301
|
Mercorio R, Bonzini M, Angelici L, Iodice S, Delbue S, Mariani J, Apostoli P, Pesatori AC, Bollati V. Effects of metal-rich particulate matter exposure on exogenous and endogenous viral sequence methylation in healthy steel-workers. ENVIRONMENTAL RESEARCH 2017; 159:452-457. [PMID: 28858759 DOI: 10.1016/j.envres.2017.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Inhaled particles have been shown to produce systemic changes in DNA methylation. Global hypomethylation has been associated to viral sequence reactivation, possibly linked to the activation of pro-inflammatory pathways occurring after exposure. This observation provides a rationale to investigate viral sequence (both exogenous and endogenous) methylation in association to metal-rich particulate matter exposure. To verify this hypothesis, we chose the Wp promoter of the Epstein-Barr Virus (EBV-Wp) and the promoter of the human-endogenous-retrovirus w (HERV-w), respectively as a paradigm of an exogenous and an endogenous retroviral sequence, to be investigated by bisulfite PCR Pyrosequencing. We enrolled 63 male workers in an electric furnace steel plant, exposed to high level of metal-rich particulate matter. RESULTS Comparing samples obtained in the first day of a work week (time 0-baseline, after 2 days off work) and the samples obtained after 3 days of work (time 1-post exposure), the mean methylation of EBV-Wp was significantly higher at baseline compared to post-exposure (meanbaseline = 56.7%5mC; meanpost-exposure = 47.9%5mC; p-value = 0.009), whereas the mean methylation of HERV-w did not significantly differ. Individual exposure to inhalable particles and metals was estimated based on measures in all working areas and time spent by the study subjects in each area. In a regression model adjusted for age, body mass index and smoking, PM and metal components had a positive association with EBV-Wp methylation (i.e. PM10: β = 5.99, p-value < 0.038; nickel: β = 17.82, p-value = 0.02; arsenic: β = 13.59, p-value < 0.015). CONCLUSIONS The difference observed comparing baseline and post-exposure samples may be suggestive of a rapid change in EBV methylation induced by air particles, while correlation between EBV methylation and PM/metal exposure may represent a more stable adaptive mechanism. Future studies investigating a larger panel of viral sequences could better elucidate possible mechanisms and their role in pro-inflammatory pathways leading to systemic health effects.
Collapse
Affiliation(s)
- Roberta Mercorio
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Angelici
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy
| | - Simona Iodice
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36-20133 Milan, Italy
| | - Jacopo Mariani
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy
| | - Pietro Apostoli
- Occupational Medicine and Industrial Hygiene, University of Brescia, Department of Experimental and Applied Medicine, Brescia, Italy
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122 Milan, Italy.
| |
Collapse
|
302
|
Patel S. A critical review on serine protease: Key immune manipulator and pathology mediator. Allergol Immunopathol (Madr) 2017; 45:579-591. [PMID: 28236540 PMCID: PMC7126602 DOI: 10.1016/j.aller.2016.10.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Proteolytic activity is fundamental to survival, so it is not surprising that all living organisms have proteases, especially seine protease. This enzyme in its numerous isoforms and homologues, constitutes the quintessential offence and defence factors, in the form of surface proteins, secreted molecules, gut digestive enzymes, venom in specialised glands or plant latex, among other manifestations. Occurring as trypsin, chymotrypsin, elastase, collagenase, thrombin, subtilisin etc., it mediates a diverse array of functions, including pathological roles as inflammatory, coagulatory to haemorrhagic. This review emphasizes that despite the superficial differences in mechanisms, most health issues, be they infectious, allergic, metabolic, or neural have a common conduit. This enzyme, in its various glycosylated forms leads to signal misinterpretations, wreaking havoc. However, organisms are endowed with serine protease inhibitors which might restrain this ubiquitous yet deleterious enzyme. Hence, serine proteases-driven pathogenesis and antagonising role of inhibitors is the focal point of this critical review.
Collapse
|
303
|
Archibong AE, Rideout ML, Harris KJ, Ramesh A. OXIDATIVE STRESS IN REPRODUCTIVE TOXICOLOGY. CURRENT OPINION IN TOXICOLOGY 2017; 7:95-101. [PMID: 30105313 DOI: 10.1016/j.cotox.2017.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxidative stress (OS) has been implicated in the causation of environmentally-induced diseases. However, the role of toxicants in the pathophysiology of disorders and diseases affecting the reproductive system are less understood. This review focuses on some of the mechanisms that underlie OS-induced reproductive toxicity at the cellular- and organ levels (germ cell damage and perturbed organ responses to endocrine stimuli). While most of the reproductive and developmental studies conducted in adult animals and transgenerational adult animals point to the involvement of genotoxicity, the part played by epigenetic alterations is accorded a recent recognition, thus warranting more studies in this area. Additionally, metabolomic, proteomic and transcriptomic approaches need to be employed to advance our understanding of key metabolites formed and the expression of anti-OS genes at the molecular level that are necessary for combating reactive oxygen species formation. The resulting data could be analyzed using bioinformatics tools to identify the pathways linked to disease causation and as a consequence, the adoption of therapeutic strategies, including but not limited to administering phytochemicals (many of which possess antioxidant properties) to improve disease outcomes.
Collapse
Affiliation(s)
| | | | - Kenneth J Harris
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville TN 37208
| | - Aramandla Ramesh
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville TN 37208
| |
Collapse
|
304
|
Air Pollution and the Epigenome: A Model Relationship for the Exploration of Toxicoepigenetics. CURRENT OPINION IN TOXICOLOGY 2017; 6:18-25. [PMID: 33869910 DOI: 10.1016/j.cotox.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The field of toxicoepigenetics is rapidly emerging to provide new insights into the relationship between environmental factors, the epigenome, and public health. Toxicoepigenetic data have the potential to revolutionize our understanding of environmental exposure effects and susceptibility. Studies in recent years have demonstrated that exposure to air pollution alters epigenetic modification states; however, continued advancement of the field is limited by the intrinsic complexity of the epigenome and inherent limitations of different types of studies (epidemiological, clinical, and in vitro) that are used in toxicoepigenetics. Overcoming these challenges will require a concerted and collaborative effort between molecular and cellular biologists, toxicologists, epidemiologists, and risk assessors to develop a thorough and practical understanding of the relationship between air pollution exposure, the epigenome, and health effects. Here we review the current state of air pollution epigenetics and discuss perspectives on the necessary steps to move the field forward to determine the role that the epigenome plays in air pollution exposure effects and susceptibility.
Collapse
|
305
|
Herrera-Solorio AM, Armas-López L, Arrieta O, Zúñiga J, Piña-Sánchez P, Ávila-Moreno F. Histone code and long non-coding RNAs (lncRNAs) aberrations in lung cancer: implications in the therapy response. Clin Epigenetics 2017; 9:98. [PMID: 28904641 PMCID: PMC5591558 DOI: 10.1186/s13148-017-0398-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/29/2017] [Indexed: 01/14/2023] Open
Abstract
Respiratory diseases hold several genome, epigenome, and transcriptional aberrations as a cause of the accumulated damage promoted by, among others, environmental risk factors. Such aberrations can also come about as an adaptive response when faced with therapeutic oncological drugs. In epigenetic terms, aberrations in DNA methylation patterns, histone code marks balance, and/or chromatin-remodeling complexes recruitment, among Polycomb Repressive Complex-2 (PRC2) versus Trithorax (TRX) Activator Complex, have been proposed to be affected by several previously characterized functional long non-coding RNAs (lncRNAs). Such molecules are involved in modulating and/or controlling lung cancer epigenome and genome expression, as well as in malignancy and clinical progression in lung cancer. Several recent reports have described diverse epigenetic modifications in lung cancer cells and solid tumors, among others genomic DNA methylation and post-translational modifications (PTMs) on histone tails, as well as lncRNAs patterns and levels of expression. However, few systematic approaches have attempted to demonstrate a biological function and clinical association, aiming to improve therapeutic decisions in basic research and lung clinical oncology. A widely used example is the lncRNA HOTAIR and its functional histone mark H3K27me3, which is directly associated to the PRC2; however, few systematic pieces of solid evidence have been experimentally performed, conducted and/or validated to predict lung oncological therapeutic efficacy. Recent evidence suggests that chromatin-remodeling complexes accompanied by lncRNAs profiles are involved in several comprehensive lung carcinoma clinical parameters, including histopathology progression, prognosis, and/or responsiveness to unique or combined oncological therapies. The present manuscript offers a systematic revision of the current knowledge about the major epigenetic aberrations represented by changes in histone PTMs and lncRNAs expression levels and patterns in human lung carcinomas in cancer drug-based treatments, as an important comprehensive knowledge focusing on better oncological therapies. In addition, a new future direction must be refocusing on several gene target therapies, mainly on pharmaceutical EGFR-TKIs compounds, widely applied in lung cancer, currently the leading cause of death by malignant diseases.
