301
|
Intrathecal infusion of pyrrolidine dithiocarbamate for the prevention and reversal of neuropathic pain in rats using a sciatic chronic constriction injury model. Reg Anesth Pain Med 2010; 35:231-7. [PMID: 20921832 DOI: 10.1097/aap.0b013e3181df245b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Recent studies have suggested that nuclear factor κB (NF-κB) may play a role in mediating nerve injury-induced neuropathic pain. Here, we examined the effects of intrathecal pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor, on the development of neuropathic pain, spinal microglial activation, and CX3CR1 expression induced by sciatic chronic constriction injury (CCI) model in rats. METHODS Under chloral hydrate anesthesia, male Sprague-Dawley rats (300-350 g) fitted with intrathecal catheters underwent either sciatic CCI or sham surgery. Intrathecal saline or PDTC (100 or 1000 pmol/d) was infused 1 day before or 3 days after CCI (n = 8). The rat hind-paw withdrawal threshold to mechanical stimuli and withdrawal latency to radiant heat were determined before surgery and from days 1 to 7 after CCI. Spinal microglial activation was evaluated with OX-42 immunoreactivity, and spinal CX3CR1 expression was assessed by Western blotting. RESULTS Chronic constriction injury induced mechanical allodynia and thermal hyperalgesia and microglial activation as demonstrated by OX-42 expression. Whereas it had no apparent effect on spinal cord histology, intrathecal administration of PDTC prevented the development of the mechanical and thermal hyperalgesia and inhibited nerve injury-induced microglial activation and spinal CX3CR1 expression. CONCLUSIONS In this study, we have shown the protective effect of intrathecal PDTC on the development of nociceptive behaviors induced by CCI in rats. The activation of NF-κB pathway may contribute to spinal microglial activation and CX3CR1 up-regulation.
Collapse
|
302
|
Calvo M, Zhu N, Tsantoulas C, Ma Z, Grist J, Loeb JA, Bennett DLH. Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J Neurosci 2010; 30:5437-50. [PMID: 20392965 PMCID: PMC2862659 DOI: 10.1523/jneurosci.5169-09.2010] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 12/25/2022] Open
Abstract
A key component in the response of the nervous system to injury is the proliferation and switch to a "proinflammatory" phenotype by microglia (microgliosis). In situations where the blood-brain barrier is intact, microglial numbers increase via the proliferation and chemotaxis of resident microglia; however, there is limited knowledge regarding the factors mediating this response. After peripheral nerve injury, a dorsal horn microgliosis develops, which directly contributes to the development of neuropathic pain. Neuregulin-1 (NRG-1) is a growth and differentiation factor with a well characterized role in neural and cardiac development. Microglia express the NRG1 receptors erbB2, 3, and 4, and NRG1 signaling via the erbB2 receptor stimulated microglial proliferation, chemotaxis, and survival, as well as interleukin-1beta release in vitro. Intrathecal treatment with NRG1 resulted in microglial proliferation within the dorsal horn, and these cells developed an activated morphology. This microglial response was associated with the development of both mechanical and cold pain-related hypersensitivity. Primary afferents express NRG1, and after spinal nerve ligation (SNL) we observed both an increase in NRG1 within the dorsal horn as well as activation of erbB2 specifically within microglia. Blockade of the erbB2 receptor or sequestration of endogenous NRG after SNL reduced the proliferation, the number of microglia with an activated morphology, and the expression of phospho-P38 by microglia. Furthermore, consequent to such changes, the mechanical pain-related hypersensitivity and cold allodynia were reduced. NRG1-erbB signaling therefore represents a novel pathway regulating the injury response of microglia.
Collapse
Affiliation(s)
- Margarita Calvo
- Wolfson Center for Age Related Diseases, King's College London, London SE1 1UL, United Kingdom, and
| | - Ning Zhu
- Wolfson Center for Age Related Diseases, King's College London, London SE1 1UL, United Kingdom, and
| | - Christoforos Tsantoulas
- Wolfson Center for Age Related Diseases, King's College London, London SE1 1UL, United Kingdom, and
| | - Zhenzhong Ma
- Center for Molecular Medicine and Genetics and Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - John Grist
- Wolfson Center for Age Related Diseases, King's College London, London SE1 1UL, United Kingdom, and
| | - Jeffrey A. Loeb
- Center for Molecular Medicine and Genetics and Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - David L. H. Bennett
- Wolfson Center for Age Related Diseases, King's College London, London SE1 1UL, United Kingdom, and
| |
Collapse
|
303
|
D'Haese JG, Demir IE, Friess H, Ceyhan GO. Fractalkine/CX3CR1: why a single chemokine-receptor duo bears a major and unique therapeutic potential. Expert Opin Ther Targets 2010; 14:207-19. [PMID: 20055718 DOI: 10.1517/14728220903540265] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE OF THE FIELD Fractalkine, also known as CX3CL1, is the unique member of the fourth class of chemokines and mediates both chemotaxis and adhesion of inflammatory cells via its highly selective receptor CX3CR1. Fractalkine mediates inflammatory responses and pain sensation and is involved in the pathogenesis and progression of numerous inflammatory disorders and malignancies. AREAS COVERED IN THIS REVIEW We performed a Medline/PubMed search to detect all published studies that explored the role of fractalkine and CX3CR1 and the possibilities of therapeutic intervention in the fractalkine/CX3CR1 axis in a wide range of clinical disorders, using CX3CR1 blocking antibodies, different fractalkine antagonists, CX3CR1 depletion or transfection of fractalkine expression vectors. WHAT THE READER WILL GAIN This review summarizes the role of fractalkine and its receptor CX3CR1 in various diseases, focusing on their high potential as novel therapeutic targets, with special emphasis on pancreatic diseases. TAKE HOME MESSAGE The reviewed studies provide promising results demonstrating fractalkine and CX3CR1 as potential target molecules for future therapeutics that may attenuate pain, inflammation and furthermore serve as an anti-cancer therapy. However, to date, no therapeutics targeting fractalkine or CX3CR1 are in clinical use.
Collapse
Affiliation(s)
- Jan G D'Haese
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, D-81675 Munich, Germany
| | | | | | | |
Collapse
|
304
|
Toth CC, Jedrzejewski NM, Ellis CL, Frey WH. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain. Mol Pain 2010; 6:16. [PMID: 20236533 PMCID: PMC2845559 DOI: 10.1186/1744-8069-6-16] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 03/17/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN) and neuropathic pain (NeP), our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor. Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states. One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoid receptors (CB) are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ)-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state. We provided either intranasal or intraperitoneal cannabinoid agonists/antagonists at multiple doses both at the initiation of diabetes as well as after establishment of diabetes and its related NeP state. RESULTS Tactile allodynia and thermal hypersensitivity were observed over 8 months in diabetic mice without intervention. Microglial density increases were seen in the dorsal spinal cord and in thalamic nuclei and were accompanied by elevation of phosphorylated p38 MAPK, a marker of microglial activation. When initiated coincidentally with diabetes, moderate-high doses of intranasal cannabidiol (cannaboid receptor 2 agonist) and intraperitoneal cannabidiol attenuated the development of an NeP state, even after their discontinuation and without modification of the diabetic state. Cannabidiol was also associated with restriction in elevation of microglial density in the dorsal spinal cord and elevation in phosphorylated p38 MAPK. When initiated in an established DPN NeP state, both CB1 and CB2 agonists demonstrated an antinociceptive effect until their discontinuation. There were no pronociceptive effects demonstated for either CB1 or CB2 antagonists. CONCLUSIONS The prevention of microglial accumulation and activation in the dorsal spinal cord was associated with limited development of a neuropathic pain state. Cannabinoids demonstrated antinociceptive effects in this mouse model of DPN. These results suggest that such interventions may also benefit humans with DPN, and their early introduction may also modify the development of the NeP state.
