301
|
Selmer M, Gao YG, Weixlbaumer A, Ramakrishnan V. Ribosome engineering to promote new crystal forms. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:578-83. [PMID: 22525755 PMCID: PMC3335287 DOI: 10.1107/s0907444912006348] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/13/2012] [Indexed: 11/10/2022]
Abstract
Crystallographic studies of the ribosome have provided molecular details of protein synthesis. However, the crystallization of functional complexes of ribosomes with GTPase translation factors proved to be elusive for a decade after the first ribosome structures were determined. Analysis of the packing in different 70S ribosome crystal forms revealed that regardless of the species or space group, a contact between ribosomal protein L9 from the large subunit and 16S rRNA in the shoulder of a neighbouring small subunit in the crystal lattice competes with the binding of GTPase elongation factors to this region of 16S rRNA. To prevent the formation of this preferred crystal contact, a mutant strain of Thermus thermophilus, HB8-MRCMSAW1, in which the ribosomal protein L9 gene has been truncated was constructed by homologous recombination. Mutant 70S ribosomes were used to crystallize and solve the structure of the ribosome with EF-G, GDP and fusidic acid in a previously unobserved crystal form. Subsequent work has shown the usefulness of this strain for crystallization of the ribosome with other GTPase factors.
Collapse
Affiliation(s)
- Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, England
| | - Yong-Gui Gao
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, England
| | - Albert Weixlbaumer
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, England
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, England
| |
Collapse
|
302
|
Klinge S, Voigts-Hoffmann F, Leibundgut M, Ban N. Atomic structures of the eukaryotic ribosome. Trends Biochem Sci 2012; 37:189-98. [DOI: 10.1016/j.tibs.2012.02.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/10/2012] [Accepted: 02/16/2012] [Indexed: 12/20/2022]
|
303
|
McDonald ME, Green R. Another burst of smoke: atomic resolution structures of RF3 bound to the ribosome. RNA (NEW YORK, N.Y.) 2012; 18:605-609. [PMID: 22345149 PMCID: PMC3312549 DOI: 10.1261/rna.032011.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two recent reports provide atomic resolution information detailing the interaction of the class II release factor, RF3, with the bacterial ribosome. Differences in the composition of the two crystal forms allow us to learn a considerable amount about how translational GTPases engage the ribosome to facilitate and define conformational rearrangements involved in protein synthesis.
Collapse
Affiliation(s)
- Megan E. McDonald
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rachel Green
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
304
|
Structural characterization of mRNA-tRNA translocation intermediates. Proc Natl Acad Sci U S A 2012; 109:6094-9. [PMID: 22467828 DOI: 10.1073/pnas.1201288109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cryo-EM analysis of a wild-type Escherichia coli pretranslocational sample has revealed the presence of previously unseen intermediate substates of the bacterial ribosome during the first phase of translocation, characterized by intermediate intersubunit rotations, L1 stalk positions, and tRNA configurations. Furthermore, we describe the domain rearrangements in quantitative terms, which has allowed us to characterize the processivity and coordination of the conformational reorganization of the ribosome, along with the associated changes in tRNA ribosome-binding configuration. The results are consistent with the view of the ribosome as a molecular machine employing Brownian motion to reach a functionally productive state via a series of substates with incremental changes in conformation.
Collapse
|
305
|
Shi X, Khade PK, Sanbonmatsu KY, Joseph S. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. J Mol Biol 2012; 419:125-38. [PMID: 22459262 DOI: 10.1016/j.jmb.2012.03.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/10/2012] [Accepted: 03/17/2012] [Indexed: 11/19/2022]
Abstract
The sarcin-ricin loop (SRL) is one of the longest conserved sequences in the 23S ribosomal RNA. The SRL has been accepted as crucial for the activity of the ribosome because it is targeted by cytotoxins such as α-sarcin and ricin that completely abolish translation. Nevertheless, the precise functional role of the SRL in translation is not known. Recent biochemical and structural studies indicate that the SRL is critical for triggering GTP hydrolysis on elongation factor Tu (EF-Tu) and elongation factor G (EF-G). To determine the functional role of the SRL in the elongation stage of protein synthesis, we analyzed mutations in the SRL that are known to abolish protein synthesis and are lethal to cells. Here, we show that the SRL is not critical for GTP hydrolysis on EF-Tu and EF-G. The SRL also is not essential for peptide bond formation. Our results, instead, suggest that the SRL is crucial for anchoring EF-G on the ribosome during mRNA-tRNA translocation.
Collapse
MESH Headings
- Binding Sites
- Conserved Sequence
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Fungal Proteins/metabolism
- Guanosine Triphosphate/metabolism
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/genetics
- Peptide Elongation Factor Tu/metabolism
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Secondary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Ricin/metabolism
Collapse
Affiliation(s)
- Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | | | | | | |
Collapse
|
306
|
Neubauer C, Gillet R, Kelley AC, Ramakrishnan V. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science 2012; 335:1366-9. [PMID: 22422985 PMCID: PMC3763467 DOI: 10.1126/science.1217039] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In bacteria, ribosomes stalled at the end of truncated messages are rescued by transfer-messenger RNA (tmRNA), a bifunctional molecule that acts as both a transfer RNA (tRNA) and a messenger RNA (mRNA), and SmpB, a small protein that works in concert with tmRNA. Here, we present the crystal structure of a tmRNA fragment, SmpB and elongation factor Tu bound to the ribosome at 3.2 angstroms resolution. The structure shows how SmpB plays the role of both the anticodon loop of tRNA and portions of mRNA to facilitate decoding in the absence of an mRNA codon in the A site of the ribosome and explains why the tmRNA-SmpB system does not interfere with normal translation.
