301
|
European Food Safety Authority (EFSA). Opinion of the Scientific Panel on genetically modified organisms [GMO] on a request from the Commission related to the safety of foods and food ingredients derived from insect-protected genetically modified maize MON 863 and MON 863 × MON 810, for which. EFSA J 2004. [DOI: 10.2903/j.efsa.2004.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
302
|
Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 2004; 5:123-35. [PMID: 14735123 DOI: 10.1038/nrg1271] [Citation(s) in RCA: 988] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremy N Timmis
- School of Molecular and Biomedical Science, The University of Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
303
|
Affiliation(s)
- Gertraud Burger
- Canadian Institute for Advanced Research, Programme in Evolutionary Biology, Départment de Biochimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, Canada H3T 1J4.
| | | | | |
Collapse
|
304
|
|
305
|
Palmer AG, Gao R, Maresh J, Erbil WK, Lynn DG. Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:439-464. [PMID: 15283673 DOI: 10.1146/annurev.phyto.41.052002.095701] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The xenognostic mechanisms of two multi-host pathogens, the causative agent of crown gall tumors Agrobacterium tumefaciens and the parasitic plant Striga asiatica, are compared. Both organisms are general plant pathogens and require similar information prior to host commitment. Two mechanistic strategies, chemical perception and metabolic complementation, are used to ensure successful host commitment. The critical reactions at host-parasite contact are proton and electron transfer events. Such strategies may be common among multi-host pathogens.
Collapse
Affiliation(s)
- Andrew G Palmer
- Center for Fundamental and Applied Molecular Evolution, Departments of Chemistry and Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
306
|
|
307
|
Rhoads DM, Vanlerberghe GC. Mitochondria-Nucleus Interactions: Evidence for Mitochondrial Retrograde Communication in Plant Cells. PLANT MITOCHONDRIA: FROM GENOME TO FUNCTION 2004. [DOI: 10.1007/978-1-4020-2400-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
308
|
Sandoval P, León G, Gómez I, Carmona R, Figueroa P, Holuigue L, Araya A, Jordana X. Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene 2004; 324:139-47. [PMID: 14693379 DOI: 10.1016/j.gene.2003.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gene transfer from the mitochondrion to the nucleus, a process of outstanding importance to the evolution of the eukaryotic cell, is an on-going phenomenon in higher plants. After transfer, the mitochondrial gene has to be adapted to the nuclear context by acquiring a new promoter and targeting information to direct the protein back to the organelle. To better understand the strategies developed by higher plants to transfer organellar genes during evolution, we investigated the fate of the mitochondrial RPL5-RPS14 locus in grasses. While maize mitochondrial genome does not contain RPS14 and RPL5 genes, wheat mitochondrial DNA contains an intact RPL5 gene and a nonfunctional RPS14 pseudogene. RPL5 and PsiRPS14 are co-transcribed and their transcripts are edited. In wheat, the functional RPS14 gene is located in the nucleus, within the intron of the respiratory complex II iron-sulfur subunit gene (SDH2). Its organization and expression mechanisms are similar to those previously described in maize and rice, allowing us to conclude that RPS14 transfer and nuclear activation occurred before divergence of these grasses. Unexpectedly, we found evidence for a more recent RPL5 transfer to the nucleus in wheat. This nuclear wheat RPL5 acquired its targeting information by duplication of an existing targeting presequence for another mitochondrial protein, ribosomal protein L4. Thus, mitochondrial and nuclear functional RPL5 genes appear to be maintained in wheat, supporting the hypothesis that in an intermediate stage of the transfer process, both nuclear and mitochondrial functional genes coexist. Finally, we show that RPL5 has been independently transferred to the nucleus in the maize lineage and has acquired regulatory elements for its expression and a mitochondrial targeting peptide from an unknown source.
