301
|
Cao J, Li M, Chen J, Liu P, Li Z. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency. Sci Rep 2016; 6:37674. [PMID: 27883040 PMCID: PMC5121592 DOI: 10.1038/srep37674] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
Jasmonates (JAs) play important roles in plant growth, development and defense. Comprehensive metabolomics profiling of plants under JA treatment provides insights into the interaction and regulation network of plant hormones. Here we applied high resolution mass spectrometry based metabolomics approach on Arabidopsis wild type and JA synthesis deficiency mutant opr3. The effects of exogenous MeJA treatment on the metabolites of opr3 were investigated. More than 10000 ion signals were detected and more than 2000 signals showed significant variation in different genotypes and treatment groups. Multivariate statistic analyses (PCA and PLS-DA) were performed and a differential compound library containing 174 metabolites with high resolution precursor ion-product ions pairs was obtained. Classification and pathway analysis of 109 identified compounds in this library showed that glucosinolates and tryptophan metabolism, amino acids and small peptides metabolism, lipid metabolism, especially fatty acyls metabolism, were impacted by endogenous JA deficiency and exogenous MeJA treatment. These results were further verified by quantitative reverse transcription PCR (RT-qPCR) analysis of 21 related genes involved in the metabolism of glucosinolates, tryptophan and α-linolenic acid pathways. The results would greatly enhance our understanding of the biological functions of JA.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengya Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pei Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
302
|
Zhou W, Brockmöller T, Ling Z, Omdahl A, Baldwin IT, Xu S. Evolution of herbivore-induced early defense signaling was shaped by genome-wide duplications in Nicotiana. eLife 2016; 5:e19531. [PMID: 27813478 PMCID: PMC5115867 DOI: 10.7554/elife.19531] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023] Open
Abstract
Herbivore-induced defenses are widespread, rapidly evolving and relevant for plant fitness. Such induced defenses are often mediated by early defense signaling (EDS) rapidly activated by the perception of herbivore associated elicitors (HAE) that includes transient accumulations of jasmonic acid (JA). Analyzing 60 HAE-induced leaf transcriptomes from closely-related Nicotiana species revealed a key gene co-expression network (M4 module) which is co-activated with the HAE-induced JA accumulations but is elicited independently of JA, as revealed in plants silenced in JA signaling. Functional annotations of the M4 module were consistent with roles in EDS and a newly identified hub gene of the M4 module (NaLRRK1) mediates a negative feedback loop with JA signaling. Phylogenomic analysis revealed preferential gene retention after genome-wide duplications shaped the evolution of HAE-induced EDS in Nicotiana. These results highlight the importance of genome-wide duplications in the evolution of adaptive traits in plants.
Collapse
Affiliation(s)
- Wenwu Zhou
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Brockmöller
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Zhihao Ling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ashton Omdahl
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Brigham Young University, Provo, United States
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
303
|
Sen S, Kundu S, Dutta SK. Proteomic analysis of JAZ interacting proteins under methyl jasmonate treatment in finger millet. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:79-89. [PMID: 27423073 DOI: 10.1016/j.plaphy.2016.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 05/17/2023]
Abstract
Jasmonic acid (JA) signaling pathway in plants is activated against various developmental processes as well as biotic and abiotic stresses. The Jasmonate ZIM-domain (JAZ) protein family, the key regulator of plant JA signaling pathway, also participates in phytohormone crosstalk. This is the first study revealing the in vivo interactions of finger millet (Eleusine coracana (L.) Gaertn.) JAZ protein (EcJAZ) under methyl jasmonate (MJ) treatment. The aim of the study was to explore not only the JA signaling pathway but also the phytohormone signaling crosstalk of finger millet, a highly important future crop. From the MJ-treated finger millet seedlings, the EcJAZ interacting proteins were purified by affinity chromatography with the EcJAZ-matrix. Twenty-one proteins of varying functionalities were successfully identified by MALDI-TOF-TOF Mass spectrometry. Apart from the previously identified JAZ binding proteins, most prominently, EcJAZ was found to interact with transcription factors like NAC, GATA and also with Cold responsive protein (COR), etc. that might have extended the range of functionalities of JAZ proteins. Moreover, to evaluate the interactions of EcJAZ in the JA-co-receptor complex, we generated ten in-silico models containing the EcJAZ degron and the COI1-SKP1 of five monocot cereals viz., rice, wheat, maize, Sorghum and Setaria with JA-Ile or coronatine. Our results indicated that the EcJAZ protein of finger millet could act as the signaling hub for the JA and other phytohormone signaling pathways, in response to a diverse set of stressors and developmental cues to provide survival fitness to the plant.
Collapse
Affiliation(s)
- Saswati Sen
- Drug Development/Diagnostics and Biotechnology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India.
| | - Sangeeta Kundu
- Structural Biology and Bioinformatics Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Samir Kr Dutta
- Drug Development/Diagnostics and Biotechnology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| |
Collapse
|
304
|
Chiangga S, Pornkaveerat W, Frank TD. Reaction kinetics of the jasmonate-isoleucine complex formation during wound-induced plant defense responses: A model-based re-analysis of published data. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:103-113. [PMID: 27769013 DOI: 10.1016/j.jplph.2016.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/17/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Three studies were considered in which jasmonate-isoleucine levels were observed for several hours after plant wounding. The data from these studies were fitted to a first order kinetical model describing jasmonate-isoleucine complex formation and dissociation. It was found that the model could explain up to 97 percent of the variations in the data sets. In general, the data re-analysis confirmed that the protein-protein interactions involved in the biosynthesis and dissociation of the jasmonate-isoleucine complex are fast relative to the dynamics of the jasmonate levels themselves. Moreover, the data re-analysis supported the notion that transgenic plant manipulations affecting the defense-responses in plants not only affect the jasmonate-isoleucine levels indirectly by affecting jasmonate levels during plant responses. Rather, it seems that transgenic plant manipulations affect kinetic rate parameters of the jasmonate-isoleucine complex formation and dissociation reactions. In addition to these general findings, several specific conclusions for the three experimental studies were obtained.
Collapse
Affiliation(s)
- S Chiangga
- Department of Physics, Kasetsart University, Bangkok 10900, Thailand
| | - W Pornkaveerat
- Department of Physics, Kasetsart University, Bangkok 10900, Thailand
| | - T D Frank
- Center for the Ecological Study of Perception and Action, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA; Department of Physics, University of Connecticut, 2152 Hillside Road, Storrs, CT 06269, USA.
| |
Collapse
|
305
|
Ishimaru Y, Oikawa T, Suzuki T, Takeishi S, Matsuura H, Takahashi K, Hamamoto S, Uozumi N, Shimizu T, Seo M, Ohta H, Ueda M. GTR1 is a jasmonic acid and jasmonoyl-l-isoleucine transporter in Arabidopsis thaliana. Biosci Biotechnol Biochem 2016; 81:249-255. [PMID: 27760496 DOI: 10.1080/09168451.2016.1246174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Jasmonates are major plant hormones involved in wounding responses. Systemic wounding responses are induced by an electrical signal derived from damaged leaves. After the signaling, jasmonic acid (JA) and jasmonoyl-l-isoleucine (JA-Ile) are translocated from wounded to undamaged leaves, but the molecular mechanism of the transport remains unclear. Here, we found that a JA-Ile transporter, GTR1, contributed to these translocations in Arabidopsis thaliana. GTR1 was expressed in and surrounding the leaf veins both of wounded and undamaged leaves. Less accumulations and translocation of JA and JA-Ile were observed in undamaged leaves of gtr1 at 30 min after wounding. Expressions of some genes related to wound responses were induced systemically in undamaged leaves of gtr1. These results suggested that GTR1 would be involved in the translocation of JA and JA-Ile in plant and may be contributed to correct positioning of JA and JA-Ile to attenuate an excessive wound response in undamaged leaves.
Collapse
Affiliation(s)
| | - Takaya Oikawa
- a Department of Chemistry , Tohoku University , Sendai , Japan
| | - Takeshi Suzuki
- a Department of Chemistry , Tohoku University , Sendai , Japan
| | - Syohei Takeishi
- b Research Faculty of Agriculture, Division of Applied Bioscience , Hokkaido University , Sapporo , Japan
| | - Hideyuki Matsuura
- b Research Faculty of Agriculture, Division of Applied Bioscience , Hokkaido University , Sapporo , Japan
| | - Kosaku Takahashi
- b Research Faculty of Agriculture, Division of Applied Bioscience , Hokkaido University , Sapporo , Japan
| | - Shin Hamamoto
- c Graduate School of Engineering, Tohoku University , Sendai , Japan
| | - Nobuyuki Uozumi
- c Graduate School of Engineering, Tohoku University , Sendai , Japan
| | - Takafumi Shimizu
- d RIKEN Center for Sustainable Resource Science , Yokohama , Japan
| | - Mitsunori Seo
- d RIKEN Center for Sustainable Resource Science , Yokohama , Japan
| | - Hiroyuki Ohta
- e Graduate School of Bioscience and Biotechnology , Tokyo Institute of Technology , Kanagawa , Japan
| | - Minoru Ueda
- a Department of Chemistry , Tohoku University , Sendai , Japan
| |
Collapse
|
306
|
Simm S, Scharf KD, Jegadeesan S, Chiusano ML, Firon N, Schleiff E. Survey of Genes Involved in Biosynthesis, Transport, and Signaling of Phytohormones with Focus on Solanum lycopersicum. Bioinform Biol Insights 2016; 10:185-207. [PMID: 27695302 PMCID: PMC5038615 DOI: 10.4137/bbi.s38425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species. Thus, we aimed to define the extent to which information from the model plant Arabidopsis thaliana is transferable to other plants such as Solanum lycopersicum. We extracted the co-orthologues of genes coding for major pathway enzymes in A. thaliana from the translated genomes of 12 species from the clade Viridiplantae. Based on predicted domain architecture and localization of the identified proteins from all 13 species, we inspected the conservation of phytohormone pathways. The comparison was complemented by expression analysis of (co-) orthologous genes in S. lycopersicum. Altogether, this information allowed the assignment of putative functional equivalents between A. thaliana and S. lycopersicum but also pointed to some variations between the pathways in eudicots, monocots, mosses, and green algae. These results provide first insights into the conservation of the various phytohormone pathways between the model system A. thaliana and crop plants such as tomato. We conclude that orthologue prediction in combination with analysis of functional domain architecture and intracellular localization and expression studies are sufficient tools to transfer information from model plants to other plant species. Our results support the notion that hormone synthesis, transport, and response for most part of the pathways are conserved, and species-specific variations can be found.