Collapse
Affiliation(s)
- Cory C Toth
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
305
|
Kiguchi N, Maeda T, Kobayashi Y, Fukazawa Y, Kishioka S. Macrophage inflammatory protein-1alpha mediates the development of neuropathic pain following peripheral nerve injury through interleukin-1beta up-regulation. Pain 2010; 149:305-315. [PMID: 20223588 DOI: 10.1016/j.pain.2010.02.025] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 02/10/2010] [Accepted: 02/13/2010] [Indexed: 12/13/2022]
Abstract
In the present study, we investigated the role of the macrophage inflammatory protein-1alpha (MIP-1alpha) in the pathogenesis of neuropathic pain following partial sciatic nerve ligation (PSL) in mice. MIP-1alpha mRNA and its protein were dramatically up-regulated after PSL, and MIP-1alpha was localized on macrophages and Schwann cells in the injured sciatic nerve (SCN). PSL-induced long-lasting tactile allodynia and thermal hyperalgesia were prevented by the perineural injection of anti-MIP-1alpha (2ng). Intraneural (20ng) and perineural (100ng) injection of recombinant MIP-1alpha elicited tactile allodynia and thermal hyperalgesia in sham-operated limb. MIP-1alpha receptors (CCR1 and CCR5) mRNA and their proteins were also up-regulated in the SCN after PSL, and were localized on macrophages and Schwann cells. PSL-induced tactile allodynia was attenuated by perineural injection (0.2nmol) of siRNA against CCR1 and CCR5. On the other hand, PSL-induced thermal hyperalgesia was prevented by siRNA against CCR5, but not CCR1. Interleukin-1beta (IL-1beta) mRNA and its precursor protein in macrophages and Schwann cells were also up-regulated in the SCN after PSL, and PSL-induced neuropathic pain was prevented by the perineural injection of anti-IL-1beta (2ng). PSL-induced IL-1beta up-regulation was suppressed by anti-MIP-1alpha and siRNA against CCR1 and CCR5. Perineural injection of nicotine (20nmol), a macrophage suppressor, prevented PSL-induced neuropathic pain and suppressed MIP-1alpha and IL-1beta expressions. In conclusion, we propose a novel critical molecule MIP-1alpha derived from macrophages and Schwann cells that appears to play a crucial role in the development of neuropathic pain induced by PSL.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | | | | | | | | |
Collapse
|
306
|
Glia: the many ways to modulate synaptic plasticity. Neurochem Int 2010; 57:440-5. [PMID: 20193723 DOI: 10.1016/j.neuint.2010.02.013] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/15/2010] [Accepted: 02/19/2010] [Indexed: 11/21/2022]
Abstract
Synaptic plasticity consists in a change in synaptic strength that is believed to be the basis of learning and memory. Synaptic plasticity has been for a very long period of time a hallmark of neurons. Recent advances in physiology of glial cells indicate that astrocyte and microglia possess all the features to participate and modulate the various form of synaptic plasticity. Indeed beside their respective supportive and immune functions an increasing number of study demonstrate that astrocytes and microglia express receptors for most neurotransmitters and release neuroactive substances that have been shown to modulate neuronal activity and synaptic plasticity. Because glial cells are all around synapses and release a wide variety of neuroactive molecule during physiological and pathological conditions, glial cells have been reported to modulate synaptic plasticity in many different ways. From change in synaptic coverage, to release of chemokines and cytokines up to dedicated "glio" transmitters release, glia were reported to affect synaptic scaling, homeostatic plasticity, metaplasticity, long-term potentiation and long-term depression.
Collapse
|
307
|
Cook A, Hippensteel R, Shimizu S, Nicolai J, Fatatis A, Meucci O. Interactions between chemokines: regulation of fractalkine/CX3CL1 homeostasis by SDF/CXCL12 in cortical neurons. J Biol Chem 2010; 285:10563-71. [PMID: 20124406 DOI: 10.1074/jbc.m109.035477] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The soluble form of the chemokine fractalkine/CX(3)CL1 regulates microglia activation in the central nervous system (CNS), ultimately affecting neuronal survival. This study aims to determine whether CXCL12, another chemokine constitutively expressed in the CNS (known as stromal cell-derived factor 1; SDF-1), regulates cleavage of fractalkine from neurons. To this end, ELISA was used to measure protein levels of soluble fractalkine in the medium of rat neuronal cultures exposed to SDF-1. Gene arrays, quantitative RT-PCR, and Western blot were used to measure overall fractalkine expression in neurons. The data show that the rate of fractalkine shedding in healthy cultures positively correlates with in vitro differentiation and survival. In analogy to non-neuronal cells, metalloproteinases (ADAM10/17) are involved in cleavage of neuronal fractalkine as indicated by studies with pharmacologic inhibitors. Moreover, treatment of the neuronal cultures with SDF-1 stimulates expression of the inducible metalloproteinase ADAM17 and increases soluble fractalkine content in culture medium. The effect of SDF-1 is blocked by an inhibitor of both ADAM10 and -17, but only partially affected by a more specific inhibitor of ADAM10. In addition, SDF-1 also up-regulates expression of the fractalkine gene. Conversely, exposure of neurons to an excitotoxic stimulus (i.e. NMDA) inhibits alpha-secretase activity and markedly diminishes soluble fractalkine levels, leading to cell death. These results, along with previous findings on the neuroprotective role of both SDF-1 and fractalkine, suggest that this novel interaction between the two chemokines may contribute to in vivo regulation of neuronal survival by modulating microglial neurotoxic properties.
Collapse
Affiliation(s)
- Anna Cook
- Departments of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | |
Collapse
|
308
|
P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J Neurosci 2010; 30:573-82. [PMID: 20071520 DOI: 10.1523/jneurosci.3295-09.2010] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The cytokine interleukin-1beta (IL-1beta) released by spinal microglia in enhanced response states contributes significantly to neuronal mechanisms of chronic pain. Here we examine the involvement of the purinergic P2X7 receptor in the release of IL-1beta following activation of Toll-like receptor-4 (TLR4) in the dorsal horn, which is associated with nociceptive behavior and microglial activation. We observed that lipopolysaccharide (LPS)-induced release of IL-1beta was prevented by pharmacological inhibition of the P2X7 receptor with A-438079, and was absent in spinal cord slices taken from P2X7 knock-out mice. Application of ATP did not evoke release of IL-1beta from the dorsal horn unless preceded by an LPS priming stimulus, and this release was dependent on P2X7 receptor activation. Extensive phosphorylation of p38 MAPK in microglial cells in the dorsal horn was found to correlate with IL-1beta secretion following both LPS and ATP. In behavioral studies, intrathecal injection of LPS in the lumbar spinal cord produced mechanical hyperalgesia in rat hindpaws, which was attenuated by concomitant injections of either a nonspecific (oxidized ATP) or a specific (A-438079) P2X7 antagonist. In addition, LPS-induced hypersensitivity was observed in wild-type but not P2X7 knock-out mice. These data suggest a critical role for the P2X7 receptor in the enhanced nociceptive transmission associated with microglial activation and secretion of IL-1beta in the dorsal horn. We suggest that CNS-penetrant P2X7 receptor antagonists, by targeting microglia in pain-enhanced response states, may be beneficial for the treatment of persistent pain.