Collapse
Affiliation(s)
- Abril Marcela Herrera-Solorio
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
| | - Leonel Armas-López
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Joaquín Zúñiga
- Research Unit, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Mexico City, Mexico
| | - Patricia Piña-Sánchez
- Molecular Oncology Laboratory, Unidad de Investigación Médica en Enfermedades Oncológicas (UIMEO), CMN., SXXI., IMSS, Mexico City, Mexico
| | - Federico Ávila-Moreno
- Cancer Epigenomics and Lung Diseases Laboratory-12 (UNAM-INER), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico State, Mexico
- Research Unit, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
306
|
Li J, Li WX, Bai C, Song Y. Particulate matter-induced epigenetic changes and lung cancer. THE CLINICAL RESPIRATORY JOURNAL 2017; 11:539-546. [PMID: 26403658 PMCID: PMC7310573 DOI: 10.1111/crj.12389] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 07/28/2015] [Accepted: 09/24/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Lung cancer is the leading cause of cancer death worldwide. Cigarette smoking is the well-known risk factor for lung cancer. Epidemiological studies suggest that air pollution, especially particulate matter (PM) exposure, is associated with increased lung cancer risk and mortality independent of cigarette smoking. METHODS English-language publications focusing on PM, epigenetic changes, and lung cancer were reviewed. The epigenome serves as an interface between the environment and the genome. PM is one of the environmental factors that can cause epigenetic changes. The epigenome serves as an interface between the environment and the genome. Some of the epigenetic changes lead to increased disease susceptibility and progression. In cardiovascular disease and asthma, the association between PM exposure and the disease specific epigenetic changes has been identified. In lung cancer, the epigenetic changes in DNA methylation, histone modification and microRNA expression are commonly found, but the specific link between PM exposure and lung cancer remains incompletely understood. RESULTS The results of epidemiological studies indicate the important effects of PM exposure on lung cancer. PM2.5 is consistently associated with the increased lung cancer risk and mortality. Based on the epidemiological associations between PM exposure and lung cancer, PM-induced epigenetic changes may play important roles in the pathogenesis of lung cancer. CONCLUSION In this review, we focus on the current knowledge of epigenetic changes associated with PM exposure and lung cancer. Better understanding of the link between PM exposure and lung cancer at the epigenomic level by comprehensive comparison approach may identify lung cancer early detection biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Jinghong Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Willis X Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
307
|
Cardenas A, Rifas-Shiman SL, Godderis L, Duca RC, Navas-Acien A, Litonjua AA, DeMeo DL, Brennan KJ, Amarasiriwardena CJ, Hivert MF, Gillman MW, Oken E, Baccarelli AA. Prenatal Exposure to Mercury: Associations with Global DNA Methylation and Hydroxymethylation in Cord Blood and in Childhood. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087022. [PMID: 28934725 PMCID: PMC5783674 DOI: 10.1289/ehp1467] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/04/2017] [Accepted: 05/19/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mercury is a global pollutant, and prenatal exposure is associated with adverse health effects. To date, no studies have evaluated the association between prenatal mercury exposure and DNA hydroxymethylation, an epigenetic modification important for tissue differentiation and embryonic development. OBJECTIVES We sought to evaluate the association between prenatal mercury exposure and offspring global DNA methylation and hydroxymethylation at birth and test for persistence of the association in childhood. METHODS Within Project Viva, a U.S. prebirth cohort, we examined associations of maternal second trimester red blood cell mercury (RBC-Hg) concentrations with global 5-hydroxymethylcytosine (%-5hmC) and 5-methylcytosine (%-5mC) DNA content in blood collected at birth (n=306), early childhood (n=68; 2.9 to 4.9 y), and midchildhood (n=260; 6.7 to 10.5 y). RESULTS Median prenatal RBC-Hg concentration was 3.23μg/g [interquartile range (IQR)=3.29]. At birth, median cord blood %-5mC, %-5hmC, and their ratio were 4.95%, 0.22%, and 24.37, respectively. The mean adjusted difference [95% confidence interval (CI)] of blood %-5hmC for a doubling in prenatal RBC-Hg concentration was -0.013% (-0.029, 0.002), -0.031% (-0.056, -0.006), and 0.005% (-0.007, 0.018) at birth, early, and midchildhood, respectively. The corresponding relative adjusted change in the genomic ratio of %-5mC to %-5hmC for a doubling in prenatal RBC-Hg concentration was 4.70% (0.04, 9.58), 22.42% (7.73, 39.11), and 0.73% (-4.18, 5.88) at birth, early, and midchildhood, respectively. No associations were present between prenatal maternal RBC-Hg and %-5mC at any time point. CONCLUSIONS Prenatal mercury exposure was associated with lower %-5hmC genomic content and a corresponding increase in the ratio of %-5mC to %-5hmC in cord blood. This association was persistent in early but not midchildhood blood. Our results demonstrate the potential malleability of epigenetic modifications associated with mercury exposure in utero. https://doi.org/10.1289/EHP1467.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Lode Godderis
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven , Leuven, Belgium
- IDEWE , External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Radu-Corneliu Duca
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts, USA
| | - Kasey J Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| | - Chitra J Amarasiriwardena
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital , Boston, Massachusetts, USA
| | - Matthew W Gillman
- Environmental Influences on Child Health Outcomes (ECHO) Program, Office of the Director, National Institutes of Health , Department of Health and Human Services, Bethesda, Maryland, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| |
Collapse
|
308
|
Rivera-Casas C, Gonzalez-Romero R, Garduño RA, Cheema MS, Ausio J, Eirin-Lopez JM. Molecular and Biochemical Methods Useful for the Epigenetic Characterization of Chromatin-Associated Proteins in Bivalve Molluscs. Front Physiol 2017; 8:490. [PMID: 28848447 PMCID: PMC5550673 DOI: 10.3389/fphys.2017.00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Bivalve molluscs constitute a ubiquitous taxonomic group playing key functions in virtually all ecosystems, and encompassing critical commercial relevance. Along with a sessile and filter-feeding lifestyle in most cases, these characteristics make bivalves model sentinel organisms routinely used for environmental monitoring studies in aquatic habitats. The study of epigenetic mechanisms linking environmental exposure and specific physiological responses (i.e., environmental epigenetics) stands out as a very innovative monitoring strategy, given the role of epigenetic modifications in acclimatization and adaptation. Furthermore, the heritable nature of many of those modifications constitutes a very promising avenue to explore the applicability of epigenetic conditioning and selection in management and restoration strategies. Chromatin provides a framework for the study of environmental epigenetic responses. Unfortunately, chromatin and epigenetic information are very limited in most non-traditional model organisms and even completely lacking in most environmentally and ecologically relevant organisms. The present work aims to provide a comprehensive and reproducible experimental workflow for the study of bivalve chromatin. First, a series of guidelines for the molecular isolation of genes encoding chromatin-associated proteins is provided, including information on primers suitable for conventional PCR, Rapid Amplification of cDNA Ends (RACE), genome walking and quantitative PCR (qPCR) experiments. This section is followed by the description of methods specifically developed for the analysis of histone and SNBP proteins in different bivalve tissues, including protein extraction, purification, separation and immunodetection. Lastly, information about available antibodies, their specificity and performance is also provided. The tools and protocols described here complement current epigenetic analyses (usually limited to DNA methylation) by incorporating the study of structural elements modulating chromatin dynamics.
Collapse
Affiliation(s)
- Ciro Rivera-Casas
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| | - Rodrigo Gonzalez-Romero
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| | - Rafael A Garduño
- Department of Microbiology and Immunology, Dalhousie UniversityHalifax, NS, Canada
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| |
Collapse
|
309
|
Bachère E, Barranger A, Bruno R, Rouxel J, Menard D, Piquemal D, Akcha F. Parental diuron-exposure alters offspring transcriptome and fitness in Pacific oyster Crassostrea gigas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:51-58. [PMID: 28388477 DOI: 10.1016/j.ecoenv.2017.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
One of the primary challenges in ecotoxicology is to contribute to the assessment of the ecological status of ecosystems. In this study, we used Pacific oyster Crassostrea gigas to explore the effects of a parental exposure to diuron, a herbicide frequently detected in marine coastal environments. The present toxicogenomic study provides evidence that exposure of oyster genitors to diuron during gametogenesis results in changes in offspring, namely, transcriptomic profile alterations, increased global DNA methylation levels and reduced growth and survival within the first year of life. Importantly, we highlighted the limitations to identify particular genes or gene expression signatures that could serve as biomarkers for parental herbicide-exposure and further for multigenerational and transgenerational effects of specific chemical stressors. By analyzing samples from two independent experiments, we demonstrated that, due to complex confounding effects with both tested solvent vehicles, diuron non-specifically affected the offspring transcriptome. These original results question the potential development of predictive genomic tools for detecting specific indirect impacts of contaminants in environmental risk assessments. However, our results indicate that chronic environmental exposure to diuron over several generations may have significant long term impacts on oyster populations with adverse health outcomes.
Collapse
Affiliation(s)
- Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interactions-Hosts-Pathogens-Environments, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France.
| | - Audrey Barranger
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes cedex 03, France
| | - Roman Bruno
- Acobiom, 1682 rue de la Valsière, CS 77394 Cap Delta Biopole Euromédecine II, 34184 Montpellier Cedex 04, France
| | - Julien Rouxel
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes cedex 03, France
| | - Dominique Menard
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes cedex 03, France
| | - David Piquemal
- Acobiom, 1682 rue de la Valsière, CS 77394 Cap Delta Biopole Euromédecine II, 34184 Montpellier Cedex 04, France; Diag4Zoo, 1 rue des Loutres, 34170 Montpellier, France
| | - Farida Akcha
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes cedex 03, France
| |
Collapse
|
310
|
Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food Chem Toxicol 2017; 107:406-417. [PMID: 28709971 DOI: 10.1016/j.fct.2017.07.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs) is a major threat to the human health worldwide. The consumption of arsenic in drinking water and other food products is associated with the risk of development of type-2 diabetes mellitus (T2DM). The available experimental evidence indicates that epigenetic alterations may play an important role in the development of diseases that are linked with exposure to environmental toxicants. iAs seems to be associated with the epigenetic modifications such as alterations in DNA methylation, histone modifications, and micro RNA (miRNA) abundance. OBJECTIVE This article reviewed epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. METHOD Electronic databases such as PubMed, Scopus and Google scholar were searched for published literature from 1980 to 2017. Searched MESH terms were "Arsenic", "Epigenetic mechanism", "DNA methylation", "Histone modifications" and "Diabetes". RESULTS There are various factors involved in the pathogenesis of T2DM but it is assumed that arsenic consumption causes the epigenetic alterations both at the gene-specific level and generalized genome level. CONCLUSION The research indicates that exposure from low to moderate concentrations of iAs is linked with the epigenetic effects. In addition, it is evident that, arsenic can change the components of the epigenome and hence induces diabetes through epigenetic mechanisms, such as alterations in glucose transport and/or metabolism and insulin expression/secretion.
Collapse
|
311
|
Hodjat M, Rahmani S, Khan F, Niaz K, Navaei–Nigjeh M, Mohammadi Nejad S, Abdollahi M. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view. Arch Toxicol 2017; 91:2577-2597. [DOI: 10.1007/s00204-017-1979-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
|
312
|
Niranjan R, Thakur AK. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways. Front Immunol 2017; 8:763. [PMID: 28713383 PMCID: PMC5492873 DOI: 10.3389/fimmu.2017.00763] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022] Open
Abstract
The environmental soot and carbon blacks (CBs) cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS)-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br−) dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs) were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
313
|
He Z, Li D, Ma J, Chen L, Duan H, Zhang B, Gao C, Li J, Xing X, Zhao J, Wang S, Wang F, Zhang H, Li H, Chen S, Zeng X, Wang Q, Xiao Y, Zheng Y, Chen W. TRIM36 hypermethylation is involved in polycyclic aromatic hydrocarbons-induced cell transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:93-103. [PMID: 28359976 DOI: 10.1016/j.envpol.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
Long term exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with the increasing risk of lung cancer. To identify differentially hypermethylated genes associated with PAHs-induced carcinogenicity, we performed genome-wide DNA methylation analysis in 20 μM benzo(a)pyrene (BaP)-transformed human bronchial epithelial (HBE) cells at different stages of cell transformation. Several methylated genes (CNGA4, FLT1, GAREM1, SFMBT2, TRIM36) were differentially hypermethylated and their mRNA was suppressed in cells at both pre-transformed and transformed stages. Similar results were observed in HBE cells transformed by 20 μg/mL coke oven emissions (COEs) mixture collected from a coking manufacturing facility. In particular, hypermethylation of TRIM36 and suppression of TRIM36 expression were gradually enhanced over the time of COEs treatment. We developed bisulfite pyrosequencing assay and assessed TRIM36 methylation quantitatively. We found that hypermethylation of TRIM36 and reduced gene expression was prevalent in several types of human cancers. TRIM36 hypermethylation appeared in 90.0% (23/30) of Non-Small Cell Lung Cancer (NSCLCs) tissues compared to their paired adjacent tissues with an average increase of 1.32 fold. Furthermore, an increased methylation rate (5.90% v.s 7.38%) and reduced levels of TRIM36 mRNA were found in peripheral lymphocytes (PBLCs) of 151 COEs-exposed workers. In all subjects, TRIM36 hypermethylation was positively correlated with the level of urinary 1-hydroxypyrene (P < 0.001), an internal exposure marker of PAHs, and the DNA damage (P = 0.013). These findings suggest that aberrant hypermethylation of TRIM36 might be involved in the acquisition of malignant phenotype and could be served as a biomarker for risk assessment of PAHs exposure.