Collapse
Affiliation(s)
- Stefan Simm
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Sridharan Jegadeesan
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel.; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Luisa Chiusano
- Department of Soil, Plants Environmental and Animal Production Sciences, Laboratory of Computer Aided Biosciences, University of Studies of Naples Federico II, Portici, Naples, Italy
| | - Nurit Firon
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel
| | - Enrico Schleiff
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| |
Collapse
|
307
|
Abstract
Jasmonates (JAs) are a class of plant hormones that play essential roles in response to tissue wounding. They act on gene expression to slow down growth and to redirect metabolism towards producing defense molecules and repairing damage. These responses are systemic and have dramatic impacts on yields, making JAs a very active research area. JAs interact with many other plant hormones and therefore also have essential functions throughout development, notably during plant reproduction, leaf senescence and in response to many biotic and abiotic stresses.
Collapse
Affiliation(s)
- Antoine Larrieu
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| |
Collapse
|
308
|
Arnold MD, Gruber C, Floková K, Miersch O, Strnad M, Novák O, Wasternack C, Hause B. The Recently Identified Isoleucine Conjugate of cis-12-Oxo-Phytodienoic Acid Is Partially Active in cis-12-Oxo-Phytodienoic Acid-Specific Gene Expression of Arabidopsis thaliana. PLoS One 2016; 11:e0162829. [PMID: 27611078 PMCID: PMC5017875 DOI: 10.1371/journal.pone.0162829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/29/2016] [Indexed: 11/28/2022] Open
Abstract
Oxylipins of the jasmonate family are active as signals in plant responses to biotic and abiotic stresses as well as in development. Jasmonic acid (JA), its precursor cis-12-oxo-phytodienoic acid (OPDA) and the isoleucine conjugate of JA (JA-Ile) are the most prominent members. OPDA and JA-Ile have individual signalling properties in several processes and differ in their pattern of gene expression. JA-Ile, but not OPDA, is perceived by the SCFCOI1-JAZ co-receptor complex. There are, however, numerous processes and genes specifically induced by OPDA. The recently identified OPDA-Ile suggests that OPDA specific responses might be mediated upon formation of OPDA-Ile. Here, we tested OPDA-Ile-induced gene expression in wild type and JA-deficient, JA-insensitive and JA-Ile-deficient mutant background. Tests on putative conversion of OPDA-Ile during treatments revealed only negligible conversion. Expression of two OPDA-inducible genes, GRX480 and ZAT10, by OPDA-Ile could be detected in a JA-independent manner in Arabidopsis seedlings but less in flowering plants. The data suggest a bioactivity in planta of OPDA-Ile.
Collapse
Affiliation(s)
- Monika D. Arnold
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Cornelia Gruber
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Kristýna Floková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
| | - Otto Miersch
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
| | - Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
309
|
Yan Q, Cui X, Lin S, Gan S, Xing H, Dou D. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses. PLoS One 2016; 11:e0162253. [PMID: 27588421 PMCID: PMC5010195 DOI: 10.1371/journal.pone.0162253] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/21/2016] [Indexed: 11/18/2022] Open
Abstract
The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxia Cui
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shuai Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Shuping Gan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Han Xing
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
310
|
Pelagio-Flores R, Ruiz-Herrera LF, López-Bucio J. Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling. PHYSIOLOGIA PLANTARUM 2016; 158:92-105. [PMID: 26864878 DOI: 10.1111/ppl.12429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Serotonin (5-hydroxytryptamine) is a bioactive indoleamine with neurotransmitter function in vertebrates, which represents an emerging signaling molecule in plants, playing key roles in the development and defense. In this study, the role of reactive oxygen species (ROS) and jasmonic acid (JA)-ethylene (Et) signaling in root developmental alterations induced by serotonin was investigated. An Arabidopsis thaliana mutant defective at the RADICAL-INDUCED CELL DEATH1 (RCD1) locus was resistant to paraquat-induced ROS accumulation in primary roots and showed decreased inhibition or root growth in response to serotonin. A suite of JA- and Et-related mutants including coronatine insensitive1, jasmonic acid resistant1 (jar1), etr1, ein2 and ein3 showed tolerance to serotonin in the inhibition of primary root growth and ROS redistribution within the root tip when compared with wild-type (WT) seedlings. Competence assays between serotonin and AgNO3 , a well-known blocker of Et action, showed that primary root growth in medium supplemented with serotonin was normalized by AgNO3 , whereas roots of eto3, an Et overproducer mutant, were oversensitive to serotonin. Comparison of ROS levels in WT, etr1, jar1 and rcd1 primary root tips using the ROS-specific probe 2',7'-dichlorofluorescein diacetate and confocal imaging showed that serotonin inhibition of primary root growth likely occurs independently of its conversion into melatonin. Our results provide compelling evidence that serotonin affects ROS distribution in roots, involving RCD1 and components of the JA-Et signaling pathways.
Collapse
Affiliation(s)
- Ramón Pelagio-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| |
Collapse
|
311
|
Nilsson AK, Fahlberg P, Johansson ON, Hamberg M, Andersson MX, Ellerström M. The activity of HYDROPEROXIDE LYASE 1 regulates accumulation of galactolipids containing 12-oxo-phytodienoic acid in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5133-44. [PMID: 27422994 PMCID: PMC5014160 DOI: 10.1093/jxb/erw278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arabidopsis produces galactolipids containing esters of 12-oxo-phytodienoic acid (OPDA) and dinor-12-oxo-phytodienoic acid (dnOPDA). These lipids are referred to as arabidopsides and accumulate in response to abiotic and biotic stress. We explored the natural genetic variation found in 14 different Arabidopsis accessions to identify genes involved in the formation of arabidopsides. The accession C24 was identified as a poor accumulator of arabidopsides whereas the commonly used accession Col-0 was found to accumulate comparably large amounts of arabidopsides in response to tissue damage. A quantitative trait loci analysis of an F2 population created from a cross between C24 and Col-0 located a region on chromosome four strongly linked to the capacity to form arabidopsides. Expression analysis of HYDROPEROXIDE LYASE 1 (HPL1) showed large differences in transcript abundance between accessions. Transformation of Col-0 plants with the C24 HPL1 allele under transcriptional regulation of the 35S promoter revealed a strong negative correlation between HPL1 expression and arabidopside accumulation after tissue damage, thereby strengthening the view that HPL1 competes with ALLENE OXIDE SYNTHASE (AOS) for lipid-bound hydroperoxide fatty acids. We further show that the last step in the synthesis of galactolipid-bound OPDA and dnOPDA from unstable allene oxides is exclusively enzyme-catalyzed and not the result of spontaneous cyclization. Thus, the results presented here together with previous studies suggest that all steps in arabidopside biosynthesis are enzyme-dependent and apparently all reactions can take place with substrates being esterified to galactolipids.
Collapse
Affiliation(s)
- Anders K Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
| | - Per Fahlberg
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
| | - Oskar N Johansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
| | - Mats Hamberg
- Division of Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
| | - Mats Ellerström
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
| |
Collapse
|
312
|
Ji SD, Wang ZY, Fan HJ, Zhang RS, Yu ZY, Wang JJ, Liu ZH. Heterologous expression of the Hsp24 from Trichoderma asperellum improves antifungal ability of Populus transformant Pdpap-Hsp24 s to Cytospora chrysosperma and Alternaria alternate. JOURNAL OF PLANT RESEARCH 2016; 129:921-933. [PMID: 27193371 DOI: 10.1007/s10265-016-0829-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/27/2015] [Indexed: 05/02/2023]
Abstract
The tolerance of plants to biotic and abiotic stresses could be improved by transforming with fungal resistance-related genes. In this study, the cDNA sequence (GenBank Acc. No. KP337939) of the resistance-related gene Hsp24 encoding the 24 kD heat shock protein was obtained from the biocontrol fungus Trichoderma asperellum ACCC30536. The promoter region of Hsp24 contained many cis-regulators related to stresses response, such as "GCN4" and "GCR1" etc. Hsp24 transcription in T. asperellum was up-regulated under six different environmental stresses, compared with the control. Furthermore, following heterologous transformation into Populus davidiana × P. alba var. Pyramidalis (Pdpap), Hsp24 was successfully transcribed in transformant Pdpap-Hsp24s. Pathogen-related genes (PRs) in four Pdpap-Hsp24s were up-regulated compared with those in the control Pdpap (Pdpap-Con). After co-culture of Pdpap-Hsp24s with the weak parasite Cytospora chrysosperma, the transcription of genes related to hormone signal pathway (JA and SA) were up-regulated in Pdpap-Hsp24s, and ethidium bromide (EtBr) and Nitro-blue tetrazolium (NBT) staining assays indicated that the cell membrane permeability and the active oxygen content of Pdpap-Hsp24s leaves were lower than that of the control Pdpap-Con. And when the Pdpap-Hsp24s were under the Alternaria alternate stress, the activities of superoxide dismutase (SOD) and peroxidase (POD) got higher in Pdpap-Hsp24s than that in Pdpap-Con, and the disease spots in Pdpap-Con leaves were obviously larger than those in Pdpap-Hsp24s leaves. In summary, Hsp24 of T. asperellum ACCC30536 is an important defense response gene, and its heterologous expression improved the resistance of transformant Pdpap-Hsp24s to C. chrysosperma and A. alternate.
