301
|
Hugouvieux V, Murata Y, Young JJ, Kwak JM, Mackesy DZ, Schroeder JI. Localization, ion channel regulation, and genetic interactions during abscisic acid signaling of the nuclear mRNA cap-binding protein, ABH1. PLANT PHYSIOLOGY 2002; 130:1276-87. [PMID: 12427994 PMCID: PMC166648 DOI: 10.1104/pp.009480] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Revised: 07/08/2002] [Accepted: 08/12/2002] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) regulates developmental processes and abiotic stress responses in plants. We recently characterized a new Arabidopsis mutant, abh1, which shows ABA-hypersensitive regulation of seed germination, stomatal closing, and cytosolic calcium increases in guard cells (V. Hugouvieux, J.M. Kwak, J.I. Schroeder [2001] Cell 106: 477-487). ABH1 encodes the large subunit of a dimeric Arabidopsis mRNA cap-binding complex and in expression profiling experiments was shown to affect mRNA levels of a subset of genes. Here, we show that the dimeric ABH1 and AtCBP20 subunits are ubiquitously expressed. Whole-plant growth phenotypes of abh1 are described and properties of ABH1 in guard cells are further analyzed. Complemented abh1 lines expressing a green fluorescent protein-ABH1 fusion protein demonstrate that ABH1 mainly localizes in guard cell nuclei. Stomatal apertures were smaller in abh1 compared with wild type (WT) when plants were grown at 40% humidity, and similar at 95% humidity. Correlated with stomatal apertures from plants grown at 40% humidity, slow anion channel currents were enhanced and inward potassium channel currents were decreased in abh1 guard cells compared with WT. Gas exchange measurements showed similar primary humidity responses in abh1 and WT, which together with results from abh1/abi1-1 double-mutant analyses suggest that abh1 shows enhanced sensitivity to endogenous ABA. Double-mutant analyses of the ABA-hypersensitive signaling mutants, era1-2 and abh1, showed complex genetic interactions, suggesting that ABH1 and ERA1 do not modulate the same negative regulator in ABA signaling. Mutations in the RNA-binding protein sad1 showed hypersensitive ABA-induced stomatal closing, whereas hyl1 did not affect this response. These data provide evidence for the model that the mRNA-processing proteins ABH1 and SAD1 function as negative regulators in guard cell ABA signaling.
Collapse
Affiliation(s)
- Véronique Hugouvieux
- Division of Biology, Cell, and Developmental Biology Section, and Center for Molecular Genetics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA
| | | | | | | | | | | |
Collapse
|
302
|
Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder JI. Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. THE PLANT CELL 2002; 14:2849-61. [PMID: 12417706 PMCID: PMC152732 DOI: 10.1105/tpc.003335] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2002] [Accepted: 08/14/2002] [Indexed: 05/18/2023]
Abstract
Pharmacological studies have led to a model in which the phytohormone abscisic acid (ABA) may be positively transduced via protein phosphatases of the type 1 (PP1) or type 2A (PP2A) families. However, pharmacological evidence also exists that PP1s or PP2As may function as negative regulators of ABA signaling. Furthermore, recessive disruption mutants in protein phosphatases that function in ABA signal transduction have not yet been identified. A guard cell-expressed PP2A gene, RCN1, which had been characterized previously as a molecular component affecting auxin transport and gravity response, was isolated. A T-DNA disruption mutation in RCN1 confers recessive ABA insensitivity to Arabidopsis. The rcn1 mutation impairs ABA-induced stomatal closing and ABA activation of slow anion channels. Calcium imaging analyses show a reduced sensitivity of ABA-induced cytosolic calcium increases in rcn1, whereas mechanisms downstream of cytosolic calcium increases show wild-type responses, suggesting that RCN1 functions in ABA signal transduction upstream of cytosolic Ca(2+) increases. Furthermore, rcn1 shows ABA insensitivity in ABA inhibition of seed germination and ABA-induced gene expression. The PP1 and PP2A inhibitor okadaic acid phenocopies the rcn1 phenotype in wild-type plants both in ABA-induced cytosolic calcium increases and in seed germination, and the wild-type RCN1 genomic DNA complements rcn1 phenotypes. These data show that RCN1 functions as a general positive transducer of early ABA signaling.
