301
|
Zhang Y, Wang DC, Shi L, Zhu B, Min Z, Jin J. Genome analyses identify the genetic modification of lung cancer subtypes. Semin Cancer Biol 2017; 42:20-30. [DOI: 10.1016/j.semcancer.2016.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022]
|
302
|
Wanichthanarak K, Fan S, Grapov D, Barupal DK, Fiehn O. Metabox: A Toolbox for Metabolomic Data Analysis, Interpretation and Integrative Exploration. PLoS One 2017; 12:e0171046. [PMID: 28141874 PMCID: PMC5283729 DOI: 10.1371/journal.pone.0171046] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 01/22/2023] Open
Abstract
Similar to genomic and proteomic platforms, metabolomic data acquisition and analysis is becoming a routine approach for investigating biological systems. However, computational approaches for metabolomic data analysis and integration are still maturing. Metabox is a bioinformatics toolbox for deep phenotyping analytics that combines data processing, statistical analysis, functional analysis and integrative exploration of metabolomic data within proteomic and transcriptomic contexts. With the number of options provided in each analysis module, it also supports data analysis of other 'omic' families. The toolbox is an R-based web application, and it is freely available at http://kwanjeeraw.github.io/metabox/ under the GPL-3 license.
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Sili Fan
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Dmitry Grapov
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Dinesh Kumar Barupal
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Oliver Fiehn
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
303
|
SPSB1-mediated HnRNP A1 ubiquitylation regulates alternative splicing and cell migration in EGF signaling. Cell Res 2017; 27:540-558. [PMID: 28084329 DOI: 10.1038/cr.2017.7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022] Open
Abstract
Extracellular signals have been shown to impact on alternative pre-mRNA splicing; however, the molecular mechanisms and biological significance of signal-induced splicing regulation remain largely unknown. Here, we report that epidermal growth factor (EGF) induces splicing changes through ubiquitylation of a well-known splicing regulator, hnRNP A1. EGF signaling upregulates an E3 ubiquitin (Ub) ligase adaptor, SPRY domain-containing SOCS box protein 1 (SPSB1), which recruits Elongin B/C-Cullin complexes to conjugate lysine 29-linked polyUb chains onto hnRNP A1. Importantly, SPSB1 and ubiquitylation of hnRNP A1 have a critical role in EGF-driven cell migration. Mechanistically, EGF-induced ubiquitylation of hnRNP A1 together with the activation of SR protein kinases (SRPKs) results in the upregulation of a Rac1 splicing isoform, Rac1b, to promote cell motility. These findings unravel a novel crosstalk between protein ubiquitylation and alternative splicing in EGF/EGF receptor signaling, and identify a new EGF/SPSB1/hnRNP A1/Rac1 axis in modulating cell migration, which may have important implications for cancer treatment.
Collapse
|
304
|
Mishra N, Timilsina U, Ghimire D, Dubey RC, Gaur R. Downregulation of cytochrome c oxidase subunit 7A1 expression is important in enhancing cell proliferation in adenocarcinoma cells. Biochem Biophys Res Commun 2017; 482:713-719. [DOI: 10.1016/j.bbrc.2016.11.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|
305
|
DNA Methylation Identifies Loci Distinguishing Hereditary Nonpolyposis Colorectal Cancer Without Germ-Line MLH1/MSH2 Mutation from Sporadic Colorectal Cancer. Clin Transl Gastroenterol 2016; 7:e208. [PMID: 27977020 PMCID: PMC5288582 DOI: 10.1038/ctg.2016.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Objectives: Roughly half of hereditary nonpolyposis colorectal cancer (HNPCC) cases are Lynch syndrome and exhibit germ-line mutations in DNA mismatch repair (MMR) genes; the other half are familial colorectal cancer (CRC) type X (FCCTX) and are MMR proficient. About 70% of Lynch syndrome tumors have germ-line MLH1 or MSH2 mutations. The clinical presentation, histopathological features, and carcinogenesis of FCCTX resemble those of sporadic MMR-proficient colorectal tumors. It is of interest to obtain biomarkers that distinguish FCCTX from sporadic microsatellite stable (MSS) CRC, to develop preventive strategies. Methods: The tumors and adjacent normal tissues of 40 patients with HNPCC were assayed using the Illumina Infinium HumanMethylation27 (HM27) BeadChip to assess the DNA methylation level at about 27,000 loci. The germ-line mutation status of MLH1 and MSH2 and the microsatellite instability status in these patients were obtained. Genome-wide DNA methylation measurements of three groups of patients with general CRC were downloaded from public domain databases. Probes with DNA methylation levels that differed significantly between patients with sporadic MSS CRC and FCCTX were examined, to explore their potential as biomarkers. Results: We found that MSS HNPCC tumors were overwhelmingly hypomethylated compared with those from patient groups with other types of CRC, including germ-line MLH1/MSH2-mutated HNPCC and sporadic MSS CRC. Five gene-marker panels that exhibited a sensitivity of 100% and a specificity higher than 90% in both discovery and validation cohorts were proposed to distinguish MSS HNPCC tumors from sporadic MSS CRC. Conclusions: Our results warrant further investigation and validation. The loci identified here may become useful biomarkers for distinguishing between FCCTX and sporadic MSS CRC tumors.
Collapse
|
306
|
Bossé Y, Sazonova O, Gaudreault N, Bastien N, Conti M, Pagé S, Trahan S, Couture C, Joubert P. Transcriptomic Microenvironment of Lung Adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2016; 26:389-396. [PMID: 27956437 DOI: 10.1158/1055-9965.epi-16-0604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/04/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022] Open
Abstract
Background: Tissues surrounding tumors are increasingly studied to understand the biology of cancer development and identify biomarkers.Methods: A unique geographic tissue sampling collection was obtained from patients that underwent curative lobectomy for stage I pulmonary adenocarcinoma. Tumor and nontumor lung samples located at 0, 2, 4, and 6 cm away from the tumor were collected. Whole-genome gene expression profiling was performed on all samples (n = 5 specimens × 12 patients = 60). Analyses were carried out to identify genes differentially expressed in the tumor compared with adjacent nontumor lung tissues at different distances from the tumor as well as to identify stable and transient genes in nontumor tissues with respect to tumor proximity.Results: The magnitude of gene expression changes between tumor and nontumor sites was similar with increasing distance from the tumor. A total of 482 up- and 843 downregulated genes were found in tumors, including 312 and 566 that were consistently differentially expressed across nontumor sites. Twenty-nine genes induced and 34 knocked-down in tumors were also identified. Tumor proximity analyses revealed 15,700 stable genes in nontumor lung tissues. Gene expression changes across nontumor sites were subtle and not statistically significant.Conclusions: This study describes the transcriptomic microenvironment of lung adenocarcinoma and adjacent nontumor lung tissues collected at standardized distances relative to the tumor.Impact: This study provides further insights about the molecular transitions that occur from normal tissue to lung adenocarcinoma and is an important step to develop biomarkers in nonmalignant lung tissues. Cancer Epidemiol Biomarkers Prev; 26(3); 389-96. ©2016 AACR.