Collapse
Affiliation(s)
- S D Ji
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Z Y Wang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - H J Fan
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - R S Zhang
- The College of Landscape, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Z Y Yu
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - J J Wang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China
| | - Z H Liu
- School of Forestry, Northeast Forestry University, 26 Hexing Road, 150040, Harbin, China.
| |
Collapse
|
313
|
Bagherian SAA, Hamzehzarghani H, Izadpanah K, Djavaheri M. Effects of potato spindle tuber viroid infection on tomato metabolic profile. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:42-53. [PMID: 27393919 DOI: 10.1016/j.jplph.2016.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Viroids are the smallest plant pathogens consisting of a single stranded circular RNA molecule with a strong secondary structure, lacking a coat protein or any other proteins. The mechanism of viroid pathogenicity has remained unclear. Recent advances in instrumentation and data mining have made it possible to study the effects of various stresses on primary and secondary metabolisms. Here, we have utilized metabolic profiling approach to show how PSTVd infection alters tomato metabolic profile and the related pathways. Three terminal leaflets of third true leaf of 20-day-old tolerant tomato cultivar 'Moneymaker' were mechanically inoculated by PSTVd intermediate variant cDNAs and samples were taken from eighth leaf, 19days post-inoculation. Metabolites were extracted and analyzed by gas chromatography/mass spectrometry (GC/MS) and subjected to statistical data analysis. Affected pathways were identified by Pathway Tools program and were compared with microarray data previously reported. The study showed that 79 metabolites changed significantly and 23 pathways were identified in relation to these metabolites. Fourteen of these pathways were similar to those reported in other works. The altered pathways in PSTVd infected tomato leaves included, eight cutin and wax biosynthesis, seven pathways that produce defense related compounds, two energy generator pathways, three hormone biosynthesis pathways, two signal transduction pathways, and one nucleotide biosynthesis pathway. Our data on up/down-regulation of pathways supported the data produced on their corresponding gene(s) up/down-regulation.
Collapse
Affiliation(s)
| | | | | | - Mohammad Djavaheri
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
314
|
Ma KW, Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. PLANT MOLECULAR BIOLOGY 2016; 91:713-25. [PMID: 26879412 PMCID: PMC4932134 DOI: 10.1007/s11103-016-0452-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/07/2016] [Indexed: 05/18/2023]
Abstract
Plants are constantly threatened by potential pathogens. In order to optimize the output of defense against pathogens with distinct lifestyles, plants depend on hormonal networks to fine-tune specific responses and regulate growth-defense tradeoffs. To counteract, pathogens have evolved various strategies to disturb hormonal homeostasis and facilitate infection. Many pathogens synthesize plant hormones; more importantly, toxins and effectors are produced to manipulate hormonal crosstalk. Accumulating evidence has shown that pathogens exert extensive effects on plant hormone pathways not only to defeat immunity, but also modify habitat structure, optimize nutrient acquisition, and facilitate pathogen dissemination. In this review, we summarize mechanisms by which a wide array of pathogens gain benefits from manipulating plant hormone pathways.
Collapse
Affiliation(s)
- Ka-Wai Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA.
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
315
|
Qi J, Sun G, Wang L, Zhao C, Hettenhausen C, Schuman MC, Baldwin IT, Li J, Song J, Liu Z, Xu G, Lu X, Wu J. Oral secretions from Mythimna separata insects specifically induce defence responses in maize as revealed by high-dimensional biological data. PLANT, CELL & ENVIRONMENT 2016; 39:1749-1766. [PMID: 26991784 PMCID: PMC5295635 DOI: 10.1111/pce.12735] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/06/2016] [Indexed: 05/13/2023]
Abstract
Attack from insect herbivores poses a major threat to plant survival, and accordingly, plants have evolved sophisticated defence systems. Maize is cultivated as a staple crop worldwide, and insect feeding causes large production losses. Despite its importance in agriculture, little is known about how maize reacts to insect herbivory. Taking advantage of advances in sequencing and mass spectrometry technology, we studied the response of maize to mechanical wounding and simulated Mythimna separata (a specialist insect) herbivory by applying its oral secretions (OS) to wounds. In comparison to the responses induced by mechanical wounding, OS elicited larger and longer-lasting changes in the maize transcriptome, proteome, metabolome and phytohormones. Specifically, many genes, proteins and metabolites were uniquely induced or repressed by OS. Nearly 290 transcription factor genes from 39 families were involved in OS-induced responses, and among these, more transcription factor genes were specifically regulated by OS than by wounding. This study provides a large-scale omics dataset for understanding maize response to chewing insects and highlights the essential role of OS in plant-insect interactions.
Collapse
Affiliation(s)
- Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chunxia Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig 04103, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhudong Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Guowang Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Corresponding author: Jianqiang Wu, Phone/Fax: +86-871-65229562,
| |
Collapse
|
316
|
Yin Y, Adachi Y, Nakamura Y, Munemasa S, Mori IC, Murata Y. Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard Cells. PLANT & CELL PHYSIOLOGY 2016; 57:1779-90. [PMID: 27354421 DOI: 10.1093/pcp/pcw102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/14/2016] [Indexed: 05/24/2023]
Abstract
Methyl jasmonate (MeJA) induces stomatal closure. It has been shown that stomata of many ABA-insensitive mutants are also insensitive to MeJA, and a low amount of ABA is a prerequisite for the MeJA response. However, the molecular mechanisms of the interaction between ABA and MeJA signaling remain to be elucidated. Here we studied the interplay of signaling of the two hormones in guard cells using the quadruple ABA receptor mutant pyr1 pyl1 pyl2 pyl4 and ABA-activated protein kinase mutants ost1-2 and srk2e. In the quadruple mutant, MeJA-induced stomatal closure, H2O2 production, nitric oxide (NO) production, cytosolic alkalization and plasma membrane Ca(2+)-permeable current (ICa) activation were not impaired. At the same time, the inactivation of the inward-rectifying K(+) current was impaired. In contrast to the quadruple mutant, MeJA-induced stomatal closure, H2O2 production, NO production and cytosolic alkalization were impaired in ost1-2 and srk2e as well as in aba2-2, the ABA-deficient mutant. The activation of ICa was also impaired in srk2e. Collectively, these results indicated that OST1 was essential for MeJA-induced stomatal closure, while PYR1, PYL1, PYL2 and PYL4 ABA receptors were not sufficient factors. MeJA did not appear to activate OST1 kinase activity. This implies that OST1 mediates MeJA signaling through an undetectable level of activity or a non-enzymatic action. MeJA induced the expression of an ABA synthesis gene, NCED3, and increased ABA contents only modestly. Taken together with previous reports, this study suggests that MeJA signaling in guard cells is primed by ABA and is not brought about through the pathway mediated by PYR1, PYL1 PYL2 and PYL4.
Collapse
Affiliation(s)
- Ye Yin
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530 Japan
| | - Yuji Adachi
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530 Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530 Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530 Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530 Japan
| |
Collapse
|
317
|
Bruckhoff V, Haroth S, Feussner K, König S, Brodhun F, Feussner I. Functional Characterization of CYP94-Genes and Identification of a Novel Jasmonate Catabolite in Flowers. PLoS One 2016; 11:e0159875. [PMID: 27459369 PMCID: PMC4961372 DOI: 10.1371/journal.pone.0159875] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022] Open
Abstract
Over the past decades much research focused on the biosynthesis of the plant hormone jasmonyl-isoleucine (JA-Ile). While many details about its biosynthetic pathway as well about its physiological function are established nowadays, knowledge about its catabolic fate is still scarce. Only recently, the hormonal inactivation mechanisms became a stronger research focus. Two major pathways have been proposed to inactivate JA-Ile: i) The cleavage of the jasmonyl-residue from the isoleucine moiety, a reaction that is catalyzed by specific amido-hydrolases, or ii), the sequential oxidation of the ω-end of the pentenyl side-chain. This reaction is catalyzed by specific members of the cytochrome P450 (CYP) subfamily CYP94: CYP94B1, CYP94B3 and CYP94C1. In the present study, we further investigated the oxidative fate of JA-Ile by expanding the analysis on Arabidopsis thaliana mutants, lacking only one (cyp94b1, cyp94b2, cyp94b3, cyp94c1), two (cyp94b1xcyp94b2, cyp94b1xcyp94b3, cyp94b2xcyp94b3), three (cyp94b1xcyp94b2xcyp94b3) or even four (cyp94b1xcyp94b2xcyp94b3xcyp94c1) CYP94 functionalities. The results obtained in the present study show that CYP94B1, CYP94B2, CYP94B3 and CYP94C1 are responsible for catalyzing the sequential ω-oxidation of JA-Ile in a semi-redundant manner. While CYP94B-enzymes preferentially hydroxylate JA-Ile to 12-hydroxy-JA-Ile, CYP94C1 catalyzes primarily the subsequent oxidation, yielding 12-carboxy-JA-Ile. In addition, data obtained from investigating the triple and quadruple mutants let us hypothesize that a direct oxidation of unconjugated JA to 12-hydroxy-JA is possible in planta. Using a non-targeted metabolite fingerprinting analysis, we identified unconjugated 12-carboxy-JA as novel jasmonate derivative in floral tissues. Using the same approach, we could show that deletion of CYP94-genes might not only affect JA-homeostasis but also other signaling pathways. Deletion of CYP94B1, for example, led to accumulation of metabolites that may be characteristic for plant stress responses like systemic acquired resistance. Evaluation of the in vivo function of the different CYP94-enzymes on the JA-sensitivity demonstrated that particularly CYP94B-enzymes might play an essential role for JA-response, whereas CYP94C1 might only be of minor importance.
