301
|
Abstract
Transposons of the Tn3 family form a widespread and remarkably homogeneous group of bacterial transposable elements in terms of transposition functions and an extremely versatile system for mediating gene reassortment and genomic plasticity owing to their modular organization. They have made major contributions to antimicrobial drug resistance dissemination or to endowing environmental bacteria with novel catabolic capacities. Here, we discuss the dynamic aspects inherent to the diversity and mosaic structure of Tn3-family transposons and their derivatives. We also provide an overview of current knowledge of the replicative transposition mechanism of the family, emphasizing most recent work aimed at understanding this mechanism at the biochemical level. Previous and recent data are put in perspective with those obtained for other transposable elements to build up a tentative model linking the activities of the Tn3-family transposase protein with the cellular process of DNA replication, suggesting new lines for further investigation. Finally, we summarize our current view of the DNA site-specific recombination mechanisms responsible for converting replicative transposition intermediates into final products, comparing paradigm systems using a serine recombinase with more recently characterized systems that use a tyrosine recombinase.
Collapse
|
302
|
von Wintersdorff CJH, Wolffs PFG, Savelkoul PHM, Nijsen RRR, Lau S, Gerhold K, Hamelmann E, Penders J. The gut resistome is highly dynamic during the first months of life. Future Microbiol 2016; 11:501-10. [PMID: 27064174 DOI: 10.2217/fmb.15.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM We investigated the longitudinal development of several antibiotic resistance genes (ARGs) of the infant gut resistome during the first months after birth. MATERIALS & METHODS Fecal samples from 120 infants collected at the ages of 5, 13 and 31 weeks were analyzed and subjected to qPCR for the detection of several ARGs. RESULTS The prevalence of ARGs significantly increased for ermB, tetM and tetQ, while it decreased for aac(6')-aph(2'). Birth mode and breastfeeding significantly affected tetQ prevalence. Correlations to bacterial taxa suggest that fluctuations in some ARGs are (partly) attributed to shifts in bacteroides colonization rates. CONCLUSION Acquisition of ARGs in the gut microbiota occurs shortly after birth and resistome composition fluctuates over the course of several months, reflecting changes in microbial community structure.
Collapse
Affiliation(s)
- Christian J H von Wintersdorff
- Department of Medical Microbiology, NUTRIM School for Nutrition & Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Petra F G Wolffs
- Department of Medical Microbiology, NUTRIM School for Nutrition & Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, Caphri School for Public Health & Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM School for Nutrition & Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, Caphri School for Public Health & Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam
| | - Rianne R R Nijsen
- Department of Medical Microbiology, NUTRIM School for Nutrition & Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Susanne Lau
- Department of Pediatrics, Pneumology & Immunology, Charité Medical University Berlin, Berlin, Germany
| | - Kerstin Gerhold
- Department of Pediatrics & Child Health, Section of Pediatric Rheumatology, Winnipeg, Manitoba, Canada
| | - Eckard Hamelmann
- Children's Hospital, Ev. Hospital Bielefeld (EvKB), Bielefeld, Germany
| | - John Penders
- Department of Medical Microbiology, NUTRIM School for Nutrition & Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, Caphri School for Public Health & Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
303
|
Li J, Cheng W, Xu L, Jiao Y, Baig SA, Chen H. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6826-35. [PMID: 26658782 DOI: 10.1007/s11356-015-5916-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/02/2015] [Indexed: 05/11/2023]
Abstract
In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.
Collapse
Affiliation(s)
- Jianan Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Weixiao Cheng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Like Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yanan Jiao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shams Ali Baig
- Department of Environmental Sciences, COMSATS Institute of Information Technology (CIIT), Abbottabad, 22060, Pakistan
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
304
|
Wang DN, Liu L, Qiu ZG, Shen ZQ, Guo X, Yang D, Li J, Liu WL, Jin M, Li JW. A new adsorption-elution technique for the concentration of aquatic extracellular antibiotic resistance genes from large volumes of water. WATER RESEARCH 2016; 92:188-198. [PMID: 26854607 DOI: 10.1016/j.watres.2016.01.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/30/2015] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
Extracellular antibiotic resistance genes (eARGs) that help in the transmission and spread of antibiotic-resistant bacteria are emerging environmental contaminants in water, and there is therefore a growing need to assess environmental levels and associated risks of eARGs. However, as they are present in low amounts, it is difficult to detect eARGs in water directly with PCR techniques. Here, we prepared a new type of nucleic acid adsorption particle (NAAP) with high capacity and developed an optimal adsorption-elution method to concentrate eARGs from large volumes of water. With this technique, we were able to achieve an eARG recovery rate of above 95% from 10 L of water samples. Moreover, combining this new method with quantitative real-time PCR (qPCR), the sensitivity of the eARG detection was 10(4) times that of single qPCR, with the detection limit lowered to 100 gene copies (GCs)/L. Our analyses showed that the eARG load, virus load and certain water characteristics such as pH, chemical oxygen demand (CODMn), and turbidity affected the eARGs recovery rate. However, high eARGs recovery rates always remained within the standard limits for natural surface water quality, while eARG levels in water were lower than the detection limits of single qPCR assays. The recovery rates were not affected by water temperature and heterotrophic plate counts (HPC). The eARGs whatever located in the plasmids or the short-length linear DNAs can be recovered from the water. Furthermore, the recovery rate was high even in the presence of high concentrations of plasmids in different natural water (Haihe river, well water, raw water for drinking water, Jinhe river, Tuanbo lake and the Yunqiao reservoir). By this technology, eARGs concentrations were found ranging from (2.70 ± 0.73) × 10(2) to (4.58 ± 0.47) × 10(4) GCs/L for the extracellular ampicillin resistance gene and (5.43 ± 0.41) × 10(2) to (2.14 ± 0.23) × 10(4) GCs/L for the extracellular gentamicin resistance gene in natural water for the first time, respectively. All these findings suggest that NAAPs have great potential for the monitoring of eARGs pollution in water.
Collapse
Affiliation(s)
- Da-Ning Wang
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Lu Liu
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhi-Gang Qiu
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhi-Qiang Shen
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Xuan Guo
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jing Li
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Wei-Li Liu
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
305
|
Impact of 4-epi-oxytetracycline on the gut microbiota and blood metabolomics of Wistar rats. Sci Rep 2016; 6:23141. [PMID: 26976662 PMCID: PMC4791543 DOI: 10.1038/srep23141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/29/2016] [Indexed: 01/09/2023] Open
Abstract
The impact of 4-epi-oxytetracycline (4-EOTC), one of the main oxytetracycline (OTC) metabolites, on the gut microbiota and physiological metabolism of Wistar rats was analyzed to explore the dynamic alterations apparent after repeated oral exposure (0.5, 5.0 or 50.0 mg/kg bw) for 15 days as shown by 16S rRNA pyrosequencing and UPLC-Q-TOF/MS analysis. Both principal component analysis and cluster analysis showed consistently altered patterns with distinct differences in the treated groups versus the control groups. 4-EOTC treatment at 5.0 or 50.0 mg/kg increased the relative abundance of the Actinobacteria, specifically Bifidobacteriaceae, and improved the synthesis of lysophosphatidylcholine (LysoPC), as shown by the lipid biomarkers LysoPC(16:0), LysoPC(18:3), LysoPC(20:3), and LysoPC(20:4). The metabolomic analysis of urine samples also identified four other decreased metabolites: diacylglycerol, sphingomyelin, triacylglycerol, and phosphatidylglycerol. Notably, the significant changes observed in these biomarkers demonstrated the ongoing disorder induced by 4-EOTC. Blood and urine analysis revealed that residual 4-EOTC accumulated in the rats, even two weeks after oral 4-EOTC administration, ceased. Thus, through thorough analysis, it can be concluded that the alteration of the gut microbiota and disorders in blood metabolomics are correlated with 4-EOTC treatment.