Collapse
Affiliation(s)
- June M Kwak
- Cell and Developmental Biology Section, Division of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | | | | | |
Collapse
|
303
|
Finkelstein RR, Rock CD. Abscisic Acid biosynthesis and response. THE ARABIDOPSIS BOOK 2002; 1:e0058. [PMID: 22303212 PMCID: PMC3243367 DOI: 10.1199/tab.0058] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Ruth R. Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106
- Corresponding author: Telephone: (805) 893-4800, Fax: (805) 893-4724,
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131
| |
Collapse
|
304
|
Li J, Kinoshita T, Pandey S, Ng CKY, Gygi SP, Shimazaki KI, Assmann SM. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 2002; 418:793-7. [PMID: 12181571 DOI: 10.1038/nature00936] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases are involved in stress signalling in both plant and animal systems. The hormone abscisic acid mediates the responses of plants to stresses such as drought, salinity and cold. Abscisic-acid-activated protein kinase (AAPK -- found in guard cells, which control stomatal pores -- has been shown to regulate plasma membrane ion channels. Here we show that AAPK-interacting protein 1 (AKIP1), with sequence homology to heterogeneous nuclear RNA-binding protein A/B, is a substrate of AAPK. AAPK-dependent phosphorylation is required for the interaction of AKIP1 with messenger RNA that encodes dehydrin, a protein implicated in cell protection under stress conditions. AAPK and AKIP1 are present in the guard-cell nucleus, and in vivo treatment of such cells with abscisic acid enhances the partitioning of AKIP1 into subnuclear foci which are reminiscent of nuclear speckles. These results show that phosphorylation-regulated RNA target discrimination by heterogeneous nuclear RNA-binding proteins may be a general phenomenon in eukaryotes, and implicate a plant hormone in the regulation of protein dynamics during rapid subnuclear reorganization.
Collapse
Affiliation(s)
- Jiaxu Li
- Biology Department, The Pennsylvania State University, 208 Mueller Laboratory, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
305
|
Xiong L, Lee H, Ishitani M, Tanaka Y, Stevenson B, Koiwa H, Bressan RA, Hasegawa PM, Zhu JK. Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci U S A 2002; 99:10899-904. [PMID: 12149453 PMCID: PMC125070 DOI: 10.1073/pnas.162111599] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low temperature, drought, and high salinity induce the expression of many plant genes. To understand the mechanisms for the transcriptional activation of these genes, we conducted a reporter gene-aided genetic screen in Arabidopsis. Seven allelic mutations in the FIERY2 (FRY2) locus result in significant increases in the expression of stress-responsive genes with the DRE/CRT (drought-responsive/C-repeat) cis element but non-DRE/CRT type stress-responsive genes were less affected. The specific regulation of DRE/CRT class of genes by FRY2 appears to be caused by repression of stress induction of the upstream CBF/DREB transcription factor genes. fry2 mutants show increased tolerance to salt stress and to abscisic acid during seed germination but are more sensitive to freezing damage at the seedling stage. FRY2/CPL1 encodes a novel transcriptional repressor harboring two double-stranded RNA-binding domains and a region homologous to the catalytic domain of RNA polymerase II C-terminal domain phosphatases found in yeast and in animals that regulate gene transcription. These data indicate that FRY2 is an important negative regulator of stress gene transcription and suggest that structured RNA may regulate hormone and stress responses in plants as it does in animals.
Collapse
Affiliation(s)
- Liming Xiong
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Koiwa H, Barb AW, Xiong L, Li F, McCully MG, Lee BH, Sokolchik I, Zhu J, Gong Z, Reddy M, Sharkhuu A, Manabe Y, Yokoi S, Zhu JK, Bressan RA, Hasegawa PM. C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Natl Acad Sci U S A 2002; 99:10893-8. [PMID: 12149434 PMCID: PMC125069 DOI: 10.1073/pnas.112276199] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cold, hyperosmolarity, and abscisic acid (ABA) signaling induce RD29A expression, which is an indicator of the plant stress adaptation response. Two nonallelic Arabidopsis thaliana (ecotype C24) T-DNA insertional mutations, cpl1 and cpl3, were identified based on hyperinduction of RD29A expression that was monitored by using the luciferase (LUC) reporter gene (RD29ALUC) imaging system. Genetic linkage analysis and complementation data established that the recessive cpl1 and cpl3 mutations are caused by T-DNA insertions in AtCPL1 (Arabidopsis C-terminal domain phosphatase-like) and AtCPL3, respectively. Gel assays using recombinant AtCPL1 and AtCPL3 detected innate phosphatase activity like other members of the phylogenetically conserved family that dephosphorylate the C-terminal domain of RNA polymerase II (RNAP II). cpl1 mutation causes RD29ALUC hyperexpression and transcript accumulation in response to cold, ABA, and NaCl treatments, whereas the cpl3 mutation mediates hyperresponsiveness only to ABA. Northern analysis confirmed that LUC transcript accumulation also occurs in response to these stimuli. cpl1 plants accumulate biomass more rapidly and exhibit delayed flowering relative to wild type whereas cpl3 plants grow more slowly and flower earlier than wild-type plants. Hence AtCPL1 and AtCPL3 are negative regulators of stress responsive gene transcription and modulators of growth and development. These results suggest that C-terminal domain phosphatase regulation of RNAP II phosphorylation status is a focal control point of complex processes like plant stress responses and development. AtCPL family members apparently have both unique and overlapping transcriptional regulatory functions that differentiate the signal output that determines the plant response.