Collapse
MESH Headings
- Anticodon
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Crystallography, X-Ray
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/metabolism
- Protein Biosynthesis
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Thermus thermophilus/chemistry
- Thermus thermophilus/genetics
- Thermus thermophilus/metabolism
- Thermus thermophilus/ultrastructure
Collapse
Affiliation(s)
- Cajetan Neubauer
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Reynald Gillet
- Université de Rennes 1 and Institut Universitaire de France, “Translation and Folding” group, UMR CNRS 6290, IGDR, Campus de Beaulieu 35042 Rennes cedex, France
| | - Ann C. Kelley
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
307
|
A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases. Nat Struct Mol Biol 2012; 19:403-10. [PMID: 22407015 DOI: 10.1038/nsmb.2254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/31/2012] [Indexed: 11/08/2022]
Abstract
When elongation factor G (EF-G) binds to the ribosome, it first makes contact with the C-terminal domain (CTD) of L12 before interacting with the N-terminal domain (NTD) of L11. Here we have identified a universally conserved residue, Pro22 of L11, that functions as a proline switch (PS22), as well as the corresponding center of peptidyl-prolyl cis-trans isomerase (PPIase) activity on EF-G that drives the cis-trans isomerization of PS22. Only the cis configuration of PS22 allows direct contact between the L11 NTD and the L12 CTD. Mutational analyses of both PS22 and the residues of the EF-G PPIase center reveal their function in translational GTPase (trGTPase) activity, protein synthesis and cell survival in Escherichia coli. Finally, we demonstrate that all known universal trGTPases contain an active PPIase center. Our observations suggest that the cis-trans isomerization of the L11 PS22 is a universal event required for an efficient turnover of trGTPases throughout the translation process.
Collapse
|
308
|
Penczek PA, Kimmel M, Spahn CMT. Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. Structure 2012; 19:1582-90. [PMID: 22078558 DOI: 10.1016/j.str.2011.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 11/16/2022]
Abstract
We present the codimensional principal component analysis (PCA), a novel and straightforward method for resolving sample heterogeneity within a set of cryo-EM 2D projection images of macromolecular assemblies. The method employs PCA of resampled 3D structures computed using subsets of 2D data obtained with a novel hypergeometric sampling scheme. PCA provides us with a small subset of dominating "eigenvolumes" of the system, whose reprojections are compared with experimental projection data to yield their factorial coordinates constructed in a common framework of the 3D space of the macromolecule. Codimensional PCA is unique in the dramatic reduction of dimensionality of the problem, which facilitates rapid determination of both the plausible number of conformers in the sample and their 3D structures. We applied the codimensional PCA to a complex data set of Thermus thermophilus 70S ribosome, and we identified four major conformational states and visualized high mobility of the stalk base region.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, Houston Medical School, The University of Texas, Houston, TX 77030, USA.
| | | | | |
Collapse
|
309
|
Mochizuki M, Kitamyo M, Miyoshi T, Ito K, Uchiumi T. Analysis of chimeric ribosomal stalk complexes from eukaryotic and bacterial sources: structural features responsible for specificity of translation factors. Genes Cells 2012; 17:273-84. [DOI: 10.1111/j.1365-2443.2012.01586.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
310
|
Structural insights into initial and intermediate steps of the ribosome-recycling process. EMBO J 2012; 31:1836-46. [PMID: 22388519 DOI: 10.1038/emboj.2012.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/17/2012] [Indexed: 11/08/2022] Open
Abstract
The ribosome-recycling factor (RRF) and elongation factor-G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-electron microscopic structures of the PoTC·RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and protein L11 within the 50S ribosomal subunit. Upon EF-G binding, both RRF and tRNA are driven towards the tRNA-exit (E) site, with a large rotational movement of domain II of RRF towards the 30S ribosomal subunit. During this intermediate step of the recycling process, domain II of RRF and domain IV of EF-G adopt hitherto unknown conformations. Furthermore, binding of EF-G to the PoTC·RRF complex reverts the ribosome from ratcheted to unratcheted state. These results suggest that (i) the ribosomal intersubunit reorganizations upon RRF binding and subsequent EF-G binding could be instrumental in destabilizing the PoTC and (ii) the modes of action of EF-G during tRNA translocation and ribosome-recycling steps are markedly different.
Collapse
|
311
|
Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, Armache JP, Sieber H, Ungewickell C, Berninghausen O, Daberkow I, Karcher A, Thomm M, Hopfner KP, Green R, Beckmann R. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 2012; 482:501-6. [PMID: 22358840 DOI: 10.1038/nature10829] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/05/2012] [Indexed: 11/09/2022]
Abstract
Ribosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling. In bacteria, ribosome recycling requires ribosome recycling factor and elongation factor G, and several structures of bacterial recycling complexes have been determined. In the eukaryotic and archaeal kingdoms, however, recycling involves the ABC-type ATPase ABCE1 and little is known about its structural basis. Here we present cryo-electron microscopy reconstructions of eukaryotic and archaeal ribosome recycling complexes containing ABCE1 and the termination factor paralogue Pelota. These structures reveal the overall binding mode of ABCE1 to be similar to canonical translation factors. Moreover, the iron-sulphur cluster domain of ABCE1 interacts with and stabilizes Pelota in a conformation that reaches towards the peptidyl transferase centre, thus explaining how ABCE1 may stimulate peptide-release activity of canonical termination factors. Using the mechanochemical properties of ABCE1, a conserved mechanism in archaea and eukaryotes is suggested that couples translation termination to recycling, and eventually to re-initiation.
Collapse
Affiliation(s)
- Thomas Becker
- Gene Center and Center for integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Archaeal ribosomal stalk protein interacts with translation factors in a nucleotide-independent manner via its conserved C terminus. Proc Natl Acad Sci U S A 2012; 109:3748-53. [PMID: 22355137 DOI: 10.1073/pnas.1112934109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein synthesis on the ribosome requires translational GTPase factors to bind to the ribosome in the GTP-bound form, take individual actions that are coupled with GTP hydrolysis, and dissociate, usually in the GDP-bound form. The multiple copies of the flexible ribosomal stalk protein play an important role in these processes. Using biochemical approaches and the stalk protein from a hyperthermophilic archaeon, Pyrococcus horikoshii, we here provide evidence that the conserved C terminus of the stalk protein aP1 binds directly to domain I of the elongation factor aEF-2, irrespective of whether aEF-2 is bound to GTP or GDP. Site-directed mutagenesis revealed that four hydrophobic amino acids at the C terminus of aP1, Leu-100, 103, 106, and Phe-107, are crucial for the direct binding. P1 was also found to bind to the initiation factor aIF5B, as well as aEF-1α, but not aIF2γ, via its C terminus. Moreover, analytical ultracentrifugation and gel mobility shift analyses showed that a heptameric complex of aP1 and aP0, aP0(aP1)(2)(aP1)(2)(aP1)(2), can bind multiple aEF-2 molecules simultaneously, which suggests that individual copies of the stalk protein are accessible to the factor. The functional significance of the C terminus of the stalk protein was also shown using the eukaryotic proteins P1/P2 and P0. It is likely that the conserved C terminus of the stalk proteins of archaea and eukaryotes can bind to translation factors both before and after GTP hydrolysis. This consistent binding ability of the stalk protein may contribute to maintaining high concentrations of translation factors around the ribosome, thus promoting translational efficiency.