Collapse
Affiliation(s)
- Zhini He
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junxiang Ma
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liping Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chen Gao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jian Zhao
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fangping Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huiyao Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Thoracic Surgery, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, China.
| |
Collapse
|
314
|
Appleton AA, Jackson BP, Karagas M, Marsit CJ. Prenatal exposure to neurotoxic metals is associated with increased placental glucocorticoid receptor DNA methylation. Epigenetics 2017; 12:607-615. [PMID: 28548590 DOI: 10.1080/15592294.2017.1320637] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Epigenetic alterations related to prenatal neurotoxic metals exposure may be key in understanding the origins of cognitive and neurobehavioral problems in children. Placental glucocorticoid receptor (NR3C1) methylation has been linked to neurobehavioral risk in early life, but has not been examined in response to neurotoxic metals exposure despite parallel lines of research showing metals exposure and NR3C1 methylation each contribute to a similar set of neurobehavioral phenotypes. Thus, we conducted a study of prenatal neurotoxic metals exposure and placental NR3C1 methylation in a cohort of healthy term singleton pregnancies from Rhode Island, USA (n = 222). Concentrations of arsenic (As; median 0.02 ug/g), cadmium (Cd; median 0.03 μg/g), lead (Pb; median 0.40 μg/g), manganese (Mn; median 0.56 μg/g), mercury (Hg; median 0.02 μg/g), and zinc (Zn; 145.18 μg/g) measured in infant toenails were categorized as tertiles. Multivariable linear regression models tested the independent associations for each metal with NR3C1 methylation, as well as the cumulative risk of exposure to multiple metals simultaneously. Compared to the lowest exposure tertiles, higher levels of As, Cd, Pb, Mn, and Hg were each associated with increased placental NR3C1 methylation (all P<0.02). Coefficients for these associations corresponded with a 0.71-1.41 percent increase in NR3C1 methylation per tertile increase in metals concentrations. For Zn, the lowest exposure tertile compared with the highest tertile was associated with 1.26 percent increase in NR3C1 methylation (P=0.01). Higher cumulative metal risk scores were marginally associated with greater NR3C1 methylation. Taken together, these results indicate that prenatal exposure to neurotoxic metals may affect the offspring's NR3C1 activity, which may help explain cognitive and neurodevelopmental risk later in life.
Collapse
Affiliation(s)
- Allison A Appleton
- a Department of Epidemiology and Biostatistics , University at Albany School of Public Health , Rensselaer , NY , USA
| | - Brian P Jackson
- b Department of Earth Sciences, Dartmouth College , Hanover , NH , USA
| | - Margaret Karagas
- c Department of Epidemiology , Geisel School of Medicine at Dartmouth , One Medical Center Drive, Lebanon , NH , USA
| | - Carmen J Marsit
- d Department of Environmental Health, Rollins School of Public Health , Emory University , Atlanta , GA , USA
| |
Collapse
|
315
|
Drechsel V, Schauer K, Šrut M, Höckner M. Regulatory Plasticity of Earthworm wMT-2 Gene Expression. Int J Mol Sci 2017; 18:ijms18061113. [PMID: 28538660 PMCID: PMC5485937 DOI: 10.3390/ijms18061113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022] Open
Abstract
Metallothioneins (MTs) are multifunctional proteins occurring throughout the animal kingdom. While the expression and transcriptional regulation of MTs is well-studied in vertebrates, the mechanism of MT activation is still unknown for most invertebrates. Therefore, we examined wMT-2 gene regulation and expression patterns in Lumbricus rubellus and L. terrestris. Transcription levels, the occupation of DNA binding sites, the expression of putative transcriptional regulators, and promotor DNA methylation were determined. We found that wMT-2 expression does not follow a circadian pattern. However, Cd-induced wMT-2 induction was observed, and was, interestingly, suppressed by physical injury. Moreover, the promotor region that is responsible for the wMT-2 gene regulation was elucidated. ATF, a putative transcriptional regulator, showed increased phosphorylation upon Cd exposure, suggesting that it plays a major role in wMT-2 gene activation. The promotor methylation of wMT-2, on the other hand, is probably not involved in transcriptional regulation. Elucidating the regulatory mechanism of the earthworm MT gene activation might provide insights into the molecular coordination of the environmental stress response in invertebrates, and might also reveal a link to wound repair and, in a broader sense, to immunity.
Collapse
Affiliation(s)
- Victoria Drechsel
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | - Karl Schauer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | - Maja Šrut
- Division of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | - Martina Höckner
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| |
Collapse
|
316
|
Logan PC, Yango P, Tran ND. Endometrial Stromal and Epithelial Cells Exhibit Unique Aberrant Molecular Defects in Patients With Endometriosis. Reprod Sci 2017; 25:140-159. [PMID: 28490276 DOI: 10.1177/1933719117704905] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT Endometriosis is a chronic inflammatory disease that causes pain and infertility in women of reproductive age. OBJECTIVE To investigate the pathologic pathways in endometrial stromal and epithelial cells that contribute to the manifestation of endometriosis. DESIGN In vitro cellular and molecular analyses of isolated eutopic endometrial stromal and epithelial cells. METHODS Eutopic stromal and epithelial cells from endometriotic and normal patients were isolated by fluorescence-activated cell sorting for paired sibling RNA sequencing and microRNA microarray. Aberrant pathways were identified using ingenuity pathway analysis networks and confirmed with in vitro modulation of the affected pathways in stromal and epithelial cell cultures. RESULTS Both stromal versus epithelial cell types and paired endometriotic versus normal samples exhibited distinct hierarchical clustering. Compared to normal samples, there were 151 and 215 differentially expressed genes in the endometriotic stromal and epithelial populations, respectively, and concomitantly 9 and 16 differentially expressed microRNAs. Overall, endometriotic stromal and epithelial cells revealed distinct defects. In endometriotic stromal cells, key decidualization genes Zinc finger E-box Binding protein 1 (ZEB1), Heart And Neural crest Derivatives expressed 2 (HAND2), WNT4, and Interleukin 15 (IL-15) were found to be downregulated and Periostin (POSTN) and Matrix Metallopeptidase 7 (MMP7) were upregulated. Specifically, ZEB1 was downregulated in stromal cells by aberrant elevation in miR-200b. In contrast, ZEB1 was found to be upregulated in endometriotic epithelial cells through associated upregulation of transforming growth factor β1 (TGFβ1), inducer of the TGFβ1-Bone Morphogenetic Protein 2 (BMP2)-MMP2-Prostaglandin-endoperoxide Synthase 2 (COX2)-ZEB1 pathway, which activates epithelial-mesenchymal transition. CONCLUSION Manifestation of endometriosis involves dysregulation of unique molecular pathways within the diseased endometrial stromal and epithelial cells in the endometrium. Targeting the cell type-specific defects may offer a novel approach to treating endometriosis.
Collapse
Affiliation(s)
- Philip C Logan
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Pamela Yango
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nam D Tran
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
317
|
Cavalleri T, Angelici L, Favero C, Dioni L, Mensi C, Bareggi C, Palleschi A, Rimessi A, Consonni D, Bordini L, Todaro A, Bollati V, Pesatori AC. Plasmatic extracellular vesicle microRNAs in malignant pleural mesothelioma and asbestos-exposed subjects suggest a 2-miRNA signature as potential biomarker of disease. PLoS One 2017; 12:e0176680. [PMID: 28472171 PMCID: PMC5417506 DOI: 10.1371/journal.pone.0176680] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/14/2017] [Indexed: 01/29/2023] Open
Abstract
Background Malignant Pleural Mesothelioma (MPM) is an aggressive cancer mainly caused by asbestos exposure and refractory to current therapies. Specific diagnostic markers for early MPM diagnosis are needed. Changes in miRNA expression have been implicated in several diseases and cancers, including MPM. We examined if a specific miRNA signature in plasmatic extracellular vesicles (EV) may help to discriminate between malignant pleural mesothelioma patients (MPM) and subjects with Past Asbestos Exposure (PAE). Methodology/Principal findings We investigated 23 MPM patients and 19 cancer-free subjects with past asbestos exposure (PAE). We screened 754 miRNAs in plasmatic EVs by OpenArray and found 55 differential miRNAs using logistic regression models adjusted for age, sex, BMI, and smoking. Among the top-20 differential miRNAs chosen for validation by Real time PCR, 16 were confirmed. Using receiver operating characteristic (ROC) curve analysis, the most discriminating miRNA combination was given by miR-103a-3p + miR-30e-3p, which generated an AUC of 0.942 (95% CI 0.87–1.00), with a sensitivity of 95.5% and a specificity of 80.0%. Using multivariate Cox regression analysis including gender, age, BMI and smoking we found a Hazard Ratio for miR-103a-3p above the median of 0.37 (95%CI 0.13–1.13) and of 0.51 (95%CI 0.17–1.52) for miR-30e-3p. Conclusions This study suggests EV-associated miR-103a-3p and miR-30e-3p are able to discriminate MPM from PAE subjects. Larger and prospective studies are needed to confirm these two-miRNA signature alone or in combination with other biomarkers as diagnostic tools for MPM.
Collapse
Affiliation(s)
- Tommaso Cavalleri
- Department of Gastroenterology, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano (Milan), Italy
| | - Laura Angelici
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, Milan, Italy
| | - Chiara Favero
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, Milan, Italy
| | - Laura Dioni
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, Milan, Italy
| | - Carolina Mensi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Epidemiology Unit, Via San Barnaba 8, Milan, Italy
| | - Claudia Bareggi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Medical Oncology Unit, Via F.Sforza 28, Milan, Italy
| | - Alessandro Palleschi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Thoracic Surgery and Lung Transplantation Unit, Via F. Sforza 28, Milan, Italy
| | - Arianna Rimessi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Thoracic Surgery and Lung Transplantation Unit, Via F. Sforza 28, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Epidemiology Unit, Via San Barnaba 8, Milan, Italy
| | - Lorenzo Bordini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Occupational Health Unit, Via San Barnaba 8, Milan, Italy
| | - Aldo Todaro
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Occupational Health Unit, Via San Barnaba 8, Milan, Italy
| | - Valentina Bollati
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Epidemiology Unit, Via San Barnaba 8, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab—Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via San Barnaba 8, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Preventive Medicine, Epidemiology Unit, Via San Barnaba 8, Milan, Italy
- * E-mail:
| |
Collapse
|
318
|
McCullough SD, On DM, Bowers EC. Using Chromatin Immunoprecipitation in Toxicology: A Step-by-Step Guide to Increasing Efficiency, Reducing Variability, and Expanding Applications. ACTA ACUST UNITED AC 2017; 72:3.14.1-3.14.28. [PMID: 28463415 DOI: 10.1002/cptx.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histone modifications work in concert with DNA methylation to regulate cellular structure, function, and response to environmental stimuli. More than 130 unique histone modifications have been described to date, and chromatin immunoprecipitation (ChIP) allows for the exploration of their associations with the regulatory regions of target genes and other DNA/chromatin-associated proteins across the genome. Many variations of ChIP have been developed in the 30 years since its earliest version came into use, which makes it challenging for users to integrate the procedure into their research programs. Furthermore, the differences in ChIP protocols can confound efforts to increase reproducibility across studies. The streamlined ChIP procedure presented here can be readily applied to samples from a wide range of in vitro studies (cell lines and primary cells) and clinical samples (peripheral leukocytes) in toxicology. We also provide detailed guidance on the optimization of critical protocol parameters, such as chromatin fixation, fragmentation, and immunoprecipitation, to increase efficiency and improve reproducibility. Expanding toxicoepigenetic studies to more readily include histone modifications will facilitate a more comprehensive understanding of the role of the epigenome in environmental exposure effects and the integration of epigenetic data in mechanistic toxicology, adverse outcome pathways, and risk assessment. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shaun D McCullough
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Doan M On
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.,Department of Physiology and Biophysics, Medical College of Virginia, Richmond, Virginia
| | - Emma C Bowers
- Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
319
|
Gonzalez-Romero R, Suarez-Ulloa V, Rodriguez-Casariego J, Garcia-Souto D, Diaz G, Smith A, Pasantes JJ, Rand G, Eirin-Lopez JM. Effects of Florida Red Tides on histone variant expression and DNA methylation in the Eastern oyster Crassostrea virginica. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:196-204. [PMID: 28315825 DOI: 10.1016/j.aquatox.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs.