Collapse
Affiliation(s)
- Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada. .,Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Olga Sazonova
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Nathalie Gaudreault
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Nathalie Bastien
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Massimo Conti
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Sylvain Pagé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Sylvain Trahan
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Christian Couture
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| |
Collapse
|
307
|
Zhao J, Liu J, Lee JF, Zhang W, Kandouz M, VanHecke GC, Chen S, Ahn YH, Lonardo F, Lee MJ. TGF-β/SMAD3 Pathway Stimulates Sphingosine-1 Phosphate Receptor 3 Expression: IMPLICATION OF SPHINGOSINE-1 PHOSPHATE RECEPTOR 3 IN LUNG ADENOCARCINOMA PROGRESSION. J Biol Chem 2016; 291:27343-27353. [PMID: 27856637 DOI: 10.1074/jbc.m116.740084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
Previously, we showed that levels of sphingosine-1 phosphate receptor 3 (S1PR3) are increased in a panel of cultured human lung adenocarcinoma cell lines, and that S1PR3-mediated signaling pathways regulate proliferation, soft agar growth, and invasion of human lung adenocarcinoma cells in vitro In the present study, we examine S1PR3 levels in human lung adenocarcinoma specimens. cDNA array and tumor microarray analysis shows that mRNA and protein levels of S1PR3 are significantly increased in human lung adenocarcinomas when compared with normal lung epithelial cells. Promoter analysis shows 16 candidate SMAD3 binding sites in the promoter region of S1PR3. ChIP indicates that TGF-β treatment stimulates the binding of SMAD3 to the promoter region of S1PR3. Luciferase reporter assay demonstrates that SMAD3 transactivates S1PR3 promoter. TGF-β stimulation or ectopic expression of TGF-β up-regulates S1PR3 levels in vitro and ex vivo Pharmacologic inhibition of TGF-β receptor or SMAD3 abrogates the TGF-β-stimulated S1PR3 up-regulation. Moreover, S1PR3 knockdown dramatically inhibits tumor growth and lung metastasis, whereas ectopic expression of S1PR3 promotes the growth of human lung adenocarcinoma cells in animals. Pharmacological inhibition of S1PR3 profoundly inhibits the growth of lung carcinoma in mice. Our studies suggest that levels of S1PR3 are up-regulated in human lung adenocarcinomas, at least in part due to the TGF-β/SMAD3 signaling axis. Furthermore, S1PR3 activity promotes the progression of human lung adenocarcinomas. Therefore, S1PR3 may represent a novel therapeutic target for the treatment of deadly lung adenocarcinomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiyou Chen
- the Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| | | | - Fulvio Lonardo
- From the Departments of Pathology and.,Karmanos Cancer Institute, and
| | - Menq-Jer Lee
- From the Departments of Pathology and .,Karmanos Cancer Institute, and.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan 48201 and
| |
Collapse
|
308
|
Liu Q, Li A, Tian Y, Liu Y, Li T, Zhang C, Wu JD, Han X, Wu K. The expression profile and clinic significance of the SIX family in non-small cell lung cancer. J Hematol Oncol 2016; 9:119. [PMID: 27821176 PMCID: PMC5100270 DOI: 10.1186/s13045-016-0339-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The SIX family homeobox genes have been demonstrated to be involved in the tumor initiation and progression, but their clinicopathological features and prognostic values in non-small cell lung cancer (NSCLC) have not been well defined. We analyzed relevant datasets and performed a systemic review and a meta-analysis to assess the profile of SIX family members in NSCLC and evaluate their importance as biomarkers for diagnosis and prediction of NSCLC. METHODS This meta-analysis included 17 studies with 2358 patients. Hazard ratio (HR) and 95 % confidence interval (CI) were calculated to represent the prognosis of NSCLC with expression of the SIX family genes. Heterogeneity of the ORs and HRs was assessed and quantified using the Cochrane Q and I 2 test. Begg's rank correlation method and Egger's weighted regression method were used to screen for potential publication bias. Bar graphs of representative datasets were plotted to show the correlation between the SIX expression and clinicopathological features of NSCLC. Kaplan-Meier survival curves were used to validate our prognostic analysis by pooled HR. RESULTS The systematic meta-analysis unveiled that the higher expressions of SIX1-5 were associated with the greater possibility of the tumorigenesis. SIX4 and SIX6 were linked to the lymph node metastasis (LNM). SIX2, SIX3, and SIX4 were correlated with higher TNM stages. Furthermore, the elevated expressions of SIX2, SIX4, and SIX6 predicted poor overall survival (OS) in NSCLC (SIX2: HR = 1.14, 95 % CI, 1.00-1.31; SIX4: HR = 1.39, 95 % CI, 1.16-1.66; SIX6: HR = 1.18, 95 % CI, 1.00-1.38) and poor relapse-free survival (RFS) in lung adenocarcinoma (ADC) (SIX2: HR = 1.42, 95 % CI, 1.14-1.77; SIX4: HR = 1.52, 95 % CI, 1.09-2.11; SIX6: HR = 1.25, 95 % CI, 1.01-1.56). CONCLUSIONS Our report demonstrated that the SIX family members play distinct roles in the tumorigenesis of NSCLC and can be potential biomarkers in predicting prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anping Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yijun Tian
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Liu
- Department of Geriatric, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cuntai Zhang
- Department of Geriatric, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jennifer D Wu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
309
|
Yue X, Zhao Y, Huang G, Li J, Zhu J, Feng Z, Hu W. A novel mutant p53 binding partner BAG5 stabilizes mutant p53 and promotes mutant p53 GOFs in tumorigenesis. Cell Discov 2016; 2:16039. [PMID: 27807478 PMCID: PMC5088412 DOI: 10.1038/celldisc.2016.39] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023] Open
Abstract
Tumor suppressor p53 is the most frequently mutated gene in human tumors. Many tumor-associated mutant p53 (mutp53) proteins gain new tumor-promoting activities, including increased proliferation, metastasis and chemoresistance of tumor cells, which are defined as gain-of-functions (GOFs). Mutp53 proteins often accumulate at high levels in human tumors, which is important for mutp53 to exert their GOFs. The mechanism underlying mutp53 proteins accumulation in tumors is not fully understood. Here, we report that BAG5, a member of Bcl-2-associated athanogene (BAG) family proteins, promotes mutp53 accumulation in tumors, which in turn enhances mutp53 GOFs. Mechanistically, BAG5 interacts with mutp53 proteins to protect mutp53 from ubiquitination and degradation by E3 ubiquitin ligases MDM2 and CHIP, which in turn promotes mutp53 protein accumulation and therefore GOFs in promoting cell proliferation, tumor growth, cell migration and chemoresistance. BAG5 is frequently overexpressed in many human tumors and the overexpression of BAG5 is associated with poor prognosis of cancer patients. Altogether, this study revealed that inhibition of mutp53 degradation by BAG5 is a novel and critical mechanism underlying mutp53 protein accumulation and GOFs in cancer. Furthermore, our results also uncovered that promoting mutp53 accumulation and GOFs is a novel mechanism of BAG5 in tumorigenesis.
Collapse
Affiliation(s)
- Xuetian Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey , New Brunswick, NJ, USA
| | - Yuhan Zhao
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey , New Brunswick, NJ, USA
| | - Grace Huang
- Department of Environmental Medicine, Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey , New Brunswick, NJ, USA
| | - Junlan Zhu
- Department of Environmental Medicine, Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo, NY, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey , New Brunswick, NJ, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA; Department of Pharmacology, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
310
|
Maman S, Sagi-Assif O, Yuan W, Ginat R, Meshel T, Zubrilov I, Keisari Y, Lu W, Lu W, Witz IP. The Beta Subunit of Hemoglobin (HBB2/HBB) Suppresses Neuroblastoma Growth and Metastasis. Cancer Res 2016; 77:14-26. [PMID: 27793844 DOI: 10.1158/0008-5472.can-15-2929] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 10/01/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
Abstract
Soluble pulmonary factors have been reported to be capable of inhibiting the viability of cancer cells that metastasize to the lung, but the molecular identity was obscure. Here we report the isolation and characterization of the beta subunit of hemoglobin as a lung-derived antimetastatic factor. Peptide mapping in the beta subunit of human hemoglobin (HBB) defined a short C-terminal region (termed Metox) as responsible for activity. In tissue culture, both HBB and murine HBB2 mediated growth arrest and apoptosis of lung-metastasizing neuroblastoma cells, along with a variety of other human cancer cell lines. Metox acted similarly and its administration in human tumor xenograft models limited the development of adrenal neuroblastoma tumors as well as spontaneous lung and bone marrow metastases. Expression studies in mice indicated that HBB2 is produced by alveolar epithelial and endothelial cells and is upregulated in mice bearing undetectable metastasis. Our work suggested a novel function for HBB as a theranostic molecule: an innate antimetastasis factor with potential utility as an anticancer drug and a biomarker signaling the presence of clinically undetectable metastasis. Cancer Res; 77(1); 14-26. ©2016 AACR.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ravit Ginat
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Zubrilov
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yona Keisari
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
311
|
Biasiotta A, D'Arcangelo D, Passarelli F, Nicodemi EM, Facchiano A. Ion channels expression and function are strongly modified in solid tumors and vascular malformations. J Transl Med 2016; 14:285. [PMID: 27716384 PMCID: PMC5050926 DOI: 10.1186/s12967-016-1038-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
Background Several cellular functions relate to ion-channels activity. Physiologically relevant chains of events leading to angiogenesis, cell cycle and different forms of cell death, require transmembrane voltage control. We hypothesized that the unordered angiogenesis occurring in solid cancers and vascular malformations might associate, at least in part, to ion-transport alteration. Methods The expression level of several ion-channels was analyzed in human solid tumor biopsies. Expression of 90 genes coding for ion-channels related proteins was investigated within the Oncomine database, in 25 independent patients-datasets referring to five histologically-different solid tumors (namely, bladder cancer, glioblastoma, melanoma, breast invasive-ductal cancer, lung carcinoma), in a total of 3673 patients (674 control-samples and 2999 cancer-samples). Furthermore, the ion-channel activity was directly assessed by measuring in vivo the electrical sympathetic skin responses (SSR) on the skin of 14 patients affected by the flat port-wine stains vascular malformation, i.e., a non-tumor vascular malformation clinical model. Results Several ion-channels showed significantly increased expression in tumors (p < 0.0005); nine genes (namely, CACNA1D, FXYD3, FXYD5, HTR3A, KCNE3, KCNE4, KCNN4, CLIC1, TRPM3) showed such significant modification in at least half of datasets investigated for each cancer type. Moreover, in vivo analyses in flat port-wine stains patients showed a significantly reduced SSR in the affected skin as compared to the contralateral healthy skin (p < 0.05), in both latency and amplitude measurements. Conclusions All together these data identify ion-channel genes showing significantly modified expression in different tumors and cancer-vessels, and indicate a relevant electrophysiological alteration in human vascular malformations. Such data suggest a possible role and a potential diagnostic application of the ion–electron transport in vascular disorders underlying tumor neo-angiogenesis and vascular malformations.
Collapse
Affiliation(s)
| | - Daniela D'Arcangelo
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy
| | - Francesca Passarelli
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy
| | - Ezio Maria Nicodemi
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy.
| | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Fondazione Luigi Maria Monti, via Monti di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
312
|
Weng DY, Chen J, Taslim C, Hsu PC, Marian C, David SP, Loffredo CA, Shields PG. Persistent alterations of gene expression profiling of human peripheral blood mononuclear cells from smokers. Mol Carcinog 2016; 55:1424-37. [PMID: 26294040 PMCID: PMC4860148 DOI: 10.1002/mc.22385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/04/2015] [Accepted: 08/03/2015] [Indexed: 01/12/2023]
Abstract
The number of validated biomarkers of tobacco smoke exposure is limited, and none exist for tobacco-related cancer. Additional biomarkers for smoke, effects on cellular systems in vivo are needed to improve early detection of lung cancer, and to assist the Food and Drug Administration in regulating exposures to tobacco products. We assessed the effects of smoking on the gene expression using human cell cultures and blood from a cross-sectional study. We profiled global transcriptional changes in cultured smokers' peripheral blood mononuclear cells (PBMCs) treated with cigarette smoke condensate (CSC) in vitro (n = 7) and from well-characterized smokers' blood (n = 36). ANOVA with adjustment for covariates and Pearson correlation were used for statistical analysis in this study. CSC in vitro altered the expression of 1 178 genes (177 genes with > 1.5-fold-change) at P < 0.05. In vivo, PBMCs of heavy and light smokers differed for 614 genes (29 with > 1.5-fold-change) at P < 0.05 (309 remaining significant after adjustment for age, race, and gender). Forty-one genes were persistently altered both in vitro and in vivo, 22 having the same expression pattern reported for non-small cell lung cancer. Our data provides evidence that persistent alterations of gene expression in vitro and in vivo may relate to carcinogenic effects of cigarette smoke, and the identified genes may serve as potential biomarkers for cancer. The use of an in vitro model to corroborate results from human studies provides a novel way to understand human exposure and effect. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jinguo Chen
- Center for Human Immunology, National Institute of Health, Bethesda, Maryland
| | - Cenny Taslim
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ping-Ching Hsu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Catalin Marian
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- University of Medicine and Pharmacy, Timisoara, Romania
| | - Sean P David
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Christopher A Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
313
|
Girard L, Rodriguez-Canales J, Behrens C, Thompson DM, Botros IW, Tang H, Xie Y, Rekhtman N, Travis WD, Wistuba II, Minna JD, Gazdar AF. An Expression Signature as an Aid to the Histologic Classification of Non-Small Cell Lung Cancer. Clin Cancer Res 2016; 22:4880-4889. [PMID: 27354471 PMCID: PMC5492382 DOI: 10.1158/1078-0432.ccr-15-2900] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/12/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE Most non-small cell lung cancers (NSCLC) are now diagnosed from small specimens, and classification using standard pathology methods can be difficult. This is of clinical relevance as many therapy regimens and clinical trials are histology dependent. The purpose of this study was to develop an mRNA expression signature as an adjunct test for routine histopathologic classification of NSCLCs. EXPERIMENTAL DESIGN A microarray dataset of resected adenocarcinomas (ADC) and squamous cell carcinomas (SCC) was used as the learning set for an ADC-SCC signature. The Cancer Genome Atlas (TCGA) lung RNAseq dataset was used for validation. Another microarray dataset of ADCs and matched nonmalignant lung was used as the learning set for a tumor versus nonmalignant signature. The classifiers were selected as the most differentially expressed genes and sample classification was determined by a nearest distance approach. RESULTS We developed a 62-gene expression signature that contained many genes used in immunostains for NSCLC typing. It includes 42 genes that distinguish ADC from SCC and 20 genes differentiating nonmalignant lung from lung cancer. Testing of the TCGA and other public datasets resulted in high prediction accuracies (93%-95%). In addition, a prediction score was derived that correlates both with histologic grading and prognosis. We developed a practical version of the Classifier using the HTG EdgeSeq nuclease protection-based technology in combination with next-generation sequencing that can be applied to formalin-fixed paraffin-embedded (FFPE) tissues and small biopsies. CONCLUSIONS Our RNA classifier provides an objective, quantitative method to aid in the pathologic diagnosis of lung cancer. Clin Cancer Res; 22(19); 4880-9. ©2016 AACR.
Collapse
Affiliation(s)
- Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Hao Tang
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yang Xie
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Natasha Rekhtman
- Department of Thoracic Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Thoracic Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
314
|
Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, Xie M, Xu L, De W, Wang Z, Wang J. LncRNA HOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT1. Cancer Res 2016; 76:6299-6310. [PMID: 27651312 DOI: 10.1158/0008-5472.can-16-0356] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNA) have been implicated in human cancer but their mechanisms of action are mainly undocumented. In this study, we investigated lncRNA alterations that contribute to gastric cancer through an analysis of The Cancer Genome Atlas RNA sequencing data and other publicly available microarray data. Here we report the gastric cancer-associated lncRNA HOXA11-AS as a key regulator of gastric cancer development and progression. Patients with high HOXA11-AS expression had a shorter survival and poorer prognosis. In vitro and in vivo assays of HOXA11-AS alterations revealed a complex integrated phenotype affecting cell growth, migration, invasion, and apoptosis. Strikingly, high-throughput sequencing analysis after HOXA11-AS silencing highlighted alterations in cell proliferation and cell-cell adhesion pathways. Mechanistically, EZH2 along with the histone demethylase LSD1 or DNMT1 were recruited by HOXA11-AS, which functioned as a scaffold. HOXA11-AS also functioned as a molecular sponge for miR-1297, antagonizing its ability to repress EZH2 protein translation. In addition, we found that E2F1 was involved in HOXA11-AS activation in gastric cancer cells. Taken together, our findings support a model in which the EZH2/HOXA11-AS/LSD1 complex and HOXA11-AS/miR-1297/EZH2 cross-talk serve as critical effectors in gastric cancer tumorigenesis and progression, suggesting new therapeutic directions in gastric cancer. Cancer Res; 76(21); 6299-310. ©2016 AACR.
Collapse
Affiliation(s)
- Ming Sun
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, Texas.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Fengqi Nie
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Yunfei Wang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, Texas
| | - Zhihong Zhang
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, Texas
| | - Dandan He
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, Texas
| | - Min Xie
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, P.R. China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, People's Republic of China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, P.R. China.
| | - Zhaoxia Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, P.R. China.
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People' Hospital, Beijing, P.R. China.
| |
Collapse
|
315
|
Ubiquitin-specific protease 39 is overexpressed in human lung cancer and promotes tumor cell proliferation in vitro. Mol Cell Biochem 2016; 422:97-107. [DOI: 10.1007/s11010-016-2809-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
316
|
Sweeney TE, Haynes WA, Vallania F, Ioannidis JP, Khatri P. Methods to increase reproducibility in differential gene expression via meta-analysis. Nucleic Acids Res 2016; 45:e1. [PMID: 27634930 PMCID: PMC5224496 DOI: 10.1093/nar/gkw797] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/28/2022] Open
Abstract
Findings from clinical and biological studies are often not reproducible when tested in independent cohorts. Due to the testing of a large number of hypotheses and relatively small sample sizes, results from whole-genome expression studies in particular are often not reproducible. Compared to single-study analysis, gene expression meta-analysis can improve reproducibility by integrating data from multiple studies. However, there are multiple choices in designing and carrying out a meta-analysis. Yet, clear guidelines on best practices are scarce. Here, we hypothesized that studying subsets of very large meta-analyses would allow for systematic identification of best practices to improve reproducibility. We therefore constructed three very large gene expression meta-analyses from clinical samples, and then examined meta-analyses of subsets of the datasets (all combinations of datasets with up to N/2 samples and K/2 datasets) compared to a ‘silver standard’ of differentially expressed genes found in the entire cohort. We tested three random-effects meta-analysis models using this procedure. We showed relatively greater reproducibility with more-stringent effect size thresholds with relaxed significance thresholds; relatively lower reproducibility when imposing extraneous constraints on residual heterogeneity; and an underestimation of actual false positive rate by Benjamini–Hochberg correction. In addition, multivariate regression showed that the accuracy of a meta-analysis increased significantly with more included datasets even when controlling for sample size.
Collapse
Affiliation(s)
- Timothy E Sweeney
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.,Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Winston A Haynes
- Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Francesco Vallania
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.,Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John P Ioannidis
- Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, CA 94305, USA.,Meta-research Innovation Center at Stanford (METRICS), Stanford, CA 94305, USA
| | - Purvesh Khatri
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA .,Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
317
|
Mancikova V, Montero-Conde C, Perales-Paton J, Fernandez A, Santacana M, Jodkowska K, Inglada-Pérez L, Castelblanco E, Borrego S, Encinas M, Matias-Guiu X, Fraga M, Robledo M. Multilayer OMIC Data in Medullary Thyroid Carcinoma Identifies the STAT3 Pathway as a Potential Therapeutic Target in RETM918T Tumors. Clin Cancer Res 2016; 23:1334-1345. [PMID: 27620278 DOI: 10.1158/1078-0432.ccr-16-0947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Medullary thyroid carcinoma (MTC) is a rare disease with few genetic drivers, and the etiology specific to each known susceptibility mutation remains unknown. Exploiting multilayer genomic data, we focused our interest on the role of aberrant DNA methylation in MTC development.Experimental Design: We performed genome-wide DNA methylation profiling assessing more than 27,000 CpGs in the largest MTC series reported to date, comprising 48 molecularly characterized tumors. mRNA and miRNA expression data were available for 33 and 31 tumors, respectively. Two human MTC cell lines and 101 paraffin-embedded MTCs were used for validation.Results: The most distinctive methylome was observed for RETM918T-related tumors. Integration of methylation data with mRNA and miRNA expression data identified genes negatively regulated by promoter methylation. These in silico findings were confirmed in vitro for PLCB2, DKK4, MMP20, and miR-10a, -30a, and -200c. The mutation-specific aberrant methylation of PLCB2, DKK4, and MMP20 was validated in 25 independent MTCs by bisulfite pyrosequencing. The methylome and transcriptome data underscored JAK/Stat pathway involvement in RETM918T MTCs. Immunostaining [immunohistochemistry (IHC)] for the active form of signaling effector STAT3 was performed in a series of 101 MTCs. As expected, positive IHC was associated with RETM918T-bearing tumors (P < 0.02). Pharmacologic inhibition of STAT3 activity increased the sensitivity to vandetanib of the RETM918T-positive MTC cell line, MZ-CRC-1.Conclusions: Multilayer OMIC data analysis uncovered methylation hallmarks in genetically defined MTCs and revealed JAK/Stat signaling effector STAT3 as a potential therapeutic target for the treatment of RETM918T MTCs. Clin Cancer Res; 23(5); 1334-45. ©2016 AACR.