Collapse
|
313
|
Zhou J, Lancaster L, Trakhanov S, Noller HF. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. RNA (NEW YORK, N.Y.) 2012; 18:230-40. [PMID: 22187675 PMCID: PMC3264910 DOI: 10.1261/rna.031187.111] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 Å crystal structure of the RF3·GDPNP·ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome. RF3 induces a 7° rotation of the body and 14° rotation of the head of the 30S ribosomal subunit, and itself undergoes inter- and intradomain conformational rearrangements. We suggest that ordering of critical elements of switch loop I and the P loop, which help to form the GTPase catalytic site, are caused by interactions between the G domain of RF3 and the sarcin-ricin loop of 23S rRNA. The rotational movements in the ribosome induced by RF3, and its distinctly different binding orientation to the sarcin-ricin loop of 23S rRNA, raise interesting implications for the mechanism of action of EF-G in translocation.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Laura Lancaster
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Sergei Trakhanov
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Harry F. Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- Corresponding author.E-mail .
| |
Collapse
|
314
|
Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid. Proc Natl Acad Sci U S A 2012; 109:2102-7. [PMID: 22308410 DOI: 10.1073/pnas.1117275109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resistance to the antibiotic fusidic acid (FA) in the human pathogen Staphylococcus aureus usually results from expression of FusB-type proteins (FusB or FusC). These proteins bind to elongation factor G (EF-G), the target of FA, and rescue translation from FA-mediated inhibition by an unknown mechanism. Here we show that the FusB family are two-domain metalloproteins, the C-terminal domain of which contains a four-cysteine zinc finger with a unique structural fold. This domain mediates a high-affinity interaction with the C-terminal domains of EF-G. By binding to EF-G on the ribosome, FusB-type proteins promote the dissociation of stalled ribosome⋅EF-G⋅GDP complexes that form in the presence of FA, thereby allowing the ribosomes to resume translation. Ribosome clearance by these proteins represents a highly unusual antibiotic resistance mechanism, which appears to be fine-tuned by the relative abundance of FusB-type protein, ribosomes, and EF-G.
Collapse
|
315
|
Nomura Y, Takabayashi T, Kuroda H, Yukawa Y, Sattasuk K, Akita M, Nozawa A, Tozawa Y. ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro. PLANT MOLECULAR BIOLOGY 2012; 78:185-96. [PMID: 22108865 DOI: 10.1007/s11103-011-9858-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/08/2011] [Indexed: 05/08/2023]
Abstract
Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(β,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.
Collapse
Affiliation(s)
- Yuhta Nomura
- Division of Biomolecular Engineering, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | | | | | | | | | | | | | | |
Collapse
|
316
|
Walbott H, Machado-Pinilla R, Liger D, Blaud M, Réty S, Grozdanov PN, Godin K, van Tilbeurgh H, Varani G, Meier UT, Leulliot N. The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic. Genes Dev 2011; 25:2398-408. [PMID: 22085966 DOI: 10.1101/gad.176834.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA-protein-binding sites to achieve a specific protein-protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins.
Collapse
Affiliation(s)
- Hélène Walbott
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
CPEB2-eEF2 interaction impedes HIF-1α RNA translation. EMBO J 2011; 31:959-71. [PMID: 22157746 DOI: 10.1038/emboj.2011.448] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 11/15/2011] [Indexed: 12/21/2022] Open
Abstract
Translation of mRNA into protein proceeds in three phases: initiation, elongation, and termination. Regulated translation allows the prompt production of selective proteins in response to physiological needs and is often controlled by sequence-specific RNA-binding proteins that function at initiation. Whether the elongation phase of translation can be modulated individually by trans-acting factors to synthesize polypeptides at variable rates remains to be determined. Here, we demonstrate that the RNA-binding protein, cytoplasmic polyadenylation element binding protein (CPEB)2, interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-triggered GTP hydrolysis in vitro and slow down peptide elongation of CPEB2-bound RNA in vivo. The interaction of CPEB2 with eEF2 downregulates HIF-1α RNA translation under normoxic conditions; however, when cells encounter oxidative stress, CPEB2 dissociates from HIF-1α RNA, leading to rapid synthesis of HIF-1α for hypoxic adaptation. This study delineates the molecular mechanism of CPEB2-repressed translation and presents a unique model for controlling transcript-selective translation at elongation.
Collapse
|
318
|
Hedrick EG, Tanner DR, Baig A, Hill WE. The formation of a potential spring in the ribosome. J Mol Biol 2011; 415:833-42. [PMID: 22178475 DOI: 10.1016/j.jmb.2011.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 01/12/2023]
Abstract
Time-dependent chemical modification and cleavage results have provided intriguing insights into structural changes that occur in the distal loop of helix 11 in 16S ribosomal RNA (rRNA). Located distant from the decoding region, between proteins S17 and S20, the results of this study suggest that this region of rRNA may act as a buffer or a spring between these two proteins during protein biosynthesis. During the assembly process, protein S17 apparently produces the major structural deformations in this region, causing it to be folded in a spring-like structure. Base C264 in this region shows erratic behavior during assembly and also shows time-dependent enhancement when elongation factor G with GTP is added to 70S ribosomes. Evidence is presented to suggest that this region of rRNA may be used to allow relative motion to occur between proteins S17 and S20 during translocation.