Collapse
|
306
|
Williams-Nguyen J, Sallach JB, Bartelt-Hunt S, Boxall AB, Durso LM, McLain JE, Singer RS, Snow DD, Zilles JL. Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:394-406. [PMID: 27065386 DOI: 10.2134/jeq2015.07.0336] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly summarized, and key knowledge gaps are highlighted. A lack of quantitative estimates of human exposure to environmental bacteria, in general, and antibiotic-resistant bacteria, specifically, is a significant data gap hindering the assessment of effects on human health. The contribution of horizontal gene transfer to resistance in the environment and conditions that might foster the horizontal transfer of antibiotic resistance genes into human pathogens also need further research. Existing research has focused heavily on human health effects, with relatively little known about the effects of antibiotics and antibiotic resistance on natural and agricultural ecosystems. The proposed causal model is used to elucidate gaps in knowledge that must be addressed by the research community and may provide a useful starting point for the design and analysis of future research efforts.
Collapse
|
307
|
Kurakov A, Mindlin S, Beletsky A, Shcherbatova N, Rakitin A, Ermakova A, Mardanov A, Petrova M. The ancient small mobilizable plasmid pALWED1.8 harboring a new variant of the non-cassette streptomycin/spectinomycin resistance gene aadA27. Plasmid 2016; 84-85:36-43. [PMID: 26896789 DOI: 10.1016/j.plasmid.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/31/2022]
Abstract
The small mobilizable plasmid pALWED1.8 containing a novel variant of the streptomycin/spectinomycin resistance gene aadA27 was isolated from the permafrost strains of Acinetobacter lwoffii. The 4135bp plasmid carries mobА and mobC genes that mediate its mobilization by conjugative plasmids. The nucleotide sequences of mobА and mobC are similar to those of mobilization genes of the modern plasmid pRAY* and its variants, which contain aadB gene, and are widespread among the pathogenic strains of Acinetobacter baumannii. Almost identical pALWED1.8 variants were detected in modern environmental Аcinetobacter strains. A highly similar plasmid was revealed in a strain of Acinetobacter parvus isolated from mouse intestine. Furthermore, we discovered six previously unidentified variants of plasmids related to pALWED1.8 and pRAY* in public databases. In contrast to most known variants of aadA which are cassette genes associated with integrons, the aadA27 variant harbored by pALWED1.8 is a non-cassette, autonomously transcribed gene. Non-cassette aadA genes with 96% sequence identity to aadA27 were detected in the chromosomes of Acinetobacter gyllenbergii and several uncharacterized strains of Аcinetobacter sp. Moreover, we revealed that the autonomous aadA-like genes are present in the chromosomes of many gram-positive and gram-negative bacteria. The phylogenetic analysis of amino acid sequences of all identified AadA proteins showed the following: (i) cassette aadA genes form a separate monophyletic group and mainly reside on plasmids and (ii) chromosomal non-cassette aadA genes are extremely diverse and can be inherited both vertical and via horizontal gene transfer.
Collapse
Affiliation(s)
- Anton Kurakov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Sofia Mindlin
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Alexey Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
| | - Natalya Shcherbatova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| | - Andrey Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
| | - Aleksandra Ermakova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
| | - Andrey Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
| | - Mayya Petrova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, 123182 Moscow, Russia.
| |
Collapse
|
308
|
Makowska N, Koczura R, Mokracka J. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. CHEMOSPHERE 2016; 144:1665-73. [PMID: 26519797 DOI: 10.1016/j.chemosphere.2015.10.044] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 05/08/2023]
Abstract
Wastewater treatment plants are considered hot spots for multiplication and dissemination of antibiotic-resistant bacteria and resistance genes. In this study, we determined the presence of class 1 integron integrase and genes conferring resistance to tetracyclines and sulfonamides in the genomes of culturable bacteria isolated from a wastewater treatment plant and the river that receives the treated wastewater. Moreover, using PCR-based metagenomic approach, we quantified intI1, tet and sul genes. Wastewater treatment caused the decrease in the total number of culturable heterotrophs and bacteria resistant to tetracycline and sulfonamides, along with the decrease in the number of intI1, sul and tet gene copies per ml, with significant reduction of tet(B). On the other hand, the treatment process increased both the frequency of tetracycline- and sulfonamide-resistant bacteria and intI1-positive strains, and the relative abundance of all quantified antibiotic resistance genes (ARGs) and intI1 gene; in the case of tet(A) and sul2 significantly. The discharge of treated wastewater increased the number of intI1, tet and sul genes in the receiving river water both in terms of copy number per ml and relative abundance. Hence, despite the reduction of the number of ARGs and ARBs, wastewater treatment selects for bacteria with ARGs in effluent.
Collapse
Affiliation(s)
- Nicoletta Makowska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
309
|
Khoramrooz SS, Sharifi A, Yazdanpanah M, Malek Hosseini SAA, Emaneini M, Gharibpour F, Parhizgari N, Mirzaii M, Zoladl M, Khosravani SA. High Frequency of Class 1 Integrons in Escherichia coli Isolated From Patients With Urinary Tract Infections in Yasuj, Iran. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e26399. [PMID: 26889395 PMCID: PMC4752967 DOI: 10.5812/ircmj.26399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/11/2015] [Accepted: 05/12/2015] [Indexed: 12/04/2022]
Abstract
Background: Most urinary tract infections (UTI) are caused by Escherichia coli. Integrons have an important role in distributing antibiotic resistance genes among bacteria. Objectives: The aim of this study was to investigate the presence of class 1, 2 and 3 integrons and their association with antibiotic resistance in E. coli isolated from patient with UTI in Yasuj, Iran. Patients and Methods: In this cross-sectional study a total of 200 E. coli were collected from 1820 patients diagnosed with UTI that had been referred to two clinical laboratories between February 2013 and November 2014 in Yasuj city, southwest of Iran. Susceptibility of isolates to 11 different antibiotics was determined by the disk agar diffusion method. multiplex-polymerase chain reaction (PCR) was used for detection of class 1, 2 and 3 integrons. The data were analyzed using the SPSS software (version 16) and the chi-square test. A P value of < 0.05 was considered statistically significant. Results: The highest rate of resistance was observed toward cephalothin (99%) and amoxicillin (76%) while only two (1%) isolates showed resistance to imipenem. Overall, 79% of isolates were multi drug resistant (MDR). Class 1 and 2 integrons were detected in 104 (52%) and 5 (2.5%) isolates respectively, while none of the isolates were positive for class 3 integrons. A significant association was observed between the presence of integrons and resistance to co-trimoxazole, nalidixic acid, ciprofloxacin, amoxicillin, ceftazidime and tetracycline (P < 0.05). Conclusions: High MDR isolates of E. coli were observed in this study. The significant association between class 1 integrons and resistance to ciprofloxacin, nalidixic acid, co-trimoxazole, amoxicillin, ceftazidime and tetracycline showed that class 1 integrons have an important role in resistance to these antibiotics in this region.
Collapse
Affiliation(s)
- Seyed Sajjad Khoramrooz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran
- Corresponding Author: Seyed Sajjad Khoramrooz, Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran. Tel: +98-0743323515, Fax: +98-07433235153, E-mail:
| | - Asghar Sharifi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran
| | | | | | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | | | - Najmeh Parhizgari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Mehdi Mirzaii
- Department of Microbiology, School of Medicine, Shahrood University of Medical Sciences, Shahrood, IR Iran
| | - Mohammad Zoladl
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran
| | | |
Collapse
|
310
|
Wilson BA, Garud NR, Feder AF, Assaf ZJ, Pennings PS. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens. Mol Ecol 2016; 25:42-66. [PMID: 26578204 PMCID: PMC4943078 DOI: 10.1111/mec.13474] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023]
Abstract
Drug resistance is a costly consequence of pathogen evolution and a major concern in public health. In this review, we show how population genetics can be used to study the evolution of drug resistance and also how drug resistance evolution is informative as an evolutionary model system. We highlight five examples from diverse organisms with particular focus on: (i) identifying drug resistance loci in the malaria parasite Plasmodium falciparum using the genomic signatures of selective sweeps, (ii) determining the role of epistasis in drug resistance evolution in influenza, (iii) quantifying the role of standing genetic variation in the evolution of drug resistance in HIV, (iv) using drug resistance mutations to study clonal interference dynamics in tuberculosis and (v) analysing the population structure of the core and accessory genome of Staphylococcus aureus to understand the spread of methicillin resistance. Throughout this review, we discuss the uses of sequence data and population genetic theory in studying the evolution of drug resistance.