Collapse
|
309
|
Gao YJ, Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 2010; 126:56-68. [PMID: 20117131 DOI: 10.1016/j.pharmthera.2010.01.002] [Citation(s) in RCA: 469] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 12/23/2022]
Abstract
Millions of people worldwide suffer from neuropathic pain as a result of damage to or dysfunction of the nervous system under various disease conditions. Development of effective therapeutic strategies requires a better understanding of molecular and cellular mechanisms underlying the pathogenesis of neuropathic pain. It has been increasingly recognized that spinal cord glial cells such as microglia and astrocytes play a critical role in the induction and maintenance of neuropathic pain by releasing powerful neuromodulators such as proinflammatory cytokines and chemokines. Recent evidence reveals chemokines as new players in pain control. In this article, we review evidence for chemokine modulation of pain via neuronal-glial interactions by focusing on the central role of two chemokines, CX3CL1 (fractalkine) and CCL2 (MCP-1), because they differentially regulate neuronal-glial interactions. Release of CX3CL1 from neurons is ideal to mediate neuronal-to-microglial signaling, since the sole receptor of this chemokine, CX3CR1, is expressed in spinal microglia and activation of the receptor leads to phosphorylation of p38 MAP kinase in microglia. Although CCL2 was implicated in neuronal-to-microglial signaling, a recent study shows a novel role of CCL2 in astroglial-to-neuronal signaling after nerve injury. In particular, CCL2 rapidly induces central sensitization by increasing the activity of NMDA receptors in dorsal horn neurons. Insights into the role of chemokines in neuronal-glial interactions after nerve injury will identify new targets for therapeutic intervention of neuropathic pain.
Collapse
Affiliation(s)
- Yong-Jing Gao
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| | | |
Collapse
|
310
|
Rankovic Z, Cai J, Kerr J, Fradera X, Robinson J, Mistry A, Hamilton E, McGarry G, Andrews F, Caulfield W, Cumming I, Dempster M, Waller J, Scullion P, Martin I, Mitchell A, Long C, Baugh M, Westwood P, Kinghorn E, Bruin J, Hamilton W, Uitdehaag J, van Zeeland M, Potin D, Saniere L, Fouquet A, Chevallier F, Deronzier H, Dorleans C, Nicolai E. Design and optimization of a series of novel 2-cyano-pyrimidines as cathepsin K inhibitors. Bioorg Med Chem Lett 2010; 20:1524-7. [PMID: 20149657 DOI: 10.1016/j.bmcl.2010.01.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/15/2010] [Accepted: 01/16/2010] [Indexed: 01/29/2023]
Abstract
Morphing structural features of HTS-derived chemotypes led to the discovery of novel 2-cyano-pyrimidine inhibitors of cathepsin K with good pharmacokinetic profiles, for example, compound 20 showed high catK potency (IC(50)=4nM), >580-fold selectivity over catL and catB, and oral bioavailability in the rat of 52%.
Collapse
Affiliation(s)
- Zoran Rankovic
- Schering-Plough Corporation, Newhouse, Lanarkshire, ML1 5SH Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
1-(2′,4′-dichlorophenyl)-6-methyl-N-cyclohexylamine-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide, a novel CB2 agonist, alleviates neuropathic pain through functional microglial changes in mice. Neurobiol Dis 2010; 37:177-85. [DOI: 10.1016/j.nbd.2009.09.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/18/2009] [Accepted: 09/27/2009] [Indexed: 12/14/2022] Open
|
312
|
Nakagawa T, Kaneko S. Spinal Astrocytes as Therapeutic Targets for Pathological Pain. J Pharmacol Sci 2010; 114:347-53. [DOI: 10.1254/jphs.10r04cp] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
313
|
Lee KM, Jeon SM, Cho HJ. Interleukin-6 induces microglial CX3CR1 expression in the spinal cord after peripheral nerve injury through the activation of p38 MAPK. Eur J Pain 2009; 14:682.e1-12. [PMID: 19959384 DOI: 10.1016/j.ejpain.2009.10.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/26/2009] [Accepted: 10/20/2009] [Indexed: 12/30/2022]
Abstract
Peripheral nerve injury leading to neuropathic pain induces the upregulation of interleukin (IL)-6 and microglial CX3CR1 expression, and activation of p38 mitogen-activated protein kinase (MAPK) in the spinal cord. Here, we investigated whether IL-6 regulates CX3CR1 expression through p38 MAPK activation in the spinal cord in rats with chronic constriction injury (CCI) of the sciatic nerve. Similar temporal changes in the expression of IL-6, phosphorylated p38 MAPK and CX3CR1 were observed following CCI. The increases in CX3CR1 expression, p38 MAPK activation and pain behavior after CCI were suppressed by blocking IL-6 action with a neutralizing antibody, while they were enhanced by supplying exogenous recombinant rat IL-6 (rrIL-6). rrIL-6 also induced increases in spinal CX3CR1 expression, p38 MAPK activation and pain behavior in naive rats without nerve injury. Furthermore, treatment with the p38 MAPK-specific inhibitor, SB203580, suppressed the increase in CX3CR1 expression induced by CCI or rrIL-6 treatment. Finally, blocking CX3CR1 or p38 MAPK activation prevented the development of mechanical allodynia and thermal hyperalgesia induced by CCI or rrIL-6 treatment. These results suggest a new mechanism of neuropathic pain, in which IL-6 induces microglial CX3CR1 expression in the spinal cord through p38 MAPK activation, enhancing the responsiveness of microglia to fractalkine in the spinal cord, thus playing an important role in neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Kyung-Min Lee
- Department of Anatomy, School of Medicine, Kyungpook National University, 2-101 Dongin-Dong, Daegu 700-422, South Korea
| | | | | |
Collapse
|
314
|
Abstract
The nervous system detects and interprets a wide range of thermal and mechanical stimuli, as well as environmental and endogenous chemical irritants. When intense, these stimuli generate acute pain, and in the setting of persistent injury, both peripheral and central nervous system components of the pain transmission pathway exhibit tremendous plasticity, enhancing pain signals and producing hypersensitivity. When plasticity facilitates protective reflexes, it can be beneficial, but when the changes persist, a chronic pain condition may result. Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.
Collapse
Affiliation(s)
- Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
315
|
Proteomic analysis uncovers novel actions of the neurosecretory protein VGF in nociceptive processing. J Neurosci 2009; 29:13377-88. [PMID: 19846725 DOI: 10.1523/jneurosci.1127-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Peripheral tissue injury is associated with changes in protein expression in sensory neurons that may contribute to abnormal nociceptive processing. We used cultured dorsal root ganglion (DRG) neurons as a model of axotomized neurons to investigate early changes in protein expression after nerve injury. Comparing protein levels immediately after DRG dissociation and 24 h later by proteomic differential expression analysis, we found a substantial increase in the levels of the neurotrophin-inducible protein VGF (nonacronymic), a putative neuropeptide precursor. In a rodent model of nerve injury, VGF levels were increased within 24 h in both injured and uninjured DRG neurons, and the increase persisted for at least 7 d. VGF was also upregulated 24 h after hindpaw inflammation. To determine whether peptides derived from proteolytic processing of VGF participate in nociceptive signaling, we examined the spinal effects of AQEE-30 and LQEQ-19, potential proteolytic products shown previously to be bioactive. Each peptide evoked dose-dependent thermal hyperalgesia that required activation of the mitogen-activated protein kinase p38. In addition, LQEQ-19 induced p38 phosphorylation in spinal microglia when injected intrathecally and in the BV-2 microglial cell line when applied in vitro. In summary, our results demonstrate rapid upregulation of VGF in sensory neurons after nerve injury and inflammation and activation of microglial p38 by VGF peptides. Therefore, VGF peptides released from sensory neurons may participate in activation of spinal microglia after peripheral tissue injury.