Collapse
Affiliation(s)
- Viktoria Bruckhoff
- Georg-August-University Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Sven Haroth
- Georg-August-University Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Kirstin Feussner
- Georg-August-University Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Stefanie König
- Georg-August-University Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Florian Brodhun
- Georg-August-University Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | - Ivo Feussner
- Georg-August-University Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany.,Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany
| |
Collapse
|
318
|
Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Sci Rep 2016; 6:30338. [PMID: 27455877 PMCID: PMC4960583 DOI: 10.1038/srep30338] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022] Open
Abstract
γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis.
Collapse
|
319
|
Amil-Ruiz F, Garrido-Gala J, Gadea J, Blanco-Portales R, Muñoz-Mérida A, Trelles O, de los Santos B, Arroyo FT, Aguado-Puig A, Romero F, Mercado JÁ, Pliego-Alfaro F, Muñoz-Blanco J, Caballero JL. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:1036. [PMID: 27471515 PMCID: PMC4945649 DOI: 10.3389/fpls.2016.01036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/01/2016] [Indexed: 05/04/2023]
Abstract
Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.
Collapse
Affiliation(s)
- Francisco Amil-Ruiz
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - José Garrido-Gala
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - Antonio Muñoz-Mérida
- Departamento de Arquitectura de Computación, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Oswaldo Trelles
- Departamento de Arquitectura de Computación, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Berta de los Santos
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - Francisco T. Arroyo
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - Ana Aguado-Puig
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - Fernando Romero
- Centro Andalusian Institute of Agricultural and Fishering Research and Training (IFAPA) Las Torres-Tomejil, CAPMA–Junta de AndalucíaSevilla, Spain
| | - José-Ángel Mercado
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Fernando Pliego-Alfaro
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de TeatinosMálaga, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Edificio Severo Ochoa (C6), Universidad de CórdobaCórdoba, Spain
| |
Collapse
|
320
|
Valenzuela CE, Acevedo-Acevedo O, Miranda GS, Vergara-Barros P, Holuigue L, Figueroa CR, Figueroa PM. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4209-20. [PMID: 27217545 PMCID: PMC5301928 DOI: 10.1093/jxb/erw202] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinity is a severe abiotic stress that affects irrigated croplands. Jasmonate (JA) is an essential hormone involved in plant defense against herbivory and in responses to abiotic stress. However, the relationship between the salt stress response and the JA pathway in Arabidopsis thaliana is not well understood at molecular and cellular levels. In this work we investigated the activation of JA signaling by NaCl and its effect on primary root growth. We found that JA-responsive JAZ genes were up-regulated by salt stress in a COI1-dependent manner in the roots. Using a JA-Ile sensor we demonstrated that activation of JA signaling by salt stress occurs in the meristematic zone and stele of the differentiation zone and that this activation was dependent on JAR1 and proteasome functions. Another finding is that the elongation zone (EZ) and its cortical cells were significantly longer in JA-related mutants (AOS, COI1, JAZ3 and MYC2/3/4 genes) compared with wild-type plants under salt stress, revealing the participation of the canonical JA signaling pathway. Noteworthy, osmotic stress - a component of salt stress - inhibited cell elongation in the EZ in a COI1-dependent manner. We propose that salt stress triggers activation of the JA signaling pathway followed by inhibition of cell elongation in the EZ. We have shown that salt-inhibited root growth partially involves the jasmonate signaling pathway in Arabidopsis.
Collapse
Affiliation(s)
- Camilo E Valenzuela
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3465548, Chile
| | - Orlando Acevedo-Acevedo
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Giovanna S Miranda
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Pablo Vergara-Barros
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Carlos R Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3465548, Chile
| | - Pablo M Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3465548, Chile
| |
Collapse
|
321
|
Yu X, Armstrong CM, Zhou M, Duan Y. Bismerthiazol Inhibits Xanthomonas citri subsp. citri Growth and Induces Differential Expression of Citrus Defense-Related Genes. PHYTOPATHOLOGY 2016; 106:693-701. [PMID: 26882850 DOI: 10.1094/phyto-12-15-0328-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Citrus canker, caused by Xanthomonas citri ssp. citri, is a serious disease that causes substantial economic losses to the citrus industry worldwide. The bactericide bismerthiazol has been used to control rice bacterial blight (X. oryzae pv. oryzae). In this paper, we demonstrate that bismerthiazol can effectively control citrus canker by both inhibiting the growth of X. citri ssp. citri and triggering the plant's host defense response through the expression of several pathogenesis-related genes (PR1, PR2, CHI, and RpRd1) and the nonexpresser of PR genes (NPR1, NPR2, and NPR3) in 'Duncan' grapefruit, especially at early treatment times. In addition, we found that bismerthiazol induced the expression of the marker genes CitCHS and CitCHI in the flavonoid pathway and the PAL1 (phenylalanine ammonia lyase 1) gene in the salicylic acid (SA) biosynthesis pathway at different time points. Moreover, bismerthiazol also induced the expression of the priming defense-associated gene AZI1. Taken together, these results indicate that the induction of the defense response in 'Duncan' grapefruit by bismerthiazol may involve the SA signaling pathway and the priming defense and that bismerthiazol may serve as an alternative to copper bactericides for the control of citrus canker.
Collapse
Affiliation(s)
- Xiaoyue Yu
- First and third authors: Nanjing Agriculture University, Nanjing 210095, China; and first, second, and fourth authors: U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945
| | - Cheryl M Armstrong
- First and third authors: Nanjing Agriculture University, Nanjing 210095, China; and first, second, and fourth authors: U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945
| | - Mingguo Zhou
- First and third authors: Nanjing Agriculture University, Nanjing 210095, China; and first, second, and fourth authors: U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945
| | - Yongping Duan
- First and third authors: Nanjing Agriculture University, Nanjing 210095, China; and first, second, and fourth authors: U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945
| |
Collapse
|
322
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
323
|
Shigenaga AM, Argueso CT. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 2016; 56:174-189. [PMID: 27312082 DOI: 10.1016/j.semcdb.2016.06.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022]
Abstract
Plant hormones are essential regulators of plant growth and immunity. In the last few decades, a vast amount of information has been obtained detailing the role of different plant hormones in immunity, and how they work together to ultimately shape the outcomes of plant pathogen interactions. Here we provide an overview on the roles of the main classes of plant hormones in the regulation of plant immunity, highlighting their metabolic and signaling pathways and how plants and pathogens utilize these pathways to activate or suppress defence.
Collapse
Affiliation(s)
- Alexandra M Shigenaga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
324
|
Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat-Michel A, Mauch F, Zeier J. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. MOLECULAR PLANT 2016; 9:662-681. [PMID: 26802249 DOI: 10.1016/j.molp.2016.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/08/2015] [Accepted: 01/01/2016] [Indexed: 05/27/2023]
Abstract
Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inoculated and distant, non-inoculated leaves. At inoculation sites, camalexin, indol-3-ylmethylamine (I3A), and indole-3-carboxylic acid (ICA) are the major accumulating compounds. Camalexin accumulation is positively affected by MYB122, and the cytochrome P450 genes CYP81F1 and CYP81F2. Local I3A production, by contrast, occurs via indole glucosinolate breakdown by PEN2- dependent and independent pathways. Moreover, exogenous application of the defense hormone salicylic acid stimulates I3A generation at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator pipecolic acid primes plants for enhanced P. syringae-induced activation of distinct branches of indolic metabolism. In uninfected systemic tissue, the metabolic response is more specific and associated with enhanced levels of the indolics I3A, ICA, and indole-3-carbaldehyde (ICC). Systemic indole accumulation fully depends on functional CYP79B2/3, PEN2, and MYB34/51/122, and requires functional SAR signaling. Genetic analyses suggest that systemically elevated indoles are dispensable for SAR and associated systemic increases of salicylic acid. However, soil-grown but not hydroponically -cultivated cyp79b2/3 and pen2 plants, both defective in indolic secondary metabolism, exhibit pre-induced immunity, which abrogates their intrinsic ability to induce SAR.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Patricia Bellwon
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Stefan Huber
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Klaus Schlaeppi
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Friederike Bernsdorff
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Armelle Vallat-Michel
- Institut de Chimie, Université de Neuchâtel, Avenue Bellevaux 51, 2007 Neuchâtel, Switzerland
| | - Felix Mauch
- Plant Biology Section, University of Fribourg, Route Albert Gockel 3, 1700 Fribourg, Switzerland
| | - Jürgen Zeier
- Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
325
|
Le Deunff E, Lecourt J. Non-specificity of ethylene inhibitors: 'double-edged' tools to find out new targets involved in the root morphogenetic programme. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:353-61. [PMID: 26434926 DOI: 10.1111/plb.12405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 05/23/2023]
Abstract
In the last decade, genetic and pharmacological approaches have been used to explore ethylene biosynthesis and perception in order to study the role of ethylene and ethylene/auxin interaction in root architecture development. However, recent findings with pharmacological approaches highlight the non-specificity of commonly used inhibitors. This suggests that caution is required for interpreting these studies and that the use of pharmacological agents is a 'double-edged' tool. On one hand, non-specific effects make interpretation difficult unless other experiments, such as with different mutants or with multiple diversely acting chemicals, are conducted. On the other hand, the non-specificity of inhibitors opens up the possibility of uncovering some ligands or modulators of new receptors such as plant glutamate-like receptors and importance of some metabolic hubs in carbon and nitrogen metabolism such as the pyridoxal phosphate biosynthesis involved in the regulation of the root morphogenetic programme. Identification of such targets is a critical issue to improve the efficiency of absorption of macronutrients in relation to root the morphogenetic programme.
