 localizes to the anaphase mid-region and regulates the resolution of persisting DNA structures. This anaphase role for Rif1 is genetically separate from the role of Rif1 in S/G2, though both roles require binding to PP1 phosphatase, implying spatially and temporally distinct Rif1-regulated phosphatase substrates. Rif1 thus acts as a double-edged sword. Although it inhibits the resolution of taz1Δ telomere entanglements, it promotes the resolution of non-telomeric ultrafine anaphase bridges at ≤20°C. We suggest a unifying model for Rif1's seemingly diverse roles in chromosome segregation in eukaryotes.
Collapse
Affiliation(s)
- Sophie Zaaijer
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nadeem Shaikh
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rishi Kumar Nageshan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Julia Promisel Cooper
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
343
|
The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene 2016; 36:194-207. [PMID: 27270424 PMCID: PMC5140775 DOI: 10.1038/onc.2016.188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022]
Abstract
Flap endonuclease-1 (FEN1) is a multifunctional, structure-specific nuclease that has a critical role in maintaining human genome stability. FEN1 mutations have been detected in human cancer specimens and have been suggested to cause genomic instability and cancer predisposition. However, the exact relationship between FEN1 deficiency and cancer susceptibility remains unclear. In the current work, we report a novel colorectal cancer-associated FEN1 mutation, L209P. This mutant protein lacks the FEN, exonuclease (EXO) and gap endonuclease (GEN) activities of FEN1 but retains DNA-binding affinity. The L209P FEN1 variant interferes with the function of the wild-type FEN1 enzyme in a dominant-negative manner and impairs long-patch base excision repair in vitro and in vivo. Expression of L209P FEN1 sensitizes cells to DNA damage, resulting in endogenous genomic instability and cellular transformation, as well as tumor growth in a mouse xenograft model. These data indicate that human cancer-associated genetic alterations in the FEN1 gene can contribute substantially to cancer development.
Collapse
|
344
|
Spies J, Waizenegger A, Barton O, Sürder M, Wright WD, Heyer WD, Löbrich M. Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability. Mol Cell 2016; 62:903-917. [PMID: 27264870 DOI: 10.1016/j.molcel.2016.04.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/23/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022]
Abstract
Never-in-mitosis A-related kinase 1 (Nek1) has established roles in apoptosis and cell cycle regulation. We show that human Nek1 regulates homologous recombination (HR) by phosphorylating Rad54 at Ser572 in late G2 phase. Nek1 deficiency as well as expression of unphosphorylatable Rad54 (Rad54-S572A) cause unresolved Rad51 foci and confer a defect in HR. Phospho-mimic Rad54 (Rad54-S572E), in contrast, promotes HR and rescues the HR defect associated with Nek1 loss. Although expression of phospho-mimic Rad54 is beneficial for HR, it causes Rad51 removal from chromatin and degradation of stalled replication forks in S phase. Thus, G2-specific phosphorylation of Rad54 by Nek1 promotes Rad51 chromatin removal during HR in G2 phase, and its absence in S phase is required for replication fork stability. In summary, Nek1 regulates Rad51 removal to orchestrate HR and replication fork stability.
Collapse
Affiliation(s)
- Julian Spies
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Anja Waizenegger
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Olivia Barton
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Michael Sürder
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - William D Wright
- Section of Microbiology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany.
| |
Collapse
|
345
|
Petrakis TG, Komseli ES, Papaioannou M, Vougas K, Polyzos A, Myrianthopoulos V, Mikros E, Trougakos IP, Thanos D, Branzei D, Townsend P, Gorgoulis VG. Exploring and exploiting the systemic effects of deregulated replication licensing. Semin Cancer Biol 2016; 37-38:3-15. [PMID: 26707000 DOI: 10.1016/j.semcancer.2015.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Maintenance and accurate propagation of the genetic material are key features for physiological development and wellbeing. The replication licensing machinery is crucial for replication precision as it ensures that replication takes place once per cell cycle. Thus, the expression status of the components comprising the replication licensing apparatus is tightly regulated to avoid re-replication; a form of replication stress that leads to genomic instability, a hallmark of cancer. In the present review we discuss the mechanistic basis of replication licensing deregulation, which leads to systemic effects, exemplified by its role in carcinogenesis and a variety of genetic syndromes. In addition, new insights demonstrate that above a particular threshold, the replication licensing factor Cdc6 acts as global transcriptional regulator, outlining new lines of exploration. The role of the putative replication licensing factor ChlR1/DDX11, mutated in the Warsaw Breakage Syndrome, in cancer is also considered. Finally, future perspectives focused on the potential therapeutic advantage by targeting replication licensing factors, and particularly Cdc6, are discussed.
Collapse
Affiliation(s)
- Theodoros G Petrakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Eirini-Stavroula Komseli
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Marilena Papaioannou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Kostas Vougas
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dana Branzei
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paul Townsend
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
346
|
RETRACTED: USP1 Regulates Cellular Senescence by Controlling Genomic Integrity. Cell Rep 2016; 15:1401-1411. [PMID: 27160904 DOI: 10.1016/j.celrep.2016.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the authors.
We, the authors, were made aware of irregularities associated in western blots shown in our article. We have further investigated the matter and found that the paper contains multiple examples of incorrect data use and image flipping in four figures, including the vertical flipping and reuse of the panel in Figures 1B and 3D, similar flipping and incorrect blot image in Figure 2C, and incorrect data use in Figure 4A. All of these figures were assembled by the corresponding author (O.B.) who takes full responsibility for the inaccuracies. Under these circumstances, we believe that the most responsible course of action is to retract the paper. We sincerely apologize to the scientific community for any inconvenience resulting from the publication and retraction of this manuscript.