Collapse
|
316
|
Minocycline may attenuate postherpetic neuralgia. Med Hypotheses 2009; 73:744-5. [DOI: 10.1016/j.mehy.2009.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 04/10/2009] [Accepted: 04/18/2009] [Indexed: 12/19/2022]
|
317
|
Ameriks MK, Axe FU, Bembenek SD, Edwards JP, Gu Y, Karlsson L, Randal M, Sun S, Thurmond RL, Zhu J. Pyrazole-based cathepsin S inhibitors with arylalkynes as P1 binding elements. Bioorg Med Chem Lett 2009; 19:6131-4. [DOI: 10.1016/j.bmcl.2009.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 11/25/2022]
|
318
|
|
319
|
Ameriks MK, Cai H, Edwards JP, Gebauer D, Gleason E, Gu Y, Karlsson L, Nguyen S, Sun S, Thurmond RL, Zhu J. Pyrazole-based arylalkyne cathepsin S inhibitors. Part II: Optimization of cellular potency. Bioorg Med Chem Lett 2009; 19:6135-9. [DOI: 10.1016/j.bmcl.2009.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 11/29/2022]
|
320
|
|
321
|
Herbst KL, Coviello AD, Chang A, Boyle DL. Lipomatosis-associated inflammation and excess collagen may contribute to lower relative resting energy expenditure in women with adiposis dolorosa. Int J Obes (Lond) 2009; 33:1031-8. [PMID: 19621017 PMCID: PMC3964847 DOI: 10.1038/ijo.2009.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Adiposis dolorosa (AD) is a syndrome of obese and non-obese individuals whose hallmark is lipomatosis: unencapsulated painful fatty masses in subcutaneous fat. Lipomatosis may contain excess collagen and multi-nucleated giant (MNG) cells. Case reports suggest metabolic defects in AD. OBJECTIVES (1) To determine whether women with AD have altered relative resting energy expenditure (REE per total body mass) compared with controls; and (2) to quantitate lipomatosis-associated collagen, MNGs and tissue and blood cytokines that may influence REE. METHODS A total of 10 women with AD were compared with age, body mass index, fat and weight-matched control women. Adipose tissue was obtained from five women with AD and five controls and evaluated for collagen and macrophages/MNGs. Fat mass and fat-free mass were identified by dual X-ray absorptiometry. REE was by determined indirect calorimetry and related to mass. Adipokines and cytokines were evaluated in blood and tissue. RESULTS Relative REE (REE per total body mass) was lower in women with AD compared with controls (P=0.007). Only lipomatosis (group) and total body mass were significant predictors of REE in forward stepwise regression (P<0.0001). Adipose interleukin (IL)-6 levels were elevated (P=0.03) and connective tissue was increased fourfold in lipomatosis compared with control tissue (P <0.0001). There was no difference in adipose tissue macrophages between groups; 30% of women with AD had MNG cells. Anti-inflammatory IL-13 levels were elevated (P=0.03), and cytokines important in the recruitment of monocytes, Fraktalkine (P=0.04) and macrophage inflammatory protein-1beta (P=0.009), were significantly lower in the blood of women with AD compared with controls. CONCLUSIONS The lower relative REE in women with AD compared with controls was associated with increased connective (non-metabolic) tissue in the lipomatosis, and inflammation, although underlying metabolic defects may be important as well. Understanding the pathophysiology and metabolism of lipomatosis in AD may contribute to a better understanding of metabolism in non-lipomatosis obesity.
Collapse
Affiliation(s)
- K L Herbst
- Department of Medicine, University of California San Diego, San Diego, CA, USA.
| | | | | | | |
Collapse
|
322
|
Rapid isolation and culture of primary microglia from adult mouse spinal cord. J Neurosci Methods 2009; 183:223-37. [PMID: 19596375 DOI: 10.1016/j.jneumeth.2009.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 12/13/2022]
Abstract
Microglia are important in homeostasis and widely considered to have roles in the pathogenesis of conditions such as neuropathic pain and multiple sclerosis. The need to study microglia from the adult spinal cord is essential to further understand the role of these cells in disease pathology. Primary microglia are often prepared from brain tissues obtained from embryonic or perinatal age rodents and the process can take over a week to complete. The protocol in this study provides rapid isolation of microglia from adult spinal cord, allowing immediate availability for experimentation of both ex vivo and in vitro within a few hours. A purity of 99% with little or no neuronal or astrocytic contamination can be achieved. Between 70% and 85% of these adult microglia were in a relatively non-activated state. Functionally, these microglia respond to lipopolysaccharide incubation with increases in both phospho-p38 MAPK and OX42 immunostaining, as well as release of ATP, as compared to un-stimulated microglia. This technique provides a protocol to achieve rapid and efficient extraction of high purity, quiescent and functionally active microglia from adult mouse spinal cord, allowing greater study of adult spinal microglia in physiological and pathophysiological states.
Collapse
|
323
|
Ji RR, Xu ZZ, Wang X, Lo EH. Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol Sci 2009; 30:336-40. [PMID: 19523695 PMCID: PMC2706286 DOI: 10.1016/j.tips.2009.04.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/10/2009] [Accepted: 04/14/2009] [Indexed: 12/13/2022]
Abstract
Neuropathic pain affects millions of people globally and could be a disease on its own right. Current treatments focus on blocking neurotransmission and have resulted in limited success. Recent progress points to an important role of neuroinflammation in the pathogenesis of neuropathic pain. Matrix metalloproteases (MMPs) comprise a large family of zinc endopeptidases that have been implicated in the generation of neuroinflammation via cleavage of extracellular matrix proteins and activation of proinflammatory cytokines and chemokines. However, little is known about the role of MMPs in chronic pain regulation. Our recent study has shown that neuropathic pain development in the early and late phase requires MMP-9 and MMP-2, respectively. Inhibition of MMP-9 or MMP-2 might provide a new strategy for the prevention and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
324
|
Clark AK, Yip PK, Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J Neurosci 2009; 29:6945-54. [PMID: 19474321 PMCID: PMC2698289 DOI: 10.1523/jneurosci.0828-09.2009] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/24/2009] [Accepted: 04/28/2009] [Indexed: 12/30/2022] Open
Abstract
Understanding of the sequence and nature of the events that govern neuron-microglia communication is critical for the discovery of new mechanisms and targets for chronic pain treatment. The neuronal chemokine fractalkine (FKN) and its microglial receptor CX3CR1 may mediate such a function in the dorsal horn of the spinal cord after cleavage of the extracellular domain of this transmembrane chemokine by a protease. Here we report that in neuropathic rat dorsal horn, with dorsal root-attached preparations, soluble FKN (sFKN) contents are increased in the superfusates collected after noxious-like electrical stimulation of ipsilateral primary afferent fibers. The increase of sFKN is prevented by morpholinurea-leucine-homophenylalanine-vinyl sulfone-phenyl (LHVS), an irreversible inhibitor of cathepsin S (CatS) whose proteolytic activity is also increased in the superfusates. The source of CatS activity is microglial cells activated by the peripheral nerve injury and secreting the enzyme, as a result of primary afferent fiber stimulation. Indeed, the acute activation of dorsal horn microglia by lipopolysaccharide results in increased CatS activity in the superfusates, followed by increased sFKN contents. Consistent with these observations ex vivo, the levels of both sFKN and CatS activity in CSF samples increased significantly after peripheral nerve injury, associated with spinal microglial activation. Finally, because we found that both FKN immunoreactivity and mRNA are confined to dorsal horn neurons, we suggest that under neuropathic conditions, noxious stimulation of primary afferent fibers induces release of CatS from microglia, which liberates FKN from dorsal horn neurons, thereby contributing to the amplification and maintenance of chronic pain.