Collapse
Affiliation(s)
| | | | | | - Zoe J. Assaf
- Department of GeneticsStanford UniversityStanfordCA94305USA
| | - Pleuni S. Pennings
- Department of BiologySan Francisco State UniversityRoom 520Hensill Hall1600 Holloway AveSan FranciscoCA94132USA
| |
Collapse
|
311
|
Garrido-Maestu A, Lozano-León A, Rodríguez-Souto RR, Vieites-Maneiro R, Chapela MJ, Cabado AG. Presence of pathogenic Vibrio species in fresh mussels harvested in the southern Rias of Galicia (NW Spain). Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
312
|
Soen Y, Knafo M, Elgart M. A principle of organization which facilitates broad Lamarckian-like adaptations by improvisation. Biol Direct 2015; 10:68. [PMID: 26631109 PMCID: PMC4668624 DOI: 10.1186/s13062-015-0097-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During the lifetime of an organism, every individual encounters many combinations of diverse changes in the somatic genome, epigenome and microbiome. This gives rise to many novel combinations of internal failures which are unique to each individual. How any individual can tolerate this high load of new, individual-specific scenarios of failure is not clear. While stress-induced plasticity and hidden variation have been proposed as potential mechanisms of tolerance, the main conceptual problem remains unaddressed, namely: how largely non-beneficial random variation can be rapidly and safely organized into net benefits to every individual. PRESENTATION OF THE HYPOTHESIS We propose an organizational principle which explains how every individual can alleviate a high load of novel stressful scenarios using many random variations in flexible and inherently less harmful traits. Random changes which happen to reduce stress, benefit the organism and decrease the drive for additional changes. This adaptation (termed 'Adaptive Improvisation') can be further enhanced, propagated, stabilized and memorized when beneficial changes reinforce themselves by auto-regulatory mechanisms. This principle implicates stress not only in driving diverse variations in cells tissues and organs, but also in organizing these variations into adaptive outcomes. Specific (but not exclusive) examples include stress reduction by rapid exchange of mobile genetic elements (or exosomes) in unicellular, and rapid changes in the symbiotic microorganisms of animals. In all cases, adaptive changes can be transmitted across generations, allowing rapid improvement and assimilation in a few generations. TESTING THE HYPOTHESIS We provide testable predictions derived from the hypothesis. IMPLICATIONS OF THE HYPOTHESIS The hypothesis raises a critical, but thus far overlooked adaptation problem and explains how random variation can self-organize to confer a wide range of individual-specific adaptations beyond the existing outcomes of natural selection. It portrays gene regulation as an inseparable synergy between natural selection and adaptation by improvisation. The latter provides a basis for Lamarckian adaptation that is not limited to a specific mechanism and readily accounts for the remarkable resistance of tumors to treatment.
Collapse
Affiliation(s)
- Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Maor Knafo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Michael Elgart
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
313
|
Jones-Dias D, Manageiro V, Martins AP, Ferreira E, Caniça M. New Class 2 Integron In2-4 Among IncI1-Positive Escherichia coli Isolates Carrying ESBL and PMAβ Genes from Food Animals in Portugal. Foodborne Pathog Dis 2015; 13:36-9. [PMID: 26575358 DOI: 10.1089/fpd.2015.1972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The impact of extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (PMAβs) of animal origin constitutes a public health concern. In this study, 179 Escherichia coli from food animals and products were analyzed, among which, 15 cephalosporin-resistant isolates harboring ESBL (CTX-M-1 [n = 8], CTX-M-14 [n = 1], SHV-12 [n = 2]) or PMAβ [CMY-2, n = 5]) were identified in poultry and swine, from different farms of distinct regions of Portugal. The multiple sequence-type IncI1-driven spread of ESBLs and PMAβs, flanked by widely disseminated mobile elements, was guaranteed by ST26/IncI1-harboring blaSHV-12, ST12/IncI1-harboring blaCMY-2, ST3 and ST38/IncI1-harboring blaCTX-M-1, and ST1/IncI1-harboring blaCTX-M-14. An IS10-disrupted In2-4, presenting a new attI2 recombination site, was also detected in a SHV-12/CTX-M-1-harboring isolate. This study highlights the fact that animals may act as persistent sources of ESBL- and PMAβ-harboring plasmids genes that might be transferred to humans through direct contact or via the food chain.
Collapse
Affiliation(s)
- Daniela Jones-Dias
- 1 National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge , Lisbon, Portugal .,2 Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University , Oporto, Portugal
| | - Vera Manageiro
- 1 National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge , Lisbon, Portugal .,2 Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University , Oporto, Portugal
| | - Ana P Martins
- 3 Microbiology Laboratory , Controlvet, Tondela, Portugal
| | - Eugénia Ferreira
- 1 National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge , Lisbon, Portugal
| | - Manuela Caniça
- 1 National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge , Lisbon, Portugal
| |
Collapse
|
314
|
Jones-Dias D, Manageiro V, Caniça M. Influence of agricultural practice on mobile bla genes: IncI1-bearing CTX-M, SHV, CMY and TEM in Escherichia coli from intensive farming soils. Environ Microbiol 2015; 18:260-72. [PMID: 26279315 DOI: 10.1111/1462-2920.13021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/12/2015] [Indexed: 11/30/2022]
Abstract
Many calls have been made to address antibiotic resistance in an environmental perspective. With this study, we showed the widespread presence of high-level antibiotic resistant isolates on a collection of non-susceptible Gram-negative bacteria (n = 232) recovered from soils. Bacteria were selected using amoxicillin, cefotaxime and imipenem, from sites representing different agricultural practices (extensive, intensive and organic). Striking levels of non-susceptibility were noticed in intensive soils for norfloxacin (74%), streptomycin (50.7%) and tetracycline (46.6%); indeed, the exposure to intensive agricultural practices constituted a risk factor for non-susceptibility to many antibiotics, multidrug resistance and production of extended-spectrum β-lactamases (ESBL). Analyses of non-susceptibility highlighted that environmental and clinical bacteria from the same species might not share the same intrinsic resistance patterns, raising concerns for therapy choices in environment-borne infections. The multiple sequence-type IncI1-driven spread of penicillinases (blaTEM-1, blaTEM-135), ESBL (blaSHV-12 and blaCTX-M-1) and plasmid-mediated AmpC β-lactamases (blaCMY-2), produced by isolates that share their molecular features with isolates from humans and animals, suggests contamination of agricultural soils. This is also the first appearance of IncI1/ST28-harbouring blaCTX-M-1, which should be monitored to prevent their establishment as successfully dispersed plasmids. This research may help disclose paths of contamination by mobile antibiotic resistance determinants and the risks for their dissemination.
Collapse
Affiliation(s)
- Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, Oporto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
315
|
Gillings MR, Paulsen IT, Tetu SG. Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics. Genes (Basel) 2015; 6:841-57. [PMID: 26371047 PMCID: PMC4584332 DOI: 10.3390/genes6030841] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 01/15/2023] Open
Abstract
Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century.