Collapse
Affiliation(s)
- Emily G Hedrick
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | | | |
Collapse
|
319
|
Mandava CS, Peisker K, Ederth J, Kumar R, Ge X, Szaflarski W, Sanyal S. Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G. Nucleic Acids Res 2011; 40:2054-64. [PMID: 22102582 PMCID: PMC3299993 DOI: 10.1093/nar/gkr1031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally engineered Escherichia coli strain, JE105, in which the peripheral L12 dimer binding site was deleted. Thus JE105 harbors ribosomes with only a single L12 dimer. Compared to MG1655, the parental strain with two L12 dimers, JE105 showed significant growth defect suggesting suboptimal function of the ribosomes with one L12 dimer. When tested in a cell-free reconstituted transcription–translation assay the synthesis of a full-length protein, firefly luciferase, was notably slower with JE105 70S ribosomes and 50S subunits. Further, in vitro analysis by fast kinetics revealed that single L12 dimer ribosomes from JE105 are defective in two major steps of translation, namely initiation and elongation involving translational GTPases IF2 and EF-G. Varying number of L12 dimers on the ribosome can be a mechanism in bacteria for modulating the rate of translation in response to growth condition.
Collapse
Affiliation(s)
- Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box-596, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
320
|
Excited states of ribosome translocation revealed through integrative molecular modeling. Proc Natl Acad Sci U S A 2011; 108:18943-8. [PMID: 22080606 DOI: 10.1073/pnas.1108363108] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The dynamic nature of biomolecules leads to significant challenges when characterizing the structural properties associated with function. While X-ray crystallography and imaging techniques (such as cryo-electron microscopy) can reveal the structural details of stable molecular complexes, strategies must be developed to characterize configurations that exhibit only marginal stability (such as intermediates) or configurations that do not correspond to minima on the energy landscape (such as transition-state ensembles). Here, we present a methodology (MDfit) that utilizes molecular dynamics simulations to generate configurations of excited states that are consistent with available biophysical and biochemical measurements. To demonstrate the approach, we present a sequence of configurations that are suggested to be associated with transfer RNA (tRNA) movement through the ribosome (translocation). The models were constructed by combining information from X-ray crystallography, cryo-electron microscopy, and biochemical data. These models provide a structural framework for translocation that may be further investigated experimentally and theoretically to determine the precise energetic character of each configuration and the transition dynamics between them.
Collapse
|
321
|
Geiermann AS, Polacek N, Micura R. Native Chemical Ligation of Hydrolysis-Resistant 3′-Peptidyl–tRNA Mimics. J Am Chem Soc 2011; 133:19068-71. [DOI: 10.1021/ja209053b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anna-Skrollan Geiermann
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - Norbert Polacek
- Innsbruck Biocenter, Division of Genomics and RNomics, Medical University of Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| |
Collapse
|
322
|
Abstract
The crystal structures of ribosomes that have been obtained since 2000 have transformed our understanding of protein synthesis. In addition to proving that RNA is responsible for catalyzing peptide bond formation, these structures have provided important insights into the mechanistic details of how the ribosome functions. This review emphasizes what has been learned about the mechanism of peptide bond formation, the antibiotics that inhibit ribosome function, and the fidelity of decoding.
Collapse
Affiliation(s)
- Peter B Moore
- Department of Molecular Biophysics, Yale University, New Haven, Connecticut 208114, USA.
| | | |
Collapse
|
323
|
Khade PK, Joseph S. Messenger RNA interactions in the decoding center control the rate of translocation. Nat Struct Mol Biol 2011; 18:1300-2. [PMID: 22020300 PMCID: PMC11855187 DOI: 10.1038/nsmb.2140] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/15/2011] [Indexed: 11/09/2022]
Abstract
During protein synthesis, mRNA and tRNAs are iteratively translocated by the ribosome. Precisely what molecular event is rate limiting for translocation is not known. Here we show that disruption of the interactions between the A-site codon and the ribosome accelerates translocation, suggesting that the release of the mRNA from the decoding center of the ribosome is the rate-limiting step of translocation. These results provide insight into the molecular mechanism of translocation.
Collapse
Affiliation(s)
- Prashant K Khade
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
324
|
Initiation factor eIF2γ promotes eIF2-GTP-Met-tRNAi(Met) ternary complex binding to the 40S ribosome. Nat Struct Mol Biol 2011; 18:1227-34. [PMID: 22002225 PMCID: PMC3210414 DOI: 10.1038/nsmb.2133] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/09/2011] [Indexed: 11/24/2022]
Abstract
In contrast to elongation factor EF-Tu, which delivers aminoacyl-tRNAs to the ribosomal A-site, eukaryotic initiation factor eIF2 binds initiator Met-tRNAiMet to the P-site of the 40S ribosomal subunit. We used directed hydroxyl radical probing experiments to map the binding of Saccharomyces cerevisiae eIF2 on the ribosome and on Met-tRNAiMet. Our results identify a key binding-interface between domain III of eIF2γ and 18S rRNA helix h44 on the 40S subunit. Moreover, we showed that eIF2γ primarily contacts the acceptor stem of Met-tRNAiMet. Whereas the analogous domain III of EF-Tu contacts the T-stem of tRNAs, biochemical analyses demonstrated that eIF2γ domain III is important for ribosome, but not Met-tRNAiMet, binding. Thus despite their structural similarity, eIF2 and EF-Tu bind tRNAs in substantially different manners, and we propose that the tRNA-binding domain III of EF-Tu has acquired a new ribosome-binding function in eIF2γ.
Collapse
|
325
|
Ahmed A, Whitford PC, Sanbonmatsu KY, Tama F. Consensus among flexible fitting approaches improves the interpretation of cryo-EM data. J Struct Biol 2011; 177:561-70. [PMID: 22019767 DOI: 10.1016/j.jsb.2011.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 12/31/2022]
Abstract
Cryo-elecron microscopy (cryo-EM) can provide important structural information of large macromolecular assemblies in different conformational states. Recent years have seen an increase in structures deposited in the Protein Data Bank (PDB) by fitting a high-resolution structure into its low-resolution cryo-EM map. A commonly used protocol for accommodating the conformational changes between the X-ray structure and the cryo-EM map is rigid body fitting of individual domains. With the emergence of different flexible fitting approaches, there is a need to compare and revise these different protocols for the fitting. We have applied three diverse automated flexible fitting approaches on a protein dataset for which rigid domain fitting (RDF) models have been deposited in the PDB. In general, a consensus is observed in the conformations, which indicates a convergence from these theoretically different approaches to the most probable solution corresponding to the cryo-EM map. However, the result shows that the convergence might not be observed for proteins with complex conformational changes or with missing densities in cryo-EM map. In contrast, RDF structures deposited in the PDB can represent conformations that not only differ from the consensus obtained by flexible fitting but also from X-ray crystallography. Thus, this study emphasizes that a "consensus" achieved by the use of several automated flexible fitting approaches can provide a higher level of confidence in the modeled configurations. Following this protocol not only increases the confidence level of fitting, but also highlights protein regions with uncertain fitting. Hence, this protocol can lead to better interpretation of cryo-EM data.