Collapse
Affiliation(s)
- Anna K Clark
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom.
| | | | | |
Collapse
|
325
|
Expression of ADAM-17, TIMP-3 and fractalkine in the human adult brain endothelial cell line, hCMEC/D3, following pro-inflammatory cytokine treatment. J Neuroimmunol 2009; 210:108-12. [DOI: 10.1016/j.jneuroim.2009.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/03/2009] [Accepted: 02/13/2009] [Indexed: 12/15/2022]
|
326
|
Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA. Chemokines and pain mechanisms. BRAIN RESEARCH REVIEWS 2009; 60:125-34. [PMID: 19146875 PMCID: PMC2691997 DOI: 10.1016/j.brainresrev.2008.12.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 11/15/2022]
Abstract
The development of new therapeutic approaches to the treatment of painful neuropathies requires a better understanding of the mechanisms that underlie the development of these chronic pain syndromes. It is now well established that astrocytic and microglial cells modulate the neuronal mechanisms of chronic pain in spinal cord and possibly in the brain. In animal models of neuropathic pain following peripheral nerve injury, several changes occur at the level of the first pain synapse between the central terminals of sensory neurons and second order neurons. These neuronal mechanisms can be modulated by pro-nociceptive mediators released by non neuronal cells such as microglia and astrocytes which become activated in the spinal cord following PNS injury. However, the signals that mediate the spread of nociceptive signaling from neurons to glial cells in the dorsal horn remain to be established. Herein we provide evidence for two emerging signaling pathways between injured sensory neurons and spinal microglia: chemotactic cytokine ligand 2 (CCL2)/CCR2 and cathepsin S/CX3CL1 (fractalkine)/CX3CR1. We discuss the plasticity of these two chemokine systems at the level of the dorsal root ganglia and spinal cord demonstrating that modulation of chemokines using selective antagonists decrease nociceptive behavior in rodent chronic pain models. Since up-regulation of chemokines and their receptors may be a mechanism that directly and/or indirectly contributes to the development and maintenance of chronic pain, these molecular molecules may represent novel targets for therapeutic intervention in sustained pain states.
Collapse
Affiliation(s)
- Catherine Abbadie
- Department of Immunology, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | |
Collapse
|
327
|
Abstract
Emotional-affective and cognitive dimensions of pain are less well understood than nociceptive and nocifensive components, but the forebrain is believed to play an important role. Recent evidence suggests that subcortical and cortical brain areas outside the traditional pain processing network contribute critically to emotional-affective responses and cognitive deficits related to pain. These brain areas include different nuclei of the amygdala and certain prefrontal cortical areas. Their roles in various aspects of pain will be discussed. Biomarkers of cortical dysfunction are being identified that may evolve into therapeutic targets to modulate pain experience and improve pain-related cognitive impairment. Supporting data from preclinical studies in neuropathic pain models will be presented. Neuroimaging analysis provides evidence for plastic changes in the pain processing brain network. Results of clinical studies in neuropathic pain patients suggest that neuroimaging may help determine mechanisms of altered brain functions in pain as well as monitor the effects of pharmacologic interventions to optimize treatment in individual patients. Recent progress in the analysis of higher brain functions emphasizes the concept of pain as a multidimensional experience and the need for integrative approaches to determine the full spectrum of harmful or protective neurobiological changes in pain.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1069, USA.
| | | | | | | |
Collapse
|
328
|
Abstract
Mitogen-activated protein kinases (MAPKs) are important for intracellular signal transduction and play critical roles in regulating neural plasticity and inflammatory responses. The MAPK family consists of three major members: extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK), which represent three separate signaling pathways. Accumulating evidence shows that all three MAPK pathways contribute to pain sensitization after tissue and nerve injury via distinct molecular and cellular mechanisms. Activation (phosphorylation) of MAPKs under different persistent pain conditions results in the induction and maintenance of pain hypersensitivity via non-transcriptional and transcriptional regulation. In particular, ERK activation in spinal cord dorsal horn neurons by nociceptive activity, via multiple neurotransmitter receptors, and using different second messenger pathways plays a critical role in central sensitization by regulating the activity of glutamate receptors and potassium channels and inducing gene transcription. ERK activation in amygdala neurons is also required for inflammatory pain sensitization. After nerve injury, ERK, p38, and JNK are differentially activated in spinal glial cells (microglia vs astrocytes), leading to the synthesis of proinflammatory/pronociceptive mediators, thereby enhancing and prolonging pain. Inhibition of all three MAPK pathways has been shown to attenuate inflammatory and neuropathic pain in different animal models. Development of specific inhibitors for MAPK pathways to target neurons and glial cells may lead to new therapies for pain management. Although it is well documented that MAPK pathways can increase pain sensitivity via peripheral mechanisms, this review will focus on central mechanisms of MAPKs, especially ERK.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, MRB 604, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
329
|
Crucial role of CB(2) cannabinoid receptor in the regulation of central immune responses during neuropathic pain. J Neurosci 2009; 28:12125-35. [PMID: 19005077 DOI: 10.1523/jneurosci.3400-08.2008] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neuropathic pain is a clinical manifestation of nerve injury difficult to treat even with potent analgesic compounds. Here, we used different lines of genetically modified mice to clarify the role played by CB(2) cannabinoid receptors in the regulation of the central immune responses leading to the development of neuropathic pain. CB(2) knock-out mice and wild-type littermates were exposed to sciatic nerve injury, and both genotypes developed a similar hyperalgesia and allodynia in the ipsilateral paw. Most strikingly, knock-outs also developed a contralateral mirror image pain, associated with an enhanced microglial and astrocytic expression in the contralateral spinal horn. In agreement, hyperalgesia, allodynia, and microglial and astrocytic activation induced by sciatic nerve injury were attenuated in transgenic mice overexpressing CB(2) receptors. These results demonstrate the crucial role of CB(2) cannabinoid receptor in modulating glial activation in response to nerve injury. The enhanced manifestations of neuropathic pain were replicated in irradiated wild-type mice reconstituted with bone marrow cells from CB(2) knock-outs, thus demonstrating the implication of the CB(2) receptor expressed in hematopoietic cells in the development of neuropathic pain at the spinal cord.