Collapse
Affiliation(s)
- Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Sasha G Tetu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
316
|
Chen B, Hao L, Guo X, Wang N, Ye B. Prevalence of antibiotic resistance genes of wastewater and surface water in livestock farms of Jiangsu Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13950-9. [PMID: 25948386 DOI: 10.1007/s11356-015-4636-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/28/2015] [Indexed: 05/06/2023]
Abstract
The overuse of antibiotics in livestock farms is general, leading to a wide distribution of antibiotic resistance genes (ARGs) in aquatic environment adjacent to livestock farms. However, researches of the distribution and types of ARGs in aquatic environment of China are still in the initial stage. In this study, wastewater and surface water samples were collected from 12 livestock farms (four pig farms, four cattle farms, and four chicken farms) in Jiangsu Province of China. The prevalence, abundance, and distribution of 22 ARGs were investigated, which were categorized into six groups, including nine tetracyclin resistance genes, three sulfonamides resistance genes, three quinolone resistance genes, two macrolide resistance genes, three aminoglycoside resistance genes, and two multidrug resistance genes, employing quantitative real-time PCR (qPCR). The results suggested that all of the 22 ARGs were detected in samples. Sul1, sul2, and tetM were the most abundant with the average concentration of 3.84 × 10(1) copies/16S recombinant RNA (rRNA) gene copies, 1.62 × 10(1) copies/16S rRNA gene copies, 2.33 × 10(1) copies/16S rRNA gene copies, respectively. Principle component analysis revealed that the comprehensive pollution of ARGs in northern Jiangsu was more serious. ARGs in wastewater were more abundant when compared to that in surface water. A preliminary study regarding the fate of ARGs after an aerobiotic process showed that tetA, tetC, sul1, sul2, oqxB, and qnrS were significantly increased. And, among the tetracycline resistance genes, the efflux pump genes were enriched while the ribosomal protection protein encoding genes were decreased in the aerobiotic process. The prevalance of ARGs in water environment is of concern; more surveillance is required to determine the pollution level and pattern of antibiotic resistance genes.
Collapse
Affiliation(s)
- Biao Chen
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong-jia-xiang, Nanjing, 210009, People's Republic of China
| | | | | | | | | |
Collapse
|
317
|
Campos J, Gil J, Mourão J, Peixe L, Antunes P. Ready-to-eat street-vended food as a potential vehicle of bacterial pathogens and antimicrobial resistance: An exploratory study in Porto region, Portugal. Int J Food Microbiol 2015; 206:1-6. [DOI: 10.1016/j.ijfoodmicro.2015.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 01/28/2023]
|
318
|
Domingues S, Nielsen KM, da Silva GJ. Global dissemination patterns of common gene cassette arrays in class 1 integrons. Microbiology (Reading) 2015; 161:1313-37. [DOI: 10.1099/mic.0.000099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
319
|
The Microbiota and Abundance of the Class 1 Integron-Integrase Gene in Tropical Sewage Treatment Plant Influent and Activated Sludge. PLoS One 2015; 10:e0131532. [PMID: 26115093 PMCID: PMC4482650 DOI: 10.1371/journal.pone.0131532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023] Open
Abstract
Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treatment plants, where antibiotic-resistance genes can move between species via mobile genetic elements known as integrons. Nevertheless, few studies have addressed bacterial diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene (intI1) in raw sewage (RS) and activated sludge (AS). The analysis of 1,174,486 quality-filtered reads obtained from RS and AS samples revealed complex and distinct bacterial diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhibited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes and Firmicutes represented 85% (AS) and 92% (RS) of all reads. Increased relative abundance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen abundance were noted in AS. At the genus level, differences were observed for the dominant genera Simplicispira and Diaphorobacter (AS) as well as for Enhydrobacter (RS). The activated sludge process decreased (55%) the amount of bacteria harboring the intI1 gene in the RS sample. Altogether, our results emphasize the importance of biological treatment for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage treatment plant.
Collapse
|
320
|
Waldron LS, Gillings MR. Screening Foodstuffs for Class 1 Integrons and Gene Cassettes. J Vis Exp 2015:e52889. [PMID: 26132232 DOI: 10.3791/52889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Antibiotic resistance is one of the greatest threats to health in the 21st century. Acquisition of resistance genes via lateral gene transfer is a major factor in the spread of diverse resistance mechanisms. Amongst the DNA elements facilitating lateral transfer, the class 1 integrons have largely been responsible for spreading antibiotic resistance determinants amongst Gram negative pathogens. In total, these integrons have acquired and disseminated over 130 different antibiotic resistance genes. With continued antibiotic use, class 1 integrons have become ubiquitous in commensals and pathogens of humans and their domesticated animals. As a consequence, they can now be found in all human waste streams, where they continue to acquire new genes, and have the potential to cycle back into humans via the food chain. This protocol details a streamlined approach for detecting class 1 integrons and their associated resistance gene cassettes in foodstuffs, using culturing and PCR. Using this protocol, researchers should be able to: collect and prepare samples to make enriched cultures and screen for class 1 integrons; isolate single bacterial colonies to identify integron-positive isolates; identify bacterial species that contain class 1 integrons; and characterize these integrons and their associated gene cassettes.
Collapse
|
321
|
Koczura R, Krysiak N, Taraszewska A, Mokracka J. Coliform bacteria isolated from recreational lakes carry class 1 and class 2 integrons and virulence-associated genes. J Appl Microbiol 2015; 119:594-603. [DOI: 10.1111/jam.12838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 11/27/2022]
Affiliation(s)
- R. Koczura
- Department of Microbiology; Faculty of Biology; Adam Mickiewicz University in Poznań; Poznań Poland
| | - N. Krysiak
- Department of Microbiology; Faculty of Biology; Adam Mickiewicz University in Poznań; Poznań Poland
| | - A. Taraszewska
- Department of Microbiology; Faculty of Biology; Adam Mickiewicz University in Poznań; Poznań Poland
| | - J. Mokracka
- Department of Microbiology; Faculty of Biology; Adam Mickiewicz University in Poznań; Poznań Poland
| |
Collapse
|
322
|
Xu Y, Gu B, Huang M, Liu H, Xu T, Xia W, Wang T. Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000-2012 in Asia. J Thorac Dis 2015; 7:376-85. [PMID: 25922715 DOI: 10.3978/j.issn.2072-1439.2014.12.33] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Over the past decade, the worldwide emergence of carbapenem resistance in Enterobacteriaceae has become a severe public health issue. This meta-analysis aims to describe the epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during the years of 2000-2012 in Asian area. METHODS PubMed and Embase databases were searched to identify the qualified papers. Random or fixed-effect model was used to deal with the data. RESULTS Over all the 49 Asian countries (or regions), only 37.5% [19] of them contributed epidemiology data of CRE, and the rest ones provided either only case reports or no information at all. In Asia, the prevalence of CRE was still low during the study period with average resistance rates of 0.6% (95% CI, 0.6-0.8%, imipenem) and 0.9% (95% CI, 0.7-1.2%, meropenem). Resistance rates to imipenem and meropenem in Enterobacteriaceae exhibited stably escalating trend. Similar trend can also be observed among each Enterobacteriaceae genus, such as E. coli, Klebsiella spp. and Enterobacer spp. Klebsiella spp. accounted for the largest proportion among the isolates resistant to imipenem, and then followed by E. coli and Serratia. The rank order of resistance rates to imipenem among Enterobacteriaceae genus during the period of 2000-2012 was as follows: Serratia spp. (1.8%) > Proteus spp. (1.6%) > Klebsiella spp. (0.8%) = Citrobacter spp. (0.8%) > Enterobacer spp. (0.7%) > E. coli (0.2%). CONCLUSIONS Given the fact that the prevalence of CRE was increasing during the past decade, it is urgent for us to establish regional surveillance worldwide, carry out more effective antibiotic stewardship and infection control measures to prevent further spread of carbapenem resistance in Enterobacteriaceae.