Collapse
Affiliation(s)
- E Le Deunff
- Normandie Université, UMR EVA, F-14032, Caen cedex, France
- INRA, UMR 950, Écophysiologie Végétale & Agronomie, Nutritions NCS, INRA F-14032 Caen cedex, France
| | - J Lecourt
- East Malling Research, East Malling, Kent, UK
| |
Collapse
|
326
|
Luo J, Wei K, Wang S, Zhao W, Ma C, Hettenhausen C, Wu J, Cao G, Sun G, Baldwin IT, Wu J, Wang L. COI1-Regulated Hydroxylation of Jasmonoyl-L-isoleucine Impairs Nicotiana attenuata's Resistance to the Generalist Herbivore Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2822-31. [PMID: 26985773 DOI: 10.1021/acs.jafc.5b06056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The phytohormone jasmonoyl-L-isoleucine (JA-Ile) is well-known as the key signaling molecule that elicits plant defense responses after insect herbivory. Oxidation, which is catalyzed by the cytochrome P450s of the CYP94 family, is thought to be one of the main catabolic pathways of JA-Ile. In this study, we identified four CYP94B3 homologues in the wild tobacco plant Nicotiana attenuata. Individually silencing the four homologues revealed that NaCYP94B3 like-1 and NaCYP94B3 like-2, but not NaCYP94B3 like-3 and NaCYP94B3 like-4, are involved in the C-12-hydroxylation of JA-Ile. Simultaneously silencing three of the NaCYP94B3 like genes, NaCYP94B3 like-1, -2, and -4, in the VIGS-NaCYP94B3s plants doubled herbivory-induced JA-Ile levels and greatly enhanced plant resistance to the generalist insect herbivore, Spodoptera litura. The poor larval performance was strongly correlated with the high concentrations of several JA-Ile-dependent direct defense metabolites in VIGS-NaCYP94B3s plants. Furthermore, we show that the abundance of 12-hydroxy-JA-Ile was dependent on JA-Ile levels as well as COI1, the receptor of JA-Ile. COI1 appeared to transcriptionally control NaCYP94B3 like-1 and -2 and thus regulates the catabolism of its own ligand molecule, JA-Ile. These results highlight the important role of JA-Ile degradation in jasmonate homeostasis and provide new insight into the feedback regulation of JA-Ile catabolism. Given that silencing these CYP94 genes did not detectably alter plant growth and highly increased plant defense levels, we propose that CYP94B3 genes can be potential targets for genetic improvement of herbivore-resistant crops.
Collapse
Affiliation(s)
- Ji Luo
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Shuanghua Wang
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Weiye Zhao
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Jinsong Wu
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Guoyan Cao
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology , Jena 07745, Germany
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| |
Collapse
|
327
|
Mo HJ, Sun YX, Zhu XL, Wang XF, Zhang Y, Yang J, Yan GJ, Ma ZY. Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. PLANTA 2016; 243:1023-39. [PMID: 26757733 DOI: 10.1007/s00425-015-2463-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/25/2015] [Indexed: 05/06/2023]
Abstract
Cotton S-adenosylmethionine decarboxylase-, rather than spermine synthase-, mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. Spermine (Spm) signaling is correlated with plant resistance to the fungal pathogen Verticillium dahliae. We identified genes for key rate-limiting enzymes in the biosynthesis of Spm, namely S-adenosylmethionine decarboxylase (GhSAMDC) and Spm synthase (GhSPMS). These were found by screening suppression subtractive hybridization and cDNA libraries of cotton (Gossypium) species tolerant to Verticillium wilt. Both were induced early and strongly by inoculation with V. dahliae and application of plant hormones. Silencing of GhSPMS or GhSAMDC in cotton leaves led to a significant accumulation of upstream substrates and, ultimately, enhanced plant susceptibility to Verticillium infection. Exogenous supplementation of Spm to the silenced cotton plants improved resistance. When compared with the wild type (WT), constitutive expression of GhSAMDC in Arabidopsis thaliana was associated with greater Verticillium wilt resistance and higher accumulations of Spm, salicylic acid, and leucine during the infection period. By contrast, transgenic Arabidopsis plants that over-expressed GhSPMS were unexpectedly more susceptible than the WT to V. dahliae and they also had impaired levels of putrescine (Put) and salicylic acid (SA). The susceptibility exhibited in GhSPMS-overexpressing Arabidopsis plants was partially reversed by the exogenous supply of Put or SA. In addition, the responsiveness of those two transgenic Arabidopsis lines to V. dahliae was associated with an alteration in transcripts of genes involved in plant resistance to epidermal penetrations and amino acid signaling. Together, these results suggest that GhSAMDC-, rather than GhSPMS-, mediated spermine biosynthesis contributes to plant resistance against V. dahliae through SA- and leucine-correlated signaling.
Collapse
Affiliation(s)
- Hui-Juan Mo
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan-Xiang Sun
- Institute of Genetics and Breeding, Langfang Teachers University, Langfang, 065000, China
| | - Xiao-Li Zhu
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xing-Fen Wang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Gui-Jun Yan
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
- School of Plant Biology, Faculty of Science and The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
| | - Zhi-Ying Ma
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
328
|
Šimpraga M, Takabayashi J, Holopainen JK. Language of plants: Where is the word? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:343-9. [PMID: 26563972 DOI: 10.1111/jipb.12447] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/06/2015] [Indexed: 05/03/2023]
Abstract
Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds.
Collapse
Affiliation(s)
- Maja Šimpraga
- Botanical Garden, Faculty of Science, Ghent University, Ledeganck 35, B-9000 Ghent, Belgium
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627 Kuopio, Finland
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga 520-2113, Japan
| | - Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627 Kuopio, Finland
| |
Collapse
|
329
|
Jiang Y, Guo L, Liu R, Jiao B, Zhao X, Ling Z, Luo K. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling. PLoS One 2016; 11:e0149137. [PMID: 27019084 PMCID: PMC4809744 DOI: 10.1371/journal.pone.0149137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022] Open
Abstract
The plant hormones jasmonic acid (JA) and salicylic acid (SA) play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89) was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR) analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.
Collapse
Affiliation(s)
- Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
- State Key Laboratory of Forest Genetics and Tree Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Li Guo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Rui Liu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Bo Jiao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xin Zhao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhengyi Ling
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, China
| |
Collapse
|
330
|
Poudel AN, Zhang T, Kwasniewski M, Nakabayashi R, Saito K, Koo AJ. Mutations in jasmonoyl-L-isoleucine-12-hydroxylases suppress multiple JA-dependent wound responses in Arabidopsis thaliana. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1396-1408. [PMID: 26968098 DOI: 10.1016/j.bbalip.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/19/2016] [Accepted: 03/06/2016] [Indexed: 12/17/2022]
Abstract
Plants rapidly perceive tissue damage, such as that inflicted by insects, and activate several key defense responses. The importance of the fatty acid-derived hormone jasmonates (JA) in dictating these wound responses has been recognized for many years. However, important features pertaining to the regulation of the JA pathway are still not well understood. One key unknown is the inactivation mechanism of the JA pathway and its relationship with plant response to wounding. Arabidopsis cytochrome P450 enzymes in the CYP94 clade metabolize jasmonoyl-L-isoleucine (JA-Ile), a major metabolite of JA responsible for many biological effects attributed to the JA signaling pathway; thus, CYP94s are expected to contribute to the attenuation of JA-Ile-dependent wound responses. To directly test this, we created the double and triple knock-out mutants of three CYP94 genes, CYP94B1, CYP94B3, and CYP94C1. The mutations blocked the oxidation steps and caused JA-Ile to accumulate 3-4-fold the WT levels in the wounded leaves. Surprisingly, over accumulation of JA-Ile did not lead to a stronger wound response. On the contrary, the mutants displayed a series of symptoms reminiscent of JA-Ile deficiency, including resistance to wound-induced growth inhibition, decreased anthocyanin and trichomes, and increased susceptibility to insects. The mutants, however, responded normally to exogenous JA treatments, indicating that JA perception or signaling pathways were intact. Untargeted metabolite analyses revealed >40% reduction in wound-inducible metabolites in the mutants. These observations raise questions about the current JA signaling model and point toward a more complex model perhaps involving JA derivatives and/or feedback mechanisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Arati N Poudel
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| | - Tong Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| | - Misha Kwasniewski
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Abraham J Koo
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
331
|
Ondzighi-Assoume CA, Chakraborty S, Harris JM. Environmental Nitrate Stimulates Abscisic Acid Accumulation in Arabidopsis Root Tips by Releasing It from Inactive Stores. THE PLANT CELL 2016; 28:729-45. [PMID: 26887919 PMCID: PMC4826012 DOI: 10.1105/tpc.15.00946] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) signaling plays a major role in root system development, regulating growth and root architecture. However, the precise localization of ABA remains undetermined. Here, we present a mechanism in which nitrate signaling stimulates the release of bioactive ABA from the inactive storage form, ABA-glucose ester (ABA-GE). We found that ABA accumulated in the endodermis and quiescent center of Arabidopsis thaliana root tips, mimicking the pattern of SCARECROW expression, and (to lower levels) in the vascular cylinder. Nitrate treatment increased ABA levels in root tips; this stimulation requires the activity of the endoplasmic reticulum-localized, ABA-GE-deconjugating enzyme b-GLUCOSIDASE1, but not de novo ABA biosynthesis. Immunogold labeling demonstrated that ABA is associated with cytoplasmic structures near, but not within, the endoplasmic reticulum. These findings demonstrate a mechanism for nitrate-regulated root growth via regulation of ABA accumulation in the root tip, providing insight into the environmental regulation of root growth.