Collapse
|
330
|
Interferon-gamma is a critical modulator of CB(2) cannabinoid receptor signaling during neuropathic pain. J Neurosci 2009; 28:12136-45. [PMID: 19005078 DOI: 10.1523/jneurosci.3402-08.2008] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nerve injuries often lead to neuropathic pain syndrome. The mechanisms contributing to this syndrome involve local inflammatory responses, activation of glia cells, and changes in the plasticity of neuronal nociceptive pathways. Cannabinoid CB(2) receptors contribute to the local containment of neuropathic pain by modulating glial activation in response to nerve injury. Thus, neuropathic pain spreads in mice lacking CB(2) receptors beyond the site of nerve injury. To further investigate the mechanisms leading to the enhanced manifestation of neuropathic pain, we have established expression profiles of spinal cord tissues from wild-type and CB(2)-deficient mice after nerve injury. An enhanced interferon-gamma (IFN-gamma) response was revealed in the absence of CB(2) signaling. Immunofluorescence stainings demonstrated an IFN-gamma production by astrocytes and neurons ispilateral to the nerve injury in wild-type animals. In contrast, CB(2)-deficient mice showed neuronal and astrocytic IFN-gamma immunoreactivity also in the contralateral region, thus matching the pattern of nociceptive hypersensitivity in these animals. Experiments in BV-2 microglia cells revealed that transcriptional changes induced by IFN-gamma in two key elements for neuropathic pain development, iNOS (inducible nitric oxide synthase) and CCR2, are modulated by CB(2) receptor signaling. The most direct support for a functional involvement of IFN-gamma as a mediator of CB(2) signaling was obtained with a double knock-out mouse strain deficient in CB(2) receptors and IFN-gamma. These animals no longer show the enhanced manifestations of neuropathic pain observed in CB(2) knock-outs. These data clearly demonstrate that the CB(2) receptor-mediated control of neuropathic pain is IFN-gamma dependent.
Collapse
|
331
|
Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J Neurosci 2009; 28:12775-87. [PMID: 19036970 DOI: 10.1523/jneurosci.3512-08.2008] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Interleukin (IL)-18 is an important regulator of innate and acquired immune responses. Here we show that both the IL-18 and IL-18 receptor (IL-18R), which are induced in spinal dorsal horn, are crucial for tactile allodynia after nerve injury. Nerve injury induced a striking increase in IL-18 and IL-18R expression in the dorsal horn, and IL-18 and IL-18R were upregulated in hyperactive microglia and astrocytes, respectively. The functional inhibition of IL-18 signaling pathways suppressed injury-induced tactile allodynia and decreased the phosphorylation of nuclear factor kappaB in spinal astrocytes and the induction of astroglial markers. Conversely, intrathecal injection of IL-18 induced behavioral, morphological, and biochemical changes similar to those observed after nerve injury. Our results indicate that IL-18-mediated microglia/astrocyte interactions in the spinal cord have a substantial role in the generation of tactile allodynia. Thus, blocking IL-18 signaling in glial cells might provide a fruitful strategy for treating neuropathic pain.
Collapse
|
332
|
Analgesic and antiinflammatory effects of cannabinoid receptor agonists in a rat model of neuropathic pain. Naunyn Schmiedebergs Arch Pharmacol 2009; 379:627-36. [DOI: 10.1007/s00210-008-0386-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 12/15/2008] [Indexed: 02/07/2023]
|
333
|
Abstract
The prevalence of people suffering from chronic pain is extremely high and pain affects millions of people worldwide. As such, persistent pain represents a major health problem and an unmet clinical need. The reason for the high incidence of chronic pain patients is in a large part due to a paucity of effective pain control. An important reason for poor pain control is undoubtedly a deficit in our understanding of the underlying causes of chronic pain and as a consequence our arsenal of analgesic therapies is limited. However, there is considerable hope for the development of new classes of analgesic drugs by targeting novel processes contributing to clinically relevant pain. In this chapter we highlight a number of molecular species which are potential therapeutic targets for future neuropathic pain treatments. In particular, the roles of voltage-gated ion channels, neuroinflammation, protein kinases and neurotrophins are discussed in relation to the generation of neuropathic pain and how by targeting these molecules it may be possible to provide better pain control than is currently available.
Collapse
Affiliation(s)
- Fabien Marchand
- King's College London, London, Neurorestoration, CARD Wolfson Wing, Hodgkin Building, Guy's Campus, London Bridge, London, SE1 1UL, UK
| | | | | |
Collapse
|
334
|
Abstract
Pain normally subserves a vital role in the survival of the organism, prompting the avoidance of situations associated with tissue damage. However, the sensation of pain can become dissociated from its normal physiological role. In conditions of neuropathic pain, spontaneous or hypersensitive pain behavior occurs in the absence of the appropriate stimuli. Our incomplete understanding of the mechanisms underlying chronic pain hypersensitivity accounts for the general ineffectiveness of currently available options for the treatment of chronic pain syndromes. Despite its complex pathophysiological nature, it is clear that neuropathic pain is associated with short- and long-term changes in the excitability of sensory neurons in the dorsal root ganglia (DRG) as well as their central connections. Recent evidence suggests that the upregulated expression of inflammatory cytokines in association with tissue damage or infection triggers the observed hyperexcitability of pain sensory neurons. The actions of inflammatory cytokines synthesized by DRG neurons and associated glial cells, as well as by astrocytes and microglia in the spinal cord, can produce changes in the excitability of nociceptive sensory neurons. These changes include rapid alterations in the properties of ion channels expressed by these neurons, as well as longer-term changes resulting from new gene transcription. In this chapter we review the diverse changes produced by inflammatory cytokines in the behavior of sensory neurons in the context of chronic pain syndromes.
Collapse
Affiliation(s)
- Richard J Miller
- Molecular Pharmacology and Structural Biochemistry, Northwestern University, Chicago, IL, USA.
| | | | | | | |
Collapse
|
335
|
Abstract
Glia have emerged as key contributors to pathological and chronic pain mechanisms. On activation, both astrocytes and microglia respond to and release a number of signalling molecules, which have protective and/or pathological functions. Here we review the current understanding of the contribution of glia to pathological pain and neuroprotection, and how the protective, anti-inflammatory actions of glia are being harnessed to develop new drug targets for neuropathic pain control. Given the prevalence of chronic pain and the partial efficacy of current drugs, which exclusively target neuronal mechanisms, new strategies to manipulate neuron-glia interactions in pain processing hold considerable promise.
Collapse
Affiliation(s)
- Erin D Milligan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA.
| | | |
Collapse
|
336
|
Padi SS, Kulkarni SK. Minocycline prevents the development of neuropathic pain, but not acute pain: Possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol 2008; 601:79-87. [DOI: 10.1016/j.ejphar.2008.10.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 09/28/2008] [Accepted: 10/10/2008] [Indexed: 01/05/2023]
|
337
|
Maeda T, Kiguchi N, Kobayashi Y, Ozaki M, Kishioka S. Pioglitazone attenuates tactile allodynia and thermal hyperalgesia in mice subjected to peripheral nerve injury. J Pharmacol Sci 2008; 108:341-7. [PMID: 19008646 DOI: 10.1254/jphs.08207fp] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To clarify the role of peroxisome proliferator activated receptor gamma (PPARgamma) in neuropathic pain, we examined the effect of pioglitazone, a PPARgamma agonist, on tactile allodynia and thermal hyperalgesia in a neuropathic pain model. Mice were subjected to partial sciatic nerve ligation (PSL) and given pioglitazone (1 - 25 mg/kg, p.o.) once daily. PPARgamma was distributed in the neurons of the dorsal root ganglion and the dorsal horn of the spinal cord and in the adipocytes at the epineurium of the sciatic nerve in naive mice. PSL elicited tactile allodynia and thermal hyperalgesia for two weeks. Administration of pioglitazone for the first week after PSL attenuated thermal hyperalgesia and tactile allodynia, which was dose-dependent and blocked by GW9662 (2 mg/kg, i.p.), a PPARgamma antagonist. Administration of pioglitazone for the second week also relieved tactile allodynia, but administration one week before PSL had no effect. A single administration of pioglitazone to mice on day 7 of PSL did not alter tactile allodynia and thermal hyperalgesia. PSL-induced upregulation of tumor necrosis factor-alpha and interleukin-6, which are essential for neuropathic pain, was suppressed by pioglitazone for the first week. This suggests that pioglitazone alleviates neuropathic pain through attenuation of proinflammatory cytokine upregulation by PPARgamma stimulation.