Collapse
Affiliation(s)
- Yanling Xu
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Bing Gu
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Mao Huang
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Haiyan Liu
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Ting Xu
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Wenying Xia
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Tong Wang
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| |
Collapse
|
323
|
Abstract
Integrons are versatile gene acquisition systems commonly found in bacterial genomes. They are ancient elements that are a hot spot for genomic complexity, generating phenotypic diversity and shaping adaptive responses. In recent times, they have had a major role in the acquisition, expression, and dissemination of antibiotic resistance genes. Assessing the ongoing threats posed by integrons requires an understanding of their origins and evolutionary history. This review examines the functions and activities of integrons before the antibiotic era. It shows how antibiotic use selected particular integrons from among the environmental pool of these elements, such that integrons carrying resistance genes are now present in the majority of Gram-negative pathogens. Finally, it examines the potential consequences of widespread pollution with the novel integrons that have been assembled via the agency of human antibiotic use and speculates on the potential uses of integrons as platforms for biotechnology.
Collapse
|
324
|
Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, Eames KTD, Edmunds WJ, Frost SDW, Funk S, Hollingsworth TD, House T, Isham V, Klepac P, Lessler J, Lloyd-Smith JO, Metcalf CJE, Mollison D, Pellis L, Pulliam JRC, Roberts MG, Viboud C. Modeling infectious disease dynamics in the complex landscape of global health. Science 2015; 347:aaa4339. [PMID: 25766240 PMCID: PMC4445966 DOI: 10.1126/science.aaa4339] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health.
Collapse
Affiliation(s)
- Hans Heesterbeek
- Faculty of Veterinary Medicine, University of Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | - Ken T D Eames
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene Tropical Medicine, London, UK
| | - W John Edmunds
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene Tropical Medicine, London, UK
| | | | | | - T Deirdre Hollingsworth
- School of Life Sciences, University of Warwick, UK. School of Tropical Medicine, University of Liverpool, UK
| | - Thomas House
- Warwick Mathematics Institute, University of Warwick, Coventry, UK
| | - Valerie Isham
- Department of Statistical Science, University College London, London, UK
| | | | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - C Jessica E Metcalf
- Department of Zoology, University of Oxford, Oxford, UK, and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Lorenzo Pellis
- Warwick Mathematics Institute, University of Warwick, Coventry, UK
| | - Juliet R C Pulliam
- Department of Biology-Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA. Division of International Epidemiology and Population Studies, Fogarty International Center, NIH, Bethesda, MD, USA
| | - Mick G Roberts
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Cecile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, NIH, Bethesda, MD, USA
| |
Collapse
|
325
|
Jechalke S, Broszat M, Lang F, Siebe C, Smalla K, Grohmann E. Effects of 100 years wastewater irrigation on resistance genes, class 1 integrons and IncP-1 plasmids in Mexican soil. Front Microbiol 2015; 6:163. [PMID: 25784901 PMCID: PMC4347510 DOI: 10.3389/fmicb.2015.00163] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/12/2015] [Indexed: 12/12/2022] Open
Abstract
Long-term irrigation with untreated wastewater can lead to an accumulation of antibiotic substances and antibiotic resistance genes in soil. However, little is known so far about effects of wastewater, applied for decades, on the abundance of IncP-1 plasmids and class 1 integrons which may contribute to the accumulation and spread of resistance genes in the environment, and their correlation with heavy metal concentrations. Therefore, a chronosequence of soils that were irrigated with wastewater from 0 to 100 years was sampled in the Mezquital Valley in Mexico in the dry season. The total community DNA was extracted and the absolute and relative abundance (relative to 16S rRNA genes) of antibiotic resistance genes (tet(W), tet(Q), aadA), class 1 integrons (intI1), quaternary ammonium compound resistance genes (qacE+qacEΔ1) and IncP-1 plasmids (korB) were quantified by real-time PCR. Except for intI1 and qacE+qacEΔ1 the abundances of selected genes were below the detection limit in non-irrigated soil. Confirming the results of a previous study, the absolute abundance of 16S rRNA genes in the samples increased significantly over time (linear regression model, p < 0.05) suggesting an increase in bacterial biomass due to repeated irrigation with wastewater. Correspondingly, all tested antibiotic resistance genes as well as intI1 and korB significantly increased in abundance over the period of 100 years of irrigation. In parallel, concentrations of the heavy metals Zn, Cu, Pb, Ni, and Cr significantly increased. However, no significant positive correlations were observed between the relative abundance of selected genes and years of irrigation, indicating no enrichment in the soil bacterial community due to repeated wastewater irrigation or due to a potential co-selection by increasing concentrations of heavy metals.
Collapse
Affiliation(s)
- Sven Jechalke
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI) Braunschweig, Germany
| | - Melanie Broszat
- Department of Infectious Diseases, University Hospital Freiburg Freiburg, Germany ; Microbiology, Faculty for Biology, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Friederike Lang
- Chair of Soil Ecology, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | - Christina Siebe
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria Mexico City, Mexico
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI) Braunschweig, Germany
| | - Elisabeth Grohmann
- Department of Infectious Diseases, University Hospital Freiburg Freiburg, Germany ; Microbiology, Faculty for Biology, Albert-Ludwigs-University Freiburg Freiburg, Germany
| |
Collapse
|
326
|
Abstract
Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in both human and animal medicine and agriculture and in countries around the world.
Collapse
Affiliation(s)
- Marjorie E Doyle
- Food Research Institute, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
327
|
Nesme J, Simonet P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol 2014; 17:913-30. [DOI: 10.1111/1462-2920.12631] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Joseph Nesme
- Environmental Microbial Genomics, Bioengineering Departement, Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon; Université de Lyon; 36 Avenue Guy de Collongue Ecully 69134 France
| | - Pascal Simonet
- Environmental Microbial Genomics, Bioengineering Departement, Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon; Université de Lyon; 36 Avenue Guy de Collongue Ecully 69134 France
| |
Collapse
|
328
|
Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME JOURNAL 2014; 9:1269-79. [PMID: 25500508 PMCID: PMC4438328 DOI: 10.1038/ismej.2014.226] [Citation(s) in RCA: 858] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/18/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022]
Abstract
Around all human activity, there are zones of pollution with pesticides, heavy metals, pharmaceuticals, personal care products and the microorganisms associated with human waste streams and agriculture. This diversity of pollutants, whose concentration varies spatially and temporally, is a major challenge for monitoring. Here, we suggest that the relative abundance of the clinical class 1 integron-integrase gene, intI1, is a good proxy for pollution because: (1) intI1 is linked to genes conferring resistance to antibiotics, disinfectants and heavy metals; (2) it is found in a wide variety of pathogenic and nonpathogenic bacteria; (3) its abundance can change rapidly because its host cells can have rapid generation times and it can move between bacteria by horizontal gene transfer; and (4) a single DNA sequence variant of intI1 is now found on a wide diversity of xenogenetic elements, these being complex mosaic DNA elements fixed through the agency of human selection. Here we review the literature examining the relationship between anthropogenic impacts and the abundance of intI1, and outline an approach by which intI1 could serve as a proxy for anthropogenic pollution.
Collapse
Affiliation(s)
- Michael R Gillings
- Department of Biological Sciences, Genes to Geoscience Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Royal Cornwall Hospital, Truro, UK
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
329
|
Baquero F, Lanza VF, Cantón R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl 2014; 8:223-39. [PMID: 25861381 PMCID: PMC4380917 DOI: 10.1111/eva.12235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/12/2014] [Indexed: 12/19/2022] Open
Abstract
The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR.