Collapse
Affiliation(s)
- Pamela Sandoval
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
309
|
Bartoszewski G, Malepszy S, Havey MJ. Mosaic (MSC) cucumbers regenerated from independent cell cultures possess different mitochondrial rearrangements. Curr Genet 2003; 45:45-53. [PMID: 14586555 DOI: 10.1007/s00294-003-0456-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 09/23/2003] [Accepted: 09/29/2003] [Indexed: 11/30/2022]
Abstract
Passage of the highly inbred cucumber ( Cucumis sativus L.) line B through cell culture produces progenies with paternally transmitted, mosaic (MSC) phenotypes. Because the mitochondrial genome of cucumber shows paternal transmission, we evaluated for structural polymorphisms by hybridizing cosmids spanning the entire mitochondrial genome of Arabidopsis thaliana L. to DNA-gel blots of four independently generated MSC and four wild-type cucumbers. Polymorphisms were identified by cosmids carrying rrn18, nad5-exon2, rpl5, and the previously described JLV5 deletion. Polymorphisms revealed by rrn18 and nad5-exon2 were due to one rearrangement bringing together these two coding regions. The polymorphism revealed by rpl5 was unique to MSC16 and was due to rearrangement(s) placing the rpl5 region next to the forward junction of the JLV5 deletion. The rearrangement near rpl5 existed as a sublimon in wild-type inbred B, but was not detected in the cultivar Calypso. Although RNA-gel blots revealed reduced transcription of rpl5 in MSC16 relative to wild-type cucumber, Western analyses revealed no differences for the RPL5 protein and the genetic basis of the MSC16 phenotype remains enigmatic. We evaluated 17 MSC and wild-type lines regenerated from independent cell-culture experiments for these structural polymorphisms and identified eight different patterns, indicating that the passage of cucumber through cell culture may be a unique mechanism to induce or select for novel rearrangements affecting mitochondrial gene expression.
Collapse
Affiliation(s)
- Grzegorz Bartoszewski
- Vegetable Crops Unit, Department of Horticulture, Agricultural Research Service, U.S. Department of Agriculture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
310
|
Abstract
The gamma-proteobacterial symbionts of insects are a model group for comparative studies of genome reduction. The phylogenetic proximity of these reduced genomes to the larger genomes of well-studied free-living bacteria has enabled reconstructions of the process by which genes and DNA are lost. Three genome sequences are now available for Buchnera aphidicola. Analyses of Buchnera genomes in comparison with those of related enteric bacteria suggest that extensive changes including large deletions, repetitive element proliferation and chromosomal rearrangements occurred initially, followed by extreme stasis in gene order and slow decay of additional genes. This pattern appears to be characteristic of symbiont evolution.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
311
|
Abstract
Although horizontal gene transfer is well documented in microbial genomes, no case has been reported in higher plants. We discovered horizontal transfer of the mitochondrial nad1 intron 2 and adjacent exons b and c from an asterid to Gnetum (Gnetales, gymnosperms). Gnetum has two copies of intron 2, a group II intron, that differ in their exons, nucleotide composition, domain lengths, and structural characteristics. One of the copies, limited to an Asian clade of Gnetum, is almost identical to the homologous locus in angiosperms, and partial sequences of its exons b and c show characteristic substitutions unique to angiosperms. Analyses of 70 seed plant nad1 exons b and c and intron 2 sequences, including representatives of all angiosperm clades, support that this copy originated from a euasterid and was horizontally transferred to Gnetum. Molecular clock dating, using calibrations provided by gnetalean macrofossils, suggests an age of 5 to 2 million years for the Asian clade that received the horizontal transfer.
Collapse
Affiliation(s)
- Hyosig Won
- Department of Biology, University of Missouri, 8001 Natural Bridge Road, St. Louis, MO 63121, USA
| | | |
Collapse
|
312
|
Hoffmeister M, Martin W. Interspecific evolution: microbial symbiosis, endosymbiosis and gene transfer. Environ Microbiol 2003; 5:641-9. [PMID: 12871231 DOI: 10.1046/j.1462-2920.2003.00454.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microbial symbioses are interesting in their own right and also serve as exemplary models to help biologists to understand two important symbioses in the evolutionary past of eukaryotic cells: the origins of chloroplasts and mitochondria. Most, if not all, microbial symbioses have a chemical basis: compounds produced by one partner are useful for the other. But symbioses can also entail the transfer of genes from one partner to the other, which in some cases cements two cells into a bipartite, co-evolving unit. Here, we discuss some microbial symbioses in which progress is being made in uncovering the nature of symbiotic interactions: anaerobic methane-oxidizing consortia, marine worms that possess endosymbionts instead of a digestive tract, amino acid-producing endosymbionts of aphids, prokaryotic endosymbionts living within a prokaryotic host within mealybugs, endosymbionts of an insect vector of human disease and a photosynthetic sea slug that steals chloroplasts from algae. In the case of chloroplasts and mitochondria, examples of recent and ancient gene transfer to the chromosomes of their host cell illustrate the process of genetic merger in the wake of organelle origins.