Collapse
Affiliation(s)
- Veronika Mancikova
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Perales-Paton
- Translational Bioinformatics Unit, Clinical Research Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Agustin Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Asturias, Spain
| | - María Santacana
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Karolina Jodkowska
- DNA Replication Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucia Inglada-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Esmeralda Castelblanco
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Hospital, Health Sciences Research Institute of the "Germans Trias i Pujol" Foundation (IGTP), Badalona, Spain.,Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, Spain
| | | | - Mario Encinas
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona
| | - Mario Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Asturias, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. .,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
318
|
Zhang Y, Breitling LP, Balavarca Y, Holleczek B, Schöttker B, Brenner H. Comparison and combination of blood DNA methylation at smoking-associated genes and at lung cancer-related genes in prediction of lung cancer mortality. Int J Cancer 2016; 139:2482-92. [PMID: 27503000 DOI: 10.1002/ijc.30374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/05/2016] [Accepted: 07/26/2016] [Indexed: 01/05/2023]
Abstract
Epigenome-wide association studies have established methylation patterns related to smoking, the major risk factor of lung cancer (LC), which are distinct from methylation profiles disclosed in LC patients. This study simultaneously investigated associations of smoking-associated and LC-related methylation markers with LC mortality. DNA methylation was determined by HM450K assay in baseline blood samples of 1,565 older adults in a population-based case-cohort study. The associations of 151 smoking-associated CpGs (smoCpGs) and 3,806 LC-related CpGs (caCpGs) with LC mortality were assessed by weighted Cox regression models, controlling for potential confounders. Multi-loci methylation scores were separately constructed based on smoCpGs and caCpGs. During a median follow-up of 13.8 years, 60 participants who had a first diagnosis of LC died from LC. The average time between sample collection and LC diagnosis was 5.8 years. Hypomethylation at 77 smoCpGs and 121 caCpGs, and hypermethylation at 4 smoCpGs and 66 caCpGs were associated with LC mortality. The associations were much stronger for smoCpGs than for caCpGs. Hazard ratios (95% CI) were 7.82 (2.91-21.00) and 2.27 (0.75-6.85), respectively, for participants in highest quartile of Score I (based on 81 smoCpGs) and Score II (based on 187 caCpGs), compared with participants in the corresponding lower three quartiles. Score I outperformed Score II, with an optimism-corrected C-index of 0.87 vs. 0.77. In conclusion, although methylation changes of both smoking-associated and LC-related genes are associated with LC mortality, only smoking-associated methylation markers predict LC mortality with high accuracy, and may thus serve as promising candidates to identify high risk populations for LC screening.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany.
| | - Lutz P Breitling
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | - Yesilda Balavarca
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, D-69120, Germany
| | | | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, D-69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| |
Collapse
|
319
|
Uncovering Driver DNA Methylation Events in Nonsmoking Early Stage Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2090286. [PMID: 27610367 PMCID: PMC5005773 DOI: 10.1155/2016/2090286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 01/04/2023]
Abstract
As smoking rates decrease, proportionally more cases with lung adenocarcinoma occur in never-smokers, while aberrant DNA methylation has been suggested to contribute to the tumorigenesis of lung adenocarcinoma. It is extremely difficult to distinguish which genes play key roles in tumorigenic processes via DNA methylation-mediated gene silencing from a large number of differentially methylated genes. By integrating gene expression and DNA methylation data, a pipeline combined with the differential network analysis is designed to uncover driver methylation genes and responsive modules, which demonstrate distinctive expressions and network topology in tumors with aberrant DNA methylation. Totally, 135 genes are recognized as candidate driver genes in early stage lung adenocarcinoma and top ranked 30 genes are recognized as driver methylation genes. Functional annotation and the differential network analysis indicate the roles of identified driver genes in tumorigenesis, while literature study reveals significant correlations of the top 30 genes with early stage lung adenocarcinoma in never-smokers. The analysis pipeline can also be employed in identification of driver epigenetic events for other cancers characterized by matched gene expression data and DNA methylation data.
Collapse
|
320
|
Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat Methods 2016; 13:833-6. [PMID: 27525975 DOI: 10.1038/nmeth.3961] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022]
Abstract
Sample heterogeneity often masks DNA methylation signatures in subpopulations of cells. Here, we present a method to genotype single cells while simultaneously interrogating gene expression and DNA methylation at multiple loci. We used this targeted multimodal approach, implemented on an automated, high-throughput microfluidic platform, to assess primary lung adenocarcinomas and human fibroblasts undergoing reprogramming by profiling epigenetic variation among cell types identified through genotyping and transcriptional analysis.
Collapse
|
321
|
Goswami MT, Chen G, Chakravarthi BVSK, Pathi SS, Anand SK, Carskadon SL, Giordano TJ, Chinnaiyan AM, Thomas DG, Palanisamy N, Beer DG, Varambally S. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer. Oncotarget 2016; 6:23445-61. [PMID: 26140362 PMCID: PMC4695129 DOI: 10.18632/oncotarget.4352] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
Cancer cells exhibit altered metabolism including aerobic glycolysis that channels several glycolytic intermediates into de novo purine biosynthetic pathway. We discovered increased expression of phosphoribosyl amidotransferase (PPAT) and phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) enzymes of de novo purine biosynthetic pathway in lung adenocarcinomas. Transcript analyses from next-generation RNA sequencing and gene expression profiling studies suggested that PPAT and PAICS can serve as prognostic biomarkers for aggressive lung adenocarcinoma. Immunohistochemical analysis of PAICS performed on tissue microarrays showed increased expression with disease progression and was significantly associated with poor prognosis. Through gene knockdown and over-expression studies we demonstrate that altering PPAT and PAICS expression modulates pyruvate kinase activity, cell proliferation and invasion. Furthermore we identified genomic amplification and aneuploidy of the divergently transcribed PPAT-PAICS genomic region in a subset of lung cancers. We also present evidence for regulation of both PPAT and PAICS and pyruvate kinase activity by L-glutamine, a co-substrate for PPAT. A glutamine antagonist, 6-Diazo-5-oxo-L-norleucine (DON) blocked glutamine mediated induction of PPAT and PAICS as well as reduced pyruvate kinase activity. In summary, this study reveals the regulatory mechanisms by which purine biosynthetic pathway enzymes PPAT and PAICS, and pyruvate kinase activity is increased and exposes an existing metabolic vulnerability in lung cancer cells that can be explored for pharmacological intervention.
Collapse
Affiliation(s)
- Moloy T Goswami
- Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guoan Chen
- Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Balabhadrapatruni V S K Chakravarthi
- Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Satya S Pathi
- Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sharath K Anand
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shannon L Carskadon
- Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dafydd G Thomas
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nallasivam Palanisamy
- Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Urology, Henry Ford Health System, Detroit, MI 48202, USA
| | - David G Beer
- Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sooryanarayana Varambally
- Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
322
|
Blood-borne miRNA profile-based diagnostic classifier for lung adenocarcinoma. Sci Rep 2016; 6:31389. [PMID: 27507195 PMCID: PMC4979017 DOI: 10.1038/srep31389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/19/2016] [Indexed: 01/18/2023] Open
Abstract
Accumulated evidence indicates that various types of miRNA are aberrantly expressed in lung cancer and secreted into the bloodstream. For this study, we constructed a serum diagnostic classifier based on detailed bioinformatics analysis of miRNA profiles from a training cohort of 143 lung adenocarcinoma patients and 49 healthy subjects, resulting in a 20 miRNA-based classifier. Validation performed with an independent cohort of samples from lung adenocarcinoma patients (n = 110), healthy subjects (n = 52), and benign pulmonary disease patients (n = 47) showed a sensitivity of 89.1% and specificity of 94.9%, with an area under the curve value of 0.958. Notably, 90.8% of Stage I lung adenocarcinoma cases were correctly diagnosed. Interestingly, this classifier also detected squamous and large cell lung carcinoma cases at relatively high rates (70.4% and 70.0%, respectively), which appears to be consistent with organ site-dependent miRNA expression in cancer tissues. In contrast, we observed significantly lower rates (0–35%) using samples from 96 cases of cancer in other major organs, with breast cancer the lowest. These findings warrant a future study to realize its clinical application as a part of diagnostic procedures for lung cancers, for which early detection and surgical removal is presently the only hope for eventual cure.
Collapse
|
323
|
Xu Y, Lv F, Zhu X, Wu Y, Shen X. Loss of asparagine synthetase suppresses the growth of human lung cancer cells by arresting cell cycle at G0/G1 phase. Cancer Gene Ther 2016; 23:287-94. [PMID: 27444726 DOI: 10.1038/cgt.2016.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
The aim of this research is to determine the role of human asparagine synthetase (ASNS) in human lung cancer. In the present study, immunohistochemical staining and the Oncomine database mining showed that the expression of ASNS gene was higher in lung cancer tissues than that in the normal tissues by. In addition, western blot assay showed that ASNS was elevated in lung cancer A549 and 95D cell lines as compared with that in H1299 and H460 cells. Therefore, A549 and 95D cells were chosen for subsequent MTT and colony formation assay. It was found that knockdown of ASNS inhibited the growth and colony formation abilities of A549 and 95D cells. Flow cytometry showed that ASNS silencing arrested cell cycle progression at G0/G1 phase in A549 cells, probably through regulating the expression of cell cycle molecules such as CDK2 and Cyclin E1 as shown by quantitative real-time PCR. Taken together, our study indicates that ASNS may be an important target for lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yi Xu
- Department of Respiration, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Fanzhen Lv
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Xunxia Zhu
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Yun Wu
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Xiaoyong Shen
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| |
Collapse
|
324
|
Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci Rep 2016; 6:29390. [PMID: 27411928 PMCID: PMC4944166 DOI: 10.1038/srep29390] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022] Open
Abstract
Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.
Collapse
|
325
|
Wang Y, He J, Zhang S, Yang Q, Wang B, Liu Z, Wu X. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non-Small Cell Lung Cancer Cells. Technol Cancer Res Treat 2016; 16:559-569. [PMID: 27413166 DOI: 10.1177/1533034616657977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Non-small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non-small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non-small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle-associated proteins by Western blot analysis and found immature colon carcinoma transcript 1 -mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non-small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non-small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non-small cell lung cancer.