Collapse
Affiliation(s)
- Fernando Baquero
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Val F Lanza
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Rafael Cantón
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III Madrid, Spain
| | - Teresa M Coque
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| |
Collapse
|
330
|
Laroche-Ajzenberg E, Flores Ribeiro A, Bodilis J, Riah W, Buquet S, Chaftar N, Pawlak B. Conjugative multiple-antibiotic resistance plasmids in Escherichia coli
isolated from environmental waters contaminated by human faecal wastes. J Appl Microbiol 2014; 118:399-411. [DOI: 10.1111/jam.12691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/14/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - A. Flores Ribeiro
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - J. Bodilis
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - W. Riah
- Agri'Terr Laboratory; ESITPA; Mont Saint Aignan France
| | - S. Buquet
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - N. Chaftar
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - B. Pawlak
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| |
Collapse
|
331
|
Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 2014; 5:648. [PMID: 25520706 PMCID: PMC4251439 DOI: 10.3389/fmicb.2014.00648] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/07/2014] [Indexed: 11/27/2022] Open
Abstract
There is increasing evidence for an environmental origin of many antibiotic resistance genes. Consequently, it is important to identify environments of particular risk for selecting and maintaining such resistance factors. In this study, we described the diversity of antibiotic resistance genes in an Indian lake subjected to industrial pollution with fluoroquinolone antibiotics. We also assessed the genetic context of the identified resistance genes, to try to predict their genetic transferability. The lake harbored a wide range of resistance genes (81 identified gene types) against essentially every major class of antibiotics, as well as genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant than in a Swedish lake included for comparison, where only eight resistance genes were found. The sul2 and qnrD genes were the most common resistance genes in the Indian lake. Twenty-six known and 21 putative novel plasmids were recovered in the Indian lake metagenome, which, together with the genes found, indicate a large potential for horizontal gene transfer through conjugation. Interestingly, the microbial community of the lake still included a wide range of taxa, suggesting that, across most phyla, bacteria has adapted relatively well to this highly polluted environment. Based on the wide range and high abundance of known resistance factors we have detected, it is plausible that yet unrecognized resistance genes are also present in the lake. Thus, we conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Fredrik Boulund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg Gothenburg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University Umeå, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| |
Collapse
|
332
|
Labbate M, Boucher Y, Luu I, Chowdhury PR, Stokes HW. Integron associated mobile genes: Just a collection of plug in apps or essential components of cell network hardware? Mob Genet Elements 2014; 2:13-18. [PMID: 22754748 PMCID: PMC3383445 DOI: 10.4161/mge.19510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Lateral gene transfer (LGT) impacts on the evolution of prokaryotes in both the short and long-term. The short-term impacts of mobilized genes are a concern to humans since LGT explains the global rise of multi drug resistant pathogens seen in the past 70 years. However, LGT has been a feature of prokaryotes from the earliest days of their existence and the concept of a bifurcating tree of life is not entirely applicable to prokaryotes since most genes in extant prokaryotic genomes have probably been acquired from other lineages. Successful transfer and maintenance of a gene in a new host is understandable if it acts independently of cell networks and confers an advantage. Antibiotic resistance provides an example of this whereby a gene can be advantageous in virtually any cell across broad species backgrounds. In a longer evolutionary context however laterally transferred genes can be assimilated into even essential cell networks. How this happens is not well understood and we discuss recent work that identifies a mobile gene, unique to a cell lineage, which is detrimental to the cell when lost. We also present some additional data and believe our emerging model will be helpful in understanding how mobile genes integrate into cell networks.
Collapse
|
333
|
Domingues S, da Silva GJ, Nielsen KM. Integrons: Vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elements 2014; 2:211-223. [PMID: 23550063 PMCID: PMC3575428 DOI: 10.4161/mge.22967] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrons are genetic elements first described at the end of the 1980s. Although most integrons were initially described in human clinical isolates, they have now been identified in many non-clinical environments, such as water and soil. Integrons are present in ≈10% of the sequenced bacterial genomes and are frequently linked to mobile genetic elements (MGEs); particularly the class 1 integrons. Genetic linkage to a diverse set of MGEs facilitates horizontal transfer of class 1 integrons within and between bacterial populations and species. The mechanistic aspects limiting transfer of MGEs will therefore limit the transfer of class 1 integrons. However, horizontal movement due to genes provided in trans and homologous recombination can result in class 1 integron dynamics independent of MGEs. A key determinant for continued dissemination of class 1 integrons is the probability that transferred MGEs will be vertically inherited in the recipient bacterial population. Heritability depends both on genetic stability as well as the fitness costs conferred to the host. Here we review the factors known to govern the dissemination of class 1 integrons in bacteria.
Collapse
Affiliation(s)
- Sara Domingues
- Centre of Pharmaceutical Studies; Faculty of Pharmacy; University of Coimbra; Coimbra, Portugal ; Department of Pharmacy; Faculty of Health Sciences; University of Tromsø; Tromsø, Norway
| | | | | |
Collapse
|
334
|
Abstract
How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to biocides and heavy metals. In this report, we show that very low concentrations of single antibiotics and heavy metals or combinations of compounds can select for a large plasmid that carries resistance to aminoglycosides, β-lactams, tetracycline, macrolides, trimethoprim, sulfonamide, silver, copper, and arsenic. Our findings suggest that the low levels of antibiotics and heavy metals present in polluted external environments and in treated animals and humans could allow for selection and enrichment of bacteria with multiresistance plasmids and thereby contribute to the emergence, maintenance, and transmission of antibiotic-resistant disease-causing bacteria.
Collapse
|
335
|
Guo X, Liu S, Wang Z, Zhang XX, Li M, Wu B. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. CHEMOSPHERE 2014; 112:1-8. [PMID: 25048881 DOI: 10.1016/j.chemosphere.2014.03.068] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 05/18/2023]
Abstract
Iron (Fe) has been widely applied to treat arsenic (As)-contaminated water, and Fe could influence bioavailability and toxicity of As. However, little is known about the impact of As and/or Fe on gut microbiota, which plays important roles in host health. In this study, high-throughput sequencing and quantitative real time PCR were applied to analyze the impact of As and Fe on mouse gut microbiota. Co-exposure of As and Fe mitigated effects on microbial community to a certain extent. Correlation analysis showed the shifts in gut microbiota caused by As and/or Fe exposure might be important reason of changes in metabolic profiles of mouse. For antibiotic resistance genes (ARGs), co-exposure of As and Fe increased types and abundance of ARGs. But for high abundance ARGs, such as tetQ, tetO and tetM, co-exposure of As and Fe mitigated effects on their abundances compared to exposure to As and Fe alone. No obvious relationship between ARGs and mobile genetic elements were found. The changes in ARGs caused by metal exposure might be due to the alteration of gut microbial diversity. Our results show that changes of gut microbial community caused by As and/or Fe can influence host metabolisms and abundances of ARGs in gut, indicating that changes of gut microbiota should be considered during the risk assessment of As and/or Fe.
Collapse
Affiliation(s)
- Xuechao Guo
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Su Liu
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhu Wang
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xu-xiang Zhang
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mei Li
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
336
|
Sousa M, Gonçalves A, Silva N, Serra R, Alcaide E, Zorrilla I, Torres C, Caniça M, Igrejas G, Poeta P. Acquired antibiotic resistance among wild animals: the case of Iberian Lynx (Lynx pardinus). Vet Q 2014; 34:105-12. [PMID: 25220796 DOI: 10.1080/01652176.2014.949391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The selective pressure generated by the clinical misuse of antibiotics has been the major driving force leading to the emergence of antibiotic resistance among bacteria. Antibiotics or even resistant bacteria are released into the environment and contaminate the surrounding areas. Human and animal populations in contact with these sources are able to become reservoirs of these resistant organisms. Then, due to the convergence between habitats, the contact of wild animals with other animals, humans, or human sources is now more common and this leads to an increase in the exchange of resistance determinants between their microbiota. Indeed, it seems that wildlife populations living in closer proximity to humans have higher levels of antibiotic resistance. Now, the Iberian Lynx (Lynx pardinus) is a part of this issue, being suggested as natural reservoir of acquired resistant bacteria. The emerging public health concern regarding microbial resistance to antibiotics is becoming true: the bacteria are evolving and are now affecting unintentional hosts.