Collapse
Affiliation(s)
- Hisashi Koiwa
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-1165, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Fedoroff NV. Cross-talk in abscisic acid signaling. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re10. [PMID: 12107340 DOI: 10.1126/stke.2002.140.re10] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
"Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.
Collapse
Affiliation(s)
- Nina V Fedoroff
- Biotechnology Institute, Life Sciences Consortium, and Biology Department, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
308
|
|
309
|
Pérez-Pérez JM, Ponce MR, Micol JL. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev Biol 2002; 242:161-73. [PMID: 11820813 DOI: 10.1006/dbio.2001.0543] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most signal transduction pathways central to development are not shared by plants and animals. Such is the case of the Wingless/Wnt signaling pathway, whose components play key roles in metazoan pattern formation and tumorigenesis, but are absent in plants, with the exception of SHAGGY/GSK3, a cytoplasmic protein kinase represented in the genome of Arabidopsis thaliana by a family of 10 AtSK genes for which mutational evidence is scarce. Here, we describe the characterization of mutant alleles of the Arabidopsis ULTRACURVATA1 (UCU1) gene, the two strongest of which dramatically reduce cell expansion along the proximodistal axis, dwarfing the mutant plants, whose cells expand properly across but not along most organs. Proximodistal expansion of adaxial (dorsal) and abaxial (ventral) leaf cells exhibits a differential dependence on UCU1 function, as suggested by the leaves of ucu1 mutants, which are rolled spirally downward in a circinate manner. We have positionally cloned the UCU1 gene, which encodes an AtSK protein involved in the cross-talk between auxin and brassinosteroid signaling pathways, as indicated by the responses of ucu1 mutants to plant hormones and the phenotypes of double mutants involving ucu1 alleles.
Collapse
Affiliation(s)
- José Manuel Pérez-Pérez
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
310
|
Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. THE PLANT CELL 2002; 14 Suppl:S15-S45. [PMID: 12045268 DOI: 10.1105/tpc.010441.would] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Ruth R Finkelstein
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
311
|
Masson PH, Tasaka M, Morita MT, Guan C, Chen R, Boonsirichai K. Arabidopsis thaliana: A Model for the Study of Root and Shoot Gravitropism. THE ARABIDOPSIS BOOK 2002; 1:e0043. [PMID: 22303208 PMCID: PMC3243349 DOI: 10.1199/tab.0043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
UNLABELLED For most plants, shoots grow upward and roots grow downward. These growth patterns illustrate the ability for plant organs to guide their growth at a specified angle from the gravity vector (gravitropism). They allow shoots to grow upward toward light, where they can photosynthesize, and roots to grow downward into the soil, where they can anchor the plant as well as take up water and mineral ions.Gravitropism involves several steps organized in a specific response pathway. These include the perception of a gravistimulus (reorientation within the gravity field), the transduction of this mechanical stimulus into a physiological signal, the transmission of this signal from the site of sensing to the site of response, and a curvature-response which allows the organ tip to resume growth at a predefined set angle from the gravity vector.The primary sites for gravity sensing are located in the cap for roots, and in the endodermis for shoots. The curvature response occurs in the elongation zones for each organ. Upon gravistimulation, a gradient of auxin appears to be generated across the stimulated organ, and be transmitted to the site of response where it promotes a differential growth response. Therefore, while the gravity-induced auxin gradient has to be transmitted from the cap to the elongation zones in roots, there is no need for a longitudinal transport in shoots, as sites for gravity sensing and response overlap in this organ.A combination of molecular genetics, physiology, biochemistry and cell biology, coupled with the utilization of Arabidopsis thaliana as a model system, have recently allowed the identification of a number of molecules involved in the regulation of each phase of gravitropism in shoots and roots of higher plants. In this review, we attempt to summarize the results of these experiments, and we conclude by comparing the molecular and physiological mechanisms that underlie gravitropism in these organs. ABBREVIATIONS GSPA: gravitational set point angle; IAA: indole-3-acetic acid; NAA: 1-naphthalene acetic acid; NPA: 1-N-naphthylphthalamic acid; 2,4-D: 2,4-dichlorphenoxy acetic acid; TIBA: 2,3,5-triiodobenzoic acid.