Collapse
Affiliation(s)
- Meike Hoffmeister
- Institute of Botany III, University of Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
313
|
Turmel M, Otis C, Lemieux C. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. THE PLANT CELL 2003; 15:1888-903. [PMID: 12897260 PMCID: PMC167177 DOI: 10.1105/tpc.013169] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Accepted: 06/04/2003] [Indexed: 05/20/2023]
Abstract
Mitochondrial DNA (mtDNA) has undergone radical changes during the evolution of green plants, yet little is known about the dynamics of mtDNA evolution in this phylum. Land plant mtDNAs differ from the few green algal mtDNAs that have been analyzed to date by their expanded size, long spacers, and diversity of introns. We have determined the mtDNA sequence of Chara vulgaris (Charophyceae), a green alga belonging to the charophycean order (Charales) that is thought to be the most closely related alga to land plants. This 67,737-bp mtDNA sequence, displaying 68 conserved genes and 27 introns, was compared with those of three angiosperms, the bryophyte Marchantia polymorpha, the charophycean alga Chaetosphaeridium globosum (Coleochaetales), and the green alga Mesostigma viride. Despite important differences in size and intron composition, Chara mtDNA strikingly resembles Marchantia mtDNA; for instance, all except 9 of 68 conserved genes lie within blocks of colinear sequences. Overall, our genome comparisons and phylogenetic analyses provide unequivocal support for a sister-group relationship between the Charales and the land plants. Only four introns in land plant mtDNAs appear to have been inherited vertically from a charalean algar ancestor. We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome. The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie et de Microbiologie, Université Laval, Québec, Québec G1K 7P4, Canada.
| | | | | |
Collapse
|
314
|
Bergthorsson U, Adams KL, Thomason B, Palmer JD. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 2003; 424:197-201. [PMID: 12853958 DOI: 10.1038/nature01743] [Citation(s) in RCA: 294] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Accepted: 05/13/2003] [Indexed: 11/08/2022]
Abstract
Horizontal gene transfer--the exchange of genes across mating barriers--is recognized as a major force in bacterial evolution. However, in eukaryotes it is prevalent only in certain phagotrophic protists and limited largely to the ancient acquisition of bacterial genes. Although the human genome was initially reported to contain over 100 genes acquired during vertebrate evolution from bacteria, this claim was immediately and repeatedly rebutted. Moreover, horizontal transfer is unknown within the evolution of animals, plants and fungi except in the special context of mobile genetic elements. Here we show, however, that standard mitochondrial genes, encoding ribosomal and respiratory proteins, are subject to evolutionarily frequent horizontal transfer between distantly related flowering plants. These transfers have created a variety of genomic outcomes, including gene duplication, recapture of genes lost through transfer to the nucleus, and chimaeric, half-monocot, half-dicot genes. These results imply the existence of mechanisms for the delivery of DNA between unrelated plants, indicate that horizontal transfer is also a force in plant nuclear genomes, and are discussed in the contexts of plant molecular phylogeny and genetically modified plants.
Collapse
Affiliation(s)
- Ulfar Bergthorsson
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
315
|
Shahmuradov IA, Akbarova YY, Solovyev VV, Aliyev JA. Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. PLANT MOLECULAR BIOLOGY 2003; 52:923-34. [PMID: 14558655 DOI: 10.1023/a:1025472709537] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pairwise comparison of whole plastid and draft nuclear genomic sequences of Arabidopsis thaliana and Oryza sativa L. ssp. indica shows that rice nuclear genomic sequences contain homologs of plastid DNA covering about 94 kb (83%) of plastid genome and including one or more full-length intact (without mutations resulting in premature stop codons) homologues of 26 known protein-coding (KPC) plastid genes. By contrast, only about 20 kb (16%) of chloroplast DNA, including a single intact plastid-derived KPC gene, is presented in the nucleus of A. thaliana. Sixteen rice plastid genes have at least one nuclear copy without any mutation or with only synonymous substitutions. Nuclear copies for other ten plastid genes contain both synonymous and non-synonymous substitutions. Multiple ESTs for 25 out of 26 KPC genes were also found, as well as putative promoters for some of them. The study of substitutions pattern shows that some of nuclear homologues of plastid genes may be functional and/or are under the pressure of the positive natural selection. The similar comparative analysis performed on rice chromosome 1 revealed 27 contigs containing plastid-derived sequences, totalling about 84 kb and covering two thirds of chloroplast DNA, with the intact nuclear copies of 26 different KPC genes. One of these contigs, AP003280, includes almost 57 kb (45%) of chloroplast genome with the intact copies of 22 KPC genes. At the same time, we observed that relative locations of homologues in plastid DNA and the nuclear genome are significantly different.