Collapse
Affiliation(s)
- Christine A Ondzighi-Assoume
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405 Department of Plant Sciences, The University of Tennessee, Knoxville, Tennessee 37996
| | - Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405
| | - Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
332
|
Zhang T, Poudel AN, Jewell JB, Kitaoka N, Staswick P, Matsuura H, Koo AJ. Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2107-20. [PMID: 26672615 PMCID: PMC4793799 DOI: 10.1093/jxb/erv521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Jasmonate (JA) and auxin are essential hormones in plant development and stress responses. While the two govern distinct physiological processes, their signaling pathways interact at various levels. Recently, members of the Arabidopsis indole-3-acetic acid (IAA) amidohydrolase (IAH) family were reported to metabolize jasmonoyl-isoleucine (JA-Ile), a bioactive form of JA. Here, we characterized three IAH members, ILR1, ILL6, and IAR3, for their function in JA and IAA metabolism and signaling. Expression of all three genes in leaves was up-regulated by wounding or JA, but not by IAA. Purified recombinant proteins showed overlapping but distinct substrate specificities for diverse amino acid conjugates of JA and IAA. Perturbed patterns of the endogenous JA profile in plants overexpressing or knocked-out for the three genes were consistent with ILL6 and IAR3, but not ILR1, being the JA amidohydrolases. Increased turnover of JA-Ile in the ILL6- and IAR3-overexpressing plants created symptoms of JA deficiency whereas increased free IAA by overexpression of ILR1 and IAR3 made plants hypersensitive to exogenous IAA conjugates. Surprisingly, ILL6 overexpression rendered plants highly resistant to exogenous IAA conjugates, indicating its interference with IAA conjugate hydrolysis. Fluorescent protein-tagged IAR3 and ILL6 co-localized with the endoplasmic reticulum-localized JA-Ile 12-hydroxylase, CYP94B3. Together, these results demonstrate that in wounded leaves JA-inducible amidohydrolases contribute to regulate active IAA and JA-Ile levels, promoting auxin signaling while attenuating JA signaling. This mechanism represents an example of a metabolic-level crosstalk between the auxin and JA signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Arati N Poudel
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy B Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99163, USA
| | - Naoki Kitaoka
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68521, USA
| | - Hideyuki Matsuura
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Abraham J Koo
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
333
|
Ding H, Lai J, Wu Q, Zhang S, Chen L, Dai YS, Wang C, Du J, Xiao S, Yang C. Jasmonate complements the function of Arabidopsis lipoxygenase3 in salinity stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 244:1-7. [PMID: 26810448 DOI: 10.1016/j.plantsci.2015.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/02/2015] [Accepted: 11/23/2015] [Indexed: 05/24/2023]
Abstract
The functions of jasmonic acid (JA) in various stress responses have been uncovered in details, but its role in salt tolerance remains unclear. Here, we characterize the function of Arabidopsis lipoxygenase3 (LOX3), an enzyme involved in JA synthesis, in salt stress response. The transcriptional analysis indicated that LOX3 was dramatically induced under salt treatment. Compared with wild type, the lox3 mutant exhibited hypersensitivity to salt stress in germination and different developmental stages. Interestingly, methyl jasmonate (MeJA) rescued the salt sensitivity phenotypes of the lox3 mutant, suggesting the impairment of salinity response in the mutant may be mediated by JA. Furthermore, the lateral root number of the lox3 mutant was similar with that in wild type under normal condition, but less than that in wild type during salt treatment, and this lateral root sensitivity phenotype was also complemented by exogenous MeJA. In addition, the measurement of oxylipins in the lox3 mutant and the analysis on germination of the JA receptor coi1 mutant under salt stress supported that JA may regulate the early response to salinity. In conclusion, we characterized the novel function of LOX3 in salinity stress response, and found that the salt hypersensitivity of the lox3 mutant can be complemented by MeJA, providing new evidence for the association between JA and salt tolerance.
Collapse
Affiliation(s)
- Hui Ding
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengchun Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Liang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang-Shuo Dai
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chengfeng Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jinju Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
334
|
Shi M, Zhou W, Zhang J, Huang S, Wang H, Kai G. Methyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by JASMONATE ZIM-DOMAIN repressor proteins. Sci Rep 2016; 6:20919. [PMID: 26875847 PMCID: PMC4753458 DOI: 10.1038/srep20919] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/13/2016] [Indexed: 02/04/2023] Open
Abstract
Jasmonic acid (JA) is an important plant hormone involved in regulation of many aspects of plant growth and development including secondary metabolism and JASMONATE ZIM-DOMAIN (JAZ) proteins are key components in JA signal processes. In this study, two new JAZ genes named SmJAZ3 and SmJAZ9 were cloned from S. miltiorrhiza hairy roots and characterized. Expression profiles under methyl jasmonate (MJ) treatment revealed that SmJAZ3 and SmJAZ9 were both MJ-responsive. Subcellular localization assay showed that SmJAZ3 was located in nucleus while SmJAZ9 was preferentially in nucleus. Expression of SmJAZ3 and SmJAZ9 in S. miltiorrhiza hairy roots differently affected the production of tanshinone. Over-expression of SmJAZ3 or SmJAZ9 in hairy roots produced lower level of tanshinone compared with the control, tanshinone production was as low as 0.077 mg/g DW in line SmJAZ3-3 and 0.266 mg/g DW in line SmJAZ9-22. Whereas, down-regulation of SmJAZs enhanced tanshione production, the content of tanshinone increased to 2.48 fold in anti-SmJAZ3-3 line, and 1.35-fold in anti-SmJAZ9-23 line. Our work indicated that SmJAZ3 and SmJAZ9 are involved in regulation of tanshinone biosynthesis and act as repressive transcriptional regulators in the JA signaling pathway, which paves the way to further dissect molecular mechanism in details in the future.
Collapse
Affiliation(s)
- Min Shi
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310018, People's Republic of China.,Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Wei Zhou
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Jianlin Zhang
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Shengxiong Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Huizhong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310018, People's Republic of China
| | - Guoyin Kai
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China
| |
Collapse
|
335
|
Hillwig MS, Chiozza M, Casteel CL, Lau ST, Hohenstein J, Hernández E, Jander G, MacIntosh GC. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2016; 17:225-35. [PMID: 25943308 PMCID: PMC6638517 DOI: 10.1111/mpp.12274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids.
Collapse
Affiliation(s)
- Melissa S Hillwig
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Mariana Chiozza
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Clare L Casteel
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Siau Ting Lau
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jessica Hohenstein
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Enrique Hernández
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Gustavo C MacIntosh
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
336
|
de Torres Zabala M, Zhai B, Jayaraman S, Eleftheriadou G, Winsbury R, Yang R, Truman W, Tang S, Smirnoff N, Grant M. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection. THE NEW PHYTOLOGIST 2016; 209:1120-34. [PMID: 26428397 PMCID: PMC4791170 DOI: 10.1111/nph.13683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 05/21/2023]
Abstract
Pathogens target phytohormone signalling pathways to promote disease. Plants deploy salicylic acid (SA)-mediated defences against biotrophs. Pathogens antagonize SA immunity by activating jasmonate signalling, for example Pseudomonas syringae pv. tomato DC3000 produces coronatine (COR), a jasmonic acid (JA) mimic. This study found unexpected dynamics between SA, JA and COR and co-operation between JAZ jasmonate repressor proteins during DC3000 infection. We used a systems-based approach involving targeted hormone profiling, high-temporal-resolution micro-array analysis, reverse genetics and mRNA-seq. Unexpectedly, foliar JA did not accumulate until late in the infection process and was higher in leaves challenged with COR-deficient P. syringae or in the more resistant JA receptor mutant coi1. JAZ regulation was complex and COR alone was insufficient to sustainably induce JAZs. JAZs contribute to early basal and subsequent secondary plant defence responses. We showed that JAZ5 and JAZ10 specifically co-operate to restrict COR cytotoxicity and pathogen growth through a complex transcriptional reprogramming that does not involve the basic helix-loop-helix transcription factors MYC2 and related MYC3 and MYC4 previously shown to restrict pathogen growth. mRNA-seq predicts compromised SA signalling in a jaz5/10 mutant and rapid suppression of JA-related components on bacterial infection.
Collapse
Affiliation(s)
- Marta de Torres Zabala
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Bing Zhai
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Siddharth Jayaraman
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Garoufalia Eleftheriadou
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Rebecca Winsbury
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Ron Yang
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - William Truman
- Department of Plant BiologyUniversity of MinnesotaSaint PaulMN55108USA
| | - Saijung Tang
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Nicholas Smirnoff
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Murray Grant
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| |
Collapse
|
337
|
Floková K, Feussner K, Herrfurth C, Miersch O, Mik V, Tarkowská D, Strnad M, Feussner I, Wasternack C, Novák O. A previously undescribed jasmonate compound in flowering Arabidopsis thaliana - The identification of cis-(+)-OPDA-Ile. PHYTOCHEMISTRY 2016; 122:230-237. [PMID: 26675361 DOI: 10.1016/j.phytochem.2015.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/12/2015] [Accepted: 11/24/2015] [Indexed: 05/21/2023]
Abstract
Jasmonates (JAs) are plant hormones that integrate external stress stimuli with physiological responses. (+)-7-iso-JA-L-Ile is the natural JA ligand of COI1, a component of a known JA receptor. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-(+)-OPDA) has been reported to act independently of COI1 as an essential signal in several stress-induced and developmental processes. Wound-induced increases in the endogenous levels of JA/JA-Ile are accompanied by two to tenfold increases in the concentration of OPDA, but its means of perception and metabolism are unknown. To screen for putative OPDA metabolites, vegetative tissues of flowering Arabidopsis thaliana were extracted with 25% aqueous methanol (v/v), purified by single-step reversed-phase polymer-based solid-phase extraction, and analyzed by high throughput mass spectrometry. This enabled the detection and quantitation of a low abundant OPDA analog of the biologically active (+)-7-iso-JA-L-Ile in plant tissue samples. Levels of the newly identified compound and the related phytohormones JA, JA-Ile and cis-(+)-OPDA were monitored in wounded leaves of flowering Arabidopsis lines (Col-0 and Ws) and compared to the levels observed in Arabidopsis mutants deficient in the biosynthesis of JA (dde2-2, opr3) and JA-Ile (jar1). The observed cis-(+)-OPDA-Ile levels varied widely, raising questions concerning its role in Arabidopsis stress responses.