Collapse
Affiliation(s)
- Takehiko Maeda
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan.
| | | | | | | | | |
Collapse
|
338
|
Miller RJ, Rostene W, Apartis E, Banisadr G, Biber K, Milligan ED, White FA, Zhang J. Chemokine action in the nervous system. J Neurosci 2008; 28:11792-5. [PMID: 19005041 PMCID: PMC2746239 DOI: 10.1523/jneurosci.3588-08.2008] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 11/21/2022] Open
Affiliation(s)
- Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Abstract
STUDY DESIGN DNA array analysis of dorsal root ganglion (DRG) using a rat model with nerve root constriction. OBJECTIVE To determine the molecular changes in the DRG adjacent to the injured nerve root in a lumbar radiculopathy model. SUMMARY OF BACKGROUND DATA DNA array analysis in lumbar radiculopathy model has so far focused on the spinal dorsal horn. The molecular changes in the DRG adjacent to the injured nerve root in lumbar radiculopathy remain to be determined. METHODS Bilateral L5 DRGs were removed from 12 Sprague-Dawley rats on days 2, 7, 14, and 21 after nerve root ligation and on day 7 from 3 rats with sham operation. The aRNAs from the DRGs with nerve root ligation were labeled with Cy5 dye and those from the opposite side DRG (control) were labeled with Cy3 dye, and then hybridized to a 7793-spot Panorama Micro Array. It was considered to be significantly upregulated, when an average expression ratio of Cy5 to Cy3 was 2 or more. Genes upregulated were classified into early phase group (upregulated on day 2), midphase group (upregulated on days 7 and 14), and continuous group (upregulated from day 2 to 21). Seventeen genes were subjected to validation analysis with real-time quantitative PCR. RESULTS There were 16 upregulated genes in the early phase group, 56 genes in the midphase group, and 17 genes in the continuous group. Functional categorization revealed dominantly upregulated gene categories in each group; transcription/translation in the early phase group, enzyme/metabolism in the midphase group, and structure in the continuous group. Validation analysis of 17 genes demonstrated mean relative expression of 2.0 or more in all but 1 gene in the DRGs with nerve root ligation and none of them in the DRGs with sham operation. CONCLUSION The genes identified in this study, especially those involved in pain signaling and inflammation, serve as potential targets for molecular-based therapy for lumbar radiculopathy.
Collapse
|
340
|
Hutchinson MR, Coats BD, Lewis SS, Zhang Y, Sprunger DB, Rezvani N, Baker EM, Jekich BM, Wieseler JL, Somogyi AA, Martin D, Poole S, Judd CM, Maier SF, Watkins LR. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun 2008; 22:1178-89. [PMID: 18599265 PMCID: PMC2783238 DOI: 10.1016/j.bbi.2008.05.004] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 01/21/2023] Open
Abstract
Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring < or =5 min after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia.
Collapse
Affiliation(s)
- Mark R. Hutchinson
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia, 5005
| | - Benjamen D. Coats
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Susannah S. Lewis
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Yingning Zhang
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - David B. Sprunger
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Niloofar Rezvani
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Eric M. Baker
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Brian M. Jekich
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Julie L. Wieseler
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Andrew A. Somogyi
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia, 5005
| | - David Martin
- Department of Pharmacology, Amgen, Thousand Oaks, California, USA, 91320
| | - Stephen Poole
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK
| | - Charles M. Judd
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Steven F. Maier
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Linda R. Watkins
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| |
Collapse
|
341
|
Current World Literature. Curr Opin Anaesthesiol 2008; 21:684-93. [DOI: 10.1097/aco.0b013e328312c01b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
342
|
Overcoming hERG issues for brain-penetrating cathepsin S inhibitors: 2-Cyanopyrimidines. Part 2. Bioorg Med Chem Lett 2008; 18:5280-4. [DOI: 10.1016/j.bmcl.2008.08.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/15/2008] [Accepted: 08/16/2008] [Indexed: 02/08/2023]
|
343
|
Abstract
PURPOSE OF REVIEW Recent studies show that peripheral injury activates both neuronal and nonneuronal or glial components of the peripheral and central cellular circuitry. The subsequent neuron-glia interactions contribute to pain hypersensitivity. This review will briefly discuss novel findings that have shed light on the cellular mechanisms of neuron-glia interactions in persistent pain. RECENT FINDINGS Two fundamental questions related to neuron-glia interactions in pain mechanisms have been addressed: what are the signals that lead to central glial activation after injury and how do glial cells affect central nervous system neuronal activity and promote hyperalgesia? SUMMARY Evidence indicates that central glial activation depends on nerve inputs from the site of injury and release of chemical mediators. Hematogenous immune cells may migrate to/infiltrate the brain and circulating inflammatory mediators may penetrate the blood-brain barrier to participate in central glial responses to injury. Inflammatory cytokines such as interleukin-1beta released from glia may facilitate pain transmission through its coupling to neuronal glutamate receptors. This bidirectional neuron-glia signaling plays a key role in glial activation, cytokine production and the initiation and maintenance of hyperalgesia. Recognition of the contribution of the mutual neuron-glia interactions to central sensitization and hyperalgesia prompts new treatment for chronic pain.
Collapse
Affiliation(s)
- Ke Ren
- Department of Neural and Pain Sciences, Dental School and Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201-1586, USA
| | | |
Collapse
|
344
|
Proteolysis of prion protein by cathepsin S generates a soluble β-structured intermediate oligomeric form, with potential implications for neurotoxic mechanisms. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:209-18. [DOI: 10.1007/s00249-008-0371-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
|
345
|
Staniland AA, McMahon SB. Mice lacking acid-sensing ion channels (ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test. Eur J Pain 2008; 13:554-63. [PMID: 18801682 DOI: 10.1016/j.ejpain.2008.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/21/2008] [Accepted: 07/13/2008] [Indexed: 11/30/2022]
Abstract
Extracellular acidification is a component of the inflammatory process and may be a factor driving the pain accompanying it. Acid-sensing ion channels (ASICs) are neuronal proton sensors and evidence suggests they are involved in signalling inflammatory pain. The aims of this study were to (1) clarify the role of ASICs in nociception and (2) confirm their involvement in inflammatory pain and determine whether this was subunit specific. This was achieved by (1) direct comparison of the sensitivity of ASIC1, ASIC2, ASIC3 and TRPV1 knockout mice versus wildtype littermates to acute thermal and mechanical noxious stimuli and (2) studying the behavioural responses of each transgenic strain to hind paw inflammation with either complete Freund's adjuvant (CFA) or formalin. Naïve ASIC1(-/-) and ASIC2(-/-) mice responded normally to acute noxious stimuli, whereas ASIC3(-/-) mice were hypersensitive to high intensity thermal stimuli. CFA injection decreased mechanical and thermal withdrawal thresholds for up to 8 days. ASIC2(-/-) mice had increased mechanical sensitivity on day 1 post-CFA compared to wildtype controls. TRPV1(-/-) mice had significantly reduced thermal, but not mechanical, hyperalgesia on all days after inflammation. Following formalin injection, ASIC1(-/-) and ASIC2(-/-), but not ASIC3(-/-) or TRPV1(-/-), mice showed enhanced pain behaviour, predominantly in the second phase of the test. These data suggest that whilst ASICs may play a role in mediating inflammatory pain, this role is likely to be modulatory and strongly dependent on channel subtype.