Collapse
Affiliation(s)
- Rodrigo Gonzalez-Romero
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Victoria Suarez-Ulloa
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Javier Rodriguez-Casariego
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA; Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Daniel Garcia-Souto
- Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo, Spain
| | - Gabriel Diaz
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Abraham Smith
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Juan Jose Pasantes
- Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo, Spain
| | - Gary Rand
- Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA.
| |
Collapse
|
320
|
Cheung AC, LaRusso NF, Gores GJ, Lazaridis KN. Epigenetics in the Primary Biliary Cholangitis and Primary Sclerosing Cholangitis. Semin Liver Dis 2017; 37:159-174. [PMID: 28564724 PMCID: PMC5553635 DOI: 10.1055/s-0037-1603324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenomics, the study of modifications to genetic material that do not alter the underlying DNA sequence, is generating increasing interest as a means to help clarify disease pathogenesis and outcomes. Although genome-wide association studies have identified several potential candidate genes that may be implicated in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), it is estimated that these genes explain less than 20% of the heritability of these diseases. Thus, to date, the origins of “missing heritability” for PBC and PSC remain elusive. The epigenome may provide a potentially elegant solution to this phenomenon, as it can be modified by both internal and external exposures (coined the “exposome”). This may explain differences in disease presentation, treatment response, and rates of progression between individuals. Epigenetic changes may also provide a framework for discovering potential biomarkers for diagnosis and screening of PBC and PSC. Importantly, because the epigenome is modifiable, it may also highlight novel pathways for therapeutic discovery and interventions of these diseases.
Collapse
Affiliation(s)
- Angela C. Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
321
|
Wang S, He Z, Li D, Zhang B, Li M, Li W, Zhu W, Xing X, Zeng X, Wang Q, Dong G, Xiao Y, Chen W, Chen L. Aberrant methylation of RUNX3 is present in Aflatoxin B 1-induced transformation of the L02R cell line. Toxicology 2017; 385:1-9. [PMID: 28458013 DOI: 10.1016/j.tox.2017.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/22/2017] [Accepted: 04/23/2017] [Indexed: 12/13/2022]
Abstract
Chronic exposure to aflatoxin B1 (AFB1) is linked to the development of hepatocellular carcinoma (HCC). To identify differentially methylated genes involved in AFB1-induced cell transformation, we analyzed DNA methylation patterns in immortal human hepatocyte L02 cells expressing an oncogenic H-Ras allele (L02R cells) and AFB1-transformed L02R (L02RT-AFB1) cells by performing genome-wide methylation profiling. We treated L02R cells with 0.3μM AFB1 weekly and observed a transformed phenotype at the 17th week post-treatment. The transformed cells (L02RT-AFB1) could grow in an anchorage independent fashion and form tumors in immunodeficient mice. qRT-PCR was performed to examine whether gene methylation led to a reduction in gene expression of methylated candidate genes. As a result, the expression of the following seven genes including JUNB, RUNX3, NAV1, CXCR4, RARRES1, INTS1, and POLL was down-regulated in transformed L02RT-AFB1 cells. The reduction of gene expression of these genes could be reversed by treatment of 5-azadeoxycytidine. The methylated CpG sites of RUNX3 genes were verified using bisulfite sequencing PCR (BSP) assay. Furthermore, a dynamic change in RUNX3 methylation was observed over the course of AFB1-induced cell transformation, which was corresponded to the alteration of gene expression and the extent of DNA damage. In vitro study showed that methylation of RUNX3 tended to abate in L02R cells treated with AFB1 for a short-term period of time. Notably, hypermethylation of RUNX3 appeared in 70% (14/20) of human hepatocellular carcinomas. Moreover, LINE-1 hypomethylation and dynamic changes of DNMTs, TETs and MeCP2 expression were also observed during AFB1-induced transformation. Taken together, these observations suggest that aberrant methylation of RUNX3 and LINE-1 might be involved in AFB1-induced carcinogenesis.
Collapse
Affiliation(s)
- Shan Wang
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhini He
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo Zhang
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Miao Li
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenxue Li
- Departmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Zhu
- Departmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xiumei Xing
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Zeng
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liping Chen
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
322
|
Vitamin D deficiency and diabetes. Biochem J 2017; 474:1321-1332. [DOI: 10.1042/bcj20170042] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
Vitamin D deficiency has been linked to the onset of diabetes. This review summarizes the role of Vitamin D in maintaining the normal release of insulin by the pancreatic beta cells (β-cells). Diabetes is initiated by the onset of insulin resistance. The β-cells can overcome this resistance by releasing more insulin, thus preventing hyperglycaemia. However, as this hyperactivity increases, the β-cells experience excessive Ca2+ and reactive oxygen species (ROS) signalling that results in cell death and the onset of diabetes. Vitamin D deficiency contributes to both the initial insulin resistance and the subsequent onset of diabetes caused by β-cell death. Vitamin D acts to reduce inflammation, which is a major process in inducing insulin resistance. Vitamin D maintains the normal resting levels of both Ca2+ and ROS that are elevated in the β-cells during diabetes. Vitamin D also has a very significant role in maintaining the epigenome. Epigenetic alterations are a feature of diabetes by which many diabetes-related genes are inactivated by hypermethylation. Vitamin D acts to prevent such hypermethylation by increasing the expression of the DNA demethylases that prevent hypermethylation of multiple gene promoter regions of many diabetes-related genes. What is remarkable is just how many cellular processes are maintained by Vitamin D. When Vitamin D is deficient, many of these processes begin to decline and this sets the stage for the onset of diseases such as diabetes.
Collapse
|
323
|
Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci Rep 2017; 7:44180. [PMID: 28290496 PMCID: PMC5349542 DOI: 10.1038/srep44180] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Identifying the molecular basis of environmentally induced phenotypic variation presents exciting opportunities for furthering our understanding of how ecological processes and the environment can shape the phenotype. Urban and rural environments present free-living organisms with different challenges and opportunities, which have marked consequences for the phenotype, yet little is known about responses at the molecular level. We characterised transcriptomes from an urban and a rural population of great tits Parus major, demonstrating striking differences in gene expression profiles in both blood and liver tissues. Differentially expressed genes had functions related to immune and inflammatory responses, detoxification, protection against oxidative stress, lipid metabolism, and regulation of gene expression. Many genes linked to stress responses were expressed at higher levels in the urban birds, in accordance with our prediction that urban animals are exposed to greater environmental stress. This is one of the first studies to reveal transcriptional differences between urban- and rural-dwelling animals and suggests an important role for epigenetics in mediating environmentally induced physiological variation. The study provides valuable resources for developing further in-depth studies of the mechanisms driving phenotypic variation in the urban context at larger spatial and temporal scales.
Collapse
|
324
|
Blood pressure and expression of microRNAs in whole blood. PLoS One 2017; 12:e0173550. [PMID: 28278198 PMCID: PMC5344460 DOI: 10.1371/journal.pone.0173550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background Blood pressure (BP) is a complex, multifactorial clinical outcome driven by genetic susceptibility, behavioral choices, and environmental factors. Many molecular mechanisms have been proposed for the pathophysiology of high BP even as its prevalence continues to grow worldwide, increasing morbidity and marking it as a major public health concern. To address this, we evaluated miRNA profiling in blood leukocytes as potential biomarkers of BP and BP-related risk factors. Methods The Beijing Truck Driver Air Pollution Study included 60 truck drivers and 60 office workers examined in 2008. On two days separated by 1–2 weeks, we examined three BP measures: systolic, diastolic, and mean arterial pressure measured at both pre- and post-work exams for blood NanoString nCounter miRNA profiles. We used covariate-adjusted linear mixed-effect models to examine associations between BP and increased miRNA expression in both pooled and risk factor-stratified analyses. Results Overall 43 miRNAs were associated with pre-work BP (FDR<0.05). In stratified analyses different but overlapping groups of miRNAs were associated with pre-work BP in truck drivers, high-BMI participants, and usual alcohol drinkers (FDR<0.05). Only four miRNAs were associated with post-work BP (FDR<0.05), in ever smokers. Conclusion Our results suggest that many miRNAs were significantly associated with BP in subgroups exposed to known hypertension risk factors. These findings shed light on the underlying molecular mechanisms of BP, and may assist with the development of a miRNA panel for early detection of hypertension.
Collapse
|
325
|
Sales VM, Ferguson-Smith AC, Patti ME. Epigenetic Mechanisms of Transmission of Metabolic Disease across Generations. Cell Metab 2017; 25:559-571. [PMID: 28273478 PMCID: PMC5404272 DOI: 10.1016/j.cmet.2017.02.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both human and animal studies indicate that environmental exposures experienced during early life can robustly influence risk for adult disease. Moreover, environmental exposures experienced by parents during either intrauterine or postnatal life can also influence the health of their offspring, thus initiating a cycle of disease risk across generations. In this Perspective, we focus on epigenetic mechanisms in germ cells, including DNA methylation, histone modification, and non-coding RNAs, which collectively may provide a non-genetic molecular legacy of prior environmental exposures and influence transcriptional regulation, developmental trajectories, and adult disease risk in offspring.
Collapse
Affiliation(s)
- Vicencia Micheline Sales
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Sixth Floor, Boston, MA 02215, USA
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Mary-Elizabeth Patti
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Sixth Floor, Boston, MA 02215, USA.
| |
Collapse
|
326
|
Abstract
Endocrine-disrupting chemicals (EDCs) might increase the risk of childhood diseases by disrupting hormone-mediated processes that are critical for growth and development during gestation, infancy and childhood. The fetus, infant and child might have enhanced sensitivity to environmental stressors such as EDCs due to their rapid development and increased exposure to some EDCs as a consequence of development-specific behaviour, anatomy and physiology. In this Review, I discuss epidemiological studies examining the relationship between early-life exposure to bisphenol A (BPA), phthalates, triclosan and perfluoroalkyl substances (PFAS) with childhood neurobehavioural disorders and obesity. The available epidemiological evidence suggest that prenatal exposure to several of these ubiquitous EDCs is associated with adverse neurobehaviour (BPA and phthalates) and excess adiposity or increased risk of obesity and/or overweight (PFAS). Quantifying the effects of EDC mixtures, improving EDC exposure assessment, reducing bias from confounding, identifying periods of heightened vulnerability and elucidating the presence and nature of sexually dimorphic EDC effects would enable stronger inferences to be made from epidemiological studies than currently possible. Ultimately, improved estimates of the causal effects of EDC exposures on child health could help identify susceptible subpopulations and lead to public health interventions to reduce these exposures.
Collapse
Affiliation(s)
- Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI 02912
| |
Collapse
|
327
|
Karimi P, Kamali E, Mousavi SM, Karahmadi M. Environmental factors influencing the risk of autism. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2017; 22:27. [PMID: 28413424 PMCID: PMC5377970 DOI: 10.4103/1735-1995.200272] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/06/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022]
Abstract
Autism is a developmental disability with age of onset in childhood (under 3 years old), which is characterized by definite impairments in social interactions, abnormalities in speech, and stereotyped pattern of behaviors. Due to the progress of autism in recent decades, a wide range of studies have been done to identify the etiological factors of autism. It has been found that genetic and environmental factors are both involved in autism pathogenesis. Hence, in this review article, a set of environmental factors involved in the occurrence of autism has been collected, and finally, some practical recommendations for reduction of the risk of this devastating disease in children are represented.