Collapse
|
312
|
Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. THE PLANT CELL 2002; 14 Suppl:S15-45. [PMID: 12045268 PMCID: PMC151246 DOI: 10.1105/tpc.010441] [Citation(s) in RCA: 1377] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2001] [Accepted: 03/04/2002] [Indexed: 05/08/2023]
Affiliation(s)
- Ruth R Finkelstein
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
313
|
Akashi H, Miyagishi M, Taira K. Suppression of gene expression by RNA interference in cultured plant cells. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2001; 11:359-67. [PMID: 11838637 DOI: 10.1089/108729001753411326] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Suppression by double-stranded RNA (dsRNA) of the expression of a target gene is known as RNA interference (RNAi). No quantitative analysis of the effects of RNAi on the expression of specific genes in cultured plant cells has been reported. However, as it is possible to produce populations of cultured plant cells that are uniform and divide synchronously for functional analysis of genes of interest, we performed a quantitative study of the effects of RNAi in such cells. We constructed dsRNA expression plasmids for a luciferase gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter by simply connecting sense and antisense sequences in a head-to-head manner. An RNAi effect was observed 24 hours after the introduction of dsRNA expression plasmids into tobacco BY-2 cells by electroporation. The simple system for suppression of specific genes in plant cells should be useful in attempts to elucidate the roles of individual genes in plant cells.
Collapse
Affiliation(s)
- H Akashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Japan
| | | | | |
Collapse
|
314
|
Hugouvieux V, Kwak JM, Schroeder JI. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 2001; 106:477-87. [PMID: 11525733 DOI: 10.1016/s0092-8674(01)00460-3] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plant hormone abscisic acid (ABA) regulates important stress and developmental responses. We have isolated a recessive ABA hypersensitive mutant, abh1, that shows hormone specificity to ABA. ABH1 encodes the Arabidopsis homolog of a nuclear mRNA cap binding protein and functions in a heterodimeric complex to bind the mRNA cap structure. DNA chip analyses show that only a few transcripts are down-regulated in abh1, several of which are implicated in ABA signaling. Consistent with these results, abh1 plants show ABA-hypersensitive stomatal closing and reduced wilting during drought. Interestingly, ABA-hypersensitive cytosolic calcium increases in abh1 guard cells demonstrate amplification of early ABA signaling. Thus, ABH1 represents a modulator of ABA signaling proposed to function by transcript alteration of early ABA signaling elements.
Collapse
Affiliation(s)
- V Hugouvieux
- Division of Biology, Cell and Developmental Biology Section, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
315
|
Rashotte AM, DeLong A, Muday GK. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. THE PLANT CELL 2001; 13:1683-97. [PMID: 11449059 PMCID: PMC139551 DOI: 10.1105/tpc.010158] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Accepted: 04/26/2001] [Indexed: 05/18/2023]
Abstract
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.
Collapse
Affiliation(s)
- A M Rashotte
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | |
Collapse
|
316
|
Rashotte AM, DeLong A, Muday GK. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. THE PLANT CELL 2001. [PMID: 11449059 DOI: 10.2307/3871394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.
Collapse
Affiliation(s)
- A M Rashotte
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | |
Collapse
|
317
|
Rashotte AM, DeLong A, Muday GK. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth. THE PLANT CELL 2001. [PMID: 11449059 DOI: 10.1105/tpc.13.7.1683] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.
Collapse
Affiliation(s)
- A M Rashotte
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | |
Collapse
|