Collapse
Affiliation(s)
- Margarida Sousa
- a Veterinary and Animal Science Research Center (CECAV) , University of Tras-os-Montes and Alto Douro (UTAD) , Vila Real , Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Abstract
Antibiotic resistance has become a problem of global scale. Resistance arises through mutation or through the acquisition of resistance gene(s) from other bacteria in a process called horizontal gene transfer (HGT). While HGT is recognized as an important factor in the dissemination of resistance genes in clinical pathogens, its role in the environment has been called into question by a recent study published in Nature. The authors found little evidence of HGT in soil using a culture-independent functional metagenomics approach, which is in contrast to previous work from the same lab showing HGT between the environment and human microbiome. While surprising at face value, these results may be explained by the lack of selective pressure in the environment studied. Importantly, this work suggests the need for careful monitoring of environmental antibiotic pollution and stringent antibiotic stewardship in the fight against resistance.
Collapse
Affiliation(s)
- Julie A Perry
- M. G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
338
|
Koczura R, Przyszlakowska B, Mokracka J, Kaznowski A. Class 1 integrons and antibiotic resistance of clinical Acinetobacter calcoaceticus-baumannii complex in Poznań, Poland. Curr Microbiol 2014; 69:258-62. [PMID: 24740302 PMCID: PMC4113676 DOI: 10.1007/s00284-014-0581-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 02/20/2014] [Indexed: 02/04/2023]
Abstract
Sixty-three clinical isolates of Acinetobacter calcoaceticus-baumannii complex were analyzed for the presence of integrons and antimicrobial resistance. Class 1 integrons were detected in 40 (63.5 %) isolates. None of them had class 2 or class 3 integrons. The majority of the integrons contained aacC1-orfA-orfB-aadA1 gene cassette array. The presence of integrons was associated with the increased frequency of resistance to 12 of 15 antimicrobials tested, multi-drug resistance phenotype, and the overall resistance ranges of the strains.
Collapse
Affiliation(s)
- Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul Umultowska 89, 61-614, Poznan, Poland,
| | | | | | | |
Collapse
|
339
|
Roy Chowdhury P, McKinnon J, Wyrsch E, Hammond JM, Charles IG, Djordjevic SP. Genomic interplay in bacterial communities: implications for growth promoting practices in animal husbandry. Front Microbiol 2014; 5:394. [PMID: 25161648 PMCID: PMC4129626 DOI: 10.3389/fmicb.2014.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
The discovery of antibiotics heralded the start of a “Golden Age” in the history of medicine. Over the years, the use of antibiotics extended beyond medical practice into animal husbandry, aquaculture and agriculture. Now, however, we face the worldwide threat of diseases caused by pathogenic bacteria that are resistant to all existing major classes of antibiotic, reflecting the possibility of an end to the antibiotic era. The seriousness of the threat is underscored by the severely limited production of new classes of antibiotics. Evolution of bacteria resistant to multiple antibiotics results from the inherent genetic capability that bacteria have to adapt rapidly to changing environmental conditions. Consequently, under antibiotic selection pressures, bacteria have acquired resistance to all classes of antibiotics, sometimes very shortly after their introduction. Arguably, the evolution and rapid dissemination of multiple drug resistant genes en-masse across microbial pathogens is one of the most serious threats to human health. In this context, effective surveillance strategies to track the development of resistance to multiple antibiotics are vital to managing global infection control. These surveillance strategies are necessary for not only human health but also for animal health, aquaculture and plant production. Shortfalls in the present surveillance strategies need to be identified. Raising awareness of the genetic events that promote co-selection of resistance to multiple antimicrobials is an important prerequisite to the design and implementation of molecular surveillance strategies. In this review we will discuss how lateral gene transfer (LGT), driven by the use of low-dose antibiotics in animal husbandry, has likely played a significant role in the evolution of multiple drug resistance (MDR) in Gram-negative bacteria and has complicated molecular surveillance strategies adopted for predicting imminent resistance threats.
Collapse
Affiliation(s)
- Piklu Roy Chowdhury
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia ; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Camden, NSW, Australia
| | - Jessica McKinnon
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Ethan Wyrsch
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Jeffrey M Hammond
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Camden, NSW, Australia
| | - Ian G Charles
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| |
Collapse
|
340
|
Husain F, Veeranagouda Y, Boente R, Tang K, Mulato G, Wexler HM. The Ellis Island Effect: A novel mobile element in a multi-drug resistant Bacteroides fragilis clinical isolate includes a mosaic of resistance genes from Gram-positive bacteria. Mob Genet Elements 2014; 4:e29801. [PMID: 25165618 PMCID: PMC4145004 DOI: 10.4161/mge.29801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 01/13/2023] Open
Abstract
Objectives: Bacteroides fragilis, a Gram-negative anaerobic bacterium, is alternately a gut commensal or virulent pathogen and is an important reservoir for horizontal gene transfer (HGT) of bacterial resistance and virulence genes in the human gastrointestinal tract. We identified a unique conjugative transposon (CTn) in a multidrug resistant clinical isolate of B. fragilis (BF-HMW615); we named this element CTnHyb because it included a hybrid mosaic of foreign elements. This study reports the characterization of CTnHyb and discusses the potential impact on horizontal spread of resistance genes. Results: CTnHyb contains several efflux pump genes and several genes that confer or may confer antibiotic resistance to tetracycline, kanamycin, metronidazole and spectinomycin (truncated gene). CTnHyb also contains a mosaic of mobile elements from Gram-positive organisms. CTnHyb is easily transferred from BF-HMW615 (the original isolate) to BF638R (lab strain) and integrated into the BF638R chromosome. The "foreign" (from Gram-positive bacteria) nucleotide sequences within CTnHyb were > 99% preserved indicating that the gene acquisition from the Gram-positive bacteria was very recent. Conclusion: CTnHyb is a novel CTn residing in a multidrug resistant strain of B. fragilis. The global nature and wide phylogenetic reach of HGT means that any gene in any bacterium can potentially be mobilized. Understanding the mechanisms that drive the formation and transfer of these elements and, potentially, ways to limit the transfer are necessary to prevent a devastating spread of resistance elements.
Collapse
Affiliation(s)
| | - Yaligara Veeranagouda
- GLAVAHCS; Los Angeles, CA USA ; David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
| | | | - Kevin Tang
- David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
| | - Gabriela Mulato
- David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
| | - Hannah M Wexler
- GLAVAHCS; Los Angeles, CA USA ; David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
| |
Collapse
|
341
|
Allen HK. Antibiotic resistance gene discovery in food-producing animals. Curr Opin Microbiol 2014; 19:25-29. [PMID: 24994584 DOI: 10.1016/j.mib.2014.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/28/2014] [Accepted: 06/07/2014] [Indexed: 12/14/2022]
Abstract
Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.
Collapse
Affiliation(s)
- Heather K Allen
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
342
|
Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2014; 20:831-8. [PMID: 24766097 DOI: 10.1111/1469-0691.12655] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The emergence and rapid spread of carbapenemases in Enterobacteriaceae, Pseudomonas and Acinetobacter (EPA) species is becoming a major public health crisis worldwide, and is responsible for large number of hospital-acquired and nosocomial infections. In this article, we review the current knowledge on the classification, phylogeny and genetic platforms of the main carbapenemases already described in Gram-negative bacteria.
Collapse
Affiliation(s)
- S M Diene
- Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | | |
Collapse
|
343
|
Smalla K, Tiedje JM. Editorial overview: Ecology and industrial microbiology. Curr Opin Microbiol 2014; 19:v-vii. [DOI: 10.1016/j.mib.2014.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
344
|
Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G. Bacterial phylogeny structures soil resistomes across habitats. Nature 2014; 509:612-6. [PMID: 24847883 PMCID: PMC4079543 DOI: 10.1038/nature13377] [Citation(s) in RCA: 834] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/14/2014] [Indexed: 12/16/2022]
Abstract
Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.