Collapse
Affiliation(s)
- Padideh Karimi
- Division of Genetics, Department of Biology, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | - Elahe Kamali
- Division of Genetics, Department of Biology, Faculty of Science, Isfahan University, Isfahan, Iran
| | - Seyyed Mohammad Mousavi
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Genetic and Identification Lab, Legal Medicine Center, Isfahan, Iran
| | - Mojgan Karahmadi
- Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Noor Hospital, Isfahan, Iran
| |
Collapse
|
328
|
Guo L, Li PH, Li H, Colicino E, Colicino S, Wen Y, Zhang R, Feng X, Barrow TM, Cayir A, Baccarelli AA, Byun HM. Effects of environmental noise exposure on DNA methylation in the brain and metabolic health. ENVIRONMENTAL RESEARCH 2017; 153:73-82. [PMID: 27914298 DOI: 10.1016/j.envres.2016.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 05/17/2023]
Abstract
Environmental noise exposure is associated with adverse effects on human health including hearing loss, heart disease, and changes in stress-related hormone levels. Alteration in DNA methylation in response to environmental exposures is a well-known phenomenon and it is implicated in many human diseases. Understanding how environmental noise exposures affect DNA methylation patterns may help to elucidate the link between noise and adverse effects on health. In this pilot study we examined the effects of environmental noise exposure on DNA methylation of genes related to brain function and investigated whether these changes are related with metabolic health. We exposed four groups of male Wistar rats to moderate intensity noise (70-75dB with 20-4000Hz) at night for three days as short-term exposure, and for three weeks as long-term exposure. Noise exposure was limited to 45dB during the daytime. Control groups were exposed to only 45dB, day and night. We measured DNA methylation in the Bdnf, Comt, Crhr1, Mc2r, and Snca genes in tissue from four brain regions of the rats (hippocampus, frontal lobe, medulla oblongata, and inferior colliculus). Further, we measured blood pressure and body weight after long-term noise exposure. We found that environmental noise exposure is associated with gene-specific DNA methylation changes in specific regions of the brain. Changes in DNA methylation are significantly associated with changes in body weight (between Bdnf DNA methylation and Δ body weight: r=0.59, p=0.018; and between LINE-1 ORF DNA methylation and Δ body weight: =-0.80, p=0.0004). We also observed that noise exposure decreased blood pressure (p=0.038 for SBP, p=0.017 for DBP and p 0. 017 for MAP) and decreased body weight (β=-26g, p=0.008). In conclusion, environmental noise exposures can induce changes in DNA methylation in the brain, which may be associated with adverse effects upon metabolic health through modulation of response to stress-related hormones.
Collapse
Affiliation(s)
- Liqiong Guo
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Peng-Hui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hua Li
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Elena Colicino
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Silvia Colicino
- Respiratory Epidemiology, Occupational Medicine and Public Health, Imperial College, London, United Kingdom
| | - Yi Wen
- Department of Radiology, No. 531 Hospital of the PLA, Tonghua, Jilin 134000, China
| | - Ruiping Zhang
- Department of Radiology, No. 531 Hospital of the PLA, Tonghua, Jilin 134000, China
| | - Xiaotian Feng
- Department of Bioengineering, School of Mineral Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Timothy M Barrow
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Akin Cayir
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Hyang-Min Byun
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
329
|
Zheng Y, Sanchez-Guerra M, Zhang Z, Joyce BT, Zhong J, Kresovich JK, Liu L, Zhang W, Gao T, Chang D, Osorio-Yanez C, Carmona JJ, Wang S, McCracken JP, Zhang X, Chervona Y, Díaz A, Bertazzi PA, Koutrakis P, Kang CM, Schwartz J, Baccarelli AA, Hou L. Traffic-derived particulate matter exposure and histone H3 modification: A repeated measures study. ENVIRONMENTAL RESEARCH 2017; 153:112-119. [PMID: 27918982 PMCID: PMC5605137 DOI: 10.1016/j.envres.2016.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/09/2016] [Accepted: 11/22/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Airborne particulate matter (PM) may induce epigenetic changes that potentially lead to chronic diseases. Histone modifications regulate gene expression by influencing chromatin structure that can change gene expression status. We evaluated whether traffic-derived PM exposure is associated with four types of environmentally inducible global histone H3 modifications. METHODS The Beijing Truck Driver Air Pollution Study included 60 truck drivers and 60 office workers examined twice, 1-2 weeks apart, for ambient PM10 (both day-of and 14-day average exposures), personal PM2.5, black carbon (BC), and elemental components (potassium, sulfur, iron, silicon, aluminum, zinc, calcium, and titanium). For both PM10 measures, we obtained hourly ambient PM10 data for the study period from the Beijing Municipal Environmental Bureau's 27 representatively distributed monitoring stations. We then calculated a 24h average for each examination day and a moving average of ambient PM10 measured in the 14 days prior to each examination. Examinations measured global levels of H3 lysine 9 acetylation (H3K9ac), H3 lysine 9 tri-methylation (H3K9me3), H3 lysine 27 tri-methylation (H3K27me3), and H3 lysine 36 tri-methylation (H3K36me3) in blood leukocytes collected after work. We used adjusted linear mixed-effect models to examine percent changes in histone modifications per each μg/m3 increase in PM exposure. RESULTS In all participants each μg/m3 increase in 14-day average ambient PM10 exposure was associated with lower H3K27me3 (β=-1.1%, 95% CI: -1.6, -0.6) and H3K36me3 levels (β=-0.8%, 95% CI: -1.4, -0.1). Occupation-stratified analyses showed associations between BC and both H3K9ac and H3K36me3 that were stronger in office workers (β=4.6%, 95% CI: 0.9, 8.4; and β=4.1%, 95% CI: 1.3; 7.0 respectively) than in truck drivers (β=0.1%, 95% CI: -1.3, 1.5; and β=0.9%, 95% CI: -0.9, 2.7, respectively; both pinteraction <0.05). Sex-stratified analyses showed associations between examination-day PM10 and H3K9ac, and between BC and H3K9me3, were stronger in women (β=10.7%, 95% CI: 5.4, 16.2; and β=7.5%, 95% CI: 1.2, 14.2, respectively) than in men (β=1.4%, 95% CI: -0.9, 3.7; and β=0.9%, 95% CI: -0.9, 2.7, respectively; both pinteraction <0.05). We observed no associations between personal PM2.5 or elemental components and histone modifications. CONCLUSIONS Our results suggest a possible role of global histone H3 modifications in effects of traffic-derived PM exposures, particularly BC exposure. Future studies should assess the roles of these modifications in human diseases and as potential mediators of air pollution-induced disease, in particular BC exposure.
Collapse
Affiliation(s)
- Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Health Sciences Integrated PhD Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marco Sanchez-Guerra
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brian T Joyce
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Epidemiology/Biostatistics, School of Public Health, University of Illinois-Chicago, Chicago, IL, USA
| | - Jia Zhong
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jacob K Kresovich
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Epidemiology/Biostatistics, School of Public Health, University of Illinois-Chicago, Chicago, IL, USA
| | - Lei Liu
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tao Gao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dou Chang
- Department of Safety Engineering, China Institute of Industrial Relations, Beijing, China
| | - Citlalli Osorio-Yanez
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Juan Jose Carmona
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheng Wang
- Department of Occupational and Environmental Health, Peking University Health Science Center, Beijing, China
| | - John P McCracken
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiao Zhang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yana Chervona
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY, USA
| | - Anaite Díaz
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Pier A Bertazzi
- Department of Clinical Sciences and Community Medicine, University of Milan and IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Choong-Min Kang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
330
|
Tabish AM, Poels K, Byun HM, luyts K, Baccarelli AA, Martens J, Kerkhofs S, Seys S, Hoet P, Godderis L. Changes in DNA Methylation in Mouse Lungs after a Single Intra-Tracheal Administration of Nanomaterials. PLoS One 2017; 12:e0169886. [PMID: 28081255 PMCID: PMC5231360 DOI: 10.1371/journal.pone.0169886] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/23/2016] [Indexed: 12/25/2022] Open
Abstract
Aims This study aimed to investigate the effects of nanomaterial (NM) exposure on DNA methylation. Methods and Results Intra-tracheal administration of NM: gold nanoparticles (AuNPs) of 5-, 60- and 250-nm diameter; single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) at high dose of 2.5 mg/kg and low dose of 0.25 mg/kg for 48 h to BALB/c mice. Study showed deregulations in immune pathways in NM-induced toxicity in vivo. NM administration had the following DNA methylation effects: AuNP 60 nm induced CpG hypermethylation in Atm, Cdk and Gsr genes and hypomethylation in Gpx; Gsr and Trp53 showed changes in methylation between low- and high-dose AuNP, 60 and 250 nm respectively, and AuNP had size effects on methylation for Trp53. Conclusion Epigenetics may be implicated in NM-induced disease pathways.
Collapse
Affiliation(s)
- Ali M. Tabish
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
- Integrated Cardio Metabolic Centre, Huddinge, Sweden
- * E-mail:
| | - Katrien Poels
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Katrien luyts
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Andrea A. Baccarelli
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Johan Martens
- Centrum voor Oppervlaktechemie en Katalyse, KU Leuven, Leuven, Belgium
| | - Stef Kerkhofs
- Centrum voor Oppervlaktechemie en Katalyse, KU Leuven, Leuven, Belgium
| | - Sven Seys
- Laboratory of Clinical Immunology, KU Leuven, Belgium
| | - Peter Hoet
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- Centre for Environment and Health, KU Leuven, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at work, Heverlee, Belgium
| |
Collapse
|
331
|
van den Dungen MW, Murk AJ, Kampman E, Steegenga WT, Kok DE. Association between DNA methylation profiles in leukocytes and serum levels of persistent organic pollutants in Dutch men. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx001. [PMID: 29492303 PMCID: PMC5804541 DOI: 10.1093/eep/dvx001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 05/18/2023]
Abstract
Consumption of polluted fish may lead to high levels of persistent organic pollutants (POPs) in humans, potentially causing adverse health effects. Altered DNA methylation has been suggested as a possible contributor to a variety of adverse health effects. The aim of this study was to evaluate the relationship between serum POP levels (dioxins, polychlorobiphenyls, and perfluoroctane sulphonate) and DNA methylation. We recruited a total of 80 Dutch men who regularly consumed eel from either low- or high-polluted areas, and subsequently had normal or elevated POP levels. Clinical parameters related to e.g. hormone levels and liver enzymes were measured as biomarkers for adverse health effects. The Infinium 450K BeadChip was used to assess DNA methylation in a representative subset of 34 men. We identified multiple genes with differentially methylated regions (DMRs; false discovery rate <0.05) related to POP levels. Several of these genes are involved in carcinogenesis (e.g. BRCA1, MAGEE2, HOXA5), the immune system (e.g. RNF39, HLA-DQB1), retinol homeostasis (DHRS4L2), or in metabolism (CYP1A1). The DMRs in these genes show mean methylation differences up to 7.4% when comparing low- and high-exposed men, with a mean difference up to 14.4% for single positions within a DMR. Clinical parameters were not significantly associated with serum POP levels. This is the first explorative study investigating extensive DNA methylation in relation to serum POP levels among men. We observed that elevated POP levels are associated with aberrant DNA methylation profiles in adult men who consumed high-polluted eel. These preliminary findings warrant further confirmation in other populations.