Collapse
Affiliation(s)
- Aqeel Ahmed
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
326
|
Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80:943-71. [PMID: 21675921 DOI: 10.1146/annurev-biochem-062708-134043] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,β topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.
Collapse
|
327
|
Tran DK, Finley J, Vila-Sanjurjo A, Lale A, Sun Q, O'Connor M. Tertiary interactions between helices h13 and h44 in 16S RNA contribute to the fidelity of translation. FEBS J 2011; 278:4405-12. [PMID: 21951637 DOI: 10.1111/j.1742-4658.2011.08363.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The A-minor interaction, formed between single-stranded adenosines and the minor groove of a receptor helix, is among the most common motifs found in rRNA. Among the A-minors found in 16S rRNA are a set of interactions between adenosines at positions 1433, 1434 and 1468 in helix 44 (h44) and their receptors in the nucleotide 320-340 region of helix 13 (h13). These interactions have been implicated in the maintenance of translational accuracy, because base substitutions at the adjacent C1469 increase miscoding errors. We have tested their functional significance through mutagenesis of h13 and h44. Mutations at the h44 A residues, or the A-minor receptors in h13, increase a variety of translational errors and a subset of the mutants show decreased association between 30S and 50S ribosomal subunits. These results are consistent with the involvement of h13-h44 interactions in the alignment and packing of these helices in the 30S subunit and the importance of this helical alignment for tRNA selection and subunit-subunit interaction.
Collapse
Affiliation(s)
- Diem K Tran
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
328
|
The conserved protein EF4 (LepA) modulates the elongation cycle of protein synthesis. Proc Natl Acad Sci U S A 2011; 108:16223-8. [PMID: 21930951 DOI: 10.1073/pnas.1103820108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
EF4 (LepA), a strongly conserved protein, is important for bacterial growth and functional protein biosynthesis under certain conditions and is quite similar structurally to the translocase EF-G. The elongation cycle in protein synthesis is characterized by ribosome oscillation between pretranslocation (PRE) and posttranslocation (POST) complexes. Here, using ensemble single turnover and equilibrium experiments, as well as single molecule FRET measurements, we demonstrate that EF4 can compete with EF-G for binding to the PRE complex. Such EF4 binding results in formation of a complex, denoted X(3), that effectively sequesters a catalytically active ribosome, leading to a transient inhibition of elongation that provides a mechanism for optimization of functional protein synthesis. Earlier [Liu H, et al. (2010) J Mol Biol 396:1043-1052] we demonstrated that EF4 also reacts with POST complex, leading to the formation of a complex, I(3), that appears to be identical with X(3). Our present results strongly suggest that PRE complex is the principal target of EF4 action on translation, rather than POST complex as had been previously supposed.
Collapse
|
329
|
Mikolajka A, Liu H, Chen Y, Starosta AL, Márquez V, Ivanova M, Cooperman BS, Wilson DN. Differential effects of thiopeptide and orthosomycin antibiotics on translational GTPases. ACTA ACUST UNITED AC 2011; 18:589-600. [PMID: 21609840 DOI: 10.1016/j.chembiol.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 11/18/2022]
Abstract
The ribosome is a major target in the bacterial cell for antibiotics. Here, we dissect the effects that the thiopeptide antibiotics thiostrepton (ThS) and micrococcin (MiC) as well as the orthosomycin antibiotic evernimicin (Evn) have on translational GTPases. We demonstrate that, like ThS, MiC is a translocation inhibitor, and that the activation by MiC of the ribosome-dependent GTPase activity of EF-G is dependent on the presence of the ribosomal proteins L7/L12 as well as the G' subdomain of EF-G. In contrast, Evn does not inhibit translocation but is a potent inhibitor of back-translocation as well as IF2-dependent 70S-initiation complex formation. Collectively, these results shed insight not only into fundamental aspects of translation but also into the unappreciated specificities of these classes of translational inhibitors.
Collapse
|
330
|
Shoji S, Dambacher CM, Shajani Z, Williamson JR, Schultz PG. Systematic chromosomal deletion of bacterial ribosomal protein genes. J Mol Biol 2011; 413:751-61. [PMID: 21945294 DOI: 10.1016/j.jmb.2011.09.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/30/2011] [Accepted: 09/02/2011] [Indexed: 01/12/2023]
Abstract
Detailed studies of ribosomal proteins (RPs), essential components of the protein biosynthetic machinery, have been hampered by the lack of readily accessible chromosomal deletions of the corresponding genes. Here, we report the systematic genomic deletion of 41 individual RP genes in Escherichia coli, which are not included in the Keio collection. Chromosomal copies of these genes were replaced by an antibiotic resistance gene in the presence of an inducible, easy-to-exchange plasmid-born allele. Using this knockout collection, we found nine RPs (L15, L21, L24, L27, L29, L30, L34, S9, and S17) nonessential for survival under induction conditions at various temperatures. Taken together with previous results, this analysis revealed that 22 of the 54 E. coli RP genes can be individually deleted from the genome. These strains also allow expression of truncated protein variants to probe the importance of RNA-protein interactions in functional sites of the ribosome. This set of strains should enhance in vivo studies of ribosome assembly/function and may ultimately allow systematic substitution of RPs with RNA.