Collapse
Affiliation(s)
- Kevin J Forsberg
- 1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2]
| | - Sanket Patel
- 1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA [3]
| | - Molly K Gibson
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Christian L Lauber
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
| | - Rob Knight
- 1] Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA [2] Howard Hughes Medical Institute, Boulder, Colorado 80309, USA
| | - Noah Fierer
- 1] Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA [2] Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Gautam Dantas
- 1] Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA [2] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130, USA
| |
Collapse
|
345
|
Herrick J, Haynes R, Heringa S, Brooks J, Sobota L. Coselection for resistance to multiple late-generation human therapeutic antibiotics encoded on tetracycline resistance plasmids captured from uncultivated stream and soil bacteria. J Appl Microbiol 2014; 117:380-9. [DOI: 10.1111/jam.12538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Affiliation(s)
- J.B. Herrick
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - R. Haynes
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - S. Heringa
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - J.M. Brooks
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - L.T. Sobota
- Department of Biology; James Madison University; Harrisonburg VA USA
| |
Collapse
|
346
|
Coleman NV, Richardson-Harris J, Wilson NL, Holmes AJ. Insertion sequence ISPst4 activates pUC plasmid replication inPseudomonas stutzeri. FEMS Microbiol Lett 2014; 356:242-9. [DOI: 10.1111/1574-6968.12417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Nicholas V. Coleman
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| | | | - Neil L. Wilson
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| | - Andrew J. Holmes
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| |
Collapse
|
347
|
Schuurmans JM, van Hijum SAFT, Piet JR, Händel N, Smelt J, Brul S, ter Kuile BH. Effect of growth rate and selection pressure on rates of transfer of an antibiotic resistance plasmid between E. coli strains. Plasmid 2014; 72:1-8. [PMID: 24525238 DOI: 10.1016/j.plasmid.2014.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Antibiotic resistance increases costs for health care and causes therapy failure. An important mechanism for spreading resistance is transfer of plasmids containing resistance genes and subsequent selection. Yet the factors that influence the rate of transfer are poorly known. Rates of plasmid transfer were measured in co-cultures in chemostats of a donor and a acceptor strain under various selective pressures. To document whether specific mutations in either plasmid or acceptor genome are associated with the plasmid transfer, whole genome sequencing was performed. The DM0133 TetR tetracycline resistance plasmid was transferred between Escherichia coli K-12 strains during co-culture at frequencies that seemed higher at increased growth rate. Modeling of the take-over of the culture by the transformed strain suggests that in reality more transfer events occurred at low growth rates. At moderate selection pressure due to an antibiotic concentration that still allowed growth, a maximum transfer frequency was determined of once per 10(11) cell divisions. In the absence of tetracycline or in the presence of high concentrations the frequency of transfer was sometimes zero, but otherwise reduced by at least a factor of 5. Whole genome sequencing showed that the plasmid was transferred without mutations, but two functional mutations in the genome of the recipient strain accompanied this transfer. Exposure to concentrations of antibiotics that fall within the mutant selection window stimulated transfer of the resistance plasmid most.
Collapse
Affiliation(s)
- Jasper M Schuurmans
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sacha A F T van Hijum
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB Ede, The Netherlands; Centre for Molecular and Biomolecular Informatics (CMBI), NCMLS, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jurgen R Piet
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Nadine Händel
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jan Smelt
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H ter Kuile
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Catharijnesingel 59, 3511 GG Utrecht, The Netherlands.
| |
Collapse
|
348
|
Metzger LC, Blokesch M. Composition of the DNA-uptake complex of Vibrio cholerae.. Mob Genet Elements 2014; 4:e28142. [PMID: 24558639 PMCID: PMC3919817 DOI: 10.4161/mge.28142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022] Open
Abstract
Natural competence for transformation is a developmental program that allows certain bacteria to take up free extracellular DNA from the environment and integrate this DNA into their genome. Thereby, natural transformation acts as mode of horizontal gene transfer and impacts bacterial evolution. The number of genes induced upon competence induction varies significantly between organisms. However, all of the naturally competent bacteria possess competence genes that encode so-called DNA-uptake machineries. Some components of these multi-protein complexes resemble subunits of type IV pili and type II secretion systems. However, knowledge on the mechanistic aspects of such DNA-uptake complexes is still very limited. Here, we discuss some new findings regarding the DNA-uptake machinery of the naturally transformable human pathogen Vibrio cholerae. The potential of this organism to initiate the competence program was discovered less than a decade ago. However, recent studies have provided new insight into both the regulatory pathways of competence induction and into the DNA uptake dynamics.
Collapse
Affiliation(s)
- Lisa C Metzger
- Global Health Institute; School of Life Sciences; Swiss Federal Institute of Technology Lausanne (Ecole Polytechnique Fédérale de Lausanne, EPFL); Lausanne, Switzerland
| | - Melanie Blokesch
- Global Health Institute; School of Life Sciences; Swiss Federal Institute of Technology Lausanne (Ecole Polytechnique Fédérale de Lausanne, EPFL); Lausanne, Switzerland
| |
Collapse
|
349
|
Su HC, Ying GG, He LY, Liu YS, Zhang RQ, Tao R. Antibiotic resistance, plasmid-mediated quinolone resistance (PMQR) genes and ampC gene in two typical municipal wastewater treatment plants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:324-32. [PMID: 24441525 DOI: 10.1039/c3em00555k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Antibiotic resistant bacteria and plasmid-mediated quinolone resistance genes and ampC gene were investigated for Escherichia coli isolates from two typical municipal wastewater treatment plants in both dry and wet seasons by using the antibiotic susceptibility test and PCR assay, respectively. The results showed that 98.4% of the isolates (1056) were found resistant to antibiotic(s) tested and 90.6% showed multiple resistances to at least three antibiotics. Tetracycline was found to have the highest resistance frequency (70.8%), followed by ampicillin (65.1%), whereas ceftazidime had the lowest resistance frequency of 9.0%. Moreover, 39.2% of the E. coli isolates were carrying plasmids. intI1 had the highest detection rate in the plasmids (38.1%), followed by qnrS, ampC, qnrB, intI2 and aac(6')-Ib-cr. The disinfection process (UV and chlorination) could significantly reduce the number of bacteria, but percentage of the resistant bacteria, resistance frequency for each antibiotic, MAR index and detection rate of the plasmid-mediated resistance genes were all found increasing in the effluents of biological units. The results of this study showed that a more frequent horizontal gene transfer occurred in the biological units. Wastewater treatment plants were an important medium for the recombination and dissemination of antibiotic resistance genes in the environment.
Collapse
Affiliation(s)
- Hao-Chang Su
- State Key Laboratory of Organic Geochemistry, CAS Centre for Pearl River Delta Environmental Pollution and Control Research, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | | | | | | | | | | |
Collapse
|
350
|
Forslund K, Sunagawa S, Coelho LP, Bork P. Metagenomic insights into the human gut resistome and the forces that shape it. Bioessays 2014; 36:316-29. [PMID: 24474281 DOI: 10.1002/bies.201300143] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We show how metagenomic analysis of the human gut antibiotic resistome, compared across large populations and against environmental or agricultural resistomes, suggests a strong anthropogenic cause behind increasing antibiotic resistance in bacteria. This area has been the subject of intense and polarized debate driven by economic and political concerns; therefore such recently available insights address an important need. We derive and compare antibiotic resistomes of human gut microbes from 832 individuals from ten different countries. We observe and describe significant differences between samples from these countries in the gut resistance potential, in line with expectations from antibiotic usage and exposure in medical and food production contexts. Our results imply roles for both of these sources in increased resistance among pathogens in recent history. In contrast, other available metadata such as age, body mass index, sex, or health status have little effect on the antibiotic resistance potential of human gut microbes. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Kristoffer Forslund
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | | | | |
Collapse
|