Collapse
Affiliation(s)
- Myrthe W. van den Dungen
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
- Marine Animal Ecology Group, De Elst 1, 6708 WD, Wageningen, Wageningen University, The Netherlands
| | - Albertinka J. Murk
- Marine Animal Ecology Group, De Elst 1, 6708 WD, Wageningen, Wageningen University, The Netherlands
| | - Ellen Kampman
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
| | - Wilma T. Steegenga
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
| | - Dieuwertje E. Kok
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
| |
Collapse
|
332
|
Rondon R, Grunau C, Fallet M, Charlemagne N, Sussarellu R, Chaparro C, Montagnani C, Mitta G, Bachère E, Akcha F, Cosseau C. Effects of a parental exposure to diuron on Pacific oyster spat methylome. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx004. [PMID: 29492306 PMCID: PMC5804544 DOI: 10.1093/eep/dvx004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 05/18/2023]
Abstract
Environmental epigenetic is an emerging field that studies the cause-effect relationship between environmental factors and heritable trait via an alteration in epigenetic marks. This field has received much attentions since the impact of environmental factors on different epigenetic marks have been shown to be associated with a broad range of phenotypic disorders in natural ecosystems. Chemical pollutants have been shown to affect immediate epigenetic information carriers of several aquatic species but the heritability of the chromatin marks and the consequences for long term adaptation remain open questions. In this work, we investigated the impact of the diuron herbicide on the DNA methylation pattern of spat from exposed Crassotrea gigas genitors. This oyster is one of the most important mollusk species produced worldwide and a key coastal economic resource in France. The whole genome bisulfite sequencing (WGBS, BS-Seq) was applied to obtain a methylome at single nucleotide resolution on DNA extracted from spat issued from diuron exposed genitors comparatively to control spat. We showed that the parental diuron exposure has an impact on the DNA methylation pattern of its progeny. Most of the differentially methylated regions occurred within coding sequences and we showed that this change in methylation level correlates with RNA level only in a very small group of genes. Although the DNA methylation profile is variable between individuals, we showed conserved DNA methylation patterns in response to parental diuron exposure. This relevant result opens perspectives for the setting of new markers based on epimutations as early indicators of marine pollutions.
Collapse
Affiliation(s)
- Rodolfo Rondon
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Manon Fallet
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Nicolas Charlemagne
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’ile d’Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Rossana Sussarellu
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’ile d’Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Caroline Montagnani
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
| | - Guillaume Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Evelyne Bachère
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095 Montpellier, France
| | - Farida Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’ile d’Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Céline Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| |
Collapse
|
333
|
Dai L, Mehta A, Mordukhovich I, Just AC, Shen J, Hou L, Koutrakis P, Sparrow D, Vokonas PS, Baccarelli AA, Schwartz JD. Differential DNA methylation and PM 2.5 species in a 450K epigenome-wide association study. Epigenetics 2016; 12:139-148. [PMID: 27982729 DOI: 10.1080/15592294.2016.1271853] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although there is growing evidence that exposure to ambient particulate matter is associated with global DNA methylation and gene-specific methylation, little is known regarding epigenome-wide changes in DNA methylation in relation to particles and, especially, particle components. Using the Illumina Infinium HumanMethylation450 BeadChip, we examined the relationship between one-year moving averages of PM2.5 species (Al, Ca, Cu, Fe, K, Na, Ni, S, Si, V, and Zn) and DNA methylation at 484,613 CpG probes in a longitudinal cohort that included 646 subjects. Bonferroni correction was applied to adjust for multiple comparisons. Bioinformatics analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was also performed. We observed 20 Bonferroni significant (P-value < 9.4× 10-9) CpGs for Fe, 8 for Ni, and 1 for V. Particularly, methylation at Schlafen Family Member 11 (SLFN11) cg10911913 was positively associated with measured levels of all 3 species. The SLFN11 gene codes for an interferon-induced protein that inhibits retroviruses and sensitizes cancer cells to DNA-damaging agents. Bioinformatics analysis suggests that gene targets may be relevant to pathways including cancers, signal transduction, and cell growth and death. Ours is the first study to examine the epigenome-wide association between ambient particles species and DNA methylation. We found that long-term exposures to specific components of ambient particle pollution, especially particles emitted during oil combustion, were associated with methylation changes in genes relevant to immune responses. Our findings provide insight into potential biologic mechanisms on an epigenetic level.
Collapse
Affiliation(s)
- Lingzhen Dai
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Amar Mehta
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Irina Mordukhovich
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Allan C Just
- b Department of Preventive Medicine , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Jincheng Shen
- c Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Lifang Hou
- d Department of Preventive Medicine , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Petros Koutrakis
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - David Sparrow
- e Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System , Department of Medicine, Boston University School of Medicine , Boston , MA , USA
| | - Pantel S Vokonas
- e Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System , Department of Medicine, Boston University School of Medicine , Boston , MA , USA
| | - Andrea A Baccarelli
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Joel D Schwartz
- a Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
334
|
Sunil VR, Vayas KN, Fang M, Zarbl H, Massa C, Gow AJ, Cervelli JA, Kipen H, Laumbach RJ, Lioy PJ, Laskin JD, Laskin DL. World Trade Center (WTC) dust exposure in mice is associated with inflammation, oxidative stress and epigenetic changes in the lung. Exp Mol Pathol 2016; 102:50-58. [PMID: 27986442 DOI: 10.1016/j.yexmp.2016.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022]
Abstract
Exposure to World Trade Center (WTC) dust has been linked to respiratory disease in humans. In the present studies we developed a rodent model of WTC dust exposure to analyze lung oxidative stress and inflammation, with the goal of elucidating potential epigenetic mechanisms underlying these responses. Exposure of mice to WTC dust (20μg, i.t.) was associated with upregulation of heme oxygenase-1 and cyclooxygenase-2 within 3days, a response which persisted for at least 21days. Whereas matrix metalloproteinase was upregulated 7days post-WTC dust exposure, IL-6RA1 was increased at 21days; conversely, expression of mannose receptor, a scavenger receptor important in particle clearance, decreased. After WTC dust exposure, increases in methylation of histone H3 lysine K4 at 3days, lysine K27 at 7days and lysine K36, were observed in the lung, along with hypermethylation of Line-1 element at 21days. Alterations in pulmonary mechanics were also observed following WTC dust exposure. Thus, 3days post-exposure, lung resistance and tissue damping were decreased. In contrast at 21days, lung resistance, central airway resistance, tissue damping and tissue elastance were increased. These data demonstrate that WTC dust-induced inflammation and oxidative stress are associated with epigenetic modifications in the lung and altered pulmonary mechanics. These changes may contribute to the development of WTC dust pathologies.
Collapse
Affiliation(s)
- Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States.
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Mingzhu Fang
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Helmut Zarbl
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Christopher Massa
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Howard Kipen
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Robert J Laumbach
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Paul J Lioy
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| |
Collapse
|
335
|
In vitro hydroquinone-induced instauration of histone bivalent mark on human retroelements (LINE-1) in HL60 cells. Toxicol In Vitro 2016; 40:1-10. [PMID: 27979589 DOI: 10.1016/j.tiv.2016.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/07/2016] [Accepted: 12/11/2016] [Indexed: 12/28/2022]
Abstract
Benzene is extensively used in industry despite its leukemogenic activity, representing a significant occupational hazard. We investigated if long-term treatment with low-doses hydroquinone (HQ), a benzene metabolite, might be sufficient to alter in vitro the epigenetic signature underlining LINE-1 sequences, a poorly explored step in health risks associated with benzene exposure. In HL-60 cell line, exploring the epigenetic events occurring in chromatin, we found the transient instauration of the distinctive signature combining the repressive H3Lys27 tri-methylation mark and the activating H3Lys4 tri-methylation mark (H3K27me3/H3K4me3), indicating a tendency toward a poised chromatin conformation. These alterations are lost in time after short-term treatments, while the long-term setting, performed using a concentration within the levels of total HQ in peripheral blood of benzene-exposed workers, showed a gradual increase in H3K4me3. We observed the absence of statistically significant variations in DNA methylation and expression levels of LINE-1, despite a decrease in protein levels of UHRF1, DNA methyl-transferases and histone methyl-transferases. In conclusion, in vitro treatment with low-dose HQ determined the instauration of a reversible poised state of chromatin in LINE-1 sequences, suggesting that prolonged exposure could cause persistent epigenetic alterations.
Collapse
|
336
|
Yu SY, Paul S, Hwang SY. Application of the emerging technologies in toxicogenomics: An overview. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0405-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
337
|
Tarale P, Sivanesan S, Daiwile AP, Stöger R, Bafana A, Naoghare PK, Parmar D, Chakrabarti T, Kannan K. Global DNA methylation profiling of manganese-exposed human neuroblastoma SH-SY5Y cells reveals epigenetic alterations in Parkinson's disease-associated genes. Arch Toxicol 2016; 91:2629-2641. [PMID: 27913844 DOI: 10.1007/s00204-016-1899-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/24/2016] [Indexed: 01/28/2023]
Abstract
Manganese (Mn) is an essential trace element required for optimal functioning of cellular biochemical pathways in the central nervous system. Elevated exposure to Mn through environmental and occupational exposure can cause neurotoxic effects resulting in manganism, a condition with clinical symptoms identical to idiopathic Parkinson's disease. Epigenetics is now recognized as a biological mechanism involved in the etiology of various diseases. Here, we investigated the role of DNA methylation alterations induced by chronic Mn (100 µM) exposure in human neuroblastoma (SH-SY5Y) cells in relevance to Parkinson's disease. A combined analysis of DNA methylation and gene expression data for Parkinson's disease-associated genes was carried out. Whole-genome bisulfite conversion and sequencing indicate epigenetic perturbation of key genes involved in biological processes associated with neuronal cell health. Integration of DNA methylation data with gene expression reveals epigenetic alterations to PINK1, PARK2 and TH genes that play critical roles in the onset of Parkinsonism. The present study suggests that Mn-induced alteration of DNA methylation of PINK1-PARK2 may influence mitochondrial function and promote Parkinsonism. Our findings provide a basis to further explore and validate the epigenetic basis of Mn-induced neurotoxicity .
Collapse
Affiliation(s)
- Prashant Tarale
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.,Schools of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Saravanadevi Sivanesan
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| | - Atul P Daiwile
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Reinhard Stöger
- Schools of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Amit Bafana
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Pravin K Naoghare
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Devendra Parmar
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, 226001, India
| | - Tapan Chakrabarti
- Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010, India
| | - Krishnamurthi Kannan
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| |
Collapse
|
338
|
Vecoli C, Montano L, Andreassi MG. Environmental pollutants: genetic damage and epigenetic changes in male germ cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23339-23348. [PMID: 27672044 DOI: 10.1007/s11356-016-7728-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 05/04/2023]
Abstract
About a quarter of the human diseases occurs for exposure to air pollution. The male reproductive system, and especially spermatogenesis, seems to be particularly sensitive. As result, male infertility is increasing in industrial countries becoming a top priority for public health. In addition to psychological distress and economic constraints, poorer semen quality may have trans-generational effects including congenital malformations in the offspring and predispose to later onset adult diseases. Genetic and epigenetic alterations are involved in the failure of spermatogenesis. In this paper, we reviewed the major evidences of the effects of air pollutants on male infertility as well as the role of sperm DNA damage and epigenetic changes in affecting spermatogenesis. A better knowledge on the effects of air contaminants on the molecular mechanisms leading to infertility is of huge importance to help clinicians in identifying the cause of infertility but above all, in defining preventive and therapeutic protocols.