Collapse
Affiliation(s)
- Shinichiro Shoji
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
331
|
Walter JD, Hunter M, Cobb M, Traeger G, Spiegel PC. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4. Nucleic Acids Res 2011; 40:360-70. [PMID: 21908407 PMCID: PMC3245911 DOI: 10.1093/nar/gkr623] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Thiostrepton, a macrocyclic thiopeptide antibiotic, inhibits prokaryotic translation by interfering with the function of elongation factor G (EF-G). Here, we have used 70S ribosome binding and GTP hydrolysis assays to study the effects of thiostrepton on EF-G and a newly described translation factor, elongation factor 4 (EF4). In the presence of thiostrepton, ribosome-dependent GTP hydrolysis is inhibited for both EF-G and EF4, with IC(50) values equivalent to the 70S ribosome concentration (0.15 µM). Further studies indicate the mode of thiostrepton inhibition is to abrogate the stable binding of EF-G and EF4 to the 70S ribosome. In support of this model, an EF-G truncation variant that does not possess domains IV and V was shown to possess ribosome-dependent GTP hydrolysis activity that was not affected by the presence of thiostrepton (>100 µM). Lastly, chemical footprinting was employed to examine the nature of ribosome interaction and tRNA movements associated with EF4. In the presence of non-hydrolyzable GTP, EF4 showed chemical protections similar to EF-G and stabilized a ratcheted state of the 70S ribosome. These data support the model that thiostrepton inhibits stable GTPase binding to 70S ribosomal complexes, and a model for the first step of EF4-catalyzed reverse-translocation is presented.
Collapse
Affiliation(s)
- Justin D Walter
- Department of Chemistry, Western Washington University, 516 High Street, MS 9150, Bellingham, WA 98225-9150, USA
| | | | | | | | | |
Collapse
|
332
|
Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proc Natl Acad Sci U S A 2011; 108:15798-803. [PMID: 21903932 DOI: 10.1073/pnas.1112185108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein release factor 3 (RF3), a guanosine triphosphatase, binds to ribosome after release of the nascent peptide and promotes dissociation of the class I release factors during the termination of protein synthesis. Here we present the crystal structure of the 70S ribosome with RF3 in the presence of a nonhydrolyzable GTP analogue, guanosine 5'-β,γ-methylenetriphosphate (GDPCP), refined to 3.8 Å resolution. The structure shows that the subunits of the ribosome are rotated relative to each other compared to the canonical state, resulting in a P/E hybrid state for the transfer RNA. The substantial conformational rearrangements in the complex are described and suggest how RF3, by stabilizing the hybrid state of the ribosome, facilitates the dissociation of class I release factors.
Collapse
|
333
|
Długosz M, Huber GA, McCammon JA, Trylska J. Brownian dynamics study of the association between the 70S ribosome and elongation factor G. Biopolymers 2011; 95:616-27. [PMID: 21394717 PMCID: PMC3125448 DOI: 10.1002/bip.21619] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 02/28/2011] [Indexed: 02/01/2023]
Abstract
Protein synthesis on the ribosome involves a number of external protein factors that bind at its functional sites. One key factor is the elongation factor G (EF-G) that facilitates the translocation of transfer RNAs between their binding sites, as well as advancement of the messenger RNA by one codon. The details of the EF-G/ribosome diffusional encounter and EF-G association pathway still remain unanswered. Here, we applied Brownian dynamics methodology to study bimolecular association in the bacterial EF-G/70S ribosome system. We estimated the EF-G association rate constants at 150 and 300 mM monovalent ionic strengths and obtained reasonable agreement with kinetic experiments. We have also elucidated the details of EF-G/ribosome association paths and found that positioning of the L11 protein of the large ribosomal subunit is likely crucial for EF-G entry to its binding site.
Collapse
Affiliation(s)
- Maciej Długosz
- Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, Warsaw, Poland.
| | | | | | | |
Collapse
|
334
|
Liu CY, Qureshi MT, Lee TH. Interaction strengths between the ribosome and tRNA at various steps of translocation. Biophys J 2011; 100:2201-8. [PMID: 21539788 DOI: 10.1016/j.bpj.2011.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/28/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022] Open
Abstract
Transfer RNA (tRNA) translocates inside the ribosome during translation. We studied the interaction strengths between the ribosome and tRNA at various stages of translocation. We utilized an optical trap to measure the mechanical force to rupture tRNA from the ribosome. We measured the rupture forces of aminoacyl tRNA or peptidyl tRNA mimic from the ribosome in a prepeptidyl transfer state, the pretranslocational state, and the posttranslocational state. In addition, we measured the interaction strength between the ribosome and aminoacyl-tRNA in presence of viomycin. Based on the interaction strengths between the ribosome and tRNA under these conditions, 1), we concluded that tRNA interaction with the 30S subunit is far more important than the interaction with the 50S subunit in the mechanism of translocation; and 2), we propose a mechanism of translocation where the ribosomal ratchet motion, with the aid of EF-G, drives tRNA translocation.
Collapse
Affiliation(s)
- Chen-Yu Liu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | |
Collapse
|
335
|
A computational study of elongation factor G (EFG) duplicated genes: diverged nature underlying the innovation on the same structural template. PLoS One 2011; 6:e22789. [PMID: 21829651 PMCID: PMC3150367 DOI: 10.1371/journal.pone.0022789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/06/2011] [Indexed: 12/02/2022] Open
Abstract
Background Elongation factor G (EFG) is a core translational protein that catalyzes the elongation and recycling phases of translation. A more complex picture of EFG's evolution and function than previously accepted is emerging from analyzes of heterogeneous EFG family members. Whereas the gene duplication is postulated to be a prominent factor creating functional novelty, the striking divergence between EFG paralogs can be interpreted in terms of innovation in gene function. Methodology/Principal Findings We present a computational study of the EFG protein family to cover the role of gene duplication in the evolution of protein function. Using phylogenetic methods, genome context conservation and insertion/deletion (indel) analysis we demonstrate that the EFG gene copies form four subfamilies: EFG I, spdEFG1, spdEFG2, and EFG II. These ancient gene families differ by their indispensability, degree of divergence and number of indels. We show the distribution of EFG subfamilies and describe evidences for lateral gene transfer and recent duplications. Extended studies of the EFG II subfamily concern its diverged nature. Remarkably, EFG II appears to be a widely distributed and a much-diversified subfamily whose subdivisions correlate with phylum or class borders. The EFG II subfamily specific characteristics are low conservation of the GTPase domain, domains II and III; absence of the trGTPase specific G2 consensus motif “RGITI”; and twelve conserved positions common to the whole subfamily. The EFG II specific functional changes could be related to changes in the properties of nucleotide binding and hydrolysis and strengthened ionic interactions between EFG II and the ribosome, particularly between parts of the decoding site and loop I of domain IV. Conclusions/Significance Our work, for the first time, comprehensively identifies and describes EFG subfamilies and improves our understanding of the function and evolution of EFG duplicated genes.