Collapse
Affiliation(s)
- Yiling Wang
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jiantao He
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Shenghui Zhang
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Qingbo Yang
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Bo Wang
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Zhiyu Liu
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xintian Wu
- 1 Department of Thoracic Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| |
Collapse
|
326
|
Huo Y, Su T, Cai Q, Macara IG. An In Vivo Gain-of-Function Screen Identifies the Williams-Beuren Syndrome Gene GTF2IRD1 as a Mammary Tumor Promoter. Cell Rep 2016; 15:2089-2096. [PMID: 27239038 DOI: 10.1016/j.celrep.2016.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/21/2016] [Accepted: 04/27/2016] [Indexed: 12/13/2022] Open
Abstract
The broad implementation of precision medicine in cancer is impeded by the lack of a complete inventory of the genes involved in tumorigenesis. We performed in vivo screening of ∼1,000 genes that are associated with signaling for positive roles in breast cancer, using lentiviral expression vectors in primary MMTV-ErbB2 mammary tissue. Gain of function of five genes, including RET, GTF2IRD1, ADORA1, LARS2, and DPP8, significantly promoted mammary tumor growth. We further studied one tumor-promoting gene, the transcription factor GTF2IRD1. The mis-regulation of genes downstream of GTF2IRD1, including TβR2 and BMPR1b, also individually promoted mammary cancer development, and silencing of TβR2 suppressed GTF2IRD1-driven tumor promotion. In addition, GTF2IRD1 is highly expressed in human breast tumors, correlating with high tumor grades and poor prognosis. Our in vivo approach is readily expandable to whole-genome annotation of tumor-promoting genes.
Collapse
Affiliation(s)
- Yongliang Huo
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Timothy Su
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
327
|
Ansari J, Shackelford RE, El-Osta H. Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res 2016; 5:155-71. [PMID: 27186511 DOI: 10.21037/tlcr.2016.02.02] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer.
Collapse
Affiliation(s)
- Junaid Ansari
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Rodney E Shackelford
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Hazem El-Osta
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
328
|
Huang HH, Liu XY, Liang Y. Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L1/2 +2 Regularization. PLoS One 2016; 11:e0149675. [PMID: 27136190 PMCID: PMC4852916 DOI: 10.1371/journal.pone.0149675] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Cancer classification and feature (gene) selection plays an important role in knowledge discovery in genomic data. Although logistic regression is one of the most popular classification methods, it does not induce feature selection. In this paper, we presented a new hybrid L1/2 +2 regularization (HLR) function, a linear combination of L1/2 and L2 penalties, to select the relevant gene in the logistic regression. The HLR approach inherits some fascinating characteristics from L1/2 (sparsity) and L2 (grouping effect where highly correlated variables are in or out a model together) penalties. We also proposed a novel univariate HLR thresholding approach to update the estimated coefficients and developed the coordinate descent algorithm for the HLR penalized logistic regression model. The empirical results and simulations indicate that the proposed method is highly competitive amongst several state-of-the-art methods.
Collapse
Affiliation(s)
- Hai-Hui Huang
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Xiao-Ying Liu
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Yong Liang
- Faculty of Information Technology & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
- * E-mail:
| |
Collapse
|
329
|
KIAA1522 is a novel prognostic biomarker in patients with non-small cell lung cancer. Sci Rep 2016; 6:24786. [PMID: 27098511 PMCID: PMC4838871 DOI: 10.1038/srep24786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Nowadays, no robust biomarkers have been applied to clinical practice to provide prognostic evaluation of non-small cell lung cancer (NSCLC). This study aims to identify new potential prognostic biomarkers for NSCLC. In the present work, KIAA1522 is screened out from two independent GEO datasets as aberrantly up-regulated gene in NSCLC tissues. We evaluate KIAA1522 expression immunohistochemically in 583 NSCLC tissue samples and paired non-tumor tissues. KIAA1522 displays stronger staining in NSCLC cases than in adjacent normal lung tissues. Importantly, patients with KIAA1522 overexpression had a significantly shorter overall survival compared to those with low expression (P < 0.00001). Multivariate Cox regression analyses show that KIAA1522 is an independent prognostic indicator, even for early-stage NSCLCs (P = 0.00025, HR = 2.317, 95%CI: 1.477–3.635). We also found that high expression of KIAA1522 is a significant risk factor for decreased overall survival of the patients who received platinum-based chemotherapy. Gene set enrichment analysis (GSEA) and functional studies reveal that KIAA1522 is associated with oncogenic KRAS pathways. Taken together, high expression of KIAA1522 can be used as an independent biomarker for predication of poor survival and platinum-resistance of NSCLC patients, and aberrant KIAA1522 might be a new target for the therapy of the disease.
Collapse
|
330
|
Celarain N, Sánchez-Ruiz de Gordoa J, Zelaya MV, Roldán M, Larumbe R, Pulido L, Echavarri C, Mendioroz M. TREM2 upregulation correlates with 5-hydroxymethycytosine enrichment in Alzheimer's disease hippocampus. Clin Epigenetics 2016; 8:37. [PMID: 27051467 PMCID: PMC4820985 DOI: 10.1186/s13148-016-0202-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/22/2016] [Indexed: 01/09/2023] Open
Abstract
Background Recent genome-wide association studies revealed TREM2 rs75932628-T variant to be associated with Alzheimer’s disease (AD) and other neurodegenerative diseases. However, the role that TREM2 plays in sporadic AD is largely unknown. Our aim was to assess messenger RNA (mRNA) expression levels and DNA methylation profiling of TREM2 in human hippocampus in AD brain. We measured TREM2 mRNA levels in the hippocampus in a cohort of neuropathologically confirmed controls and pure AD cases showing no other protein deposits than β-amyloid and phosphorylated tau. We also examined DNA methylation levels in the TREM2 transcription start site (TSS)-associated region by bisulfite cloning sequencing and further extended the study by measuring 5-hydroxymethycytosine (5hmC) enrichment at different regions of TREM2 by 5hmC DNA immunoprecipitation combined with real-time qPCR. Results A 3.4-fold increase in TREM2 mRNA levels was observed in the hippocampus of AD cases compared to controls (p = 1.1E-05). Interestingly, TREM2 methylation was higher in AD cases compared to controls (76.2 % ± 15.5 versus 57.9 % ± 17.1; p = 0.0016). Moreover, TREM2 mRNA levels in the AD hippocampus correlated with enrichment in 5hmC at the TREM2 gene body (r = 0.771; p = 0.005). Conclusions TREM2 mRNA levels are increased in the human hippocampus in AD cases compared to controls. DNA methylation, and particularly 5hmC, may be involved in regulating TREM2 mRNA expression in the AD brain. Further studies are guaranteed to investigate in depth the role of 5hmC in AD and other neurodegenerative disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0202-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naiara Celarain
- Neuroepigenetics Laboratory, Navarrabiomed-Navarra Institute for Health Research (IdiSNA), c/ Irunlarrea, Pamplona, Navarra 31008 Spain
| | - Javier Sánchez-Ruiz de Gordoa
- Neuroepigenetics Laboratory, Navarrabiomed-Navarra Institute for Health Research (IdiSNA), c/ Irunlarrea, Pamplona, Navarra 31008 Spain ; Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra 31008 Spain ; Present address: Clínica San Miguel, Pamplona, Navarra 31006 Spain
| | - María Victoria Zelaya
- Department of Pathology, Complejo Hospitalario de Navarra, Pamplona, Navarra 31008 Spain
| | - Miren Roldán
- Neuroepigenetics Laboratory, Navarrabiomed-Navarra Institute for Health Research (IdiSNA), c/ Irunlarrea, Pamplona, Navarra 31008 Spain
| | - Rosa Larumbe
- Neuroepigenetics Laboratory, Navarrabiomed-Navarra Institute for Health Research (IdiSNA), c/ Irunlarrea, Pamplona, Navarra 31008 Spain ; Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra 31008 Spain
| | - Laura Pulido
- Neuroepigenetics Laboratory, Navarrabiomed-Navarra Institute for Health Research (IdiSNA), c/ Irunlarrea, Pamplona, Navarra 31008 Spain ; Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra 31008 Spain ; Present address: Clínica San Miguel, Pamplona, Navarra 31006 Spain
| | - Carmen Echavarri
- Neuroepigenetics Laboratory, Navarrabiomed-Navarra Institute for Health Research (IdiSNA), c/ Irunlarrea, Pamplona, Navarra 31008 Spain ; Hospital Psicogeriátrico Josefina Arregui, Alsasua, Navarra 31800 Spain
| | - Maite Mendioroz
- Neuroepigenetics Laboratory, Navarrabiomed-Navarra Institute for Health Research (IdiSNA), c/ Irunlarrea, Pamplona, Navarra 31008 Spain ; Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Navarra 31008 Spain
| |
Collapse
|
331
|
Zhou F, Wang W, Shen C, Li H, Zuo X, Zheng X, Yue M, Zhang C, Yu L, Chen M, Zhu C, Yin X, Tang M, Li Y, Chen G, Wang Z, Liu S, Zhou Y, Zhang F, Zhang W, Li C, Yang S, Sun L, Zhang X. Epigenome-Wide Association Analysis Identified Nine Skin DNA Methylation Loci for Psoriasis. J Invest Dermatol 2016; 136:779-787. [DOI: 10.1016/j.jid.2015.12.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/10/2015] [Accepted: 11/27/2015] [Indexed: 12/27/2022]
|
332
|
Boers A, Wang R, van Leeuwen RW, Klip HG, de Bock GH, Hollema H, van Criekinge W, de Meyer T, Denil S, van der Zee AGJ, Schuuring E, Wisman GBA. Discovery of new methylation markers to improve screening for cervical intraepithelial neoplasia grade 2/3. Clin Epigenetics 2016; 8:29. [PMID: 26962367 PMCID: PMC4784352 DOI: 10.1186/s13148-016-0196-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/02/2016] [Indexed: 11/16/2022] Open
Abstract