Collapse
|
347
|
Thu YM, Van Riper SK, Higgins L, Zhang T, Becker JR, Markowski TW, Nguyen HD, Griffin TJ, Bielinsky AK. Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression. Cell Rep 2016; 15:1254-65. [PMID: 27134171 DOI: 10.1016/j.celrep.2016.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/30/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
Loss of minichromosome maintenance protein 10 (Mcm10) causes replication stress. We uncovered that S. cerevisiae mcm10-1 mutants rely on the E3 SUMO ligase Mms21 and the SUMO-targeted ubiquitin ligase complex Slx5/8 for survival. Using quantitative mass spectrometry, we identified changes in the SUMO proteome of mcm10-1 mutants and revealed candidates regulated by Slx5/8. Such candidates included subunits of the chromosome passenger complex (CPC), Bir1 and Sli15, known to facilitate spindle assembly checkpoint (SAC) activation. We show here that Slx5 counteracts SAC activation in mcm10-1 mutants under conditions of moderate replication stress. This coincides with the proteasomal degradation of sumoylated Bir1. Importantly, Slx5-dependent mitotic relief was triggered not only by Mcm10 deficiency but also by treatment with low doses of the alkylating drug methyl methanesulfonate. Based on these findings, we propose a model in which Slx5/8 allows for passage through mitosis when replication stress is tolerable.
Collapse
Affiliation(s)
- Yee Mon Thu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susan Kaye Van Riper
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tianji Zhang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jordan Robert Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Todd William Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hai Dang Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy Jon Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anja Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
348
|
Ho TLF, Guilbaud G, Blow JJ, Sale JE, Watson CJ. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep 2016; 15:724-734. [PMID: 27149840 PMCID: PMC4850358 DOI: 10.1016/j.celrep.2016.03.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/18/2015] [Accepted: 03/21/2016] [Indexed: 11/21/2022] Open
Abstract
Regulation of DNA replication and cell division is essential for tissue growth and maintenance of genomic integrity and is particularly important in tissues that undergo continuous regeneration such as mammary glands. We have previously shown that disruption of the KRAB-domain zinc finger protein Roma/Zfp157 results in hyperproliferation of mammary epithelial cells (MECs) during pregnancy. Here, we delineate the mechanism by which Roma engenders this phenotype. Ablation of Roma in MECs leads to unscheduled proliferation, replication stress, DNA damage, and genomic instability. Furthermore, mouse embryonic fibroblasts (MEFs) depleted for Roma exhibit downregulation of p21Cip1 and geminin and have accelerated replication fork velocities, which is accompanied by a high rate of mitotic errors and polyploidy. In contrast, overexpression of Roma in MECs halts cell-cycle progression, whereas siRNA-mediated p21Cip1 knockdown ameliorates, in part, this phenotype. Thus, Roma is an essential regulator of the cell cycle and is required to maintain genomic stability.
Collapse
Affiliation(s)
- Teresa L F Ho
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Guillaume Guilbaud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - J Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
349
|
Mazouzi A, Stukalov A, Müller AC, Chen D, Wiedner M, Prochazkova J, Chiang SC, Schuster M, Breitwieser FP, Pichlmair A, El-Khamisy SF, Bock C, Kralovics R, Colinge J, Bennett KL, Loizou JI. A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN. Cell Rep 2016; 15:893-908. [PMID: 27149854 DOI: 10.1016/j.celrep.2016.03.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/21/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
The cellular response to replication stress requires the DNA-damage-responsive kinase ATM and its cofactor ATMIN; however, the roles of this signaling pathway following replication stress are unclear. To identify the functions of ATM and ATMIN in response to replication stress, we utilized both transcriptomics and quantitative mass-spectrometry-based phosphoproteomics. We found that replication stress induced by aphidicolin triggered widespread changes in both gene expression and protein phosphorylation patterns. These changes gave rise to distinct early and late replication stress responses. Furthermore, our analysis revealed previously unknown targets of ATM and ATMIN downstream of replication stress. We demonstrate ATMIN-dependent phosphorylation of H2AX and of CRMP2, a protein previously implicated in Alzheimer's disease but not in the DNA damage response. Overall, our dataset provides a comprehensive resource for discovering the cellular responses to replication stress and, potentially, associated pathologies.
Collapse
Affiliation(s)
- Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Doris Chen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Shih-Chieh Chiang
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Florian P Breitwieser
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Andreas Pichlmair
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sherif F El-Khamisy
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| |
Collapse
|
350
|
Sarni D, Kerem B. The complex nature of fragile site plasticity and its importance in cancer. Curr Opin Cell Biol 2016; 40:131-136. [PMID: 27062332 DOI: 10.1016/j.ceb.2016.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 01/12/2023]
Abstract
Common fragile sites (CFSs) are chromosomal regions characterized as hotspots for breakage and chromosomal rearrangements following DNA replication stress. They are preferentially unstable in pre-cancerous lesions and during cancer development. Recently CFSs were found to be tissue- and even oncogene-induced specific, thus indicating an unforeseen complexity. Here we review recent developments in CFS research that shed new light on the molecular basis of their instability and their importance in cancer development.
Collapse
Affiliation(s)
- Dan Sarni
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|