Collapse
Affiliation(s)
- Kristýna Floková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Otto Miersch
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Václav Mik
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
338
|
Nagels Durand A, Pauwels L, Goossens A. The Ubiquitin System and Jasmonate Signaling. PLANTS 2016; 5:plants5010006. [PMID: 27135226 PMCID: PMC4844421 DOI: 10.3390/plants5010006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/04/2023]
Abstract
The ubiquitin (Ub) system is involved in most, if not all, biological processes in eukaryotes. The major specificity determinants of this system are the E3 ligases, which bind and ubiquitinate specific sets of proteins and are thereby responsible for target recruitment to the proteasome or other cellular processing machineries. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. Jasmonic acid (JA) and its derivatives, known as jasmonates (JAs), act as signaling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. We provide here an overview of the current understanding of the Ub system involved in JA signaling.
Collapse
Affiliation(s)
- Astrid Nagels Durand
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Laurens Pauwels
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| | - Alain Goossens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
339
|
Egoshi S, Takaoka Y, Saito H, Nukadzuka Y, Hayashi K, Ishimaru Y, Yamakoshi H, Dodo K, Sodeoka M, Ueda M. Dual function of coronatine as a bacterial virulence factor against plants: possible COI1–JAZ-independent role. RSC Adv 2016. [DOI: 10.1039/c5ra20676f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A phytotoxin coronatine has a dual mode of action, triggering stomatal reopening through COI1–JAZ-dependent and independent pathways.
Collapse
Affiliation(s)
| | | | - Hiroaki Saito
- Institute of Science and Engineering
- Kanazawa University
- Kanazawa
- Japan
| | | | - Kengo Hayashi
- Department of Chemistry
- Tohoku University
- Aoba-ku
- Japan
| | | | | | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory
- RIKEN
- Saitama 351-0198
- Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory
- RIKEN
- Saitama 351-0198
- Japan
| | - Minoru Ueda
- Department of Chemistry
- Tohoku University
- Aoba-ku
- Japan
| |
Collapse
|
340
|
Guerreiro A, Figueiredo J, Sousa Silva M, Figueiredo A. Linking Jasmonic Acid to Grapevine Resistance against the Biotrophic Oomycete Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2016; 7:565. [PMID: 27200038 PMCID: PMC4848468 DOI: 10.3389/fpls.2016.00565] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/12/2016] [Indexed: 05/07/2023]
Abstract
Plant resistance to biotrophic pathogens is classically believed to be mediated through salicylic acid (SA) signaling leading to hypersensitive response followed by the establishment of Systemic Acquired Resistance. Jasmonic acid (JA) signaling has extensively been associated to the defense against necrotrophic pathogens and insects inducing the accumulation of secondary metabolites and PR proteins. Moreover, it is believed that plants infected with biotrophic fungi suppress JA-mediated responses. However, recent evidences have shown that certain biotrophic fungal species also trigger the activation of JA-mediated responses, suggesting a new role for JA in the defense against fungal biotrophs. Plasmopara viticola is a biotrophic oomycete responsible for the grapevine downy mildew, one of the most important diseases in viticulture. In this perspective, we show recent evidences of JA participation in grapevine resistance against P. viticola, outlining the hypothesis of JA involvement in the establishment of an incompatible interaction with this biotroph. We also show that in the first hours after P. viticola inoculation the levels of OPDA, JA, JA-Ile, and SA increase together with an increase of expression of genes associated to JA and SA signaling pathways. Our data suggests that, on the first hours after P. viticola inoculation, JA signaling pathway is activated and the outcomes of JA-SA interactions may be tailored in the defense response against this biotrophic pathogen.
Collapse
Affiliation(s)
- Ana Guerreiro
- Biosystems and Integrative Sciences Institute, Science Faculty of Lisbon UniversityLisboa, Portugal
| | - Joana Figueiredo
- Biosystems and Integrative Sciences Institute, Science Faculty of Lisbon UniversityLisboa, Portugal
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
| | - Andreia Figueiredo
- Biosystems and Integrative Sciences Institute, Science Faculty of Lisbon UniversityLisboa, Portugal
- *Correspondence: Andreia Figueiredo,
| |
Collapse
|
341
|
Sakamori K, Ono N, Ihara M, Suzuki H, Matsuura H, Tanaka K, Ohta D, Kanaya S, Matsuda K. Selective regulation of pyrethrin biosynthesis by the specific blend of wound induced volatiles in Tanacetum cinerariifolium. PLANT SIGNALING & BEHAVIOR 2016; 11:e1149675. [PMID: 26918634 PMCID: PMC4883863 DOI: 10.1080/15592324.2016.1149675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 05/21/2023]
Abstract
Natural pyrethrins are used to control household and agricultural pests, and it is of value to understand biosynthesis in Tanacetum cinerariifolium for enhanced production. We previously found that a blend of four green leaf volatiles (GLVs) and (E)-β-farnesene emitted by T. cinerariifolium seedlings enhanced gene expressions of certain biosynthetic enzymes in unwounded seedlings; however, the extent to which such a regulation facilitates pyrethrin biosynthesis remains unknown. Here we have investigated the effects of the blend of the volatile organic compounds (VOCs) on gene expressions of seven biosynthetic enzymes. VOC treatment resulted in enhanced chrysanthemyl diphosphate synthase (CDS), chrysanthemic acid synthase (CAS), Tanacetum cinerariifolium GDSL lipase (TcGLIP) and acyl-Coenzyme A oxidase 1 (ACX1) gene expressions that reached a peak at a 12 h VOC treatment, whereas the treatment minimally influenced the expressions of other biosynthetic genes. In undifferentiated Tanacetum tissues, such VOC-induced amplification of CDS, CAS, TcGLIP and ACX1 gene expressions were markedly reduced, suggesting that a high-resolution, VOC-mediated communication is an event selective to differentiated plants.
Collapse
Affiliation(s)
- Koji Sakamori
- Graduate School of Agriculture, Faculty of Agriculture, Kinki University, Nakamachi, Nara, Japan
| | - Naoaki Ono
- Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Makoto Ihara
- Graduate School of Agriculture, Faculty of Agriculture, Kinki University, Nakamachi, Nara, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute,Kazusa-kamatari, Kisarazu, Chiba, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Division of Applied Bioscience, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Ken Tanaka
- Division of Pharmacognosy, College of Pharmaceutical Science, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Nakaku, Sakai, Osaka, Japan
| | - Shigehiko Kanaya
- Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Kazuhiko Matsuda
- Graduate School of Agriculture, Faculty of Agriculture, Kinki University, Nakamachi, Nara, Japan
| |
Collapse
|
342
|
Liu Z, Boachon B, Lugan R, Tavares R, Erhardt M, Mutterer J, Demais V, Pateyron S, Brunaud V, Ohnishi T, Pencik A, Achard P, Gong F, Hedden P, Werck-Reichhart D, Renault H. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation. MOLECULAR PLANT 2015; 8:1751-1765. [PMID: 26388305 DOI: 10.1016/j.molp.2015.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/31/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction.
Collapse
Affiliation(s)
- Zhenhua Liu
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, 67084 Strasbourg, France
| | - Benoît Boachon
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, 67084 Strasbourg, France
| | - Raphaël Lugan
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, 67084 Strasbourg, France
| | - Raquel Tavares
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, 69622 Villeurbanne, France
| | - Mathieu Erhardt
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, 67084 Strasbourg, France
| | - Jérôme Mutterer
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, 67084 Strasbourg, France
| | - Valérie Demais
- Plateforme d'Imagerie In Vitro, IFR 37 de Neurosciences, 67084 Strasbourg, France
| | - Stéphanie Pateyron
- Transcriptomic Platform, Unité de Recherche en Génomique Végétale (URGV), INRA, Université d'Evry Val d'Essonne, CNRS, 91057 Evry, France
| | - Véronique Brunaud
- Bioinformatics for Predictive Genomics, URGV, INRA, Université d'Evry Val d'Essonne, CNRS, 91057 Evry, France
| | - Toshiyuki Ohnishi
- Graduate School of Agriculture, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Ales Pencik
- Laboratory of Growth Regulators & Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 771 47 Olomouc, Czech Republic
| | - Patrick Achard
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, 67084 Strasbourg, France
| | - Fan Gong
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Peter Hedden
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, 67084 Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), 67084 Strasbourg, France; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany.
| | - Hugues Renault
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, 67084 Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), 67084 Strasbourg, France; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
343
|
Cai XT, Xu P, Wang Y, Xiang CB. Activated expression of AtEDT1/HDG11 promotes lateral root formation in Arabidopsis mutant edt1 by upregulating jasmonate biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:1017-30. [PMID: 25752924 DOI: 10.1111/jipb.12347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/02/2015] [Indexed: 05/11/2023]
Abstract
Root architecture is crucial for plants to absorb water and nutrients. We previously reported edt1 (edt1D) mutant with altered root architecture that contributes significantly to drought resistance. However, the underlying molecular mechanisms are not well understood. Here we report one of the mechanisms underlying EDT1/HDG11-conferred altered root architecture. Root transcriptome comparison between the wild type and edt1D revealed that the upregulated genes involved in jasmonate biosynthesis and signaling pathway were enriched in edt1D root, which were confirmed by quantitative RT-PCR. Further analysis showed that EDT1/HDG11, as a transcription factor, bound directly to the HD binding sites in the promoters of AOS, AOC3, OPR3, and OPCL1, which encode four key enzymes in JA biosynthesis. We found that the jasmonic acid level was significantly elevated in edt1D root compared with that in the wild type subsequently. In addition, more auxin accumulation was observed in the lateral root primordium of edt1D compared with that of wild type. Genetic analysis of edt1D opcl1 double mutant also showed that HDG11 was partially dependent on JA in regulating LR formation. Taken together, overexpression of EDT1/HDG11 increases JA level in the root of edt1D by directly upregulating the expressions of several genes encoding JA biosynthesis enzymes to activate auxin signaling and promote lateral root formation.