Collapse
Affiliation(s)
- Amelia A Staniland
- London Pain Consortium, Wolfson CARD, King's College London, Guy's Campus, London, UK
| | | |
Collapse
|
346
|
A 2A adenosine receptor regulates glia proliferation and pain after peripheral nerve injury. Pain 2008; 140:95-103. [PMID: 18768260 DOI: 10.1016/j.pain.2008.07.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 07/02/2008] [Accepted: 07/14/2008] [Indexed: 02/06/2023]
Abstract
Peripheral nerve injury produces a persistent neuropathic pain state characterized by spontaneous pain, allodynia and hyperalgesia. In this study, we evaluated the possible involvement of A 2ARs in the development of neuropathic pain and the expression of microglia and astrocytes in the spinal cord after sciatic nerve injury. For this purpose, partial ligation of the sciatic nerve was performed in A 2A knockout mice and wild-type littermates. The development of mechanical and thermal allodynia, as well as thermal hyperalgesia was evaluated by using the von Frey filament model, the cold-plate test and the plantar test, respectively. In wild-type animals, sciatic nerve injury led to a neuropathic pain syndrome that was revealed in these three nociceptive behavioural tests. However, a significant decrease of the mechanical allodynia and a suppression of thermal hyperalgesia and allodynia were observed in A 2AR deficient mice. The expression of microglia and astrocytes was enhanced in wild-type mice exposed to sciatic nerve injury and this response was attenuated in knockout animals. Taken together, our results demonstrate the involvement of A 2ARs in the control of neuropathic pain and propose this receptor as an interesting target for the development of new drugs for the management of this clinical syndrome.
Collapse
|
347
|
Irie O, Kosaka T, Ehara T, Yokokawa F, Kanazawa T, Hirao H, Iwasaki A, Sakaki J, Teno N, Hitomi Y, Iwasaki G, Fukaya H, Nonomura K, Tanabe K, Koizumi S, Uchiyama N, Bevan SJ, Malcangio M, Gentry C, Fox AJ, Yaqoob M, Culshaw AJ, Hallett A. Discovery of Orally Bioavailable Cathepsin S Inhibitors for the Reversal of Neuropathic Pain. J Med Chem 2008; 51:5502-5. [DOI: 10.1021/jm800839j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Osamu Irie
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Takatoshi Kosaka
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Takeru Ehara
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Fumiaki Yokokawa
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Takanori Kanazawa
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Hajime Hirao
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Astuko Iwasaki
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Junichi Sakaki
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Naoki Teno
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Yuko Hitomi
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Genji Iwasaki
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Hiroaki Fukaya
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Kazuhiko Nonomura
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Keiko Tanabe
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Shinichi Koizumi
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Noriko Uchiyama
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Stuart J. Bevan
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Marzia Malcangio
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Clive Gentry
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Alyson J. Fox
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Mohammed Yaqoob
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Andrew J. Culshaw
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| | - Allan Hallett
- Novartis Institutes for BioMedical Research, Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan, 5 Gower Place, London WC1E 6BS, United Kingdom
| |
Collapse
|
348
|
Leichsenring A, Bäcker I, Wendt W, Andriske M, Schmitz B, Stichel CC, Lübbert H. Differential expression of Cathepsin S and X in the spinal cord of a rat neuropathic pain model. BMC Neurosci 2008; 9:80. [PMID: 18700000 PMCID: PMC2527007 DOI: 10.1186/1471-2202-9-80] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 08/12/2008] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ample evidence suggests a substantial contribution of cellular and molecular changes in the spinal cord to the induction and persistence of chronic neuropathic pain conditions. While for a long time, proteases were mainly considered as protein degrading enzymes, they are now receiving growing interest as signalling molecules in the pain pathology. In the present study we focused on two cathepsins, CATS and CATX, and studied their spatiotemporal expression and activity during the development and progression of neuropathic pain in the CNS of the rat 5th lumbar spinal nerve transection model (L5T). RESULTS Immediately after the lesion, both cathepsins, CATS and CATX, were upregulated in the spinal cord. Moreover, we succeeded in measuring the activity of CATX, which was substantially increased after L5T. The differential expression of these proteins exhibited the same spatial distribution and temporal progression in the spinal cord, progressing up to the medulla oblongata in the late phase of chronic pain. The cellular distribution of CATS and CATX was, however, considerably different. CONCLUSION The cellular distribution and the spatio-temporal development of the altered expression of CATS and CATX suggest that these proteins are important players in the spinal mechanisms involved in chronic pain induction and maintenance.
Collapse
Affiliation(s)
- Anna Leichsenring
- Department of Animal Physiology, Ruhr-University of Bochum, Bochum, Germany
| | - Ingo Bäcker
- Department of Animal Physiology, Ruhr-University of Bochum, Bochum, Germany
| | - Wiebke Wendt
- Biofrontera Bioscience GmbH, Leverkusen, Germany
| | - Michael Andriske
- Department of Animal Physiology, Ruhr-University of Bochum, Bochum, Germany
| | | | | | - Hermann Lübbert
- Department of Animal Physiology, Ruhr-University of Bochum, Bochum, Germany
- Biofrontera Bioscience GmbH, Leverkusen, Germany
| |
Collapse
|
349
|
Irie O, Yokokawa F, Ehara T, Iwasaki A, Iwaki Y, Hitomi Y, Konishi K, Kishida M, Toyao A, Masuya K, Gunji H, Sakaki J, Iwasaki G, Hirao H, Kanazawa T, Tanabe K, Kosaka T, Hart TW, Hallett A. 4-Amino-2-cyanopyrimidines: Novel scaffold for nonpeptidic cathepsin S inhibitors. Bioorg Med Chem Lett 2008; 18:4642-6. [DOI: 10.1016/j.bmcl.2008.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/01/2008] [Accepted: 07/05/2008] [Indexed: 11/17/2022]
|
350
|
Katsura H, Obata K, Miyoshi K, Kondo T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Sakagami M, Noguchi K. Transforming growth factor-activated kinase 1 induced in spinal astrocytes contributes to mechanical hypersensitivity after nerve injury. Glia 2008; 56:723-33. [PMID: 18293403 DOI: 10.1002/glia.20648] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitogen-activated protein kinase (MAPK) plays an important role in the induction and maintenance of neuropathic pain. Transforming growth factor-activated kinase 1 (TAK1), a member of the MAPK kinase kinase family, is indispensable for the activation of c-Jun N-terminal kinase (JNK) and p38 MAPK. We now show that TAK1 induced in spinal cord astrocytes is crucial for mechanical hypersensitivity after peripheral nerve injury. Nerve injury induced a striking increase in the expression of TAK1 in the ipsilateral dorsal horn, and TAK1 was increased in hyperactive astrocytes, but not in neurons or microglia. Intrathecal administration of TAK1 antisense oligodeoxynucleotide (AS-ODN) prevented and reversed nerve injury-induced mechanical, but not heat hypersensitivity. Furthermore, TAK1 AS-ODN suppressed the activation of JNK1, but not p38 MAPK, in spinal astrocytes. In contrast, there was no change in TAK1 expression in primary sensory neurons, and TAK1 AS-ODN did not attenuate the induction of transient receptor potential ion channel TRPV1 in sensory neurons. Taken together, these results demonstrate that TAK1 upregulation in spinal astrocytes has a substantial role in the development and maintenance of mechanical hypersensitivity through the JNK1 pathway. Thus, preventing the TAK1/JNK1 signaling cascade in astrocytes might provide a fruitful strategy for treating intractable neuropathic pain.
Collapse
Affiliation(s)
- Hirokazu Katsura
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|