Collapse
|
336
|
Kravchenko OV, Mitroshin IV, Gabdulkhakov AG, Nikonov SV, Garber MB. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA. CRYSTALLOGR REP+ 2011. [DOI: 10.1134/s1063774511040109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
337
|
Nikonova EY, Tishchenko SV, Gabdulkhakov AG, Shklyaeva AA, Garber MB, Nikonov SV, Nevskaya NA. Crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus. CRYSTALLOGR REP+ 2011. [DOI: 10.1134/s1063774511040158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
338
|
Steger J, Micura R. Functionalized polystyrene supports for solid-phase synthesis of glycyl-, alanyl-, and isoleucyl-RNA conjugates as hydrolysis-resistant mimics of peptidyl-tRNAs. Bioorg Med Chem 2011; 19:5167-74. [PMID: 21807524 PMCID: PMC3162138 DOI: 10.1016/j.bmc.2011.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/08/2011] [Accepted: 07/10/2011] [Indexed: 12/20/2022]
Abstract
RNA-peptide conjugates that mimic amino acid-charged tRNAs and peptidyl-tRNAs are of high importance for structural and functional investigations of ribosomal complexes. Here, we present the synthesis of glycyl-, alanyl-, and isoleucyladenosine modified solid supports that are eligible for the synthesis of stable 3′-aminoacyl- and 3′-peptidyl-tRNA termini with an amide instead of the natural ester linkage. The present work significantly expands the range of accessible peptidyl-tRNA mimics for ribosomal studies.
Collapse
Affiliation(s)
- Jessica Steger
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
339
|
The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation. Biochem Soc Trans 2011; 39:658-62. [PMID: 21428957 DOI: 10.1042/bst0390658] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.
Collapse
|
340
|
Liljas A. The ribosome story: An overview of structural studies of protein synthesis on the ribosome. CRYSTALLOGR REV 2011. [DOI: 10.1080/0889311x.2011.587812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
341
|
Johnson RA, McFadden GI, Goodman CD. Characterization of two malaria parasite organelle translation elongation factor G proteins: the likely targets of the anti-malarial fusidic acid. PLoS One 2011; 6:e20633. [PMID: 21695207 PMCID: PMC3112199 DOI: 10.1371/journal.pone.0020633] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/06/2011] [Indexed: 11/18/2022] Open
Abstract
Malaria parasites harbour two organelles with bacteria-like metabolic processes that are the targets of many anti-bacterial drugs. One such drug is fusidic acid, which inhibits the translation component elongation factor G. The response of P. falciparum to fusidic acid was characterised using extended SYBR-Green based drug trials. This revealed that fusidic acid kills in vitro cultured P. falciparum parasites by immediately blocking parasite development. Two bacterial-type protein translation elongation factor G genes are identified as likely targets of fusidic acid. Sequence analysis suggests that these proteins function in the mitochondria and apicoplast and both should be sensitive to fusidic acid. Microscopic examination of protein-reporter fusions confirm the prediction that one elongation factor G is a component of parasite mitochondria whereas the second is a component of the relict plastid or apicoplast. The presence of two putative targets for a single inhibitory compound emphasizes the potential of elongation factor G as a drug target in malaria.
Collapse
Affiliation(s)
- Russell A. Johnson
- Plant Cell Biology Research Centre-School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey I. McFadden
- Plant Cell Biology Research Centre-School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher D. Goodman
- Plant Cell Biology Research Centre-School of Botany, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
342
|
Farrell DJ, Castanheira M, Chopra I. Characterization of Global Patterns and the Genetics of Fusidic Acid Resistance. Clin Infect Dis 2011; 52 Suppl 7:S487-92. [DOI: 10.1093/cid/cir164] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
343
|
Jones RN, Mendes RE, Sader HS, Castanheira M. In Vitro Antimicrobial Findings for Fusidic Acid Tested Against Contemporary (2008–2009) Gram-Positive Organisms Collected in the United States. Clin Infect Dis 2011; 52 Suppl 7:S477-86. [DOI: 10.1093/cid/cir163] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
344
|
Chen CM, Huang M, Chen HF, Ke SC, Li CR, Wang JH, Wu LT. Fusidic acid resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in a Taiwanese hospital. BMC Microbiol 2011; 11:98. [PMID: 21569422 PMCID: PMC3114704 DOI: 10.1186/1471-2180-11-98] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 05/12/2011] [Indexed: 11/26/2022] Open
Abstract
Background The prevalence of resistance to fusidic acid of methicillin-resistant Staphylococcus aureus (MRSA) was increased each year in a Taiwan hospital. Thirty-four MRSA clinical isolates collected in 2007 and 2008 with reduced susceptibility to FA were selected for further evaluation the presence of resistance determinants. Results The most common resistance determinant was fusC, found in 25 of the 34 MRSA isolates. One of the 25 fusidic acid-resistant MRSA harboured both fusB and fusC, which is the first time this has been identified. Mutations in fusA were found in 10 strains, a total of 3 amino-acid substitutions in EF-G (fusA gene) were detected. Two substitutions with G556S and R659L were identified for the first time. Low-level resistance to fusidic acid (MICs, ≤ 32 μg/ml) was found in most our collection. All collected isolates carried type III SCCmec elements. MLST showed the isolates were MRSA ST239. PFGE revealed nine different pulsotypes in one cluster. Conclusions Our results indicate that the increase in the number of fusidic acid resistant among the MRSA isolates in this hospital is due mainly to the distribution of fusC determinants. Moreover, more than one fusidic acid-resistance mechanism was first detected in a same stain in our collection.