Collapse
|
316
|
Abstract
Changes in technology in the past decade have had such an impact on the way that molecular evolution research is done that it is difficult now to imagine working in a world without genomics or the Internet. In 1992, GenBank was less than a hundredth of its current size and was updated every three months on a huge spool of tape. Homology searches took 30 minutes and rarely found a hit. Now it is difficult to find sequences with only a few homologs to use as examples for teaching bioinformatics. For molecular evolution researchers, the genomics revolution has showered us with raw data and the information revolution has given us the wherewithal to analyze it. In broad terms, the most significant outcome from these changes has been our newfound ability to examine the evolution of genomes as a whole, enabling us to infer genome-wide evolutionary patterns and to identify subsets of genes whose evolution has been in some way atypical.
Collapse
Affiliation(s)
- Kenneth H Wolfe
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
317
|
Adams KL, Daley DO, Whelan J, Palmer JD. Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. THE PLANT CELL 2002; 14:931-43. [PMID: 11971146 PMCID: PMC150693 DOI: 10.1105/tpc.010483] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 01/21/2002] [Indexed: 05/18/2023]
Abstract
Often during flowering plant evolution, ribosomal protein genes have been lost from the mitochondrion and transferred to the nucleus. Here, we show that substitution by a duplicated, divergent gene originally encoding the chloroplast or cytosolic ribosomal protein counterpart accounts for two missing mitochondrial genes in diverse angiosperms. The rps13 gene is missing from the mitochondrial genome of many rosids, and a transferred copy of this gene is not evident in the nucleus of Arabidopsis, soybean, or cotton. Instead, these rosids contain a divergent nuclear copy of an rps13 gene of chloroplast origin. The product of this gene from all three rosids was shown to be imported into isolated mitochondria but not into chloroplasts. The rps8 gene is missing from the mitochondrion and nucleus of all angiosperms examined. A divergent copy of the gene encoding its cytosolic counterpart (rps15A) was identified in the nucleus of four angiosperms and one gymnosperm. The product of this gene from Arabidopsis and tomato was imported successfully into mitochondria. We infer that rps13 was lost from the mitochondrial genome and substituted by a duplicated nuclear gene of chloroplast origin early in rosid evolution, whereas rps8 loss and substitution by a gene of nuclear/cytosolic origin occurred much earlier, in a common ancestor of angiosperms and gymnosperms.
Collapse
Affiliation(s)
- Keith L Adams
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
318
|
Adams KL, Ong HC, Palmer JD. Mitochondrial gene transfer in pieces: fission of the ribosomal protein gene rpl2 and partial or complete gene transfer to the nucleus. Mol Biol Evol 2001; 18:2289-97. [PMID: 11719578 DOI: 10.1093/oxfordjournals.molbev.a003775] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial genes are usually conserved in size in angiosperms. A notable exception is the rpl2 gene, which is considerably shorter in the eudicot Arabidopsis than in the monocot rice. Here, we show that a severely truncated mitochondrial rpl2 gene (termed 5' rpl2) was created by the formation of a premature stop codon early in eudicot evolution. This 5' rpl2 gene was subsequently lost many times from the mitochondrial DNAs of 179 core eudicots surveyed by Southern hybridization. The sequence corresponding to the 3' end of rice rpl2 (termed 3' rpl2) has been lost much more pervasively among the mitochondrial DNAs of core eudicots than has 5' rpl2. Furthermore, where still present in these mitochondrial genomes, 3' rpl2 always appears to be a pseudogene, and there is no evidence that 3' rpl2 was ever a functional mitochondrial gene. An intact and expressed 3' rpl2 gene was discovered in the nucleus of five diverse eudicots (tomato, cotton, Arabidopsis, soybean, and Medicago). In the first three of these species, 5' rpl2 is still present in the mitochondrion, unlike the two legumes, where both parts of rpl2 are present in the nucleus as separate genes. The full-length rpl2 gene has been transferred intact to the nucleus in maize. We propose that the 3' end of rpl2 was functionally transferred to the nucleus early in eudicot evolution, and that this event then permitted the nonsense mutation that gave rise to the mitochondrial 5' rpl2 gene. Once 5' rpl2 was established as a stand-alone mitochondrial gene, it was then lost, and was probably transferred to the nucleus many times. This complex history of gene fission and gene transfer has created four distinct types of rpl2 structures or compartmentalizations in angiosperms: (1) intact rpl2 gene in the mitochondrion, (2) intact gene in the nucleus, (3) split gene, 5' in the mitochondrion and 3' in the nucleus, and (4) split gene, both parts in the nucleus.
Collapse
Affiliation(s)
- K L Adams
- Department of Biology, Indiana University, Bloomington, USA.
| | | | | |
Collapse
|