Background Assessment of DNA promoter methylation markers in cervical scrapings for the detection of cervical intraepithelial neoplasia (CIN) and cervical cancer is feasible, but finding methylation markers with both high sensitivity as well as high specificity remains a challenge. In this study, we aimed to identify new methylation markers for the detection of high-grade CIN (CIN2/3 or worse, CIN2+) by using innovative genome-wide methylation analysis (MethylCap-seq). We focused on diagnostic performance of methylation markers with high sensitivity and high specificity considering any methylation level as positive. Results MethylCap-seq of normal cervices and CIN2/3 revealed 176 differentially methylated regions (DMRs) comprising 164 genes. After verification and validation of the 15 best discriminating genes with methylation-specific PCR (MSP), 9 genes showed significant differential methylation in an independent cohort of normal cervices versus CIN2/3 lesions (p < 0.05). For further diagnostic evaluation, these 9 markers were tested with quantitative MSP (QMSP) in cervical scrapings from 2 cohorts: (1) cervical carcinoma versus healthy controls and (2) patients referred from population-based screening with an abnormal Pap smear in whom also HPV status was determined. Methylation levels of 8/9 genes were significantly higher in carcinoma compared to normal scrapings. For all 8 genes, methylation levels increased with the severity of the underlying histological lesion in scrapings from patients referred with an abnormal Pap smear. In addition, the diagnostic performance was investigated, using these 8 new genes and 4 genes (previously identified by our group: C13ORF18, JAM3, EPB41L3, and TERT). In a triage setting (after a positive Pap smear), sensitivity for CIN2+ of the best combination of genes (C13ORF18/JAM3/ANKRD18CP) (74 %) was comparable to hrHPV testing (79 %), while specificity was significantly higher (76 % versus 42 %, p ≤ 0.05). In addition, in hrHPV-positive scrapings, sensitivity and specificity for CIN2+ of this best-performing combination was comparable to the population referred with abnormal Pap smear. Conclusions We identified new CIN2/3-specific methylation markers using genome-wide DNA methylation analysis. The diagnostic performance of our new methylation panel shows higher specificity, which should result in prevention of unnecessary colposcopies for women referred with abnormal cytology. In addition, these newly found markers might be applied as a triage test in hrHPV-positive women from population-based screening. The next step before implementation in primary screening programs will be validation in population-based cohorts. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0196-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Boers
- Department of Gynecologic Oncology, internal postal code DA13, Cancer Reserch Center Groningen, University of Groningen, University Medical Center Groningen, PO box 30.001, 9700 RB Groningen, The Netherlands
| | - R Wang
- Department of Gynecologic Oncology, internal postal code DA13, Cancer Reserch Center Groningen, University of Groningen, University Medical Center Groningen, PO box 30.001, 9700 RB Groningen, The Netherlands
| | - R W van Leeuwen
- Department of Gynecologic Oncology, internal postal code DA13, Cancer Reserch Center Groningen, University of Groningen, University Medical Center Groningen, PO box 30.001, 9700 RB Groningen, The Netherlands
| | - H G Klip
- Department of Gynecologic Oncology, internal postal code DA13, Cancer Reserch Center Groningen, University of Groningen, University Medical Center Groningen, PO box 30.001, 9700 RB Groningen, The Netherlands
| | - G H de Bock
- Department of Epidemiology, Cancer Reserch Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Hollema
- Department of Pathology, Cancer Reserch Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W van Criekinge
- Department of Mathematical Modeling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - T de Meyer
- Department of Mathematical Modeling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - S Denil
- Department of Mathematical Modeling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - A G J van der Zee
- Department of Gynecologic Oncology, internal postal code DA13, Cancer Reserch Center Groningen, University of Groningen, University Medical Center Groningen, PO box 30.001, 9700 RB Groningen, The Netherlands
| | - E Schuuring
- Department of Pathology, Cancer Reserch Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G B A Wisman
- Department of Gynecologic Oncology, internal postal code DA13, Cancer Reserch Center Groningen, University of Groningen, University Medical Center Groningen, PO box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
333
|
Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proc Natl Acad Sci U S A 2016; 113:E1555-64. [PMID: 26929325 DOI: 10.1073/pnas.1521812113] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immunoproteasome plays a key role in generation of HLA peptides for T cell-mediated immunity. Integrative genomic and proteomic analysis of non-small cell lung carcinoma (NSCLC) cell lines revealed significantly reduced expression of immunoproteasome components and their regulators associated with epithelial to mesenchymal transition. Low expression of immunoproteasome subunits in early stage NSCLC patients was associated with recurrence and metastasis. Depleted repertoire of HLA class I-bound peptides in mesenchymal cells deficient in immunoproteasome components was restored with either IFNγ or 5-aza-2'-deoxycytidine (5-aza-dC) treatment. Our findings point to a mechanism of immune evasion of cells with a mesenchymal phenotype and suggest a strategy to overcome immune evasion through induction of the immunoproteasome to increase the cellular repertoire of HLA class I-bound peptides.
Collapse
|
334
|
Baur B, Bozdag S. A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data. PLoS One 2016; 11:e0148977. [PMID: 26872146 PMCID: PMC4752315 DOI: 10.1371/journal.pone.0148977] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.
Collapse
Affiliation(s)
- Brittany Baur
- Department of Math, Statistics and Computer Science, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Serdar Bozdag
- Department of Math, Statistics and Computer Science, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
335
|
Bjaanæs MM, Fleischer T, Halvorsen AR, Daunay A, Busato F, Solberg S, Jørgensen L, Kure E, Edvardsen H, Børresen-Dale AL, Brustugun OT, Tost J, Kristensen V, Helland Å. Genome-wide DNA methylation analyses in lung adenocarcinomas: Association with EGFR, KRAS and TP53 mutation status, gene expression and prognosis. Mol Oncol 2016; 10:330-43. [PMID: 26601720 PMCID: PMC5528958 DOI: 10.1016/j.molonc.2015.10.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/25/2015] [Accepted: 10/28/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND DNA methylation alterations are early events in tumorigenesis and important in the regulation of gene expression in cancer cells. Lung cancer patients have in general a poor prognosis, and a deeper insight into the epigenetic landscape in lung adenocarcinoma tumors and its prognostic implications is needed. RESULTS We determined whole-genome DNA methylation profiles of 164 fresh frozen lung adenocarcinoma samples and 19 samples of matched normal lung tissue using the Illumina Infinium 450K array. A large number of differentially methylated CpGs in lung adenocarcinoma tissue were identified, and specific methylation profiles were observed in tumors with mutations in the EGFR-, KRAS- or TP53 genes and according to the patients' smoking status. The methylation levels were correlated with gene expression and both positive and negative correlations were seen. Methylation profiles of the tumor samples identified subtypes of tumors with distinct prognosis, including one subtype enriched for TP53 mutant tumors. A prognostic index based on the methylation levels of 33 CpGs was established, and was significantly associated with prognosis in the univariate analysis using an independent cohort of lung adenocarcinoma patients from The Cancer Genome Atlas project. CpGs in the HOX B and HOX C gene clusters were represented in the prognostic signature. CONCLUSIONS Methylation differences mirror biologically important features in the etiology of lung adenocarcinomas and influence prognosis.
Collapse
Affiliation(s)
- Maria Moksnes Bjaanæs
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Thomas Fleischer
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; The K.G. Jebsen Censtre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
| | - Ann Rita Halvorsen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Antoine Daunay
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, 75010 Paris, France.
| | - Florence Busato
- Laboratory for Epigenetics and Environment (LEE), Centre National de Génotypage, CEA - Institut de Génomique, 91000 Evry, France.
| | - Steinar Solberg
- Department of Cardiothoracic Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| | - Lars Jørgensen
- Department of Cardiothoracic Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| | - Elin Kure
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Hege Edvardsen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
| | - Odd Terje Brustugun
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment (LEE), Centre National de Génotypage, CEA - Institut de Génomique, 91000 Evry, France.
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; The K.G. Jebsen Censtre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.
| | - Åslaug Helland
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| |
Collapse
|
336
|
Akimoto M, Hayashi JI, Nakae S, Saito H, Takenaga K. Interleukin-33 enhances programmed oncosis of ST2L-positive low-metastatic cells in the tumour microenvironment of lung cancer. Cell Death Dis 2016; 7:e2057. [PMID: 26775708 PMCID: PMC4816191 DOI: 10.1038/cddis.2015.418] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 01/19/2023]
Abstract
The proinflammatory interleukin-33 (IL-33) binds to its receptor ST2L on the surface of immune cells and stimulates the production of Th2 cytokines; however, the effects of IL-33 on tumour cells are poorly understood. Here we show that ST2 was significantly downregulated in human lung cancer tissues and cells compared with normal lung tissues and cells. IL-33 expression was also inversely correlated with the stages of human lung cancers. In accordance with this finding, low-metastatic cells but not high-metastatic cells derived from Lewis lung carcinoma expressed functional ST2L. IL-33 was abundantly present in the tumours established by the low-metastatic cells compared with those formed by the high-metastatic cells. Although the low-metastatic cells scarcely expressed IL-33 in vitro, these cells did expry 6ess this molecule in vivo, likely due to stimulation by intratumoural IL-1β and IL-33. Importantly, IL-33 enhanced the cell death of ST2L-positive low-metastatic cells, but not of ST2L-negative high-metastatic cells, under glucose-depleted, glutamine-depleted and hypoxic conditions through p38 MAPK and mTOR activation, and in a mitochondria-dependent manner. The cell death was characterised by cytoplasmic blisters and karyolysis, which are unique morphological features of oncosis. Inevitably, the low-metastatic cells, but not of the high-metastatic cells, grew faster in IL-33(-/-) mice than in wild-type mice. Furthermore, IL-33 selected for the ST2L-positive, oncosis-resistant high-metastatic cells under conditions mimicking the tumour microenvironment. These data suggest that IL-33 enhances lung cancer progression by selecting for more malignant cells in the tumour microenvironment.