Collapse
Affiliation(s)
- Xiao-Teng Cai
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ping Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Cheng-Bin Xiang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
344
|
Wasternack C, Strnad M. Jasmonate signaling in plant stress responses and development - active and inactive compounds. N Biotechnol 2015; 33:604-613. [PMID: 26581489 DOI: 10.1016/j.nbt.2015.11.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/21/2015] [Accepted: 11/04/2015] [Indexed: 12/28/2022]
Abstract
Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ 78371 Olomouc, Czech Republic
| |
Collapse
|
345
|
Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. Proc Natl Acad Sci U S A 2015; 112:14354-9. [PMID: 26578782 DOI: 10.1073/pnas.1510745112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. Here, we show that host target modification could be a promising new approach to "protect" the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae, for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsis expressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens.
Collapse
|
346
|
Magnin-Robert M, Le Bourse D, Markham J, Dorey S, Clément C, Baillieul F, Dhondt-Cordelier S. Modifications of Sphingolipid Content Affect Tolerance to Hemibiotrophic and Necrotrophic Pathogens by Modulating Plant Defense Responses in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2255-74. [PMID: 26378098 PMCID: PMC4634087 DOI: 10.1104/pp.15.01126] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/11/2015] [Indexed: 05/22/2023]
Abstract
Sphingolipids are emerging as second messengers in programmed cell death and plant defense mechanisms. However, their role in plant defense is far from being understood, especially against necrotrophic pathogens. Sphingolipidomics and plant defense responses during pathogenic infection were evaluated in the mutant of long-chain base phosphate (LCB-P) lyase, encoded by the dihydrosphingosine-1-phosphate lyase1 (AtDPL1) gene and regulating long-chain base/LCB-P homeostasis. Atdpl1 mutants exhibit tolerance to the necrotrophic fungus Botrytis cinerea but susceptibility to the hemibiotrophic bacterium Pseudomonas syringae pv tomato (Pst). Here, a direct comparison of sphingolipid profiles in Arabidopsis (Arabidopsis thaliana) during infection with pathogens differing in lifestyles is described. In contrast to long-chain bases (dihydrosphingosine [d18:0] and 4,8-sphingadienine [d18:2]), hydroxyceramide and LCB-P (phytosphingosine-1-phosphate [t18:0-P] and 4-hydroxy-8-sphingenine-1-phosphate [t18:1-P]) levels are higher in Atdpl1-1 than in wild-type plants in response to B. cinerea. Following Pst infection, t18:0-P accumulates more strongly in Atdpl1-1 than in wild-type plants. Moreover, d18:0 and t18:0-P appear as key players in Pst- and B. cinerea-induced cell death and reactive oxygen species accumulation. Salicylic acid levels are similar in both types of plants, independent of the pathogen. In addition, salicylic acid-dependent gene expression is similar in both types of B. cinerea-infected plants but is repressed in Atdpl1-1 after treatment with Pst. Infection with both pathogens triggers higher jasmonic acid, jasmonoyl-isoleucine accumulation, and jasmonic acid-dependent gene expression in Atdpl1-1 mutants. Our results demonstrate that sphingolipids play an important role in plant defense, especially toward necrotrophic pathogens, and highlight a novel connection between the jasmonate signaling pathway, cell death, and sphingolipids.
Collapse
Affiliation(s)
- Maryline Magnin-Robert
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Doriane Le Bourse
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Jonathan Markham
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Stéphan Dorey
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Christophe Clément
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Fabienne Baillieul
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Vigne et Vin de Champagne Equipe d'Accueil 4707, Laboratoire Stress Défenses et Reproduction des Plantes, Structure Fédérative de Recherche Condorcet Fédération de Recherche, Centre National de la Recherche Scientifique 3417, Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France (M.M.-R., S.D., C.C., F.B., S.D.-C.); andCenter for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (D.L.B., J.M.)
| |
Collapse
|
347
|
Gasperini D, Chauvin A, Acosta IF, Kurenda A, Stolz S, Chételat A, Wolfender JL, Farmer EE. Axial and Radial Oxylipin Transport. PLANT PHYSIOLOGY 2015; 169:2244-54. [PMID: 26338953 PMCID: PMC4634084 DOI: 10.1104/pp.15.01104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/03/2015] [Indexed: 05/03/2023]
Abstract
Jasmonates are oxygenated lipids (oxylipins) that control defense gene expression in response to cell damage in plants. How mobile are these potent mediators within tissues? Exploiting a series of 13-lipoxygenase (13-lox) mutants in Arabidopsis (Arabidopsis thaliana) that displays impaired jasmonic acid (JA) synthesis in specific cell types and using JA-inducible reporters, we mapped the extent of the transport of endogenous jasmonates across the plant vegetative growth phase. In seedlings, we found that jasmonate (or JA precursors) could translocate axially from wounded shoots to unwounded roots in a LOX2-dependent manner. Grafting experiments with the wild type and JA-deficient mutants confirmed shoot-to-root oxylipin transport. Next, we used rosettes to investigate radial cell-to-cell transport of jasmonates. After finding that the LOX6 protein localized to xylem contact cells was not wound inducible, we used the lox234 triple mutant to genetically isolate LOX6 as the only JA precursor-producing LOX in the plant. When a leaf of this mutant was wounded, the JA reporter gene was expressed in distal leaves. Leaf sectioning showed that JA reporter expression extended from contact cells throughout the vascular bundle and into extravascular cells, revealing a radial movement of jasmonates. Our results add a crucial element to a growing picture of how the distal wound response is regulated in rosettes, showing that both axial (shoot-to-root) and radial (cell-to-cell) transport of oxylipins plays a major role in the wound response. The strategies developed herein provide unique tools with which to identify intercellular jasmonate transport routes.
Collapse
Affiliation(s)
- Debora Gasperini
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Adeline Chauvin
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Ivan F Acosta
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Andrzej Kurenda
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Stéphanie Stolz
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Aurore Chételat
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Jean-Luc Wolfender
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| |
Collapse
|
348
|
Lemarié S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Jubault M, Manzanares-Dauleux MJ, Gravot A. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:2158-68. [PMID: 26363358 DOI: 10.1093/pcp/pcv127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 05/18/2023]
Abstract
The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.
Collapse
Affiliation(s)
| | | | | | | | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2) Centre de Recherche Angers Nantes BIA, INRA de Rennes, F-35653 Le Rheu, France
| | | | | | - Antoine Gravot
- Université Rennes 1, UMR1349 IGEPP, F-35000 Rennes, France
| |
Collapse
|
349
|
Kaurilind E, Xu E, Brosché M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics 2015; 16:837. [PMID: 26493993 PMCID: PMC4619244 DOI: 10.1186/s12864-015-1964-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/29/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death. METHODS A cat2 double mutant collection was generated through crossing and scored for cell death in different assays. Selected double mutants were further analyzed for photosynthetic performance and H2O2 accumulation. RESULTS We used a targeted mutant analysis with more than 50 cat2 double mutants to investigate the role of stress hormones and other defense regulators in H2O2-mediated cell death. Several transcription factors (AS1, MYB30, MYC2, WRKY70), cell death regulators (RCD1, DND1) and hormone regulators (AXR1, ERA1, SID2, EDS1, SGT1b) were essential for execution of cell death in cat2. Genetic loci required for cell death in cat2 was compared with regulators of cell death in spontaneous lesion mimic mutants and led to the identification of a core set of plant cell death regulators. Analysis of gene expression data from cat2 and plants undergoing cell death revealed similar gene expression profiles, further supporting the existence of a common program for regulation of plant cell death. CONCLUSIONS Our results provide a genetic framework for further study on the role of H2O2 in regulation of cell death. The hormones salicylic acid, jasmonic acid and auxin, as well as their interaction, are crucial determinants of cell death regulation.
Collapse
Affiliation(s)
- Eve Kaurilind
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Enjun Xu
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia.
| |
Collapse
|
350
|
Scholz SS, Reichelt M, Boland W, Mithöfer A. Additional evidence against jasmonate-induced jasmonate induction hypothesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:9-14. [PMID: 26398786 DOI: 10.1016/j.plantsci.2015.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/20/2015] [Accepted: 06/27/2015] [Indexed: 06/05/2023]
Abstract
Jasmonates are phytohormones involved in development and stress reactions. The most prominent jasmonate is jasmonic acid, however, the bioactive jasmonate is (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile). Biosynthesis of jasmonates is long time known; compartmentalization, enzymes and corresponding genes are well studied. Because all genes encoding these biosynthetic enzymes are jasmonate inducible, a hypothesis of jasmonate-induced-jasmonate-biosynthesis is widely accepted. Here, this hypothesis was revisited by employing the synthetic JA-Ile mimic coronalon to intact and wounded leaves, which excludes structural cross-contamination with endogenous jasmonates. At an effective concentration that induced various jasmonate-responsive genes in Arabidopsis, neither accumulation of endogenous jasmonic acid, JA-Ile, nor of their hydroxylated metabolites was detected. Results indicate that in spite of jasmonate-induced biosynthetic gene expression, no jasmonate biosynthesis/accumulation takes place supporting a post-translational regulation.
Collapse
Affiliation(s)
- Sandra S Scholz
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Michael Reichelt
- Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Axel Mithöfer
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| |
Collapse
|