Collapse
Affiliation(s)
- Cecilia Vecoli
- Institute of Clinical Physiology-CNR, via G.Moruzzi 1, 56124, Pisa, Italy.
| | - Luigi Montano
- Andrology Unit of the "San Francesco d'Assisi" Hospital - ASL Salerno, EcoFoodFertility Project Coordination Unit, via M. Clemente, 84020, Oliveto Citra, SA, Italy
| | | |
Collapse
|
339
|
Cho Y, Song MK, Jeong SC, Lee K, Heo Y, Kim TS, Ryu JC. MicroRNA response of inhalation exposure to hexanal in lung tissues from Fischer 344 rats. ENVIRONMENTAL TOXICOLOGY 2016; 31:1909-1921. [PMID: 26403475 DOI: 10.1002/tox.22192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/24/2015] [Accepted: 08/29/2015] [Indexed: 06/05/2023]
Abstract
In previous studies, we have investigated the relationships between environmental chemicals and health risk based on omics analysis and identified significant biomarkers. Our current findings indicate that hexanal may be an important toxicant of the pulmonary system in epigenetic insights. MicroRNA (miRNA) is an important indicator of biomedical risk assessment and target identification. Hexanal is highly detectable in the exhaled breath of patients with chronic obstructive pulmonary disease (COPD) and chronic inflammatory lung disease. In this study, we aimed to identify hexanal-characterized miRNA-mRNA correlations involved in lung toxicity. Microarray analysis identified 56 miRNAs that commonly changed their expression more than 1.3-fold in three doses (600, 1000, and 1500 ppm) within hexanal-exposed Fischer 344 rats by inhalation, and 226 genes were predicted to be target genes of miRNAs through TargetScan analysis. By integrating analyses of miRNA and mRNA expression profiles, we identified one anti-correlated target gene (Chga; chromogranin A; parathyroid secretory protein 1). Comparative toxicogenomics database (CTD) analysis of this gene showed that Chga is involved with several disease categories such as cancer, respiratory tract disease, nervous system disease, and cardiovascular disease. Further research is necessary to elucidate the mechanisms of hexanal-responsive toxicologic pathways at the molecular level. This study concludes that our integrated approach to miRNA and mRNA enables us to identify molecular events in disease development induced by hexanal in an in vivo rat model. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1909-1921, 2016.
Collapse
Affiliation(s)
- Yoon Cho
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-701, Korea
| | - Mi-Kyung Song
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Seung-Chan Jeong
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
| | - Kyuhong Lee
- Human and Environmental Toxicology, University of Science and Technology, Gajeong-Ro 217, Yuseong-Gu, Daejeon, 305-350, Korea
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, 30, Baekhak 1-Gil, Jeongeup-Si, Jeollabuk-Do, 580-185, Korea
| | - Yongju Heo
- Human and Environmental Toxicology, University of Science and Technology, Gajeong-Ro 217, Yuseong-Gu, Daejeon, 305-350, Korea
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, 30, Baekhak 1-Gil, Jeongeup-Si, Jeollabuk-Do, 580-185, Korea
| | - Tae Sung Kim
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, 136-701, Korea
| | - Jae-Chun Ryu
- Center for Environment, Health and Welfare Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul, 130-650, Korea
- Human and Environmental Toxicology, University of Science and Technology, Gajeong-Ro 217, Yuseong-Gu, Daejeon, 305-350, Korea
| |
Collapse
|
340
|
Vecoli C, Pulignani S, Andreassi MG. Genetic and Epigenetic Mechanisms Linking Air Pollution and Congenital Heart Disease. J Cardiovasc Dev Dis 2016; 3:jcdd3040032. [PMID: 29367575 PMCID: PMC5715723 DOI: 10.3390/jcdd3040032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/08/2016] [Accepted: 11/26/2016] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies strongly suggest that parental air pollutants exposure during the periconceptional period may play a major role in causing fetal/newborn malformations, including a frequent heterogeneity in the methods applied and a difficulty in estimating the clear effect of environmental toxicants. Moreover, only some couples exposed to toxicants during the pre-conception period give birth to a child with congenital anomalies. The reasons for such phenomena remain elusive but they can be explained by the individual, innate ability to metabolize these contaminants that eventually defines the ultimate dose of a biological active toxicant. In this paper, we reviewed the major evidence regarding the role of parental air pollutant exposure on congenital heart disease (CHD) risk as well as the modulating effect on detoxification systems. Finally, major epigenetic alterations induced by adverse environment contaminants have been revised as possible mechanisms altering a correct heart morphogenesis.
Collapse
Affiliation(s)
- Cecilia Vecoli
- Institute of Clinical Physiology-National Research Council (CNR), Via Moruzzi, 1 56124 Pisa, Italy.
| | - Silvia Pulignani
- Institute of Clinical Physiology-National Research Council (CNR), Via Moruzzi, 1 56124 Pisa, Italy.
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology-National Research Council (CNR), Via Moruzzi, 1 56124 Pisa, Italy.
| |
Collapse
|
341
|
Senyildiz M, Alpertunga B, Ozden S. DNA methylation analysis in rat kidney epithelial cells exposed to 3-MCPD and glycidol. Drug Chem Toxicol 2016; 40:432-439. [PMID: 27884059 DOI: 10.1080/01480545.2016.1255951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been regarded as a rat carcinogen, which is known to induce Leydig-cell and mammary gland tumors in males, as well as kidney tumors in both genders. 3-MCPD is highly suspected to be a non-genotoxic carcinogen. 2,3-Epoxy-1-propanol (glycidol) can be formed via dehalogenation from 3-MCPD. We aimed to investigate the cytotoxic effects of 3-MCPD and glycidol, then to demonstrate the possible epigenetic mechanisms with global and gene-specific DNA methylation in rat kidney epithelial cells (NRK-52E). IC50 value of 3-MCPD was determined as 48 mM and 41.39 mM, whereas IC50 value of glycidol was 1.67 mM and 1.13 mM by MTT and NRU test, respectively. Decreased global DNA methylation at the concentrations of 100 μM and 1000 μM for 3-MCPD and 100 μM and 500 μM for glycidol were observed after 48 h exposure by using 5-methylcytosine (5-mC) ELISA kit. Methylation changes were detected in promoter regions of c-myc and Rassf1a in 3-MCPD and glycidol treated NRK-52E cells by using methylation-specific PCR (MSP), whereas changes on gene expression of c-myc and Rassf1a were observed by using real-time PCR. However, e-cadherin, p16, VHL and p15 genes were unmethylated in their CpG promoter regions in response to treatment with 3-MCPD and glycidol. Alterations in DNA methylation might be key events in the toxicity of 3-MCPD and glycidol.
Collapse
Affiliation(s)
- Mine Senyildiz
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Istanbul University , Istanbul , Turkey
| | - Buket Alpertunga
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Istanbul University , Istanbul , Turkey
| | - Sibel Ozden
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Istanbul University , Istanbul , Turkey
| |
Collapse
|
342
|
Leclercq B, Happillon M, Antherieu S, Hardy EM, Alleman LY, Grova N, Perdrix E, Appenzeller BM, Lo Guidice JM, Coddeville P, Garçon G. Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM 4. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1074-1088. [PMID: 27593349 DOI: 10.1016/j.envpol.2016.08.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/24/2016] [Accepted: 08/24/2016] [Indexed: 05/25/2023]
Abstract
While the knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects is still incomplete, detailed in vitro studies are highly needed. With the aim of getting closer to the human in vivo conditions and better integrating a number of factors related to pre-existing chronic pulmonary inflammatory, we sought to develop primary cultures of normal human bronchial epithelial (NHBE) cells and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells, grown at the air-liquid interface. Pan-cytokeratin and MUC5AC immunostaining confirmed the specific cell-types of both these healthy and diseased cell models and showed they are closed to human bronchial epithelia. Thereafter, healthy and diseased cells were repeatedly exposed to air pollution-derived PM4 at the non-cytotoxic concentration of 5 μg/cm2. The differences between the oxidative and inflammatory states in non-exposed NHBE and COPD-DHBE cells indicated that diseased cells conserved their specific physiopathological characteristics. Increases in both oxidative damage and cytokine secretion were reported in repeatedly exposed NHBE cells and particularly in COPD-DHBE cells. Diseased cells repeatedly exposed had lower capacities to metabolize the organic chemicals-coated onto the air-pollution-derived PM4, such as benzo[a]pyrene (B[a]P), but showed higher sensibility to the formation of OH-B[a]P DNA adducts, because their diseased state possibly affected their defenses. Differential profiles of epigenetic hallmarks (i.e., global DNA hypomethylation, P16 promoter hypermethylation, telomere length shortening, telomerase activation, and histone H3 modifications) occurred in repeatedly exposed NHBE and particularly in COPD-DHBE cells. Taken together, these results closely supported the highest responsiveness of COPD-DHBE cells to a repeated exposure to air pollution-derived PM4. The use of these innovative in vitro exposure systems such as NHBE and COPD-DHBE cells could therefore be consider as a very useful and powerful promising tool in the field of the respiratory toxicology, taking into account sensitive individuals.
Collapse
Affiliation(s)
- B Leclercq
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - M Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - S Antherieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - E M Hardy
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - L Y Alleman
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - N Grova
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - E Perdrix
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - B M Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - P Coddeville
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France.
| |
Collapse
|
343
|
Dorts J, Falisse E, Schoofs E, Flamion E, Kestemont P, Silvestre F. DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation. Sci Rep 2016; 6:34254. [PMID: 27731414 PMCID: PMC5059630 DOI: 10.1038/srep34254] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/08/2016] [Indexed: 12/23/2022] Open
Abstract
DNA methylation, a well-studied epigenetic mark, is important for gene regulation in adulthood and for development. Using genetic and epigenetic approaches, the present study aimed at evaluating the effects of heat stress and copper exposure during zebrafish early embryogenesis when patterns of DNA methylation are being established, a process called reprogramming. Embryos were exposed to 325 μg Cu/L from fertilization (<1 h post fertilization - hpf) to 4 hpf at either 26.5 °C or 34 °C, followed by incubation in clean water at 26.5 °C till 96 hpf. Significant increased mortality rates and delayed hatching were observed following exposure to combined high temperature and Cu. Secondly, both stressors, alone or in combination, significantly upregulated the expression of de novo DNA methyltransferase genes (dnmt3) along with no differences in global cytosine methylation level. Finally, Cu exposure significantly increased the expression of metallothionein (mt2) and heat shock protein (hsp70), the latter being also increased following exposure to high temperature. These results highlighted the sensitivity of early embryogenesis and more precisely of the reprogramming period to environmental challenges, in a realistic situation of combined stressors.
Collapse
Affiliation(s)
- Jennifer Dorts
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Elodie Falisse
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Emilie Schoofs
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Frédéric Silvestre
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
344
|
Qiu W, Wan E, Morrow J, Cho MH, Crapo JD, Silverman EK, DeMeo DL. The impact of genetic variation and cigarette smoke on DNA methylation in current and former smokers from the COPDGene study. Epigenetics 2016; 10:1064-73. [PMID: 26646902 DOI: 10.1080/15592294.2015.1106672] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
DNA methylation can be affected by systemic exposures, such as cigarette smoking and genetic sequence variation; however, the relative impact of each on the epigenome is unknown. We aimed to assess if cigarette smoking and genetic variation are associated with overlapping or distinct sets of DNA methylation marks and pathways. We selected 85 Caucasian current and former smokers with genome-wide single nucleotide polymorphism (SNP) genotyping available from the COPDGene study. Genome-wide methylation was obtained on DNA from whole blood using the Illumina HumanMethylation27 platform. To determine the impact of local sequence variation on DNA methylation (mQTL), we examined the association between methylation and SNPs within 50 kb of each CpG site. To examine the impact of cigarette smoking on DNA methylation, we examined the differences in methylation by current cigarette smoking status. We detected 770 CpG sites annotated to 708 genes associated at an FDR < 0.05 in the cis-mQTL analysis and 1,287 CpG sites annotated to 1,242 genes, which were nominally associated in the smoking-CpG association analysis (P(unadjusted) < 0.05). Forty-three CpG sites annotated to 40 genes were associated with both SNP variation and current smoking; this overlap was not greater than that expected by chance. Our results suggest that cigarette smoking and genetic variants impact distinct sets of DNA methylation marks, the further elucidation of which may partially explain the variable susceptibility to the health effects of cigarette smoking. Ascertaining how genetic variation and systemic exposures differentially impact the human epigenome has relevance for both biomarker identification and therapeutic target development for smoking-related diseases.