Collapse
Affiliation(s)
- M Akimoto
- Department of Life Sciences, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - J-I Hayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - S Nakae
- Laboratory of Systems Biology, Centre for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - H Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - K Takenaga
- Department of Life Sciences, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
337
|
DNA methylation transcriptionally regulates the putative tumor cell growth suppressor ZNF677 in non-small cell lung cancers. Oncotarget 2016; 6:394-408. [PMID: 25504438 PMCID: PMC4381603 DOI: 10.18632/oncotarget.2697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022] Open
Abstract
In our study, we investigated the role of ZNF677 in non-small cell lung cancers (NSCLC). By comparing ZNF677 expression in primary tumor (TU) and in the majority of cases also of corresponding non-malignant lung tissue (NL) samples from > 1,000 NSCLC patients, we found tumor-specific downregulation of ZNF677 expression (adjusted p-values < 0.001). We identified methylation as main mechanism for ZNF677 downregulation in NSCLC cells and we observed tumor-specific ZNF677 methylation in NSCLC patients (p < 0.0001). In the majority of TUs, ZNF677 methylation was associated with loss of ZNF677 expression. Moreover, ZNF677 overexpression in NSCLC cells was associated with reduced cell proliferation and cell migration. ZNF677 was identified to regulate expression of many genes mainly involved in growth hormone regulation and interferon signalling. Finally, patients with ZNF677 methylated TUs had a shorter overall survival compared to patients with ZNF677 not methylated TUs (p = 0.013). Overall, our results demonstrate that ZNF677 is trancriptionally regulated by methylation in NSCLCs, suggest that ZNF677 has tumor cell growth suppressing properties in NSCLCs and that ZNF677 methylation might serve as prognostic parameter in these patients.
Collapse
|
338
|
Amato KR, Wang S, Tan L, Hastings AK, Song W, Lovly CM, Meador CB, Ye F, Lu P, Balko JM, Colvin DC, Cates JM, Pao W, Gray NS, Chen J. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res 2016; 76:305-18. [PMID: 26744526 PMCID: PMC4715957 DOI: 10.1158/0008-5472.can-15-0717] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/14/2015] [Indexed: 01/18/2023]
Abstract
Despite the success of treating EGFR-mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKI), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI-resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib-resistant tumor cells harboring EGFR(T790M) mutations in vitro and inhibited tumor growth and progression in an inducible EGFR(L858R+T790M)-mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib-resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small-molecule inhibitor ALW-II-41-27 decreased both survival and proliferation of erlotinib-resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third-generation EGFR TKI AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI-resistant, EGFR-mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI-resistant tumors.
Collapse
Affiliation(s)
- Katherine R. Amato
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Shan Wang
- Division of Rheumatology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Li Tan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA,Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew K. Hastings
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Wenqiang Song
- Division of Rheumatology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Christine M. Lovly
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Catherine B. Meador
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Justin M. Balko
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel C. Colvin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Justin M. Cates
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - William Pao
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA,Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee. Division of Rheumatology and Immunology, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee. Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
339
|
Zhang C, Li C, Xu Y, Feng L, Shang D, Yang X, Han J, Sun Z, Li Y, Li X. Integrative analysis of lung development-cancer expression associations reveals the roles of signatures with inverse expression patterns. MOLECULAR BIOSYSTEMS 2016; 11:1271-84. [PMID: 25720795 DOI: 10.1039/c5mb00061k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent studies have focused on exploring the associations between organ development and malignant tumors; however, the clinical relevance of the development signatures was inadequately addressed in lung cancer. In this study, we explored the associations between lung development and lung cancer progression by analyzing a total of two development and seven cancer datasets. We identified representative expression patterns (continuously up- and down-regulated) from development and cancer profiles, and inverse pattern associations were observed at both the gene and functional levels. Furthermore, we dissected the biological processes dominating the associations, and found that proliferation and immunity were respectively involved in the two inverse development-cancer expression patterns. Through sub-pathway analysis of the signatures with inverse expression patterns, we finally identified a 13-gene risk signature from the cell cycle sub-pathway, and evaluated its predictive performance for lung cancer patient clinical outcome using independent cohorts. Our findings indicated that the integrative analysis of development and cancer expression patterns provided a framework for identifying effective molecular signatures for clinical utility.
Collapse
Affiliation(s)
- Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Liu Z, Li W, Lv J, Xie R, Huang H, Li Y, He Y, Jiang J, Chen B, Guo S, Chen L. Identification of potential COPD genes based on multi-omics data at the functional level. MOLECULAR BIOSYSTEMS 2016; 12:191-204. [PMID: 26575263 DOI: 10.1039/c5mb00577a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex disease, which involves dysfunctions in multi-omics. The changes in biological processes, such as adhesion junction, signaling transduction, transcriptional regulation, and cell proliferation, will lead to the occurrence of COPD. A novel systematic approach MMMG (Methylation-MicroRNA-MRNA-GO) was proposed to identify potential COPD genes by integrating function information with a methylation profile, a microRNA expression profile and an mRNA expression profile. 8 co-functional classes and 102 potential COPD genes were identified. These genes displayed a high performance in classifying COPD patients and normal samples, revealed COPD-related pathways, and have been confirmed to be associated with COPD by Matthews correlation coefficient (MCC)-values, literature, an independent data set, and pathways. The MMMG method that analyzed multi-omics data at the functional level could effectively identify potential COPD genes. These potential COPD genes would provide in-depth insights into understanding the complexity of COPD genome landscapes, improve the early diagnostics, and guide new efforts to develop therapeutics in the future.
Collapse
Affiliation(s)
- Zhe Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Mitchell C, Schneper LM, Notterman DA. DNA methylation, early life environment, and health outcomes. Pediatr Res 2016; 79:212-9. [PMID: 26466079 PMCID: PMC4798238 DOI: 10.1038/pr.2015.193] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022]
Abstract
Epigenetics, and especially DNA methylation, have recently become provocative biological explanations for early-life environmental effects on later health. Despite the large increase in papers on the topic over the last few years, many questions remain with regards to the biological feasibility of this mechanism and the strength of the evidence to date. In this review, we examine the literature on early-life effects on epigenetic patterns, with special emphasis on social environmental influences. First, we review the basic biology of epigenetic modification of DNA and debate the role of early-life stressful, protective, and positive environments on gene-specific, system-specific, and whole-genome epigenetic patterns later in life. Second, we compare the epigenetic literatures of both humans and other animals and review the research linking epigenetic patterns to health in order to complete the mechanistic pathway. Third, we discuss physical environmental and social environmental effects, which have to date, generally not been jointly considered. Finally, we close with a discussion of the current state of the area's research, its future direction, and its potential use in pediatric health.
Collapse
Affiliation(s)
- Colter Mitchell
- Survey Research Center and Population Studies Center, University of Michigan, Ann Arbor, Michigan
| | - Lisa M. Schneper
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
342
|
Zhang YA, Ma X, Sathe A, Fujimoto J, Wistuba I, Lam S, Yatabe Y, Wang YW, Stastny V, Gao B, Larsen JE, Girard L, Liu X, Song K, Behrens C, Kalhor N, Xie Y, Zhang MQ, Minna JD, Gazdar AF. Validation of SCT Methylation as a Hallmark Biomarker for Lung Cancers. J Thorac Oncol 2015; 11:346-360. [PMID: 26725182 DOI: 10.1016/j.jtho.2015.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The human secretin gene (SCT) encodes secretin, a hormone with limited tissue distribution. Analysis of the 450k methylation array data in The Cancer Genome Atlas (TCGA) indicated that the SCT promoter region is differentially hypermethylated in lung cancer. Our purpose was to validate SCT methylation as a potential biomarker for lung cancer. METHODS We analyzed data from TCGA and developed and applied SCT-specific bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays. RESULTS The analyses of TCGA 450K data for 801 samples showed that SCT hypermethylation has an area under the curve (AUC) value greater than 0.98 that can be used to distinguish lung adenocarcinomas or squamous cell carcinomas from nonmalignant lung tissue. Bisulfite sequencing of lung cancer cell lines and normal blood cells allowed us to confirm that SCT methylation is highly discriminative. By applying a quantitative methylation-specific polymerase chain reaction assay, we found that SCT hypermethylation is frequently detected in all major subtypes of malignant non-small cell lung cancer (AUC = 0.92, n = 108) and small cell lung cancer (AUC = 0.93, n = 40) but is less frequent in lung carcinoids (AUC = 0.54, n = 20). SCT hypermethylation appeared in samples of lung carcinoma in situ during multistage pathogenesis and increased in invasive samples. Further analyses of TCGA 450k data showed that SCT hypermethylation is highly discriminative in most other types of malignant tumors but less frequent in low-grade malignant tumors. The only normal tissue with a high level of methylation was the placenta. CONCLUSIONS Our findings demonstrated that SCT methylation is a highly discriminative biomarker for lung and other malignant tumors, is less frequent in low-grade malignant tumors (including lung carcinoids), and appears at the carcinoma in situ stage.
Collapse
|
343
|
The Six1 oncoprotein downregulates p53 via concomitant regulation of RPL26 and microRNA-27a-3p. Nat Commun 2015; 6:10077. [PMID: 26687066 PMCID: PMC4703841 DOI: 10.1038/ncomms10077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
TP53 is mutated in 50% of all cancers, and its function is often compromised in cancers where it is not mutated. Here we demonstrate that the pro-tumorigenic/metastatic Six1 homeoprotein decreases p53 levels through a mechanism that does not involve the negative regulator of p53, MDM2. Instead, Six1 regulates p53 via a dual mechanism involving upregulation of microRNA-27a and downregulation of ribosomal protein L26 (RPL26). Mutation analysis confirms that RPL26 inhibits miR-27a binding and prevents microRNA-mediated downregulation of p53. The clinical relevance of this interaction is underscored by the finding that Six1 expression strongly correlates with decreased RPL26 across numerous tumour types. Importantly, we find that Six1 expression leads to marked resistance to therapies targeting the p53–MDM2 interaction. Thus, we identify a competitive mechanism of p53 regulation, which may have consequences for drugs aimed at reinstating p53 function in tumours. p53 is a tumour suppressor that is mutated in a large number of cancers and its expression is controlled largely by the ubiquitin ligase MDM2. Here, the authors show that the homeoprotein, Six1, can regulate p53 in an MDM2- independent manner via regulation of miR-27a and the RNA binding protein, RPL26.