Collapse
Affiliation(s)
- Chih-Ming Chen
- Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, and Department of Microbiology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
345
|
Sequence-based identification of 3D structural modules in RNA with RMDetect. Nat Methods 2011; 8:513-21. [PMID: 21552257 DOI: 10.1038/nmeth.1603] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/11/2011] [Indexed: 01/24/2023]
Abstract
Structural RNA modules, sets of ordered non-Watson-Crick base pairs embedded between Watson-Crick pairs, have central roles as architectural organizers and sites of ligand binding in RNA molecules, and are recurrently observed in RNA families throughout the phylogeny. Here we describe a computational tool, RNA three-dimensional (3D) modules detection, or RMDetect, for identifying known 3D structural modules in single and multiple RNA sequences in the absence of any other information. Currently, four modules can be searched for: G-bulge loop, kink-turn, C-loop and tandem-GA loop. In control test sequences we found all of the known modules with a false discovery rate of 0.23. Scanning through 1,444 publicly available alignments, we identified 21 yet unreported modules and 141 known modules. RMDetect can be used to refine RNA 2D structure, assemble RNA 3D models, and search and annotate structured RNAs in genomic data.
Collapse
|
346
|
Leshin JA, Heselpoth R, Belew AT, Dinman J. High throughput structural analysis of yeast ribosomes using hSHAPE. RNA Biol 2011; 8:478-87. [PMID: 21508682 DOI: 10.4161/rna.8.3.14453] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Global mapping of rRNA structure by traditional methods is prohibitive in terms of time, labor and expense. High throughput selective 2' hydroxyl acylation analyzed by primer extension (hSHAPE) bypasses these problems by using fluorescently labeled primers to perform primer extension reactions, the products of which can be separated by capillary electrophoresis, thus enabling long read lengths in a cost effective manner. The data so generated is analyzed in a quantitative fashion using SHAPEFinder. This approach was used to map the flexibility of nearly the entire sequences of the 3 largest rRNAs from intact, empty yeast ribosomes. Mapping of these data onto near-atomic resolution yeast ribosome structures revealed the binding sites of known trans-acting factors, as well as previously unknown highly flexible regions of yeast rRNA. Refinement of this technology will enable nucleotide-specific mapping of changes in rRNA structure depending on the status of tRNA occupancy, the presence or absence of other trans-acting factors, due to mutations of intrinsic ribosome components or extrinsic factors affecting ribosome biogenesis, or in the presence of translational inhibitors.
Collapse
Affiliation(s)
- Jonathan A Leshin
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | | | | | |
Collapse
|
347
|
Ticu C, Murataliev M, Nechifor R, Wilson KS. A central interdomain protein joint in elongation factor G regulates antibiotic sensitivity, GTP hydrolysis, and ribosome translocation. J Biol Chem 2011; 286:21697-705. [PMID: 21531717 DOI: 10.1074/jbc.m110.214056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antibiotic fusidic acid potently inhibits bacterial translation (and cellular growth) by lodging between domains I and III of elongation factor G (EF-G) and preventing release of EF-G from the ribosome. We examined the functions of key amino acid residues near the active site of EF-G that interact with fusidic acid and regulate hydrolysis of GTP. Alanine mutants of these residues spontaneously hydrolyzed GTP in solution, bypassing the normal activating role of the ribosome. A conserved phenylalanine in the switch II element of EF-G was important for suppressing GTP hydrolysis in solution and critical for catalyzing translocation of the ribosome along mRNA. These experimental results reveal the multipurpose roles of an interdomain joint in the heart of an essential translation factor that can both promote and inhibit bacterial translation.
Collapse
Affiliation(s)
- Cristina Ticu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
348
|
Schmeing TM, Voorhees RM, Kelley AC, Ramakrishnan V. How mutations in tRNA distant from the anticodon affect the fidelity of decoding. Nat Struct Mol Biol 2011; 18:432-6. [PMID: 21378964 PMCID: PMC3072312 DOI: 10.1038/nsmb.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/08/2010] [Indexed: 11/08/2022]
Abstract
The ribosome converts genetic information into protein by selecting aminoacyl tRNAs whose anticodons base-pair to an mRNA codon. Mutations in the tRNA body can perturb this process and affect fidelity. The Hirsh suppressor is a well-studied tRNA(Trp) harboring a G24A mutation that allows readthrough of UGA stop codons. Here we present crystal structures of the 70S ribosome complexed with EF-Tu and aminoacyl tRNA (native tRNA(Trp), G24A tRNA(Trp) or the miscoding A9C tRNA(Trp)) bound to cognate UGG or near-cognate UGA codons, determined at 3.2-Å resolution. The A9C and G24A mutations lead to miscoding by facilitating the distortion of tRNA required for decoding. A9C accomplishes this by increasing tRNA flexibility, whereas G24A allows the formation of an additional hydrogen bond that stabilizes the distortion. Our results also suggest that each native tRNA will adopt a unique conformation when delivered to the ribosome that allows accurate decoding.
Collapse
|
349
|
Nakamura Y, Ito K. tRNA mimicry in translation termination and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:647-68. [DOI: 10.1002/wrna.81] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
350
|
Han MJ, Cimen H, Miller-Lee JL, Koc H, Koc EC. Purification of human mitochondrial ribosomal L7/L12 stalk proteins and reconstitution of functional hybrid ribosomes in Escherichia coli. Protein Expr Purif 2011; 78:48-54. [PMID: 21453772 DOI: 10.1016/j.pep.2011.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 01/09/2023]
Abstract
Bacterial ribosomal L7/L12 stalk is formed by L10, L11, and multiple copies of L7/L12, which plays an essential role in recruiting initiation and elongation factors during translation. The homologs of these proteins, MRPL10, MRPL11, and MRPL12, are present in human mitochondrial ribosomes. To evaluate the role of MRPL10, MRPL11, and MRPL12 in translation, we over-expressed and purified components of the human mitochondrial L7/L12 stalk proteins in Escherichia coli. Here, we designed a construct to co-express MRPL10 and MRPL12 using a duet expression system to form a functional MRPL10-MRPL12 complex. The goal is to demonstrate the homology between the mitochondrial and bacterial L7/L12 stalk proteins and to reconstitute a hybrid ribosome to be used in structural and functional studies of the mitochondrial stalk.
Collapse
Affiliation(s)
- Min-Joon Han
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|