Collapse
Affiliation(s)
- Weiliang Qiu
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Emily Wan
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Jarrett Morrow
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Michael H Cho
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | | | - Edwin K Silverman
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Dawn L DeMeo
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| |
Collapse
|
345
|
Veras MM, de Oliveira Alves N, Fajersztajn L, Saldiva P. Before the first breath: prenatal exposures to air pollution and lung development. Cell Tissue Res 2016; 367:445-455. [PMID: 27726025 DOI: 10.1007/s00441-016-2509-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
Various environmental contaminants are known to impair the growth trajectories of major organs, indirectly (gestational exposure) or directly (postnatal exposure). Evidence associates pre-gestational and gestational exposure to air pollutants with adverse birth outcomes (e.g., low birth weight, prematurity) and with a wide range of diseases in childhood and later in life. In this review, we explore the way that pre-gestational and gestational exposure to air pollution affects lung development. We present results in topics underlining epidemiological and toxicological evidence. We also provide a summary of the biological mechanisms by which air pollution exposure possibly leads to adverse respiratory outcomes. We conclude that gestational and early life exposure to air pollutants are linked to alterations in lung development and function and to other negative respiratory conditions in childhood (wheezing, asthma) that may last into adulthood. Plausible mechanisms encompass changes in maternal physiology (e.g., hypoxia, oxidative stress and inflammation) and DNA alterations in the fetus. Evidence for pre-gestational and gestational effects on the lung is scarce compared with that on early life exposure and further studies are needed. However, the suggested mechanisms are credible and the evidence of pre-gestational and gestational air pollution exposure is robust for adverse birth outcomes. Air pollutants might change lung developmental trajectories of the unborn child predisposing it to diseases later in life highlighting the urgent need for controls on urban air pollution levels worldwide.
Collapse
Affiliation(s)
- Mariana Matera Veras
- Laboratory of Environmental Air Pollution, LIM05, Department of Pathology, University of Sao Paulo School of Medicine, Av. Dr. Arnaldo 455 (1st floor, Room 1220), 01246-903, Sao Paulo, SP, Brazil.
- Department of Surgery, Sector of Anatomy, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Nilmara de Oliveira Alves
- Laboratory of Environmental Air Pollution, LIM05, Department of Pathology, University of Sao Paulo School of Medicine, Av. Dr. Arnaldo 455 (1st floor, Room 1220), 01246-903, Sao Paulo, SP, Brazil
| | - Lais Fajersztajn
- Laboratory of Environmental Air Pollution, LIM05, Department of Pathology, University of Sao Paulo School of Medicine, Av. Dr. Arnaldo 455 (1st floor, Room 1220), 01246-903, Sao Paulo, SP, Brazil
- Advanced Study Institute, University of Sao Paulo (IEA-USP), Sao Paulo, Brazil
| | - Paulo Saldiva
- Laboratory of Environmental Air Pollution, LIM05, Department of Pathology, University of Sao Paulo School of Medicine, Av. Dr. Arnaldo 455 (1st floor, Room 1220), 01246-903, Sao Paulo, SP, Brazil
- Advanced Study Institute, University of Sao Paulo (IEA-USP), Sao Paulo, Brazil
| |
Collapse
|
346
|
Khan I, Senthilkumar CS, Upadhyay N, Singh H, Sachdeva M, Jatawa SK, Tiwari A. In silico docking of methyl isocyanate (MIC) and its hydrolytic product (1, 3-dimethylurea) shows significant interaction with DNA Methyltransferase 1 suggests cancer risk in Bhopal-Gas- Tragedy survivors. Asian Pac J Cancer Prev 2016; 16:7663-70. [PMID: 26625778 DOI: 10.7314/apjcp.2015.16.17.7663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) is a relatively large protein family responsible for maintenance of normal methylation, cell growth and survival in mammals. Toxic industrial chemical exposure associated methylation misregulation has been shown to have epigenetic influence. Such misregulation could effectively contribute to cancer development and progression. Methyl isocyanate (MIC) is a noxious industrial chemical used extensively in the production of carbamate pesticides. We here applied an in silico molecular docking approach to study the interaction of MIC with diverse domains of DNMT1, to predict cancer risk in the Bhopal population exposed to MIC during 1984. For the first time, we investigated the interaction of MIC and its hydrolytic product (1,3-dimethylurea) with DNMT1 interacting (such as DMAP1, RFTS, and CXXC) and catalytic (SAM, SAH, and Sinefungin) domains using computer simulations. The results of the present study showed a potential interaction of MIC and 1,3-dimethylurea with these domains. Obviously, strong binding of MIC with DNMT1 interrupting normal methylation will lead to epigenetic alterations in the exposed humans. We suggest therefore that the MIC- exposed individuals surviving after 1984 disaster have excess risk of cancer, which can be attributed to alterations in their epigenome. Our findings will help in better understanding the underlying epigenetic mechanisms in humans exposed to MIC.
Collapse
Affiliation(s)
- Inbesat Khan
- School of Biotechnology, Rajiv Gandhi Technological University, Bhopal, India E-mail :
| | | | | | | | | | | | | |
Collapse
|
347
|
Patil NA, Gade WN, Deobagkar DD. Epigenetic modulation upon exposure of lung fibroblasts to TiO 2 and ZnO nanoparticles: alterations in DNA methylation. Int J Nanomedicine 2016; 11:4509-4519. [PMID: 27660443 PMCID: PMC5019426 DOI: 10.2147/ijn.s110390] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) are promising candidates for numerous applications in consumer products. This will lead to increased human exposure, thus posing a threat to human health. Both these types of NPs have been studied for their cell toxicity, immunotoxicity, and genotoxicity. However, effects of these NPs on epigenetic modulations have not been studied. Epigenetics is an important link in the genotype and phenotype modulation and misregulation can often lead to lifestyle diseases. In this study, we have evaluated the DNA methylation-based epigenetic changes upon exposure to various concentrations of NPs. The investigation was designed to evaluate global DNA methylation, estimating the corresponding methyltransferase activity and expression of Dnmt gene using lung fibroblast (MRC5) cell line as lungs are the primary route of entry and target of occupational exposure to TiO2 and ZnO NPs. Enzyme-linked immunosorbent assay-based immunochemical assay revealed dose-related decrease in global DNA methylation and DNA methyltransferase activity. We also found direct correlation between the concentration of NPs, global methylation levels, and expression levels of Dnmt1, 3A, and 3B genes upon exposure. This is the first study to investigate effect of exposure to TiO2 and ZnO on DNA methylation levels in MRC5 cells. Epigenetic processes are known to play an important role in reprogramming and adaptation ability of an organism and can have long-term consequences. We suggest that changes in DNA methylation can serve as good biomarkers for early exposure to NPs since they occur at concentrations well below the sublethal levels. Our results demonstrate a clear epigenetic alteration in response to metal oxide NPs and that this effect was dose-dependent.
Collapse
Affiliation(s)
- Nayana A Patil
- Department of Zoology, Molecular Biology Research Laboratory, Centre of Advanced Studies; Department of Biotechnology, Proteomic Research Laboratory, Savitribai Phule Pune University, Pune, India
| | - W N Gade
- Department of Biotechnology, Proteomic Research Laboratory, Savitribai Phule Pune University, Pune, India
| | - Deepti D Deobagkar
- Department of Zoology, Molecular Biology Research Laboratory, Centre of Advanced Studies
| |
Collapse
|
348
|
Tang KY, Yu CH, Jiang L, Gong M, Liu WJ, Wang Y, Cui NX, Song W, Sun Y, Yi ZC. Long-term exposure of K562 cells to benzene metabolites inhibited erythroid differentiation and elevated methylation in erythroid specific genes. Toxicol Res (Camb) 2016; 5:1284-1297. [PMID: 30090432 DOI: 10.1039/c6tx00143b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
Benzene is a common occupational hazard and a widespread environmental pollutant. Previous studies have revealed that 72 h exposure to benzene metabolites inhibited hemin-induced erythroid differentiation of K562 cells accompanied with elevated methylation in erythroid specific genes. However, little is known about the effects of long-term and low-dose benzene metabolite exposure. In this study, to elucidate the effects of long-term benzene metabolite exposure on erythroid differentiation, K562 cells were treated with low-concentration phenol, hydroquinone and 1,2,4-benzenetriol for at least 3 weeks. After exposure of K562 cells to benzene metabolites, hemin-induced hemoglobin synthesis declined in a concentration- and time-dependent manner, and the hemin-induced expressions of α-, β- and γ-globin genes and heme synthesis enzyme porphobilinogen deaminase were significantly suppressed. Furthermore, when K562 cells were continuously cultured without benzene metabolites for another 20 days after exposure to benzene metabolites for 4 weeks, the decreased erythroid differentiation capabilities still remained stable in hydroquinone- and 1,2,4-benzenetriol-exposed cells, but showed a slow increase in phenol-exposed K562 cells. In addition, methyltransferase inhibitor 5-aza-2'-deoxycytidine significantly blocked benzene metabolites inhibiting hemoglobin synthesis and expression of erythroid genes. Quantitative MassARRAY methylation analysis also confirmed that the exposure to benzene metabolites increased DNA methylation levels at several CpG sites in several erythroid-specific genes and their far-upstream regulatory elements. These results demonstrated that long-term and low-dose exposure to benzene metabolites inhibited the hemin-induced erythroid differentiation of K562 cells, in which DNA methylation played a role through the suppression of erythroid specific genes.
Collapse
Affiliation(s)
- K Y Tang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China . .,State Key Laboratory of Transducer Technology , Chinese Academy of Sciences , Beijing , China
| | - C H Yu
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - L Jiang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - M Gong
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - W J Liu
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - Y Wang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - N X Cui
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - W Song
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - Y Sun
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China . .,State Key Laboratory of Transducer Technology , Chinese Academy of Sciences , Beijing , China
| | - Z C Yi
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| |
Collapse
|
349
|
Abstract
An individual's risk of developing a common disease typically depends on an interaction of genetic and environmental factors. Epigenetic research is uncovering novel ways through which environmental factors such as diet, air pollution, and chemical exposure can affect our genes. DNA methylation and histone modifications are the most commonly studied epigenetic mechanisms. The role of long non-coding RNAs (lncRNAs) in epigenetic processes has been more recently highlighted. LncRNAs are defined as transcribed RNA molecules greater than 200 nucleotides in length with little or no protein-coding capability. While few functional lncRNAs have been well characterized to date, they have been demonstrated to control gene regulation at every level, including transcriptional gene silencing via regulation of the chromatin structure and DNA methylation. This review aims to provide a general overview of lncRNA function with a focus on their role as key regulators of health and disease and as biomarkers of environmental exposure.
Collapse
Affiliation(s)
- Oskar Karlsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
350
|
Biphasic reduction of histone H3 phosphorylation in response to N-nitroso compounds induced DNA damage. Biochim Biophys Acta Gen Subj 2016; 1860:1836-44. [DOI: 10.1016/j.bbagen.2016.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/08/2016] [Accepted: 05/20/2016] [Indexed: 02/08/2023]
|