Collapse
|
344
|
Mullapudi N, Ye B, Suzuki M, Fazzari M, Han W, Shi MK, Marquardt G, Lin J, Wang T, Keller S, Zhu C, Locker JD, Spivack SD. Genome Wide Methylome Alterations in Lung Cancer. PLoS One 2015; 10:e0143826. [PMID: 26683690 PMCID: PMC4684329 DOI: 10.1371/journal.pone.0143826] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/10/2015] [Indexed: 01/03/2023] Open
Abstract
Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.
Collapse
Affiliation(s)
- Nandita Mullapudi
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bin Ye
- Department of Bioinformatics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Melissa Fazzari
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Weiguo Han
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Miao K. Shi
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gaby Marquardt
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan Lin
- Department of Epidemiology & Population Health, Division of Biostatistics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven Keller
- Department of Cardiovascular &Thoracic Surgery, Montefiore Medical Center, Bronx, New York, United States of America
| | - Changcheng Zhu
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Joseph D. Locker
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Simon D. Spivack
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
345
|
SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci Rep 2015; 5:17940. [PMID: 26658802 PMCID: PMC4674702 DOI: 10.1038/srep17940] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023] Open
Abstract
SUN2, a key component of LINC (linker of nucleoskeleton and cytoskeleton) complex located at the inner nuclear membrane, plays unknown role in lung cancer. We found that SUN2 expression was decreased in lung cancer tissue compared with paired normal tissues and that higher SUN2 levels predicted better overall survival and first progression survival. Overexpression of SUN2 inhibits cell proliferation, colony formation and migration in lung cancer, whereas knockdown of SUN2 promotes cell proliferation and migration. Additionally, SUN2 increases the sensitivity of lung cancer to cisplatin by inducing cell apoptosis. Mechanistically, we showed that SUN2 exerts its tumor suppressor functions by decreasing the expression of GLUT1 and LDHA to inhibit the Warburg effect. Finally, our results provided evidence that SIRT5 acts, at least partly, as a negative regulator of SUN2.Taken together, our findings indicate that SUN2 is a key component in lung cancer progression by inhibiting the Warburg effect and that the novel SIRT5/SUN2 axis may prove to be useful for the development of new strategies for treating the patients with lung cancer.
Collapse
|
346
|
Lin CC, Mitra R, Cheng F, Zhao Z. A cross-cancer differential co-expression network reveals microRNA-regulated oncogenic functional modules. MOLECULAR BIOSYSTEMS 2015; 11:3244-52. [PMID: 26448606 PMCID: PMC4643368 DOI: 10.1039/c5mb00443h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target gene expressions at the post-transcriptional level. Moreover, they have been reported as either oncomirs or tumor suppressors and possess therapeutic potential in cancer. In this study, we investigated differential co-expression of miRNAs across four cancer types. We observed that the loss of positive co-expressions among miRNAs frequently occurs in the studied cancer types. This observation suggests that the disruption of positive co-expressions among miRNAs may be prevalent during tumorigenesis. By systematically collecting these lost positive co-expressions among miRNAs in cancer, we constructed a cross-cancer miRNA differential co-expression network. We observed that the influential miRNAs in the proposed network, i.e., hubs or in larger cliques, tended to be involved in more cancer types than other miRNAs. Moreover, we found that miRNAs which lose their positive co-expressions in cancers might co-contribute to cancer development, and even could be used to predict the cancer types in which miRNAs were involved. Finally, we identified two potential miRNA-regulated onco-modules, mitosis and DNA replication, that are associated with poor survival outcomes in patients across multiple cancers. Collectively, our study suggested that the disruption of miRNA positive co-expression in cancer might contribute to cancer development. Our findings also form an important basis for identifying miRNAs with potential co-contribution to carcinogenesis.
Collapse
Affiliation(s)
- Chen-Ching Lin
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA. and Institute of BioMedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ramkrishna Mitra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA. and Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
347
|
Wang GZ, Cheng X, Zhou B, Wen ZS, Huang YC, Chen HB, Li GF, Huang ZL, Zhou YC, Feng L, Wei MM, Qu LW, Cao Y, Zhou GB. The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. eLife 2015; 4:e09419. [PMID: 26565418 PMCID: PMC4764582 DOI: 10.7554/elife.09419] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
More than 90% of lung cancers are caused by cigarette smoke and air pollution, with polycyclic aromatic hydrocarbons (PAHs) as key carcinogens. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China, attributed to smoky coal combustion-generated PAH pollution. Here, we screened for abnormal inflammatory factors in non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used, and found that a chemokine CXCL13 was overexpressed in 63/70 (90%) of Xuanwei NSCLCs and 44/71 (62%) of smoker and 27/60 (45%) of non-smoker CR patients. CXCL13 overexpression was associated with the region Xuanwei and cigarette smoke. The key carcinogen benzo(a)pyrene (BaP) induced CXCL13 production in lung epithelial cells and in mice prior to development of detectable lung cancer. Deficiency in Cxcl13 or its receptor, Cxcr5, significantly attenuated BaP-induced lung cancer in mice, demonstrating CXCL13's critical role in PAH-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Gui-Zhen Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhe-Sheng Wen
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao-Bin Chen
- Department of Pathology, The First People’s Hospital of Qu Jing City, Qu Jing, China
| | - Gao-Feng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhi-Liang Huang
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Feng
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Ming-Ming Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Wei Qu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
348
|
Sathe A, Zhang YA, Ma X, Ray P, Cadinu D, Wang YW, Yao X, Liu X, Tang H, Wang Y, Huang Y, Liu C, Gu J, Akerman M, Mo Y, Cheng C, Xuan Z, Chen L, Xiao G, Xie Y, Girard L, Wang H, Lam S, Wistuba II, Zhang L, Gazdar AF, Zhang MQ. SCT Promoter Methylation is a Highly Discriminative Biomarker for Lung and Many Other Cancers. ACTA ACUST UNITED AC 2015; 1:30-33. [PMID: 33758771 DOI: 10.1109/lls.2015.2488438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aberrant DNA methylation has long been implicated in cancers. In this work we present a highly discriminative DNA methylation biomarker for non-small cell lung cancers and fourteen other cancers. Based on 69 NSCLC cell lines and 257 cancer-free lung tissues we identified a CpG island in SCT gene promoter which was verified by qMSP experiment in 15 NSCLC cell lines and 3 immortalized human respiratory epithelium cells. In addition, we found that SCT promoter was methylated in 23 cancer cell lines involving >10 cancer types profiled by ENCODE. We found that SCT promoter is hyper-methylated in primary tumors from TCGA lung cancer cohort. Additionally, we found that SCT promoter is methylated at high frequencies in fifteen malignancies and is not methylated in~1000 non-cancerous tissues across >30 organ types. Our study indicates that SCT promoter methylation is a highly discriminative biomarker for lung and many other cancers.
Collapse
Affiliation(s)
- Adwait Sathe
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Yu-An Zhang
- The Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xiaotu Ma
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Pradipta Ray
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Daniela Cadinu
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Yi-Wei Wang
- The Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xiao Yao
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Xiaoyun Liu
- The Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hao Tang
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yunfei Wang
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Ying Huang
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Changning Liu
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Jin Gu
- Division of Bioinformatics, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| | - Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yifan Mo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Chao Cheng
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Zhenyu Xuan
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Lei Chen
- Laboratory of Signal Transduction, Eastern Hepatobiliary Surgery Hospital, SMMU, Shanghai 200438, China
| | - Guanghua Xiao
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yang Xie
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Luc Girard
- The Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hongyang Wang
- Laboratory of Signal Transduction, Eastern Hepatobiliary Surgery Hospital, SMMU, Shanghai 200438, China
| | - Stephen Lam
- BC Cancer Research Center, BC Cancer Agency, Vancouver, BC V521L3, Canada
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, Thoracic/Head and Neck Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston TX 77030, USA
| | - Li Zhang
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Adi F Gazdar
- The Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael Q Zhang
- Center for Systems Biology, Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA.,Division of Bioinformatics, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China
| |
Collapse
|
349
|
Tajima K, Yae T, Javaid S, Tam O, Comaills V, Morris R, Wittner BS, Liu M, Engstrom A, Takahashi F, Black JC, Ramaswamy S, Shioda T, Hammell M, Haber DA, Whetstine JR, Maheswaran S. SETD1A modulates cell cycle progression through a miRNA network that regulates p53 target genes. Nat Commun 2015; 6:8257. [PMID: 26394836 PMCID: PMC4667427 DOI: 10.1038/ncomms9257] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/03/2015] [Indexed: 01/28/2023] Open
Abstract
Expression of the p53-inducible antiproliferative gene BTG2 is suppressed in many cancers in the absence of inactivating gene mutations, suggesting alternative mechanisms of silencing. Using a shRNA screen targeting 43 histone lysine methyltransferases (KMTs), we show that SETD1A suppresses BTG2 expression through its induction of several BTG2-targeting miRNAs. This indirect but highly specific mechanism, by which a chromatin regulator that mediates transcriptional activating marks can lead to the downregulation of a critical effector gene, is shared with multiple genes in the p53 pathway. Through such miRNA-dependent effects, SETD1A regulates cell cycle progression in vitro and modulates tumorigenesis in mouse xenograft models. Together, these observations help explain the remarkably specific genetic consequences associated with alterations in generic chromatin modulators in cancer. The p53-inducible antiproliferative gene BTG2 is suppressed in many cancers, in the absence of inactivating gene mutations. Here the authors show that the histone lysine methyltransferase SETD1A suppresses the expression of several p53 target genes including BTG2 by inducing a network of microRNAs.
Collapse
Affiliation(s)
- Ken Tajima
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Toshifumi Yae
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Sarah Javaid
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Oliver Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Valentine Comaills
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Mingzhu Liu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Amanda Engstrom
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Fumiyuki Takahashi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Joshua C Black
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Toshihiro Shioda
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Department of Surgery, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
350
|
RETRACTED ARTICLE: Targeted DNA methylation analysis explores association of adenocarcinoma and neuroendocrine epitypes with lung cancer. Tumour Biol 2015; 37:2537. [PMID: 26386722 DOI: 10.1007/s13277-015-3826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|